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A B S T R A C T

The study aims to investigate how the mechanics of swelling of a polymer gel is affected by
the presence of free-chains due to a partial cross-linking process. The analysis is focused on
the equilibrium solution of the mechano-diffusion problem under different as-prepared states,
corresponding to different polymer network fractions before diffusion starts. The limit situations
of perfectly cross-linked polymer gel and solution of polymeric chains are recovered by the
model.

. Introduction

Polymer gels are elastic materials swollen by a fluid. The elastic properties are inherited from the cross-linked network, together
ith the resistance to dissolution, and the swelling properties are related to the migration of the solvent through the network and to
el’s ability to absorb fluids coming from the hydrophilic functional groups attached to the polymer skeleton (Doi, 2013). Swelling
f polymer gels is a classical problem in polymer science and is typically based on a binary point of view: a polymer gel consists of
olymer (elastic) network and liquid (Chester & Anand, 2010; Doi, 2009; Hong, Zhao, Zhou, & Suo, 2008; Lucantonio, Nardinocchi,
Teresi, 2013). Actually, some fraction of the polymer can be left unattached to the network by the cross-linking procedure or

an get detached by the cross-linking process (Nandi & Winter, 2005). In these cases, the polymer gel includes also not cross-linked
olymer macromolecules (chains), denoted as free-chains.

There are a few relevant reasons which motivated our study. Firstly, the fraction of loose chains may be large and affect the
welling-driven mechanics of the polymer gel (Nandi & Winter, 2005). Secondly, free-chains can be released into the liquid bath,
here the polymer gel is embedded, changing the chemical properties of the bath itself and, as a secondary effect, affecting the

welling of the gel (Bernheim-Groswasser, Livne, Nardinocchi, Recrosi, & Teresi, 2024). Thirdly, the presence of free-chains in a
olymer gel is at the basis of the so-called residual swelling, which is driven by the concentration gradient of free chains across
he gel (Pezzulla, Shillig, Nardinocchi, & Holmes, 2015; Wang, Das, Joshi, Shaikeea, & V.S., 2024). Finally, the consideration of an
ncrease in the free-chains, due to breaking mechanisms of the chemical bonds between the polymeric chains induced by aging or
hemical agents, may be relevant in the swelling-driven mechanics of polymer gels (Wang, Akbulatov, Chen, et al., 2022; White,
006). This latter is strongly affected by the stiffness of the polymer network, which depends on the cross-linking density, which
n its turn, depends on the effective chemical bonds density. Actually, we leave this issue for future studies; however, the proposed
odeling allows for an easy integration of a change in free-chains content, which would correspond to a decrease in the cross-linking
ensity of the polymer network.
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We consider a polymer gel that is ternary in nature and consists of network polymer, free-chains and liquid. As typical in

echano-diffusion theories, it is viewed as a homogeneized continuous body, denoted as partially cross-linked polymer gel (Chester &
Anand, 2010; Hong et al., 2008; Lucantonio et al., 2013), which the liquid and the free-chains can diffuse through. This approach,
definitely similar to the one of poromechanics (Coussy, 2004), adopts a non-symmetric point of view in the description of the
different continua which constitute the polymer gel. In particular the total stress acting on the overall polymer gel is preferred to
the partial stresses, typical of the theory of mixtures, to account for the balance of linear momentum. This also allows to circumvent
the hurdle of the specification of traction boundary conditions on the different components, see among others (Massoudi, 2008;
Rajagopal & Tao, 1995; Sciarra, Dell’Isola, & Hutter, 2001) and references therein.

The free-chains content is a characteristic of the as-prepared state of the polymer gel and is identified through the polymer network
fraction. To make easier the future consideration of a polymer network fraction which changes in time due to cross-links breaking,
we introduce a reference configuration, defined through a cleaning free-chains out process, which consists of the sole cross-linked
polymer gel. The possible release of free-chains in the liquid bath and the analysis of its effects on the swelling-driven mechanics
of the polymer gel make mandatory to include the liquid bath in the study. So, differently from what is usually done in mechano-
diffusion theories, we study the system of polymer gel and liquid bath. So, the variables of the theory describe the state of both
the body and the bath. They include the gel displacement and the liquid and free-chains concentration in the body, the number of
liquid and free-chains moles in the bath.

