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Accurate detection of driving fatigue is helpful in significantly reducing the rate of road

traffic accidents. Electroencephalogram (EEG) based methods are proven to be efficient

to evaluate mental fatigue. Due to its high non-linearity, as well as significant individual

differences, how to perform EEG fatigue mental state evaluation across different subjects

still keeps challenging. In this study, we propose a Label-based Alignment Multi-Source

Domain Adaptation (LA-MSDA) for cross-subject EEG fatigue mental state evaluation.

Specifically, LA-MSDA considers the local feature distributions of relevant labels between

different domains, which efficiently eliminates the negative impact of significant individual

differences by aligning label-based feature distributions. In addition, the strategy of

global optimization is introduced to address the classifier confusion decision boundary

issues and improve the generalization ability of LA-MSDA. Experimental results show

LA-MSDA can achieve remarkable results on EEG-based fatigue mental state evaluation

across subjects, which is expected to have wide application prospects in practical

brain-computer interaction (BCI), such as online monitoring of driver fatigue, or assisting

in the development of on-board safety systems.

Keywords: electroencephalogram, label-based alignment, multi-source domain adaptation, cross-subject,

individual differences, fatigue mental state

1. INTRODUCTION

Mental fatigue is incrementally formed by long-time tedious tasks, which is related to a drastic
decrease in alertness (Maglione et al., 2014; Charbonnier et al., 2016). Electroencephalogram
(EEG) records the complex neurophysiological activities from the cerebral cortex, which can
directly reflect the potential mental state of subjects. Due to the characteristics of noninvasiveness,
portability, and small cost, as well as the superiority ofmachine learning (ML) or deep learning (DL)
in feature extraction and classification from a large amount of data, EEG-based methods by ML or
DL have attracted more and more attention during recent decades (Kong et al., 2017; Monteiro
et al., 2019). Nevertheless, there are still some challenges since EEG has significant differences across
subjects, mainly caused by either physical (e.g., environment and skin-electrode impedance) or
biological (e.g., differences in gender, age, and brain activity patterns) factors (Subha et al., 2010).
The methods of traditional EEG-based analysis generally assume the data of training and testing
shares the same feature distribution (Wan et al., 2021), and most methods evaluate the mental
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states for intra- or inter-subject [intra-subject EEG evaluation is
session-to-session generalization for the same subject (Li et al.,
2019b), while that of inter-subject is cross-session generalization
by mixing sessions from different subjects together] (Dasari
et al., 2017; Xu et al., 2018). But the performance of the
existing methods sometimes degrades heavily in cross-subject
EEG analysis, in which cross-subject EEG evaluation is a subject-
to-subject generalization (Zhang et al., 2020b), due to the
significant differences (Chai et al., 2016a; Zhang et al., 2020a).
Thus, it is desired to construct a universal model for cross-subject
EEG analysis.

Recently, many transfer learning (TL) methods have been
widely used in such fields as motor imagery classification (Zhang
et al., 2021), mental fatigue recognition (Liu et al., 2020), and
emotion recognition (Li et al., 2019b). TL focuses on applying
the knowledge learned from one domain (source domain) into
a different but related domain (target domain) (Liang and Ma,
2020). In the TL-based cross-subject EEG analysis task, the
collected EEG samples are inclusive in the source domain and
target domain, respectively, that is, EEG samples from some
of the subjects are regarded as the source domain, and those
from the other different subjects as the target domain. Based
on TL, we can explore and exploit features from the source
subjects to train a model and make it adaptable to a new
target subject. As a main research direction of TL, unsupervised
domain adaptation (UDA) algorithms have been proven to
efficiently reduce the distribution gap between each domain
by matching domain-invariant features (transferable features
between different domains) (Saito et al., 2018). An important
advantage of UDA is that, under the condition of the same
or similar label categories between source and target domains,
through training on labeled data in the source domain, better
classification performance can be still obtained by UDA whether
samples with labels in the target domain are sufficient or not.
Therefore, some researchers apply UDA-based algorithms or
their variations for EEG-based mental states evaluation (Zhang
et al., 2021).

As a mainstream research trend, multi-source domain-
based UDA methods have broad application prospects, which
extract the respective domain-invariant features by mapping
and aligning the features into a common feature space between
each of the source domains and the target domain, and then
perform decision to the target domain separately, which is called
prediction decisions result (Peng et al., 2019). However, due to
the inconspicuous features near the decision boundary in the
target samples, the results predicted by different classifiers may be
inconsistent. To address this issue, one of the common methods
is to align the probability distributions of the target samples
predicted by each source domain classifier, and the average of
the prediction results of all source domain classifiers is regarded
as the objective function to optimize, which can minimize the
differences of prediction results (Zhu et al., 2019).

In addition, regarding alignment forms, UDA-based methods
mainly adopt feature-based alignment. The main idea of
the alignment algorithm is to perform global feature-based
alignment bymapping the source domain and target domain data
into a common feature space, and extracting domain-invariant

features, so as to minimize domain discrepancy (Chen et al.,
2019).

Due to the high non-linearity and significant individual
differences of EEG, it is difficult to extract the same or
similar features for different subjects with inconspicuous features
(Wan et al., 2021). Therefore, the existing UDA methods have
the following two aspects of limitations for cross-subject EEG
analysis. Firstly, for the issue of inconspicuous features near the
decision boundary, the existing models are difficult to reach the
optimal state and may fall into a local optimal state. Secondly,
it is also difficult to satisfy feature-based alignment and extract
domain-invariant features.

Therefore, to address the above mentioned issues, we propose
a Label-based Alignment Multi-source Domain Adaptation
model (LA-MSDA) which includes (1) a local label-based
alignment strategy, instead of feature alignment, since the
categories of labels in EEG of each subject are the same when
collecting through the same paradigm (e.g., in the event-related
potentials (ERPs) experiment, the actions corresponding to
the induced stimulations can be regarded as labels, in which
ERPs represent the neural response to specific cognitive events).
In this way, it will facilitate extracting label-based domain-
invariant features to eliminate the negative impact of significant
individual differences of EEG, (2) an improved UDA method
with global optimization. For details, setting similarity weight
constraints according to the prediction probability distribution
results of each classifier. A global objective function optimization
strategy is introduced to address the classifier confusion decision
boundary issues and improve the generalization ability of LA-
MSDA in cross-subject EEG analysis.

