
Deep Learning Driven Detection of Tsunami Related Internal Gravity Waves:
a path towards open-ocean natural hazards detection

Valentino Constantinou
Terran Orbital Corportation

Irvine, California
valentino.constantinou@terranorbital.com

Michela Ravanelli
Institut de Physique du Globe de Paris

Paris, France
ravanelli@ipgp.fr

Hamlin Liu
University of California - Los Angeles

Los Angeles, California
hamlin.liu@gmail.com

Jacob Bortnik
University of California - Los Angeles

Los Angeles, California
jbortnik@atmos.ucla.edu

Abstract

Tsunamis can trigger internal gravity waves (IGWs)
in the ionosphere, perturbing the Total Electron Con-
tent (TEC) - referred to as Traveling Ionospheric Dis-
turbances (TIDs) that are detectable through the Global
Navigation Satellite System (GNSS). The GNSS are con-
stellations of satellites providing signals from Earth or-
bit - Europe’s Galileo, the United States’ Global Posi-
tioning System (GPS), Russia’s Global’naya Navigatsion-
naya Sputnikovaya Sistema (GLONASS) and China’s Bei-
Dou. The real-time detection of TIDs provides an ap-
proach for tsunami detection, enhancing early warning sys-
tems by providing open-ocean coverage in geographic ar-
eas not serviceable by buoy-based warning systems. Large
volumes of the GNSS data is leveraged by deep learning,
which effectively handles complex non-linear relationships
across thousands of data streams. We describe a frame-
work leveraging slant total electron content (sTEC) from
the VARION (Variometric Approach for Real-Time Iono-
sphere Observation) algorithm by Gramian Angular Dif-
ference Fields (from Computer Vision) and Convolutional
Neural Networks (CNNs) to detect TIDs in near-real-time.
Historical data from the 2010 Maule, 2011 Tohoku and the
2012 Haida-Gwaii earthquakes and tsunamis are used in
model training, and the later-occurring 2015 Illapel earth-
quake and tsunami in Chile for out-of-sample model vali-
dation. Using the experimental framework described in the
paper, we achieved a 91.7% F1 score. Source code is avail-
able at: https://github.com/vc1492a/tidd. Our work repre-
sents a new frontier in detecting tsunami-driven IGWs in
open-ocean, dramatically improving the potential for natu-

ral hazards detection for coastal communities.

1. Introduction

It is widely acknowledged that natural hazards like earth-

quakes and tsunamis can produce acoustic and gravity

waves able to propagate to the ionosphere [26, 23, 3, 22].

Tsunamis can trigger internal gravity waves (IGWs) which

are amplified by the decreasing of the atmospheric density

and can thus reach ionospheric heights, perturbing the elec-

tron content [10, 14, 15, 29]. These perturbations - Travel-

ing Ionospheric Disturbances (TIDs) [4] - can be remotely

detected by Global Navigation Satellite System (GNSS) de-

rived measurements of the ionospheric Total Electron Con-

tent (TEC) [37, 2]. Thus, ionospheric GNSS-TEC informa-

tion can enhance tsunami warning systems [33, 22, 18], mit-

igating disaster response issues by providing timely alerts

and enabling prompt evacuation measures. Indeed, GNSS-

TEC can offer continuous, global updates on tsunami poten-

tial and arrival times reducing the risk of false alarms [20].

Existing systems such as the Deep-ocean Assessment and

Reporting of Tsunamis (DART) can be effective, but are

limited to specific geographic locations due to the use of

specialized hardware. This aim was expressed in the 2015

International Union of Geodesy and Geophysics resolution

4 (Real-Time GNSS Augmentation of the Tsunami Early

Warning System) [27]. The volume, variety and velocity

of GNSS-TEC data provide a basis for machine and deep

learning. The existence of several GNSS systems brings

ionospheric coverage that is increasing day by day, opening

new perspectives for GNSS Ionospheric Seismology.

TID detection is a distinct multivariate time-series

anomaly detection problem. Recently, Random Forest mod-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Map representing δsTEC/δt [TECU/s] variations at the

sub-Ionospheric Pierce Points for the 2012 Haida-Gwaii tsunami

near the Hawaiian islands. The values recorded from the gopm
ground station for G07, G08 and G20 are shown.

els have been explored to train models for detecting TIDs

in TEC data, requiring feature engineering leveraging of

both TEC and ionospheric spectrograms [5]. Lately, deep

learning has automatically discovered complex, highly non-

linear features without requiring domain knowledge [24],

resulting in greater modeling capability and flexibility ver-

sus other modeling approaches.