The balance laws of the theory come out from basic principles (principle of null virtual working and masses conservation) and
the thermodynamics of the body and bath system are characterized starting from the largely studied thermodynamics of the polymer
gel, based on the Flory–Rehner model. As usually done in Flory–Rehner models, we also assume as natural state of the theory the
reference configuration of the body, which consists only of the dry polymer network. The body and bath system is assumed to be
a closed system by enforcing a few relations, which link the state variables of the theory and are viewed in the model as internal
constraints.

We focus on the study of the equilibrium states of the body and bath system under free conditions and under uniaxial traction.
The solutions of both problems come from a system of a (small) number of algebraic equations, which are highly nonlinear due
to the nonlinear constitutive equations of the theory and so numerically solved. The results of the theory are shown for different
values of the initial content of free-chains in the polymer gel. The two limit situations, that is, the solution of polymeric chains and
the perfectly cross-linked polymer gel, are included in the model (see Table 1).

2. Background

Stress-diffusion theories deal with swelling-driven mechanical deformations in polymer gels, which are assumed to be perfectly
cross-linked. Typically, the liquid-polymer mixture is treated as a single continuum body, allowing for mass flux of the liquid, whose
reference configuration is a three-dimensional region 𝑑 of the Euclidean space  , representing the polymer network. The state of
the polymer gel 𝑑 is described by the displacement 𝐮𝑑 from 𝑑 and the liquid molar concentration 𝑐𝑠 per unit current volume. The
displacement 𝐮𝑑 is a vector field that assigns to each material point 𝑋 ∈ 𝑑 and time 𝜏 ∈  a place 𝑥 ∈  :

𝑥 = 𝑋 + 𝐮𝑑 (𝑋, 𝜏) = 𝑓𝑑 (𝑋, 𝜏) ∈  , (2.1)

with the map 𝑓𝑑 describing the motion of the body (Gurtin, Fried, & Anand, 2010).
The region of space 𝜏 = 𝑓𝑑 (𝑑 , 𝜏) occupied by the body at 𝜏 represents the actual configuration of 𝑑 at time 𝜏; 𝐦 and 𝐧 are

the unit normal fields to the boundary 𝜕𝑑 of 𝑑 and 𝜕𝜏 of 𝜏 , respectively. Given a motion, each 𝑓𝑑 (⋅, 𝜏) is a deformation of 𝑑 ,
with the deformation gradient 𝐅𝑑 (𝑋, 𝜏) = ∇𝑓𝑑 (𝑋, 𝜏) = 𝐈+∇𝐮𝑑 (𝑋, 𝜏) at 𝑋 as a linear map from the translation space  of  to  ; the
corresponding Jacobian determinant and adjugate are denoted with 𝐽𝑑 = det 𝐅𝑑 and 𝐅∗

𝑑 = 𝐽𝑑 𝐅−𝑇
𝑑 .

Any regions  ⊂ 𝑑 is convected in 𝜏 = 𝑓𝑑 (, 𝜏) by the motion 𝑓𝑑 for all 𝜏. We write 𝐯(𝑥, 𝜏) for the spatial velocity field of
the body, such that, 𝐯(𝑥, 𝜏) = 𝐯(𝑓𝑑 (𝑋, 𝜏), 𝜏) = 𝐯𝑚(𝑋, 𝜏) = �̇�𝑑 (𝑋, 𝜏), where the pedix 𝑚 is used to identify the material representation
of the spatial field 𝐯1. We also write 𝑑𝑣 and 𝐧 𝑑𝑎 for the current volume and facet (oriented area) elements corresponding to the
reference volume and facet elements 𝑑𝑉𝑑 and 𝐦 𝑑𝐴𝑑 ; it holds:

𝑑𝑣(𝑥, 𝜏) = 𝑑𝑣(𝑓𝑑 (𝑋, 𝜏), 𝜏) = 𝐽𝑑 (𝑋, 𝜏)𝑑𝑉𝑑 (𝑋) and (𝑑𝑣(𝑥, 𝜏))◦ = 𝚍𝚒𝚟 𝐯(𝑥, 𝜏) 𝑑𝑣(𝑥, 𝜏) , (2.3)

where we denoted with (⋅)◦ the total time derivative (see Appendix). Finally, we remember that 𝑑𝑎 = |𝐅∗
𝑑 𝐦| 𝑑𝐴𝑑 and 𝐧 = 𝐅∗

𝑑 𝐦∕|𝐅∗
𝑑 𝐦|.