The rest of this article is arranged as follows. Section 2 is
a brief review of EEG-based related work, including traditional
ML and TL. In section 3, EEG data collection and preprocessing
are described. Section 4 is the LA-MSDA framework, and the
experiment results are shown in section 5. Section 6 discusses and
analyses the results. Finally, conclusions are given in section 7.

2. RELATED WORK

In recent years, various TL-based algorithms have developed
in EEG signal analysis (Lotte et al., 2018). Raghu et al.
(2020) attempted to classify EEG-based multi-class seizure
type by applying convolutional neural network and TL. The
UDA method based on subspace alignment auto-encoder
was proposed to measure the complexity of EEG signals,
which considered nonlinear transformation and a consistency
constraint (Chai et al., 2016b). In Li et al. (2019a), the
authors proposed a DA-based model to recognize EEG
emotion by making the source and the target similar in the
latent representations.

Recently, some research has appeared for cross-subject EEG
analysis by multi-source UDA or its variations (Xu et al., 2019),
which integrate multiple source classifiers to tune the target
classification model. By making up for the insufficiency of new
data, Liang and Ma (2020) used a multi-source fusion transfer
learning (MFTL) algorithm for mental states classification, which
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TABLE 1 | The details of the experiment tasks.

Task Stimuli Description

WUP (warm-up) No
Driving the car at a baseline speed and stay in the lane, collecting the

baseline of EEG signals.

PERFO (performance) No Requiring a faster speed compared with WUP.

TAVs

(task of alert

and vigilance)

TAV3

Yes

(audio/

video)

Stimulating with video and audio for facilitating different mental states;

There are 5 levels of TAV stages: TAV1-5, that with increasing difficulty

level by setting the increase of frequency of stimulation rates in the

simulated driving; The tasks of TAVs are executed in a pseudo-random

order: TAV3, TAV1, TAV5, TAV2, TAV4.

TAV1

TAV5

TAV2

TAV4

DROWS No Setting a fixed driving speed of 70 km/h and without any stimuli.

is based on the Riemannian manifold framework to select high
similarity multiple source subjects to target subjects aimed to
reduce the difference of feature distribution between source and
target subjects. In Li et al. (2019b), the proposed multi-source
transfer model achieved fast deployment by locating appropriate
sources and mapping destinations in style transfer mapping for
cross-subject emotion recognition tasks, and tested it into both
supervised and semi-supervised learning.

In addition, for themulti-source domain, decision-level fusion
attempts to process each source domain separately, and combine
the results of respective classifiers for final recognition (Huang
et al., 2016). In the cross-domain classification task with multi-
source domains, Zhu et al. (2019) just used the average of all
source classifier outputs to predict the labels of target data. To
classify EEG-based intra-dataset emotion mental states, Lan et al.
(2018) also regarded the mean classification accuracy of several
domain adaptation methods as the final classification accuracy of
the target data.

Due to its effective optimization of complex data, feature-
based alignment algorithms have been introduced to minimize
the domain discrepancy (Wang and Mahadevan, 2011). For
EEG data analysis, multi-subject subspace alignment (MSSA) was
proposed to decrease domain discrepancy (Chai et al., 2018),
which utilized subspace alignment strategy and multi-subject
information in a common framework to build personalized
models for EEG-based emotion recognition. He and Wu (2019)
proposed Euclidean space EEG data alignment method to
minimize the distance between the mean covariance matrices in
different domains by transforming and aligning the EEG data in
the Euclidean space.

To sum up, previous techniques for EEG-based mental states
evaluation mainly focus on aligning global feature distributions
to minimize the differences between each subject, or combining
all source classifiers to make a final decision. However, it
is still hard to extract domain-invariant features and adapt
the samples with inconspicuous features near the decision
boundary across subjects. Hence, we introduce a local label-
based alignment strategy to extract label-based domain-invariant
features. Additionally, an improved UDA method with global
optimization is proposed to address the inconspicuous features
near the decision boundary issue that existed in cross-subject

EEG samples and improve the generalization ability of our
proposed model.

3. MATERIALS

3.1. EEG Data Collection
Subjects. In the experiment, the subjects recruited should
be healthy without mental illness, they all need to possess a
qualified manual gear driving license and have extensive driving
experience. Before the experiment, the subjects should not be
allowed to drink alcohol, caffeine, and tea. Each subject is
informed in advance of the experimental procedure and signs a
written consent form. This experiment is approved by the local
ethics committee of the University of Rome Sapienza (Rome,
Italy). At last, 15 healthy subjects from 23 to 25 are selected to
participate in the experiment.

Experimental protocol. The experiment is performed
between 2 p.m. and 5 p.m. in a quiet and isolated environment.
To simulate real driving scenarios, the immersive driving
platform uses Alfa Romeo Giulietta QV to perform driving tasks
under different conditions.

