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Abstract: Fibromyalgia (FM) is a chronic disease characterized by widespread musculoskeletal pain
of unknown etiology. The condition is commonly associated with other symptoms, including fatigue,
sleep disturbances, cognitive impairment, and depression. For this reason, FM is also referred to as
FM syndrome. The nature of the pain is defined as nociplastic according to the latest international
classification and is characterized by altered nervous sensitization both centrally and peripherally.
Psychosocial conditions have traditionally been considered critical in the genesis of FM. However,
recent studies in animal models and humans have provided new evidence in favor of an inflammatory
and/or autoimmune pathogenesis. In support of this hypothesis are epidemiological data of an
increased female prevalence, similar to that of autoimmune diseases, and the frequent association with
immune-mediated inflammatory disorders. In addition, the observation of an increased incidence
of this condition during long COVID revived the hypothesis of an infectious pathogenesis. This
narrative review will, therefore, discuss the evidence supporting the immune-mediated pathogenesis
of FM in light of the most current data available in the literature.
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1. Introduction

Fibromyalgia (FM) is a syndrome of unknown cause characterized by chronic widespread
musculoskeletal pain that lasts for more than three months, often accompanied by symp-
toms such as fatigue, non-restorative sleep, cognitive impairment, short-term memory
deficit, headache, irritable bowel, anxiety, and depression [1,2]. FM pain is considered
nociceptive type pain (NcpIP) according to the most recent International Association for
the Study of Pain (IASP) definition. NcpIP is currently defined as pain that results from
altered nociception, despite the fact that there is no clear evidence of actual or threatened
tissue damage causing peripheral nociceptor activation or evidence of disease or injury
to the somatosensory system causing the pain. However, this new definition has been
criticized by many authors for its perceived lack of clinical utility and the vagueness of the
definition [3,4].

FM was officially recognized in 1990 when the American College of Rheumatology
(ACR) first established diagnostic criteria based on the elicitation of pain at the appropriate
pressure of 11 out of 18 specific body points or tender points. In 2010, these criteria were
updated by introducing the concept of pain areas and FM syndrome. In 2016, additional
criteria were proposed but not yet universally accepted for clinical diagnosis [5].

Fibromylagia has a significant impact on the patient’s quality of life. It is also respon-
sible for a high rate of sick leave, which can generate financial problems for both patient
and employer, considering its high prevalence, reaching more than 6% of the population in
some studies [6–8]. Although the clinical features of FM have been satisfactorily elucidated,
its etiology still remains a medical mystery.
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Since pain is the hallmark of the disease, most research has focused on the pathogenesis
of its origin. Several studies have shown that in patients with FM, there is abnormal amplifi-
cation of pain at the central nervous system (CNS) level, as also demonstrated by magnetic
resonance imaging (MRI) studies of the brain. The origin of pain in FM has traditionally
been attributed to emotional stress and psychosocial trauma in predisposed patients. How-
ever, this psychodynamic interpretation, at least in part, has recently been challenged [9].
Studies using spectroscopic magnetic resonance imaging (MRSI) have shown an abnormal
thermal response after stimulation of immunity with endotoxin challenge in women with
FM, suggesting a link between chronic widespread pain and the immune system [10]. In
addition, a signature of genes encoding pro-inflammatory molecules produced by cells
of the innate immune system, such as dendritic cells and neutrophils, has been identified
in FM patients with associated depression [11]. It was also reported that in the periph-
eral blood of patients with FM, concentrations of pro-inflammatory cytokines, including
interleukin (IL)-6, IL-8, IL-17, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, and
various chemokines were associated with symptom severity [12–18].

In an interesting study, a Mediterranean diet enriched with tryptophan and magne-
sium was shown to reduce symptoms of anxiety, mood disorders, eating disorders, and
body image dissatisfaction in patients with FM. This indirectly suggests that a diet contain-
ing instead foods with pro-inflammatory action may contribute to neuroinflammation and
worsening of symptoms in these patients [19].