The liquid concentration 𝑐𝑠 is a spatial field defined on the current configuration that assigns to each place 𝑥 and time 𝜏 the
number of liquid moles, reckoned per unit volume of the current configuration, in such a way that the liquid volume in the volume
element 𝑑𝑣 is 𝑑𝑣𝑙 = 𝛺 𝑐𝑠𝑑𝑣 < 𝑑𝑣 with 𝛺 [m3/mol] the liquid (solvent) molar volume.

The balance of forces and the law for liquid conservation are formulated in material and spatial terms, respectively, in a global
form, and the localized material equations which must hold in 𝑑 are derived.

1 In the following, the change of description relating a reference field 𝑎𝑚 on 𝑑 ×  to the corresponding spatial field 𝑎𝑠 on 𝜏 ×  , both fields conveying
the same physical information, will be frequently tackled; thus, it is worth adopting a compact notation, by introducing the map 𝑎𝑠◦𝑓 defined by

𝑎𝑠◦𝑓 ∶ (𝑋, 𝜏) ↦ 𝑎𝑠(𝑓 (𝑋, 𝜏), 𝜏) = 𝑎𝑚(𝑋, 𝜏) , or, in short 𝑎𝑠◦𝑓 = 𝑎𝑚 . (2.2)
2

. See Gurtin et al. (2010) for further details.
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Table 1
List of main symbols and their nomenclature.

Symbols Nomenclature

𝜏 physical time
𝑑 ,𝜏 reference, actual (at 𝜏) configurations of the polymer body respectively
0 initial (at 𝜏 = 0) or as-prepared configuration of the polymer body
𝑒 the actual configuration of the polymer body that is homogeneous and at equilibrium
𝑋, 𝑥 position vectors of a material point in 𝑑 ,𝜏 configurations respectively
𝑓𝑑 , 𝑓0 , 𝑓 maps of the deformation from the configurations 𝑑 ,𝑑 ,0 to 𝜏 ,0 , respectively
𝐮𝑑 displacement field of the configuration 𝜏 with respect to 𝑑
𝐅𝑑 ,𝐅0 ,𝐅 gradients of the deformation maps 𝑓𝑑 , 𝑓0 , 𝑓 respectively
𝐽𝑑 , 𝐽0 Jacobian determinants of the deformation maps 𝑓𝑑 , 𝑓0 respectively
𝜆𝑑 , 𝜆0 , 𝜆 principal stretch ratios in the case of homogeneous isotropic deformations 𝐅𝑑 ,𝐅0 ,𝐅 respectively
𝐒𝑑 ,𝐓 reference Piola–Kirchhoff, actual Cauchy stress fields respectively
𝑑𝐴𝑑 , 𝑑𝑎 infinitesimal oriented areas associated to 𝑑 ,𝜏 respectively
𝐦,𝐧 unit normals associated to 𝑑𝐴𝑑 , 𝑑𝑎 respectively
𝑑𝑉𝑑 , 𝑑𝑣 infinitesimal volume elements associated to 𝑑 ,𝜏 respectively
𝑑𝑣𝑛 , 𝑑𝑣𝑙 , 𝑑𝑣𝑓 volumes of network, liquid solvent, free-chains respectively within 𝑑𝑣