Table 1 describes the eight tasks of this experiment. The
tasks of alert and vigilance (TAV) introduce additional video
and audio to stimulate different mental states by adjusting the
difficulty of driving tasks (Borghini et al., 2014; Vecchiato et al.,
2016). The alert stimuli are designed with video to simulate
real-world traffic jams (e.g., traffic lights, pedestrians around,
other vehicles, or other uncontrollable traffic events), and a
succession of frequent (with a 95% probability rate) and rare
(5% probability) tones continuously delivered to the subjects
as the vigilance task to simulate the noise produced during
driving (e.g., car radio, engine noise, or phone celling). There
are 5 stages TAV1-5 with different levels of difficulty, in which
the difficulty level is increased by increasing the stimulation
frequency in the simulated driving. At the beginning of the
experiment, the subjects are required to drive the vehicle at a
predetermined baseline speed and keep the vehicle within the
lane. Such a driving condition is named as warm-up (WUP) and
serves to collect the baseline for the spontaneous EEG signals in
the cerebral cortex. Then, the second drive condition requires
the subject to drive at a faster speed compared with WUP,
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FIGURE 1 | The procedure of experimental paradigm (*all the subjects will perform the task of alert and vigilance (TAV) tasks in the same order).

named performance (PERFO). After that, the above different
level task of TAVs are executed in a pseudo-random order:
TAV3, TAV1 (the easiest task), TAV5 (the most difficult task),
TAV2, and TAV4, which can introduce the different level of
workload demands and mental states (Zeng et al., 2019). After
highly stressful mental activities of TAVs, monotonous and
simple tasks will make it easier for subjects to evolve into fatigue.
Therefore, the driving conditions of the last task (DROWS) have
no stimulation and only require driving at a fixed speed of 70
km/h. At the end of each task of the experiment, the subjects
are asked to fill in the NASA-TLX questionnaire to collect the
subjective information about workload perception (Hart, 2006).
Furthermore, the behavioral data of subjects performing TAV
tasks are also analyzed. The whole experiment process takes
about 2 h or more. The flowchart of the experimental paradigm
is shown in Figure 1.

According to the off-line analysis of the NASA-TLX and
behavioral data, we choose the two mental states of TAV3 and
DROWS for the subsequent analysis. As the first stage of external
stimuli tasks (TAV3) with sound and video stimuli, the subjects
are in a high workload state and execute the task as quickly and
efficiently as possible, so the subjects are in the most awake state
in TAV3. After completing a series of complex tasks, the most
boring and monotonous task of DROW was finally performed
without any stimuli. At this time, the workload of the subjects
was the lowest, and the mental state was prone to fatigue. Hence,
the collected data at TAV3 (awake with a label of 0) and
DROWS (fatigue with a label of 1) are used for fatigue mental
state evaluation.

3.2. EEG Preprocessing
During the experiment, EEG data is recorded using a digital
ambulatory monitoring system (Brain Products GmbH,

Germany) from 61 active electrodes that are positioned
according to the international 10–20 system. The 61 EEG
channels recorded are (as shown in Figure 2): frontal (FP: 1, z,
2; AF: 7, 3, z, 4, 8; F: 7, 5, 3, 1, z, 2, 4, 6, 8; FC: 5, 3, 1, z, 2, 4,
6), temporal (T7, T8, FT7, FT8, TP7, TP8), central (C: 5, 3, 1,
z, 2, 4, 6; CP: 5, 3, 1, z, 2, 4, 6), and parieto-occipital (P: 7, 5, 3,
1, z, 2, 4, 6, 8; PO: 7, 3, z, 4, 8; O: 1, z, 2). The data is sampled
at 200 Hz. When recording the EEG data, all the electrodes are
referenced to the earlobes and the impedances are below 10 (K�).
To further filter the noise and remove the artifacts, the original
EEG are then processed with a bandpass filter (1–30Hz) and used
Independent Component Analysis (ICA) method (Hyvärinen
and Oja, 2000; Zeng et al., 2017) to remove the artifacts caused
by Electrooculography (EOG), respectively.

After that, the EEG data of each channel is divided into
segments with 0.5 s sliding windows without overlapping.
The total number of the segments is 1,400 for each channel,
including 700 segments for TAV3 and 700 segments for
DROWS, respectively. Thus, in subsequent experiments, it will
be conducted on 21,000 (15 × 1,400) segments of 15 subjects.
Then, the EEG features are extracted from each segment. As
mentioned in Bhattacharyya et al. (2014), power spectral density
(PSD) is usually used to extract accurate and stable features for
EEG signals analysis. Therefore, we use PSD to characterize the
EEG segments, as shown in Figure 3.

Due to the 0.5 s sliding window of each channel and 200 Hz of
the sampling frequency, the sample points for each window are
0.5 × 200 = 100. Thus, the feature dimension of 61 channels is
61 × 100 = 6,100. In Figure 3A, the one-sided PSD estimation
is utilized to orientate the logarithm of the signal power at each
point of integer frequency between 1 and 100 Hz (Martin, 2001).
Existing studies have indicated that the EEG power of θ , α,
and β bands can reflect the differences when human mental
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states change. It has been previously noted that EEG spectral
power increased in θ (4–7 Hz) band could be correlated with the
occurrence of mental fatigue (Borghini et al., 2012). α (8–13 Hz)

FIGURE 2 | Placement of the recorded 61-channel electroencephalogram

(EEG).

band has been suggested to characterize fatigue when compared
with the normal mental states (Simon et al., 2011). The mean
power in β (14-30 Hz) band is stronger for attention allocation
during real driving conditions (Li, 2010). Hence, we select θ , α,
and β bands as the neurophysiologic indexes for characterizing
fatigue and awake mental states. For each segment, one-sided
PSD estimation to obtain the PSD features at three selected
frequency bands, is shown in Figure 3B. Since the frequency
ranges of EEG signals in θ , α, β bands are 4–7, 8–13, and 14–
30 Hz, respectively, thus, we can get 27 frequency points at each
integer frequency to calculate corresponding PSD features. All
the frequencies in 61 channels are appended together to form 61
× 27 = 1,647 characterizes (Figure 3C). Specifically, the feature
dimension of each subject we finally extracted is 1,400× 1,647.

4. METHOD

LA-MSDA is composed of three stages, as illustrated in Figure 4.
The first stage is feature extraction, which aims to extract
common domain-invariant features from all source and target
domains, as well as domain-specific features from each pair
of source and target domains. These features are extracted by
several networks, including a common EEGNet-based network
(C-EEGNet) (Lawhern et al., 2018) and multiple CNN-based
subnets (S-CNNs) that do not share the weights. Due to the
significant individual differences of EEG across subjects, it is hard

FIGURE 3 | The preprocessing of each subject EEG data by power spectral density (PSD). (A) Introduces the one-sided PSD estimation to determine the logarithm of

the signal power between 1-100Hz. (B) Obtains the PSD features at three selected frequency bands. (C) Gets 1647 characterizes from all channels in each segment.
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FIGURE 4 | The framework of Label-based Alignment Multi-Source Domain Adaptation (LA-MSDA).