Of particular interest is the observation that FM is significantly associated with au-
toimmune/inflammatory conditions, such that it can be considered a co-morbidity of
diseases of immunologic origin [20–22]. Data from a large meta-analysis study showed
that about 21% of patients with rheumatoid arthritis (RA), 13% with axial spondyloarthritis
(axSpA), and 18% with psoriatic arthritis (PsA) also have FM [23]. The concomitance of FM
and axSpA even initially prevented FDA approval of anti-TNF-alpha (TNFi) biologics for
patients with the non-radiographic form of the disease (nr-axSpA) because FM could have
significantly participated in low back pain despite the presence of obvious signs of active
sacroiliitis evidenced by MRI or the presence of the axSpA-associated human leukocyte
antigen (HLA)-B27 allele. A subsequent study showed that patients with high axSpA
disease activity have concomitantly higher severity of associated FM [24–26].

The purpose of this narrative review is to provide an overview of the latest evi-
dence in favor of an immune-mediated pathogenesis of FM, highlighting and discussing
sometimes overlooked aspects of this disease that support the hypothesis of the autoim-
mune/inflammatory nature of FM.

2. The Innate Immune System
2.1. The Role of Mast Cells

The role of mast cells has been explored in the inflammatory genesis of FM syndrome.
Indeed, inhibition of these cells has been correlated with decreased pain in experimental
models [27,28]. In addition, these cells are able to secrete several interleukins involved
in central nervous system (CNS) inflammation, such as IL-17, IL-6, and tissue growth
factor-β (TGF-β) [29]. Mast cells can also produce IL-1 after stimulation of high-affinity IgE
receptors (FcεRI) or toll-like receptors (TLRs) [30]. In this regard, IL-1 has been shown to
play a key role in FM syndrome and has been identified in the skin of these patients [31,32].
Proteolytic activation of IL-1 is controlled by inflammasomes, which are large multiprotein
signaling platforms. This suggests that targeting the inflammasome could be a potential
therapy for IL-1-mediated pain syndromes, including FM [33,34]. It has also been shown
that IL-1 production is induced by mast cells following pathogenic infection, possibly
associated with pain syndrome [35,36].

Since bacterial and viral infections have been implicated in the induction of FM [37],
mast cells could mediate the induction of FM through an inflammatory response following
a triggering event of an infectious nature. It was also reported that the number of mast
cells in skin biopsies from patients with FM was found to increase approximately threefold



Int. J. Mol. Sci. 2024, 25, 5922 3 of 16

compared with healthy subjects [38,39]. Mast cells have also been shown to disrupt the
blood-brain barrier, allowing various proinflammatory substances to enter brain tissue [40].
It is noteworthy that the pain mediator Substance P (SP), elevated in patients with FM
syndrome [41], is able to stimulate mast cells, demonstrating that stimulation between CNS
and mast cells is bidirectional [42]. In addition, the interaction of mast cells with microglia
can cause their activation to be mediated by the production of pro-inflammatory substances
such as histamine and tryptase [43]. Microglia cells can, in turn, secrete proinflammatory
cytokines within the brain, particularly at the thalamic level, where they can induce chronic
pain [44]. All this evidence suggests that mast cells play a key role in pain syndromes,
including FM [45].

2.2. The Role of Neutrophils

Neutrophils are key cells of innate immunity [46,47]. Although some studies have
suggested that these cells might have an inhibitory action on pain through the expres-
sion on their surface of opioid receptors and the ability to synthesize anti-inflammatory
substances [48,49], other studies, however, have emphasized their possible role in the
amplification of nociceptive pain [50,51].

Some authors have reported high levels of neutrophils in the peripheral blood of pa-
tients with FM syndrome. In these patients, neutrophils have demonstrated high chemotac-
tic and microbial killing capacity [52,53]. In addition, many cytokines identified in patients’
serum with FM, such as IL-6, IL-8, and TNF-α, are produced by neutrophils [54,55]. In this
regard, it was reported in one study that inhibition of IL-6 activity by the monoclonal anti-
body tocilizumab was able to reduce pain in patients with FM [56]. Although neutrophils
are not normally present in the central nervous system, they can reach this anatomical site
under pathological conditions, as demonstrated in animal models [57,58].

In a recent study, in an animal model of artificially induced diffuse pain syndrome
clinically similar to FM, it was reported that transfer of cells from these mice to naïve
recipient mice induced a pain syndrome similar to that of the source mice. The depletion
of neutrophils from the transferred cells was not accompanied by the induction of pain,
demonstrating the central role of these cells in the genesis of the pain syndrome. In addition,
neutrophil infiltration was found in the sensory ganglia of experimental mice. In the same
study, neutrophils obtained from FM patients but not from controls and transferred into
mice similarly induced diffuse pain syndrome [59,60]. All this evidence suggests that
neutrophils may be a potential target in the treatment of FM.