𝑉𝑑 , 𝑉0 total reference (dry), initial volumes respectively of the polymer body
𝑣𝑙 , 𝑣𝑓 total actual volumes of liquid solvent, free-chains respectively within the polymer body
𝑉𝑙 , 𝑉𝑓 total initial volumes of liquid solvent, free-chains respectively within the polymer body
𝑐𝑑 , 𝑐𝑠 actual molar concentrations of liquid solvent with respect to 𝑑 ,𝜏 respectively
𝑔𝑑 , 𝑔𝑠 actual molar concentrations of free-chains with respect to 𝑑 ,𝜏 respectively
𝑔𝑑0 initial molar concentration of free-chains with respect to 𝑑
𝜙0 , 𝜙 initial, actual gel fractions of the polymer body respectively
ℎ𝑑 , ℎ𝑠 instantaneous solvent flux across 𝑑𝐴𝑑 , 𝑑𝑎 respectively
𝑗𝑑 , 𝑗𝑠 instantaneous free-chain flux across 𝑑𝐴𝑑 , 𝑑𝑎 respectively
𝜇𝑐 , 𝜇𝑏𝑐 chemical potentials of the solvent in the polymer body, the bath respectively
𝜇𝑔 , 𝜇𝑏𝑔 chemical potentials of the free-chains in the polymer body, the bath respectively
𝜇𝑜𝑐 , 𝜇

𝑜
𝑔 chemical potentials of the pure solvent, the pure free-chains respectively

𝑁𝑐 , 𝑁𝑔 total current number of moles of the solvent, the free-chains respectively in the bath
𝑁𝑐0 , 𝑁𝑔0 total initial number of moles of the solvent, the free-chains respectively in the bath
𝑉𝑏 , 𝑣𝑏 initial, actual volumes of the bath respectively
𝛺,𝛬 molar volumes of the solvent, the free-chains respectively
𝐺𝑑 shear modulus of the dry network
𝜒 Flory parameter describing the enthalpic interaction between solvent and polymer network

2.1. Balance of forces and liquid mass

In mechanics, the work is the chief integral quantity, and balance equations are naturally expressed in integral form in terms of
orking. The working is a continuous, linear, and real-valued functional on the space of test velocities �̃� and is split additively into

the elementary internal working 𝑑 𝑖(�̃�) and external working 𝑑𝑒(�̃�):

𝑑 𝑖(�̃�) = 𝐒𝑑 ⋅ ∇�̃� 𝑑𝑉𝑑 and 𝑑𝑒(�̃�) = 𝐬 ⋅ �̃� 𝑑𝐴𝑑 , (2.4)

here the reference stress 𝐒𝑑 and the reference traction vector 𝐬 have been introduced and vanishing bulk forces have been
onsidered. The request that  𝑖(�̃�) and 𝑒(�̃�) be equal for any test velocities �̃�, delivers the local form of the balance equation
f forces and corresponding natural boundary conditions (BCs)

𝚍𝚒𝚟𝐒𝑑 = 𝟎 in 𝑑 & 𝐒𝑑𝐦 = 𝐬 on 𝜕𝑑 , (2.5)

here 𝐬 is controlled on the boundary 𝜕𝑑 of the body. The indifference of the inner working with respect to change of frames delivers
he further condition: 𝐒𝑑𝐅𝑇𝑑 ∈ Sym. When evaluated on velocity fields, the internal working delivers the elementary mechanical
ower

𝑑𝑚 = 𝐒𝑑 ⋅ �̇�𝑑 𝑑𝑉𝑑 . (2.6)

he diffusion equation for the liquid is formulated through a liquid mass conservation law assuming that changes in the concentration
𝑠 of the solvent in any elementary volume 𝑑𝑣 are most generally brought about by diffusion across its boundary 𝑑𝑎 if any internal
ources are absent. Introducing the rate 𝑞𝑠 of solvent transported into the elementary volume 𝑑𝑣 across its boundary 𝑑𝑎 by the
olvent flux 𝐡𝑠, the conservation law takes the form

◦

3

(𝑐𝑠 𝑑𝑣) = 𝑞𝑠 𝑑𝑎 with 𝑞𝑠 = −𝐡𝑠 ⋅ 𝐧 . (2.7)
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Eq. (2.7) delivers the local spatial balance law; we have