We leverage Gramian Angular Difference Fields

(GADFs) and Convolutional Neural Networks (CNNs) for

TID detection. The VARION (Variometric Approach for

Real-Time Ionosphere Observation) algorithm is used to

analyse the TEC time series [33] from multiple tsunami-

genic earthquake events. We describe a framework for us-

ing deep learning to detect TIDs and assess the general-

izability of the framework by utilizing multiple, separate

events for model training and future event for validation.

The 2010 Maule, the 2011 Tōhoku, the 2012 Haida-Gwaii

earthquakes were used for model training with the 2015 Il-

lapel earthquake used for out-of-sample validation.

2. Earthquake Information and Dataset

The 2010 Mw. 8.8 Maule earthquake (36.1221◦S

72.8981◦W) [42] triggered a tsunami all over the Pacific

region, reaching peaks of 29m at Constitución, Chile [47].

We employed a dataset of 34 days, 20 of which before the

EQ and 10 after the EQ related to 30 GPS stations located in

the Chile from the UNAVCO network [39]. The shock trig-

gered a tsunami that propagated all over the Pacific region,

reaching over 700 kilometers of coastline [11]. The maxi-

mum run-up (i.e., the maximum topographic height reached

by the tsunami) peak (29 meters) was recorded at Consti-

tución, Chile [47]. The Pacific Tsunami Warning Center

(PTWC) issued the warning 12 minutes after the EQ [38].

The tsunami arrived within 30 minutes at many locations in

Chile, therefore, official evacuations and warnings by local

authorities were not available at many places prior to the

arrival of the tsunami [6]. The tsunami accounts for 124

victims concentrated in the coastal regions of Maule and

Biobı́o, Juan Fernández Archipelago’s Robinson Crusoe Is-

land and Mocha Island [12].

The 2011 Mw 9.1 Great Tōhoku-Oki earthquake (38.297◦N

142.373◦E) [43] generated tsunami waves (maximum of

20m) reaching the Pacific coast of Honshu within about

20 minutes and was observed all over the Pacific region

[7]. 1200 GNSS stations belonging to the GEONET net-

work [28] were used to analyse 30 days, 10 of which before

the EQ and 19 after the EQ. The shock triggered power-

ful tsunami waves that struck the Pacific coast of Honshu

within about 20 minutes and that was observed all over the

Pacific region. 15270 and and 8499 people were reported to

be killed and missed respectively because of the earthquake

and tsunami. In Sendai, maximum tsunami run-up heights

(15-20 m range) were registered. The Japan Meteorological

Agency’s national tsunami warning center issued a tsunami

warning 3 minutes after the earthquake triggering the alert-

ing process that immediately broadcasted by mass media

and locally activated sirens and other mitigation counter-

measures such as flood gate closures. Nevertheless, many

casualties resulted: waves overtopped tsunami walls and de-

stroyed many structures, especially wooden homes [7].

The 2012 Mw 7.8 Haida Gwaii (52.788◦N 132.101◦W)

earthquake [40] engendered a non-destructive tsunami reg-

istered throughout the Pacific. Tsunami waves up to 1.5m

were registered in Maui and the Hawaii Island [8]. 56 GPS

stations placed on Hawaii islands belonging to UNAVCO

network were used to study 15 days: 12 days before the EQ

and 2 after the EQ. The quake engendered a non-destructive

tsunami that was registered throughout the Pacific, hitting

the coast of Alaska, of British Columbia, of California and

of Hawaii. The PTWC issued a tsunami warning (19:09

HST 27 October) that was then downgraded (01:01 HST 28

October).

The 2015 Mw 8.3 Illapel earthquake (31.573◦S 71.674◦W)

[41] provoked tsunami waves up to 9m. 80 GPS stations

located in Chile from CSN [9] were used to investigate 26

days starting from 18 days before the EQ to 6 days after.

The tremor generated a tsunami that spread across the Pa-

cific Ocean. Tsunami waves heights up to 9 m on the coast

were measured between 29◦S and 32◦S and smaller fur-

ther south and north. Along the Chilean coast, the PTWC

and National Hydrographic and Oceanic Service (SHOA)

issued tsunami threat messages 7 and 8 min following the

earthquake, respectively. Tsunami linked casualties were

minimized by these prompt messages and evacuation [36].