2.3. The Role of Microglia System

Microglia cells are phagocytic cells resident in the central nervous system, and their
main function is to defend brain tissue from attack by pathogenic microorganisms [61,62].
These cells are considered the macrophages of the CNS and, as such, can switch from a
pro-inflammatory M1-type phenotype, which releases TNF-α, IL-1-β, and IL-6, to an anti-
inflammatory M2-type phenotype, which produces IL-10, IL-4, and IL 13. The transition from
M1 to M2 and vice versa is strictly dependent on the neuronal microenvironment [63,64].
M1 microglia induce both nociceptive and nociplastic pain, while M2 microglia exert an
inhibitory effect on pain [65,66].

It has recently been reported that naltrexone, an opioid receptor antagonist, can inhibit
the pro-inflammatory action of microglia by modulating M1/M2 switching through stimu-
lation of toll-like TLR-4, thereby reducing chronic pain resulting from neuroinflammation.
This finding has possible important implications for FM patients [67]. Recently, it has been
shown that in patients with FM, there is an imbalance in the M1/M2 ratio in favor of M1
cells, while the levels of M2 microglia markers have decreased [68].

Animal models and human studies have also shown that activation of microglia cells is
a major contributor to the chronic widespread pain characteristic of FM [69–72]. Microglia
cells also expressed high levels of substance P (SP), an important mediator of nociplastic
pain in FM [73]. Such evidence suggested the possibility of pharmacologically modulating
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the M1/M2 ratio of microglia cells to reduce pain of neuroinflammatory origin. To this
end, naloxone [74], IL-5 [75], infliximab [76], and dextromethorphan [77], through different
mechanisms of action, have been used to suppress pain with relative success.

2.4. The Role of Natural Killer Cells

Natural Killer (NK) cells constitute a population of the innate immune system derived
from a lymphoid precursor common to B and T lymphocytes. Although NK cells do not
express the T-cell receptor (TCR) and the CD3 molecule, they are activated or inhibited
by specific major histocompatibility complex (MHC) receptors and are believed to be a
transitional cell subset between innate and adaptive immunity [78].

NK cells are able to respond rapidly against virus-infected cells or cancer cells [79,80].
NK cells express Mu opioid receptors on their surface [81,82]. It has been reported that
opioids may have an inhibitory effect on NK cell proliferation, as the number of such
cells in the peripheral blood of patients treated with exogenous opioids was found to be
reduced compared with untreated subjects [83]. In addition, several studies have shown
that the cytotoxic activity of these cells is inhibited by opioids in both animal models and
humans [84,85]. However, it has been observed that the immunomodulating effect on NK
cells depends on the type of opioid considered [86].

In an interesting study, increased expression of NK cell activation ligands was found
in skin biopsies of FM patients at the subepidermal nerve level and the presence of NK
cells near peripheral nerves, suggesting that these cells play an important role in pain
induction [87]. In addition, increased expression of NK cell activation ligands was found in
skin biopsies of FM patients at the subepidermal nerve level, and NK cells were found near
peripheral nerves [88]. In another large study, the key role of NK cells, particularly with
CD56bri phenotype, in mediating pain in patients with FM was recently reported [88].

Although it is unclear from all this evidence whether NK cells play a functional role in
pain modulation in FM, it has been suggested that the number of NK cells expressing opioid
receptors in peripheral blood could be a biomarker for FM diagnosis and disease activity.

3. The Adaptative Immune Response
3.1. The Role of T Cells

A possible role of T cells in the pathogenesis of FM was initially suggested by the
observation in transgenic animal models that, after stimulation of nociceptive receptors,
afferent neurons in the peripheral nervous system were able to secrete IL-17 mediated by
T cells expressing both α/β- and γ/δ-type TCR [89]. Some evidence shows that there is
a cross-talk between T cells and the central and peripheral nervous system. For example,
glutamate can induce T-cell activation, while dopamine and other neurotransmitters can
influence T-cell differentiation [90].