FIGURE 5 | The framework of Local Label-based Maximum Mean Discrepancy (LLMMD).

to learn specific features for each subject directly (one subject
is regarded as one domain in this study). Therefore, we firstly
extract common domain-invariant features for all domains by C-
EEGNet. Then, the common domain-invariant features are sent
to S-CNNs, which map into specific feature spaces to achieve
domain-specific features. Technically, the number of S-CNNs is
equal to that of source domains. To eliminate the negative impact
of significant individual differences among different subjects, we
consider the local feature distributions of relevant labels between
each pair of the source and target domains. Hence, the second

stage introduced the local label-based alignment strategy to align
the label-based fine-grained feature distributions in both source
and target domains. In the alignment process, adding label-
based weight constraints by the Local Label-based Maximum
Mean Discrepancy (LLMMD) method (Please refer to Figure 5

for details) can efficiently extract label-based domain-invariant
features. For each S-CNNs, we train a domain-specific classifier.
Due to inconspicuous features near the decision boundary,
the target sample might get a different label predicted by
different classifiers. Consequently, in the third stage, the global
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FIGURE 6 | The framework of global optimization.

optimization of all classifiers will be performed (Please refer to
Figure 6 for details). It addresses the classifier confusion decision
boundary issues by aligning the prediction distributions of the
target samples output of each domain-specific classifier. Then,
according to the prediction distributions, the similarity weight
constraints are set to improve the generalization ability of LA-
MSDA in cross-subject EEG analysis. To make the narration
clearer, we have the following detailed notations:

• N: subjects number, as well as source domains number.

• US: labeled multi-source dataset, US =
{(

XS
n,Y

S
n

)}N

n=1
, where

XS
n =

{

xsni
}|Xsn|

i=1
indicates samples from the n-th source

domain, YS
n =

{

ysni
}|Xsn|

i=1
is the corresponding ground-truth

labels, |Xsn| is the sample number of the n-th source domain,
and “S/s” represents the source domain.

• P: sample distributions of multi-source domains, P =
{

PSn(x
sn
i )

}N

n=1
, where PSn(x

sn
i ) is the distribution of sample xi

from the n-th source domain.
• UT : unlabeled target dataset, UT =

{

xti
}|UT |

i=1
, where xti is the

i-th sample of the target domain, total numbers of the target
data is |UT |, and “T/t” represents the target domain.

• Q: sample distributions of the target domain, Q =
{

QT(x
t
i )
}

is
the distribution of the i-th sample in the target domain.

• G: all classifiers of LA-MSDA, G = {Gn}
N
n=1, where Gn is the

n-th classifier.

4.1. Domain-Invariant and -Specific
Features Extraction
Domain-invariant features extraction. Given a common model
C-EEGNet f(x), the potential domain invariant features of all
domains are extracted by mapping these features to a common
feature space. C-EEGNet consists of depthwise and separable
convolutions, which are not only suitable for a small number
of samples but also can produce interpretable features. So C-
EEGNet has strong generalization ability and higher performance
for EEG analysis. Finally, we obtain domain-invariant features
f (xsni ) and f (xti ) from the n-th source domain and target domain
by C-EEGNet.

Domain-specific features extraction. After acquiring the
domain-invariant features, we further extract the domain-
specific features from each pair of source and target domains byN
S-CNNs. The domain-invariant and -specific features extraction
can efficiently learn between-domain invariant features and
within-domain specific features, in addition to many other
benefits such as minimize the differences across subjects. These
unshared S-CNNs map each pair of source and target domain
distributions into a specific feature space, which can extract
within-domain specific features. f (xsni ) as the input of S-CNNs
Fn(·) to receive domain-specific features Fn(f (x

sn
i )) (simplified as

x̃sni ) of the n-th source domain, as well as feed f (xti ) to the n-th
S-CNNs to get specific features Fn(f (x

tn
i )) (simplified as x̃tni ) of

the target domain.
For each S-CNNs, we train a classifier Gn, n = {1, 2, ...,N},

which is constructed as Gn = On ◦ Fn (◦ represents function
composition), where On outputs the predictions based on the
extracted potential domain-specific features x̃ni from the n-th S-
CNNs. In the supervised learning process, we add a classification
loss for each classifier. This loss learns the ideal value of all
weights and deviations through labeled samples from multi-
source domains and tries to find a way that aims to minimize
the loss. Technically, we formulate the supervised loss of multi-
source domains as:

Lc = min
N·F·f

N
∑

n=1





1

|Xsn|

|Xsn|
∑

i=1

J (Gn(x̃
sn
i ), ysni )



 (1)

where J (·) is the cross-entropy loss function (Shore and
Johnson, 1980).

4.2. Local Label-Based Alignment
To diminish the discrepancy among each domain, we propose
a novel alignment algorithm called LLMMD that is based on
the Maximum Mean Discrepancy (MMD) (Tzeng et al., 2014),
LLMMD framework is shown in Figure 5. The basic idea
of MMD is that if all statistics are the same, then the two
distributions are consistent. MMD can measure the distance
between two different but related distributions (Yan et al., 2017).
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MMD has been widely used to construct regular terms to
constrain the learned representation during feature learning in
domain adaptation so that the features on each pair of domains
are as the same possible. Following previous works (Zhu et al.,
2019), MMD between the dataset XS and the dataset XT is
defined as:

DH(XS,XT ) = sup
‖φ‖H≤1

‖Ep[φ(XS)]− Eq[φ(XT )]‖
2
H

=

∥

∥

∥

∥

∥

∥

1

n

n
∑

i=1

φ (xi) −
1

m

m
∑

j=1

φ
(

xj
)

∥

∥

∥

∥

∥

∥

2

H

=

∥

∥

∥

∥

∥

∥

1

n2

n
∑

i=1

n
∑

j=1

k
(

xi, xj
)

+
1

m2

m
∑

i=1

m
∑

j=1

k
(

xi, xj
)

−
2

nm

n
∑

j=1

m
∑

j=1

k
(

xi, xj
)

∥

∥

∥

∥

∥

∥

H

(2)

where sup is to find the upper found, the set of samples
XS = {xsi}

n
i=1 and XT = {xtj }

m
j=1 from distributions p and q

respectively, and φ(·) represents the feature mapping function
that maps the distribution of the domain-specific features to
the reproducing kernel hilbert space (RKHS) H. Each kernel
function k corresponds to n RKHS. We use Gaussian Kernels

Function k(xi, xj) = e
−‖xi−xj‖

2

2σ2 as the kernel function (σ :
Gaussian filter width), which can map an infinite-dimensional
space.