(𝑐𝑠 𝑑𝑣)◦ = 𝑐◦𝑠 𝑑𝑣 + 𝑐𝑠𝑑𝑣
◦ = (𝑐◦𝑠 + 𝑐𝑠𝚍𝚒𝚟 𝐯)𝑑𝑣 , (2.8)

and

−𝐡𝑠 ⋅ 𝐧 𝑑𝑎 = −𝚍𝚒𝚟𝐡𝑠 𝑑𝑣 , (2.9)

that is,

�̇�𝑠 + 𝚍𝚒𝚟 (𝑐𝑠𝐯) = −𝚍𝚒𝚟𝐡𝑠 in 𝜏 ×  . (2.10)

q. (2.10) can be rewritten as

�̇�𝑠 + 𝚍𝚒𝚟 (𝑐𝑠(𝐯 +
𝐡𝑠
𝑐𝑠

)) = 0 with 𝐯 +
𝐡𝑠
𝑐𝑠

= 𝐯𝑙 , (2.11)

here 𝐯𝑙 is the liquid velocity. The same Eq. (2.7), after appropriate pull-back, delivers the local material balance law:

(𝑐𝑠 𝑑𝑣)◦ = ̇𝑐𝑚𝐽𝑑 𝑑𝑉𝑑 = �̇�𝑑 𝑑𝑉𝑑 and − 𝐡𝑠 ⋅ 𝐧 𝑑𝑎 = −𝐽𝑑 𝐅−1
𝑑 𝐡𝑚 ⋅𝐦 𝑑𝐴𝑑 = −𝐡𝑑 ⋅𝐦 𝑑𝐴𝑑 , (2.12)

hat is,

�̇�𝑑 = −𝚍𝚒𝚟𝐡𝑑 in 𝑑 ×  with 𝑞𝑚 = −𝐡𝑑 ⋅𝐦 , (2.13)

here 𝐡𝑚 = 𝐡𝑠◦𝑓 is the solvent material flux. Specification of 𝑞𝑚 on the boundary 𝜕𝑑 gives the Neumann BC, such that a positive
oundary source 𝑞𝑚 corresponds to a flux entering the body. If Dirichelet-type BCs are prescribed on 𝜕𝑑 , we would have,

𝐮 = �̄� and 𝑐𝑑 = 𝑐𝑑 on 𝜕𝑑 ×  . (2.14)

inally, the system requires the initial conditions on the state variable of the problem 𝐮 and 𝑐𝑑 .
We can also define the chemical power by introducing the chemical potential 𝜇𝑐 of the liquid in the gel to represent energy flow

ue to liquid transport:

𝑑𝑐 = −𝜇𝑐𝐡𝑑 ⋅𝐦𝑑𝐴 = −𝚍𝚒𝚟 (𝜇𝑐𝐡𝑑 )𝑑𝑉𝑑 = (𝜇𝑐 �̇�𝑑 − 𝐡𝑑 ⋅ ∇𝜇𝑐 )𝑑𝑉𝑑 . (2.15)

.2. Thermodynamics

The constitutive equation for the stress 𝐒𝑑 measured with respect to the dry configuration 𝑑 , from now on denoted as dry-
eference stress, and for the chemical potential 𝜇𝑐 are derived from the classical Flory–Rehner (FR) thermodynamics. It is based
n a free energy 𝜓 per unit dry volume which depends on the deformation gradient 𝐅𝑑 from the dry configuration of the polymer
el through an elastic component 𝜓𝑒, and on the molar solvent concentration 𝑐𝑑 per unit dry volume through a polymer–solvent
ixing energy 𝜓𝑚: 𝜓 = 𝜓𝑒 + 𝜓𝑚. The natural state corresponding to the FR free energy is obtained for 𝐅𝑑 = 𝐈 and 𝑐𝑑 = 0, that is, it

orresponds to the reference dry configuration.
Further a local constraint prescribing that changes in volume of the gel body are exclusively due to solvent absorption or release

s imposed,

𝐽𝑑 = det𝐅𝑑 = 𝐽 (𝑐𝑑 ) = 1 +𝛺 𝑐𝑑 . (2.16)

t means that the current volume element 𝑑𝑣 of the polymer gel is given by the network volume element 𝑑𝑉𝑑 plus the amount of
iquid 𝑑𝑣𝑙 = 𝛺𝑐𝑑 𝑑𝑉𝑑 in that volume element: 𝑑𝑣 = 𝑑𝑉𝑑 +𝛺𝑐𝑑 𝑑𝑉𝑑 = 𝐽 (𝑐𝑑 ) 𝑑𝑉𝑑 . Including this constraint, the definition of a restricted
lory–Rehner free energy density reads,