It has also been shown in mouse models that after T-cell depletion, some nerve
pain responses are abolished, including central tactile sensitization after sciatic nerve
ligation [91,92]. It is also interesting to note that in experimental models, hypersensitivity
to pain after mechanical trauma was associated with an increase in circulating CD4+ and
CD8+ T cells. The higher prevalence of this phenomenon in women suggests a gender
difference in pain-cell interaction. This is in agreement with the higher prevalence of FM in
females compared with males [93].

In humans, previous studies conducted on the relationship between FM and T cells
showed that T lymphocytes isolated from the peripheral blood of FM patients were anergic
compared with control subjects, as evidenced by lower IL-2 production under the same
experimental conditions [94]. Subsequently, it has been reported that T lymphocytes
from patients with FM syndrome show reduced expression of activation markers on their
surface [95]. However, this result was not confirmed by other studies that showed an
increase in the number of activated CD25+ T lymphocytes in FM patients compared with
healthy subjects [96].
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The studies described so far do not definitively clarify whether alterations in T-cell
populations are the cause or effect of the pain stimulus in these subjects. For example, one
study found a reduction in the number of cytotoxic-acting CD8+ T cells in patients with
chronic pain, but it could not prove whether this event preceded or followed the onset of
the pain syndrome [97].

However, another interesting observation is that in FM patients carrying mutations
in the promoter region of the gene encoding for the serotonin transporter 5-HTTLPR, an
increase in the number of activated T cells was observed. This suggested a correlation
between the adaptive immune response and serotonin, a neuronal mediator involved in the
stimulation of nociceptive sensory nerves [98]. The role of T cells in FM is also suggested
by the increased levels of chemokines in patients’ blood. Indeed, these substances facilitate
the recruitment of T cells through chemotaxis [15,54].

An extensive study of the phenotype of circulating T cells and their cytokine profile has
shown that T cells in FM subjects predominantly belong to the T helper (Th)-1 subgroup.
This subpopulation is characterized by the production of pro-inflammatory cytokines,
including, in particular, TNF-α and IFN-γ. FM patients treated with hyperbaric therapy
for pain relief revealed a reduction in both circulating Th1 cells and serotonin, further
suggesting the involvement of the neuro-immunological axis in the widespread pain
symptoms of these patients [99].

The possible involvement of Th17 cells was also reported, as transcriptome analy-
sis revealed an IFN signature from cells in the serum of FM patients [100]. Studies of
cannabinoids used in the treatment of pain in patients with FM syndrome have been shown
to modulate cytokine production by T lymphocytes, thus suggesting that their analgesic
effect is at least in part mediated by adaptive immunity, specifically through inhibition of
pro-inflammatory cytokine production and stimulation of those with anti-inflammatory
activity [101,102].

Although, as indicated above in this review, a causal relationship between alterations
in CD4+ T-cell activity and the pathogenesis of FM cannot be established with certainty on
the basis of all reported findings, the hypothesis that this widespread pain syndrome may
have an autoimmune genesis mediated by autoreactive T cells is highly suggestive [103].
The observation of the possible involvement of pathogens, vaccine adjuvants, and the
higher prevalence in the female sex have pointed out further clues in favor of this hypothe-
sis [104–107]. Some studies have also associated increased prevalence in FM of HLA class
II alleles involved in autoimmunity [108]. It should also be emphasized that although
environmental conditions, particularly stress, can influence the genesis of autoimmune
processes [109], animal models have recently shown that an aberrant cellular T response
can, in turn, induce stress conditions [110,111].

Moreover, in animal models of anxiety, CD4+ lymphocyte depletion prevents stress-
related behaviors, just as adoptively transferred CD4+ T cells induce the stress phenotype
in healthy recipient mice [112,113]. Immunodeficient mice also appear to be protected
from laboratory-induced stress [114–116]. Other studies have demonstrated alterations in
genes encoding mitochondrial proteins in T cells of stressed mice, with consequent altered
morphology [117]. In more detail, mitochondria were found to divide by segregating
into two separate mitochondrial organelles, a phenomenon termed mitochondrial fission.
This phenomenon, in turn, induces the development of Th1 cells and the inhibition of
regulatory T cells (Tregs) with anti-inflammatory action through the accumulation of
interferon regulatory factor-1 (IRF-1) [118].