Many previous UDA works mainly focus on global
features alignment directly, which are hard to perform
well due to the significant individual differences of EEG.
To enhance generalization ability, we take the features of
local label-based distributions into consideration among
each pair of domains. Theoretically, LLMMD explores the
local label-based fine-grained structure information for all
domains and extract label-based domain-invariant features
by aligning the distributions of that information. In addition,
local label-based alignment matches the distribution not
only between source domains but also among each pair
of both source and target domains. Overall, LLMMD can
improve the capability of multi-source domain adaptation to
overcome the limitations of significant individual differences
between subjects.

For cross-subject analysis, the categories of the label in EEG
of each subject are the same, but there may be a problem of label
category weight deviation. Additionally, another challenge is that
the samples to be predicted in the target domain are unlabeled. To
overcome these issues, we take into account the label categories
of different samples for aligning the domain-specific feature
distributions in each domain, which can efficiently extract label-
based domain-invariant features. With the requirement of local
label-based alignment, we assume that the weight ϕc is the
probability that the samples belong to each of c label categories,

then LLMMD can be denoted as:

Llocal = L(DH(X,Y),ϕc)
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where ϕcn and ϕct represent the local label categories weight
of x̃sni and x̃ti assigned to the label category c in each domain
of Us and Ut , respectively. Based on the label category prior
distributions, the set ϕcs of multi-source domains is defined as:

ϕcs
: =
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n|

⋃

i=1

ycni
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,
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i = 1 (4)

where ycni is the true label of the sample yi in the n-th source
domain belonging to the c-th label category, i and j, respectively,
denote the sample index in the dataset in the c-th label category.
However, in the target domain, we cannot get the label-based
structure information directly due to a lack of labels. The
similar feature distributions between different domains mean
that the classifier Gn trained on each source domain can predict
most of the probability distribution of target samples correctly.
Therefore, for unlabeled target subject Ut , using the output of
n-th classifier Gn as the probability distribution ŷ

cg
i of the target

sample x̃cti pertain to the local label category c. In this setting, the
target sample x̃cti is weighted as:
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4.3. Global Optimization
From another perspective, we further consider the global
distribution discrepancy (Figure 6). For the target samples
near the decision boundary, there is a high possibility of
being misclassified by the classifiers trained on different source
domains, and the prediction distribution for these target samples
will be ambiguous from different classifiers. Empirically, the
same target samples should obtain the consistent prediction
distribution predicted by different classifiers. Hence, to solve
the above problem, we align the prediction distributions of
target samples output from each classifier, which can efficiently
minimize the discrepancy among different classifiers. For EEG
data with high non-linearity, the inconspicuous features near the
decision boundary canmake correct decisions by conducting that
of aligning. Formally, we utilize the representation output from
different classifiers to calculate the discrepancy loss:
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Due to the significant individual differences of EEG, if the
average prediction results of all source domain classifiers are
direct as the objective function, it will be difficult to reach the
optimal state and may fall into a local optimal state. Therefore,
we introduce a global objective function optimization strategy
to improve the generalization ability of the proposed model
in cross-subject EEG analysis. Theoretically, we consider the
similarity between subjects, setting similarity weight constraints
according to the prediction probability distribution results of
each classifier. Based on the weighted average strategy (Polikar,
2012; Wang et al., 2014), the smaller the discrepancy between
two classifiers, the higher the weight. Furthermore, the global
optimization strategy can also efficiently eliminate the negative
impact of significant individual differences. Therefore, the whole
method integrates the probability distribution from N classifiers
by the weighted mechanism. In global optimization, the global
classifiers discrepancy loss can be calculated based on the weight
ω in the following equation:

ωN
m =

N
⋃

n=1

ωn
m =

N
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where ωn
m represents the discrepancy loss weight between the

n-th classifier and the m-th classifier. Finally, the ensemble
of all classifiers with the constraint of weight ωn

m that can
reformulate (Equation 6) is as follows:
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4.4. Label-Based Alignment Multiple
Sources Domain Adaptation
Label-based Alignment Multi-source Domain Adaptation model
is a novel UDA model for more effective adaptation. The
goal of UDA is to learn domain-invariant features, so LA-
MSDA first extracts domain-invariant and -specific features
by several networks to achieve better performance in cross-
subject fatigue mental state analysis. Specifically, to eliminate the
negative impact of high non-linearity and significant individual
differences, we introduce a local label-based alignment loss Llocal

to extract label-based domain-invariant features by aligning the
label-based fine-grained feature distributions of each domain,
and a global classifiers discrepancy lossLglobal to align the outputs
of the domain-specific classifiers and integrate all classifiers
by adding the similarity weight constraints, which address the
issue of classifier confusion decision boundary and improve the
generalization ability of LA-MSDA. Therefore, we propose to
train LA-MSDA by optimizing the following objective function:

Ltotal = Lc + µLlocal + γLglobal (9)

where the hyper-parameter µ and γ set a relative trade-off,
respectively.

5. EXPERIMENTS

In this section, we evaluate the LA-MSDA method and
compared its performance with state-of-the-art DL and TL. The
experiments are conducted on an NVIDIA GeForce RTX 3080
graphics processor with 10 GB of memory, and the algorithms
have been verified with Python 3.7 tools under the environment
of windows10.