3. Methods
TEC Data, Labeling and Transformation: We used

VARION-produced [33] slant Total Electron Content vari-

ations over time (δsTEC/δT ). VARION is based on sin-
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Earthquake Characteristics
year magnitude

Maule 2010 8.8

Tohoku 2011 9.1

Haida-Gwaii 2012 7.8

Illapel 2015 8.3

Table 1. The years and magnitudes of earthquakes in the training

(2010 - 2012) and validation data (2015).

Figure 2. A randomly-sampled batch of GADF-generated images

from both the normal and anomalous classes.

gle time differences of geometry-free combination of GNSS

carrier-phase measurements, using a standalone GNSS re-

ceiver and standard GNSS broadcast products that are avail-

able in real time. VARION has been successfully applied to

detection of ionospheric perturbations in several real-time

scenarios [32, 31]. Tsunami-TID periods range from 10 to

30 minutes [3]. TIDs generated from tsunami waves are

similar to ionospheric disturbances generated from other

phenomena, such as meteorite explosions in the atmosphere

[45, 21], volcanic eruptions [17, 34] or large explosions

[19].

The GNSS data stream source data exists at 5 sec-

ond time intervals, but data was resampled to the minute

level for modeling and demonstrating this proof of concept.

Resampling the data reduces the computational resources

needed to train machine and deep learning models. How-

ever, care must be taken when resampling as to not dampen

behaviors in the time series important for detecting distur-

bances in time series.

Supervised models were used, necessitating subject mat-

ter expert (SME) ground-truth labels. Each univariate TEC

time series was labeled with a start and finish time of the

TIDs. For each time series X = {x(1), x(2), . . . , x(n)} of n
TEC estimates, the data was split into windows of size w.

Each window of TEC estimates are converted to images us-

ing GADF [44]. GADF produces visually-interpretable dif-

ferences across classes (Figure 2). This data was then used

in model training and validation. If any of the image was

generated from a window of data overlapping ground truth

ranges, this image is categorized as representing a TID - if

not, normal ionospheric TEC.

3.1. Convolutional Neural Networks (CNNs)

In this framework, data from multiple univariate time se-

ries are converted into images and utilized to train a deep

learning model. Since information and characteristics about

the time series are transformed into images in this frame-

work, a computer vision approach is leveraged - a Convo-

lutional Neural Network (CNN). A variety of deep learning

architectures have been developed for image data, including

CNNs. These computer vision models such as CNNs have

been extensively used for natural hazards detection and dis-

aster management [25, 35, 1, 30], from leveraging satellite

optical imagery to multispectral data and even data from

Synthetic Apertrure Radar (SAR). In this work, a single

CNN model is trained for TID detection across data from

the first three tsunami events in our data using the ResNet

[13] architecture, providing the model with the exposure to

many different scenarios. This single model is then val-

idated with unseen data from the 2015 Illapel earthquake

and tsunami.

3.2. A False Positive Mitigation (FPM) Strategy

Time periods predicted as TIDs may be short. They may

represent false positives or periods classified as TIDs, but

are often representative of noise or normal behavior. . Our

strategy considers the set of all univariate time series for a

satellite Xs, which contains many time series Xg of n TEC

estimates, one time series X for each ground station. A

boolean vector Xs,t of 1xg dimension, where g is the num-

ber of ground stations, is generated by representing TID

detections as 1s and normal behavior as 0s. Vector values

are summed and divided by g, generating a float value F s,t

between [0,1] representing the share of data at each time

step representing a possible TID. A threshold T s,t is selected

such that any time periods t where F s,t > T s,t are consid-

ered as TIDs. The threshold parameter T s,t is adjustable,

with higher values reducing recall but improving precision.

This approach ensures some level of agreement is reached

across ground stations for a TID detection.

4. Results
Training and validation metrics are reported, along with

dataset summary statistics. We emphasized evaluating ap-

proach effectiveness. No comparisons are made between

CNN architectures, such as DenseNet or VGG. Similarly,

no comparisons are made between various types of image

encoding methodologies. A more balanced dataset was cre-

ated by undersampling the normal (majority) class such that

the minority class represented 10% of the number in the

normal class (Table 2). Increasing the overall share of the

minority class relative to the size of the dataset is a com-

monly used technique for training generalized machine and

deep learning models [46].
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Number of Samples
original balanced

anomalous 90201 90201

normal 18756848 900329

Table 2. The number of samples available in each class in the orig-

inal data and the balanced dataset.