Finally, Treg has been shown to modulate IL-5 production by Th2 cells and, conse-
quently, the analgesic activity induced by this cytokine [119]. The interaction between
stress, altered mitochondrial T-cell RNA, and FM certainly needs further investigation for
its potential pathogenic implications.
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3.2. The Role of B Cells and Autoantibodies

B cells play a key role in autoimmune processes. Their function is multifaceted and
consists of the production of autoantibodies, the presentation of self-antigens to T lympho-
cytes, and the ability to secrete cytokines with proinflammatory activity. However, the role
of B cells in the possible autoimmune pathogenesis of FM has not yet been thoroughly stud-
ied. In a recent study, an increase in B cells expressing mu-opioid receptors was reported in
patients with FM [120].

In another study, a comprehensive analysis of the B-cell transcriptome in FM patients
was conducted. The results showed overexpression of many IFN-regulated genes, indi-
cating that this IFN signature may be caused by the interaction of IFN-secreting cells of
the innate and adaptive immune system with B cells and that this may play a key role in
the pathogenesis of FM. This suggests, among other things, that a therapeutic approach to
counteract dysregulated interferon production could benefit FM patients [121].

Interest in the role of autoantibodies in the pathogenesis of FM received a definite
boost after the recent publication of a study conducted in an animal model showing that
passive transfer of IgG-class antibodies obtained from the serum of FM patients, but not
from that of controls, is able to induce a state of hypersensitivity to pain by sensitizing the
afferent nociceptive neurons of injected mice [122]. Figure 1 summarizes the experimental
design. In the same study, these antibodies were shown to bind the surface of satellite glial
cells, neurons, myelin fibers, macrophages, and endothelial cells found in the dorsal root
ganglia. The same antibodies were also detected in the spinal ganglia of FM patients. In a
later study, it was shown that the typical symptoms of FM were particularly pronounced in
subjects whose titer of anti-spinal ganglion autoantibodies was very high [123,124]. These
antibodies, however, have not been found in all FM patients, suggesting that they could
participate in the pathogenesis of FM only in a subgroup of subjects. In any case, the
pathogenetic role of autoantibodies in experimental models and in humans that emerged
from the above studies greatly strengthened the hypothesis of autoimmune pathogenesis
of FM. It is also conceivable that other autoantibodies responsible for widespread pain
syndromes have not been identified so far [125,126].
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Figure 1. Passive transfer of serum IgG from fibromyalgia patients into mice induces fibromyalgia-
like pain. Goebel et al. [122] recently demonstrated in an elegant experimental model that passive
transfer of IgG-class immunoglobulin from fibromyalgia patients to mice induced sensory hypersen-
sitivity through sensitization of nociceptive neurons. This experiment represented a breakthrough in
understanding the pathogenesis of fibromyalgia, strongly suggesting an autoimmune mechanism
mediated by antibodies against satellite glial cells and neurons.

4. The Role of Pathogens

Pathogen infections have long been and still are strongly implicated in the pathogene-
sis of FM by many authors [127]. Studies on hepatitis C virus (HCV) infection have found
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an increase in the prevalence of not only chronic pain but also other symptoms associated
with FM, such as fatigue and depression [128–130].

The presence of high FM in human immunodeficiency virus (HIV)-infected patients
has also been widely described [131,132]. In Lyme disease, a bacterial infection caused
by Borrelia burgdorferi, FM has been described as a frequent co-morbidity. Interestingly,
antibiotic therapy fails to regress the pain syndrome, suggesting the initiation of a chronic
autoimmune process [133,134]. Epstein-Barr virus (EBV) [135], gut bacteria [136], and
Helicobacter pylori [137] are other pathogens that have been associated with FM. A recent
boost to the study of correlations between pathogens and FM has come from the COVID-
19 pandemic.

In a recent study using COVID-19 and FM blood transcriptome data and machine
learning studies, a number of FM-related genes were identified that were activated after
SARS-CoV-2 infection and that were particularly manifested during “long-COVID” co-
infection. These genes are related to the synthesis and regulation of various cytokines. It
was, therefore, hypothesized that these cytokines are a key mediator of pain in patients
with FM. Other genes identified in the study and related to post-COVID FM were related to
leukotriene synthesis, activation of innate immunity, and oxidoreductive stress [138,139].