𝜓𝑟(𝐅𝑑 , 𝑐𝑑 , 𝑝) = 𝜓𝑒(𝐅𝑑 ) + 𝜓𝑚(𝑐𝑑 ) − 𝑝(𝐽𝑑 − 𝐽 (𝑐𝑑 )) , (2.17)

here the pressure 𝑝 (assumed positive when compressive) represents the reaction which maintains the local constraint.
The constitutive relations for the stress 𝐒𝑑 and the chemical potential 𝜇𝑐 come from thermodynamic development, following the

o-called Coleman–Noll procedure (Coleman & Noll, 1963), imposing at thermodynamic equilibrium the equivalence between the
ate of change of total free energy and the expended mechanical (2.6) and chemical (2.15) power. As a consequence, the following
hermodynamically consistent constitutive equations follow:

𝐒𝑑 = �̂�𝑑 (𝐅𝑑 ) − 𝑝𝐅∗
𝑑 and 𝜇𝑐 = �̂�𝑐 (𝑐𝑑 ) + 𝑝𝛺 , (2.18)

ith

�̂�𝑑 (𝐅𝑑 ) =
𝜕𝜓𝑒
𝜕𝐅𝑑

and �̂�𝑐 (𝑐𝑑 ) =
𝜕𝜓𝑚
𝜕𝑐𝑑

. (2.19)

e intend to follow the FR thermodynamic model by choosing the reference dry state 𝑑 as the natural state, which corresponds
o choosing 𝜓𝑒(𝐈) = 0 and 𝜓𝑚(0) = 0. So, we write the neo-Hookean elastic energy 𝜓𝑒:

𝜓 (𝐅 ) =
𝐺𝑑 (𝐅 ⋅ 𝐅 − 3) , (2.20)
4

𝑒 𝑑 2 𝑑 𝑑
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𝐺𝑑 being the shear modulus of the dry network, which is strictly related to the dimension of the polymer gel and strongly affects
is swelling state. We also write the polymer–solvent mixing energy as:

𝜓𝑚(𝑐𝑑 ) = 𝜇𝑜𝑐 𝑐𝑑 +
𝑅𝑇
𝛺

ℎ(𝑐𝑑 ) , (2.21)

ith 𝜇𝑜𝑐 the chemical potential of the pure liquid and

ℎ(𝑐𝑑 ) = 𝛺 𝑐𝑑 ln
𝛺 𝑐𝑑

1 +𝛺 𝑐𝑑
+ 𝜒

𝛺 𝑐𝑑
1 +𝛺 𝑐𝑑

, [ℎ] = 1 . (2.22)

Therein, 𝑅 ([𝑅] =J/(K mol), 𝑇 ([𝑇 ] = K), and 𝜒 are the universal gas constant, the absolute temperature, and the Flory parameter
describing the enthalpic interaction between the solvent and the polymer network, respectively.2 It holds that for 𝑐𝑑 → 0, 𝜓𝑚(𝑐𝑑 ) → 0.

From (2.19)1 and (2.20), the constitutive equation �̂�𝑑 (𝐅𝑑 ) for the dry-reference stress is derived; from (2.19)2, (2.21), and (2.22)
he constitutive equation �̂�𝑐 (𝑐𝑑 ) for the chemical potential is derived. This latter can also be rewritten as function of 𝐽𝑑 by exploiting
he local constraint (2.16); with a slight abuse of notation, we write �̂�𝑐 (𝑐𝑑 ) = �̂�𝑐 (𝐽𝑑 ):

�̂�𝑐 (𝐽𝑑 ) = 𝜇𝑜𝑐 + 𝑅𝑇

(

ln
𝐽𝑑 − 1
𝐽𝑑

+ 1
𝐽𝑑

+
𝜒
𝐽 2
𝑑

)

. (2.23)

.3. Free-swelling of polymer gels

The free-swelling problem is posed as a boundary value problem (BVP) with null boundary loads and under the influence of the
ontrol parameter 𝜇𝑒, defined as the chemical potential of the bath which surrounds the body,