5.1. Setup
Dataset. The dataset includes EEG recording of 15 subjects by
the industry and neural science laboratory in University of Rome
Sapienza, the details are shown in section 3.

LA-MSDA architecture. EEGNet-based networks are used as
the backbone of LA-MSDA, andwe fine-tune all layers of EEGNet
and train the classifier with a learning rate of 0.001 and the batch
size of 64. The input data of LA-MSDA have been pre-processed
by PSD (refer section 3.2).

Baselines. In our experiments, there are three categories
of baselines: (1) traditional ML methods, such as Support
Vector Machines (SVM) (Chang and Lin, 2011); (2) single-source
UDA methods, including Domain-adversarial Neural Network
(DANN) (Ganin et al., 2016) and Deep Subdomain Adaptation
Network (DSAN) (Zhu et al., 2020); (3) multi-source UDA
methods, includingMultiple Feature Spaces Adaptation Network
(MFSAN) with ResNet-50 (Zhu et al., 2019). For each model, we
perform 15 times of experiments to evaluate the performance,
and the input of each model is the same training set and
testing set. SVM is the most typical traditional ML method that
can be used to highlight the performance of TL. To further
demonstrate the powerful performance of multi-source domain
adaptation in the UDA filed, the common single-source UDA
methods DANN and DSAN are introduced as comparative
experiments. For the existing multi-source UDA methods, the
MFSAN method use ResNet-50 to train multiple classifiers, and
aligning domain-specific distribution and classifier for multi-
source domains classification. However, this model is not efficient
to train because it takes a long time and the local- and global-
based information are not taken into account. To improve the
effectiveness of training, LA-MSDA utilizes EEGNet as the main
network. In addition, we consider the label-based fine-grained
structure information and global optimization to improve the
generalization ability of LA-MSDA in cross-subject EEG analysis.
Our code will be available at https://github.com/PyTorchTL/LA_
MSDA.git.

To further validate the effectiveness of different modules, we
also evaluate several variants of LA-MSDA: (1) Ours(E), only
considering stage 1 of LA-MSDA with EEGNet-based network;
(2) Ours(E+L), considering both stage 1 and stage 2 of LA-
MSDA; (3) Ours, considering the whole LA-MSDA framework
through all three stages.

5.2. LA-MSDA Evaluation
5.2.1. Evaluation of The Number of The Source

Domains
For multiple sources UDA, the parameter of source number
NS is also an important factor. In this study, a subject is
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FIGURE 7 | The highest and lowest accuracy obtained under different source numbers of LA-MSDA. The “Acc” value represents the average accuracy for all subjects

under different source numbers.

FIGURE 8 | Auxiliary training data amount. The “Acc” value represents the average accuracy for all subjects under different ratios.

regarded as a source domain, which means that 15 subjects
correspond to 15 source domains. Additionally, the source
number is also equal to that of classifiers, in other words,
selecting more sources will train more classifiers. Therefore,
we analyze the impact of different source numbers on the
performance. Due to various restrictions, we cannot analyze all
situations (all combinations of source domains dataset), so in
this study, we select the best situation (i.e., selecting the most
similar NS subjects as the source domains dataset) and the

worst situation as the floating interval of model accuracy, as
shown in Figure 7. We can find that the fluctuation of accuracy
tends to be stable with the increase of source number. When
the number of source domains is 12, LA-MSDA is the most
stable, indicating that the model can most efficiently eliminate
the influence of individual differences for cross-subject EEG. In
addiction, LA-MSDA achieves the highest accuracy and better
stability when NS is 14. Thus, we set NS=14 in the following
experiments.
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TABLE 2 | Classification accuracy performance of individuals (%).

Subject

ID

ML Single-Source Multi-Source

SVM DANN DSAN MFSAN Ours(E) Ours(E+L) Ours

N1 64.21 72.64 72.64 89.86 93.25 93.57 93.86

N2 80.71 86.29 80.36 88.36 95.75 92.86 96.21

N3 60.29 91.14 94.64 98.57 99.04 98.57 99.29

N4 57.50 90.21 85.57 94.36 95.68 94.36 97.00

N5 56.14 87.71 80.00 83.29 90.04 92.14 92.21

N6 55.00 92.57 88.00 98.43 99.07 96.43 99.57

N7 63.07 67.29 69.07 61.93 83.32 89.29 89.71

N8 63.14 77.57 79.00 79.07 76.61 87.86 81.57

N9 73.57 87.57 93.29 87.00 90.29 90.71 90.93

N10 76.43 91.00 81.07 94.21 95.39 96.43 97.29

N11 52.07 60.86 60.93 68.36 86.00 80.71 86.36

N12 63.29 85.93 81.57 76.07 86.5 90.00 92.00

N13 34.57 66.93 67.71 68.86 62.14 80.00 87.21

N14 49.29 65.00 58.07 74.64 85.00 86.43 92.57

N15 75.50 56.64 81.43 90.64 93.86 94.29 96.5

Avg∗ 61.65 78.62 78.22 83.58 88.80 90.91 92.82

*Avg, average value. The bold values: highlight the results of our method.

5.2.2. Auxiliary Training Data Amount
For unlabeled target samples, we set the parameter of γ , that
is, the auxiliary training data from unlabeled target samples
are randomly picked out, where the auxiliary training data
(unlabeled) are used to assist training classifiers with the labeled
source domains. The remaining samples of the target are used for
testing. The influence of different auxiliary training data amount
is shown in Figure 8. With the increase of auxiliary training
data rate in target, the average accuracy also gradually improved.
When γ is 0.8, the corresponding average accuracy for the best
performance is 93.19%. The results show that auxiliary training
data can be used to assist the training classifiers to of source
domains obtain better performance.

For the parameter of γ , the best performance of average
accuracy was obtained with γ = 0.8, and the accuracy is
slightly reduced when γ is 1. However, when γ is 0.8, the
model converges slowly, which takes more time to be stable.
Considering the above factors, we finally set γ to 1 to balance
the model convergence speed and accuracy.