Thus, the symptoms of long COVID include several typical manifestations of FM,
such as cognitive impairment, fatigue, musculoskeletal pain, depression, anxiety, and sleep
disturbances [140–142]. For these reasons, the definition of post-COVID FM has been
coined [143]. It is possible that CNS hyperexcitability, which occurs particularly during
the cytokine storm that characterizes severe COVID-19, indicates the possibility of an
inflammatory origin of FM following severe SARS-CoV-2 infection [144].

However, a possible pathogenetic link with the antiviral immune response has been hy-
pothesized even in mild cases of COVID-19 [145]. Among various pathogenic causes, some
studies have investigated mitochondrial dysfunction common to patients with COVID-19
and FM. This dysfunction leads to abnormal production of reactive oxygen species (ROS)
with possible induction of chronic pain [146,147]. In summary, it can be speculated that
the close relationship between long COVID and FM may be an important clue to clarify
aspects of FM [148].

The inflammatory hypothesis suggests the possibility of evaluating immunosuppres-
sive therapeutic possibilities for FM, given the common immunologic aspects between
this disease and COVID-19, such as drugs used for the COVID-19, such as tocilizumab or
Janus kinase inhibitors (JAKis) [149]. The role of innate and adaptive immune cells in the
induction of nociplastic pain in FM is summarized in Figure 2.
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and mast cells produce interleukins and chemokines. B cells produce autoantibodies against nerve
cells. T cells produce both inflammatory cytokines, such as IFN-γ and IL-17, and anti-inflammatory
cytokines, such as IL-10. NK cells are believed to inhibit pain through their stimulation of Mu-type
opioid receptors. Viral and bacterial pathogens can act as stimulators of the immune system. The red
circle banned sign above the arrow indicates the inhibitory action by the cell.

5. Anti-Inflammatory Activity of Current Therapies in FM Syndrome

Duloxetine and milnacipran, both selective serotonin and norepinephrine reuptake
inhibitors (SSNRIs), and the antiepileptic pregabalin are the only drugs approved for the
treatment of FM by the Federal Drug Administration (FDA) in the United States. Their use
takes advantage of their pain-inhibiting action on the central nervous system.

However, there is growing interest in the anti-inflammatory activity of these drugs in
light of the hypothesis of an autoimmune inflammatory pathogenesis of FM. In a recent
study, the authors used neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio
(PLR), and mean platelet volume (MPV) as surrogate markers of inflammation [53,150]. In
a prospective observational study, it was reported that the NLR was significantly higher in
patients with FM than in controls. Treatment with duloxetine led to a reduction in this ratio,
indicating that this antidepressant medication may be effective on pain in these patients by
reducing the inflammatory state [151].

Regarding the anti-inflammatory activity of the antiepileptic pregabalin, a study was
conducted in female patients with FM syndrome. In that study, it was reported that
pregabalin was associated with a decrease in serum of several cytokines such as IL-6, IL-17,
TNF-α, and IFN-γ in treated patients [152]. Although these studies do not demonstrate that
the efficacy of SSRIs and antiepileptic drugs is related solely to anti-inflammatory effects,
they provide an interesting indirect suggestion in favor of the inflammatory pathogenesis
of FM syndrome.

Among nonpharmacological therapies, exercise-based interventions (EBI) are often
recommended for patients with FM syndrome. A systematic search of several electronic
databases demonstrated, through a meta-analysis, a significant reduction in ESR and
pro-inflammatory interleukin IL-8 levels in patients with FM syndrome who practiced
EBI. Although the authors themselves concluded that their work should be interpreted
with caution, it represents a further suggestion to the inflammatory hypothesis in the
pathogenesis of FM syndrome [153].

Another nonpharmacological therapy sometimes used to treat FM syndrome is
mindfulness-based stress reduction (MBSR). In a randomized trial involving only female
patients, this treatment approach was shown to prevent the reduction of anti-inflammatory
interleukin IL-10. In addition, high levels of pro-inflammatory substances before ther-
apy, including CX-10 chemokines, were greatly reduced. In addition, high levels of pro-
inflammatory substances before therapy, including chemokines CXCL8 and IL-6, impaired
the effectiveness of this therapy [154].