4.1. Setup

Being aware that ionospheric conditions are variable and

earthquake features are different, we used 2 sets of tsunami-

genic earthquakes. The dataset is used in model training, us-

ing data available from the 2010 Maule, 2011 Tōhoku and

2012 Haida-Gwaii earthquakes. Training data is randomly

sampled for training and testing sets used for model train-

ing, with precision, recall, and F1-score metrics provided

(Table 4) from the training process.

Model Parameters
architecture resnet50

batch size 512

optimizer Adam

beginning learning rate 0.00025

loss function Cross-Entropy Loss

image size (in pixels) 224x224

Table 3. The parameters of the model used in the experiments.

The second dataset contains tsunami-induced TIDs oc-

curring after the events in the training set, simulating how

such a model would be used in the real-world. Each minute,

data streams are processed chronologically with 60-minute

windows of sTEC data, with a GADF-generated image pre-

dicted by the trained model to contain a TID or not. La-

bels are concatenated, producing labeled sequences. Each

ground truth anomalous sequence xa ∈ xa of values is then

evaluated against the set of predicted sequences, according

to the rules described in [16]. The FPM strategy is lever-

aged compared to the standard approach in Table 4.

4.2. Model Parameters and Evaluation

The CNN architecture and parameters are described in

Table 3. A sequence length of ls = 60 minutes is used.

Steps are taken to minimize over-fitting, such as reducing

the learning rate on loss plateauing and using early stop-

ping. The threshold T s,t used in FPM was kept constant at

0.75.

5. Discussion and Conclusion
Impacts of the FPM Strategy: The FPM strategy has a

profound impact on reducing false positives, improving the

precision from 34.7% to 100.0% and F1 score from 51.0%

Metrics
validation - recall 96.2.%

validation - precision 34.7%

validation - F1 score 51.0%

validation (false positive mitigation) - recall 84.6.%

validation (false positive mitigation) - precision 100.0%

validation (false positive mitigation) - F1 score 91.7%

Table 4. Performance metrics from various stages of the experi-

ment.

Figure 3. TID classifications for satellite G12 and its ground sta-

tions. Lighter-shaded regiions are considered as TIDs following

FPM, with those in the darker shade no longer considered as TIDs.

The weighted score F s,t is shown on the right.

to 91.7% (Table 4). The 91.7% F1 score is achieved with

a smaller amount of events compared to earlier work [5].

Darker shades in Figure 3 show TID classifications that are

re-classified to normal behavior. Lighter shades indicate

time periods considered a TID. The ideal threshold T s,t can

be selected based on requirements. For example, a cautious

system may provide false positives and capture all poten-

tial instances of a TID. However, a system tuned this way is

not a practical alerting system. In general, a higher thresh-

old reduces the false positives (improving precision) but de-

creases recall.

Good Data Delivers: A single set of labels was pro-

duced for each event by a SME. This expert utilized her sci-

entific knowledge to represent TID start and finish times.

Utilizing labels from multiple SMEs - together with a

human-in-the-loop (HIL) process - would provide a refined

perspective on what constitutes a TID. Broad consensus is

better than a single opinion, and this is best captured in data

by utilizing multiple subject matter experts for labeling.

Additional performance gains are achievable using from

more events and geographic areas. Data from other events

could be considered. While parameters such as the model

parameters, batch size or FPM strategy are adjustable, large

gains in model performance are best achieved by lever-
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aging a larger number of historical events. Future work

should consider continuing to focus on data preparation and

management, from increasing the number of events used

for training and validation, to improving data labeling pro-

cesses - important considerations for a real-world system.

Detecting Other TIDs: It is important to note that future

deep learning analyses should also focus on the identifica-

tion of the different kinds of ionospheric perturbations. In-

deed, while this framework was developed with the intent of

detecting tsunami-induced TIDs, this approach can be used

more broadly to detect ionospheric perturbation from differ-

ent sources (creating a multi-classification problem) or time

series anomalies in other domains.

Finally, the joint application of deep learning and GNSS-

TEC observations can effectively contribute to the enhance-

ment of tsunami early warning systems and hence to im-

prove disaster response procedures.
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