5.2.3. Individual Performance
To show the results more intuitively for LA-MSDA, we compare
its performance with the above-mentioned baseline models (refer
section 5.1). Table 2 summarizes the results on the 15 subjects,
for each experiment, one subject (unlabeled) as the target testing
samples and the others (labeled) as the sources training set. The
baseline of each model is the average accuracy of all subjects
tested by this model, and the dataset of each model is consistent.
Notably, the single-source network means that all source subjects
together form just one source domain, and the multi-source
domains assume that each subject regarded as a source domain,
respectively, then there will be 14 source domains of 14 subjects
for training.

Compared with various methods, the results show that LA-
MSDA achieves the highest average accuracy of 92.82%, where
that of each individual is also the highest. For multi-source UDA
works, LA-MSDA is higher than MFSAN by 9.24%. The mean
accuracy rises more than 14.6% when compared to single-source
UDAmethods of DANN and DSAN. The sharpest rise is 31.17%,
which is the result of comparison between LA-MSDA and SVM.

Furthermore, we add the ablation experiments to further
validate the effectiveness of LA-MSDA. The experimental results
show that each module we proposed has improved the model
performance. EEGNet-based network of Ours(E) is higher than
MFSAN based on ResNet-50 by 5.22%, and they also have
a significant reduction in training time (refer to Figure 11).
Ours(E+L) by adding the LLMMD module (stage 2), the model
performance is improved by 2.11% based on Ours(E). Finally,
the whole model of Ours (LA-MSDA) considering all three stages
reached the highest accuracy rate of 92.82%.

5.2.4. Confidence Evaluation
For multi-source UDA methods, based on the confusion matrix,
we select Accuracy, Precision, F1Score, and Recall as metrics to
further evaluate the individual performance between MFSAN
and Ours (LA-MSDA), as shown in Table 3. From the aspects of
these four metrics, LA-MSDA outperforms the compared multi-
source domainmethodMFSAN not only in the average value, but
also in the evaluation value of each subject. Overall, the results
indicate the effectiveness of LA-MSDA for cross-subject EEG
fatigue mental state evaluation.

Furthermore, the four metrics of LA-MSDA and the
comparison methods are analyzed by Wilcoxon Sign-Rank Test,
and the performance of significant differences is shown in
Figure 9. LA-MSDA is superior to all comparison methods
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TABLE 3 | The performance of Accuracy, Precision, F1Score, and Recall for multi-source models of each subject (%).

Subject

ID

Accuracy Recall Precision F1Score

MFSAN Ours MFSAN Ours MFSAN Ours MFSAN Ours

N1 89.86 93.86 88.46 92.49 88.59 92.89 88.71 93.29

N2 88.36 96.21 90.01 97.22 88.11 96.02 86.29 94.86

N3 98.57 99.29 98.13 99.00 97.92 99.07 97.71 99.14

N4 94.36 97.00 93.84 96.44 93.70 96.58 93.57 96.71

N5 83.29 92.21 80.84 93.32 81.42 91.56 82.00 89.86

N6 98.43 99.57 98.27 98.59 97.85 99.15 97.43 99.71

N7 61.93 89.71 58.46 89.97 57.35 89.19 56.29 88.43

N8 79.07 81.57 76.18 80.59 76.23 81.22 76.28 81.86

N9 87.00 90.93 84.94 92.62 85.18 90.18 85.43 87.86

N10 94.21 97.29 93.31 95.26 93.51 96.47 93.71 97.71

N11 68.36 86.36 68.34 85.07 68.10 85.67 67.86 86.29

N12 76.07 92.00 74.72 93.85 74.93 91.59 75.14 89.43

N13 68.86 87.21 67.69 85.28 68.55 86.48 69.43 87.71

N14 74.64 92.57 72.30 94.61 73.42 92.40 74.57 90.29

N15 90.64 96.50 91.04 95.83 90.52 95.48 90.00 95.14

Avg* 83.58 92.82 82.44 92.68 82.36 92.26 82.29 91.89

* Avg, average value. The bold values: highlight the results of our method.

(p < 0.05 for all metrics). The p-values also show that there are
significant differences between these comparison methods.

5.2.5. Convergence Evaluation
We further analyze the convergence of MFSAN and LA-MSDA,
the loss and accuracy are shown in Figure 10. Taking the subject
N1 as an example, and setting the number of iteration to 500,
the results in Figure 10A indicate that the total loss of LA-MSDA
achieves faster convergence under the same number of iterations.
From Figure 10B, with the increase of the iteration numbers, the
corresponding accuracy maintains steady growth and is higher
than MFSAN.

In addition, the time of convergence is calculated, as
shown in Figure 11. The convergence time means the time
for the model to train classifiers until convergence. Since
LA-MSDA is an improved model based on a multi-source
domain, we compare its convergence time with that of
the existing multi-source domain models. LA-MSDA requires
much less time than ResNet-based MFSAN, and slightly less
than LA-MSDA(E). It can be concluded that an EEGNet-
based network can greatly reduce the model convergence
time, and our proposed algorithms can further accelerate the
model convergence speed. The results verify that LA-MSDA
can achieve high-efficiency and high-precision fatigue mental
state evaluation.

6. DISCUSSION

6.1. Parameter Sensitivity
For LA-MSDA, we investigate the sensitivity of different
parameters, including source number NS and auxiliary training
data ratio λ. To evaluate the sensitivity of source number, we
record the performance of LA-MSDA under different source

numbers. We calculate the classification accuracy interval of
LA-MSDA based on the similarity between the source and
target domain. That is, in Figure 7, the interval value of
the largest and the least is calculated by the top Ns source
domains most similar to the target domain and last Ns with
the biggest difference, respectively. The interval better reflects
the impact of the selection of source domain samples on model
performance. For the source number less than 14, whether the
selection of source domains is random or most similar, the
accuracy fluctuates within the interval corresponding to the
source number. Due to the significant individual differences, the
performance of the model will decline when the source number is
decreasing. However, as the source number increases, the model
training time will also increase. Overall, the performance of LA-
MSDA tends to be efficient and stable when the source number
reaches 6.