𝐒𝑑𝐦 = 𝟎 and 𝜇𝑐 = 𝜇𝑒 on 𝜕𝑑 . (2.24)

t is worth noting that the BC on the chemical potential is an implicit way to require that the Dirichlet BC (2.14)2 is satisfied, as
olvent concentration 𝑐𝑑 at the boundary cannot be controlled explicitly. Specifically, we should write

𝑐𝑑 = 𝑐𝑑 with 𝜇𝑐 = �̂�𝑐 (𝑐𝑑 ) + 𝑝𝛺 = 𝜇𝑒 on 𝜕𝑑 . (2.25)

hortly, we write 𝜇𝑐 = �̂�𝑐 (𝑐𝑑 ) + 𝑝𝛺 = 𝜇𝑒, that is, Eq. (2.24)2.
In the special case of homogeneous and isotropic free-swelling, the solution as 𝜏 → ∞ describes a homogeneous equilibrium state

𝑒 of the gel body. Such a solution is typically written in terms of the free-swelling degree, 𝐽 1∕3
𝑑 , which is controlled by the value

𝜇𝑒 of the chemical potential of the bath. The governing equations of this state can be written as,

𝐒𝑑 = 𝟎 and 𝜇𝑐 = 𝜇𝑒 in 𝑑 . (2.26)

Assuming an isotropic deformation 𝐅𝑑 = 𝐽 1∕3
𝑑 𝐈 and using the constitutive Eqs. (2.18)1 and (2.19)1, the condition above of zero stress

yields the pressure 𝑝 at 𝑒 :

𝐺𝑑𝐅𝑑 − 𝑝𝐅∗
𝑑 = 𝟎 ⇒ 𝑝 = 𝐺𝑑𝐽

−1∕3
𝑑 . (2.27)

Substituting this expression for 𝑝 in the constitutive relation (2.18)2 for the chemical potential yields a non-linear equation relating
𝑒 and 𝐽𝑑 :

�̂�𝑐 (𝐽𝑑 ) + 𝐺𝑑𝐽
−1∕3
𝑑 𝛺 = 𝜇𝑒 . (2.28)

For 𝜇𝑒 → −∞, corresponding to polymer being surrounded by air, 𝐽𝑑 → 1 and Eq. (2.28) describes the equilibrium reference dry state
𝑑 of the network (Fig. 1, left panel). For 𝜇𝑒 = 𝜇𝑜𝑐 , that is for a bath consisting of pure liquid, Eq. (2.28) describes the equilibrium
swollen state 𝑒 (Fig. 1, right panel). The intermediate state (Fig. 1, middle panel) corresponds to the initial time, before diffusion
starts. Then, the equation 𝐒𝑑 = 𝟎 and 𝐽𝑑 = 1 delivers the trivial solution 𝐽𝑑 = 1.

Remark. The amount of swelling 𝐽𝑑 is controlled by the chemical potential 𝜇𝑒 of the bath and is completely independent on the
nitial dry volume. At the equilibrium state 𝑒, the volume of the liquid uptaken by the gel is

𝑣𝑙 = 𝛺 𝑐𝑑𝑉𝑑 = (𝐽𝑑 − 1)𝑉𝑑 , (2.29)

hat is, the liquid volume 𝑣𝑙 depends linearly on the original dry volume 𝑉𝑑 of the body. Moreover, the size of liquid bath does not
appear in the equations above. The underlying assumption is that we are dealing with free swelling of a body in an infinite bath
and the amount 𝑣𝑙 of liquid is always available, whichever is the value of 𝐽𝑑 we obtain from Eq. (2.28).3

2 Within Flory thermodynamics, the enthalpic interactions between the solvent and the polymer network are completely summed up in the parameter 𝜒 ,
which measures the affinity between polymer and liquid and affects gel swelling at equilibrium. An interesting study on the role of 𝜒 in determining multiple
olution of the free-swelling steady problem in perfectly cross-linked gels has been presented in Duda, Souza, and Fried (2010).