6. Discussion and Conclusions

The most recent studies have shown that FM is a condition characterized by a complex
pathogenesis. The hypothesized mechanisms in the pathogenesis of FM are schematically
showed in Figure 3. Theories that until recently considered this condition as an effect
predominantly associated with psychophysical stress or trauma of psychological origin no
longer seem able to adequately explain the onset of this pathological condition characterized
by chronic widespread pain.

Several pieces of evidence point out that cells of both the innate and adaptive immune
systems may contribute decisively to the pathogenesis of FM. Mast cells, with their ability
to cross the blood-brain barrier and activate microglia cells, may play a very relevant role
in neuroinflammation. Microglia cells, being able to switch from a pro-inflammatory M1
phenotype to an anti-inflammatory M2 phenotype, may represent an interesting therapeutic
target, possibly able to modulate the balance of the M1/M2 phenotype. NK cells also appear
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to play both pro-inflammatory and anti-inflammatory roles. Opioid receptors present on
the membrane of these cells may explain at least in part the pain-relieving effects of this
class of drugs in FM.
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Figure 3. Factors participating in the pathogenesis of fibromyalgia. Several factors are involved in the
genesis of fibromyalgia (FM). Traditionally, psychosocial stress has been considered the main event in
individuals predisposed to the activation of both central and peripheral pain sensitization. However,
recent findings have demonstrated the key role played by the immune system. Inflammation
mediated by mast cells, neutrophils, microglia cells, and natural killer (NK) cells produces several
proinflammatory cytokines and chemokines that contribute to neuroinflammation and the subsequent
increase in pain sensitization. On the other hand, recent studies have also involved adaptive immunity,
demonstrating the role of T cells, particularly T helper (Th)-1 and Th17 cells capable of producing
pro-inflammatory cytokines, and B cells through the production of neuron-specific autoantibodies,
as demonstrated through animal models of passive IgG transfer in experimental animals. Finally,
infections play an important role. In particular, infection with SARS-CoV-2, the causative agent
of COVID-19, is believed to be responsible, through still unknown mechanisms, for the increased
incidence of FM reported during the so-called “long COVID”. Once grafted, fibromyalgia has a
chronic course and, in addition to widespread musculoskeletal pain, is accompanied by various
debilitating symptoms such as depression, fatigue, cognitive impairment, also referred to as fibro fog,
and sleep disturbances.

As for the cells of the adaptive system, Th1- and Th17-type helper T cells seem to play an
important role. These cells, in addition to producing pro-inflammatory soluble substances,
have been shown to interact with pain-related neuronal mediators, including serotonin. This
may explain the effects of some antidepressant drugs in the treatment of FM.

More recently, the role of B lymphocytes has been emphasized, both in their function
of antigen presentation to T lymphocytes and in the production of cytokines and antibodies.
In the latter regard, recent studies in animal models have shown that passive transfer of IgG
from patients with fibromyalgia can induce an FM-like pain syndrome in experimental mice.
The nature of these antibodies has not yet been defined, but these findings strongly suggest
an autoimmune component of FM. It appears increasingly clear from an experimental
and more organicist approach that factors such as genetic predisposition associated with
environmental factors come into play. Infections probably play a key role in the onset of
FM, but the downstream mechanisms responsible for the persistence of chronic pain always
seem to be mediated by autoimmune and inflammatory phenomena.



Int. J. Mol. Sci. 2024, 25, 5922 10 of 16

In conclusion, the data reported in this review support the autoimmune and inflam-
matory pathogenesis of FM. This suggests that a better understanding of these immune-
mediated mechanisms could be exploited to develop innovative therapies for this, in many
ways, mysterious disease. It must be emphasized, however, that this review specifically
examined the autoimmune, inflammatory, and infectious aspects involved in the genesis
of FM. Therefore, it does not claim to be a comprehensive review of this disease, as it
did not consider experimental studies that examined other factors and provided different
interpretations of the pathogenesis of the disease, including a vegetarian diet and manual
therapy [155,156].

Further studies in all these regards are warranted to better elucidate the pathogenesis
of a very complex condition, also in order to allow increasingly accurate diagnosis of FM
and to set up possible targeted and effective treatments, all of which are unmet needs of this
highly disabling condition that has a great impact on the quality of life of those affected.
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