To improve the model performance, we can choose to
increase the auxiliary training data rate in the target domain
to assist the source data training classifiers. In Figure 8, the
results show the relationship between λ and accuracy, and
what we find is that the auxiliary training data from the target
domain can assist LA-MSDA to achieve better performance.
With the increase of auxiliary training data amount, the
optimal performance of LA-MSDA can be achieved when γ

is 0.8, and then the performance may decrease slightly when
γ increases to 1. That is due to the significant differences
in cross-subject, a larger amount of data does not imply
absolute advantage, and may cause a certain degree of negative
transfer effect. When the number of unlabeled samples
participating in the auxiliary training decreases, the overall
performance of our proposed model declines because the label
distribution feature between the samples in the source and
target domain could not be completely obtained. Therefore, we
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A B

C D

FIGURE 9 | Confidence evaluation. Box plots: four related metrics based on confusion matrix to compare LA-MSDA with Support Vector Machines (SVM),

Domain-adversarial Neural Network (DANN), Deep Subdomain Adaptation Network (DSAN), and Multiple Feature Spaces Adaptation Network (MFSAN). (A)

Represents the confusion matrix of Accuracy. (B) Represents the confusion matrix of Precision. (C) Represents the confusion matrix of F1Score. (D) Represents the

confusion matrix of Recall. *p-value between different models. (*p<0.05; **p<0.01; ***p<0.001).

use all unlabeled samples in the target domain for auxiliary
training, and the experimental results also show that our
proposed model could also achieve better overall performance in
this case.

6.2. Compare Individual Performance With
Existing Methods
In recent years, various research studies have emerged for
evaluating EEG-based mental states. In this study, we choose
some typical methods to perform a comparison with LA-MSDA,
including SVM, DANN, DSAN, and MFSAN. However, due to
the high non linearity and significant individual differences of
EEG, their performance is not well for cross-subject. LA-MSDA

eliminates the negative impact of that characteristics by achieving
local label-based alignment and global optimization for cross-
subject EEG. As can be seen from Tables 2, 3, LA-MSDA reaches
the highest value, whether it is the average accuracy of all subjects
or the accuracy of each subject, and the accuracy fluctuates little
among subjects.

The results of multi-source domains are better than single-
source domains, which demonstrates that extracting domain-
specific features can efficiently eliminate the negative impact of
significant individual differences of EEG. Ours(E) outperforms
MFSAN results indicate that the EEGNet-based network can
not only extract effective features of cross-subject EEG data but
also can greatly reduce the training time of the model. The
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FIGURE 10 | Convergence of MFSAN and LA-MSDA on target domain data subject N1. (A) The total loss performance on subject N1 during the increase of iteration

of MFSAN and LA-MSDA, which shows LA-MSDA can converge faster; (B) Compared with MFSAN, LA-MSDA can achieve higher accuracy on subject N1.

FIGURE 11 | Time of convergence compared with MFSAN, LA-MSDA(E), and

LA-MSDA. LA-MSDA(E): only considering stage 1 of LA-MSDA with

EEGNet-based network.

performance of Ours(E+L) is improved based on Ours(E), which
demonstrates that the strategy of local label-based alignment is
helpful on cross-subject EEG fatigue mental state evaluation. By
aligning the label-based fine-grained feature distributions, we can
efficiently extract label-based domain-invariant features, thereby
eliminating the impact of significant individual differences in
EEG. Finally, we introduce a global optimization strategy, and
the results show that LA-MSDA is better than all comparison
methods. This strategy addresses the issue of inconspicuous
features decision boundary and improves the generalization
ability of LA-MSDA. In general, our LA-MSDA model can
achieve better performance in cross-subject EEG fatigue mental
state evaluation.

6.3. Model Convergence
We testify that the convergence of LA-MSDA outperforms
MFSAN. LA-MSDA converges faster than MFSAN in the same
period. Also, the total loss of LA-MSDA is lower, which
is the sum of Lc, Llocal, and Lglobal. From the results of
convergence, we can find that these two models can almost
converge after 300 iterations. Overall, LA-MSDA minimizes the
discrepancy between each domain by aligning the local label-
based feature distributions and achieving global optimization to
get smaller losses and higher accuracy. Meanwhile, to evaluate
the efficiency of LA-MSDA, we compare the convergence time
between LA-MSDA and MFSAN. MFSAN is a ResNet-based
classification method for multiple sources. To indicate the
efficiency of the EEGNet-based network for EEG processing,
we change the deep ResNet-50 to the shallow EEGNet by
fine-tuning all convolution layers and pooling layers. The
comparison results show that MFSAN with ResNet-50 takes
about four times longer than LA-MSDA with EEGNet tends to
convergence, which indicates that the EEGNet-based network
plays a leading role in improving the efficiency of LA-MSDA
for EEG analysis. By introducing our optimization strategy
(stage 2 and stage 3) based on LA-MSDA(E), it can be found
from the comparison results that LA-MSDA can still further
improve the training efficiency of LA-MSDA(E). Notably, LA-
MSDA takes the least time to achieve training and testing with
high efficiency.

7. CONCLUSION

In this study, we propose a novel method LA-MSDA to evaluate
EEG-based fatigue mental state for the cross-subject, which
efficiently eliminates the negative impact of high non-linearity
and significant individual differences of EEG. LA-MSDA mainly
introduces two optimization strategies, including local label-
based alignment and global optimization. For details, the strategy
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of local label-based alignment by extracting label-based domain-
invariant features to eliminate the impact of significant individual
differences of EEG. Additionally, the global optimization strategy
is introduced to address the inconspicuous features decision
issues and improve the generalization ability of LA-MSDA,
which can be achieved by aligning the prediction distributions
of each classifier and adding the similarity weight constraints.
Finally, the experimental results show the superiority of the
proposed method.
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