3 For instance, for 𝐺𝑑 = 4.0E04 Pa, 𝛺 = 9.92E−05 m3 mol−1 and 𝜒 = 0.2, at 𝑇 = 373.15 K we get 𝐽𝑑 = 27.1. Given a dry volume of 𝑉𝑑 = 1E−06 m3, we get
3

5

𝑙 = 2.61E−05 m .
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Fig. 1. The dry network 𝑑 (left); the initial state 0 of the gel in the bath, before diffusion starts (center); the homogeneously swollen and stress-free state 𝑒
(right).

2.4. Swelling of polymer gels: the body and bath system

The same problem may be viewed from a different perspective, which as well sets the stage for analysis of the free-swelling of
partially cross-linked polymer gels. Apart from the domain of the gel body itself, we now include in the above model the domain
of the bath while assuming that they are both contained in a fixed box.

It is important to remark a few aspects of the problem:

1. including the bath in the system means giving up the control of the chemical potential 𝜇𝑒 of the bath;
2. we are concerned with only one incompressible species in the bath, i.e. the liquid; hence, there is no need to introduce a

concentration variable in the bath to aid its description (this is not the case in the gel body because there are two species,
the polymer network and the liquid);

3. we assume that homogeneity is maintained within the bath due to lack of concentration gradients and further we are not
concerned with the flow due to pressure gradients within the bath as only steady state solutions are indeed considered.

Here, 0 denotes the initial state of the gel body, before diffusion starts at time 𝜏 = 0 and 𝑉𝑏 the initial bath volume (see Fig. 1,
middle panel). The variables describing the gel body state are the displacement 𝐮𝑑 and the liquid concentration 𝑐𝑑 , previously
introduced. Assuming that the external boundary of the fixed box is impermeable, at any time 𝜏 ∈ , the current bath volume 𝑣𝑏(𝜏)
is known once the current liquid volume 𝑣𝑙 in the gel has been evaluated:

𝑣𝑏(𝜏) = 𝑉𝑏 − ∫𝑑
𝛺𝑐𝑑𝑑𝑉𝑑 = 𝑉𝑏 − ∫𝑑

(𝐽𝑑 − 1)𝑑𝑉𝑑 , (2.30)

where the local constraint (2.16) has also been used.

Remark. We could also evaluate 𝑣𝑏(𝜏) by solving an extra mass balance equation for the liquid within the bath domain under the
assumption of continuity of the liquid across the shared boundary between the bath and the gel body, as we shall do for partially
cross-linked bodies. In that case, we would write,

�̇�𝑏
𝛺

= ∫𝜕𝑑
𝑞𝑖 𝑑𝑎 with 𝑞𝑖 = −𝐡𝑖 ⋅ (−𝐧) , (2.31)

where 𝑞𝑖 is the rate of solvent transported across an elementary surface of the shared boundary and 𝐡𝑖 the corresponding surface
flux. Note that the external boundary of the bath does not contribute to such a supply due to its impermeable nature. Starting from
(2.31), the continuity of the liquid across the shared boundary, 𝑞𝑖 = −𝑞𝑠, the local balance of liquid moles in the gel body (2.13)
and the local constraint (2.16) combine to give

�̇�𝑏 = −∫𝑑
�̇�𝑑𝑑𝑉𝑑 , (2.32)

to be solved with the initial condition 𝑣𝑏(0) = 𝑉𝑏.4

2.4.1. Thermodynamics of the body–bath system
Thermodynamics must be formulated including not only the restricted FR free energy (2.17) of the gel body, but also the free

energy contribution of the bath. So, a new restricted total free energy 𝛹 is introduced which includes the free energy density per

4 It is worth noting that to guarantee that 𝑣𝑏(𝜏)≫ 0, an unilateral constraint on 𝐽𝑑 or on 𝑐𝑑 should be incorporated in the formulation. However, the current
study is not concerned with such a limiting case. It is assumed that while 𝑉𝑏 is finite, it is sufficiently large so as to ensure the presence of the bath all along
the boundary 𝜕 for all times 𝜏 ∈  .
6
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unit initial bath volume of the liquid in the bath:5

𝜓𝑏(𝑣𝑏) = 𝜇𝑜𝑐
𝑣𝑏
𝛺

1
𝑉𝑏
. (2.33)

Thus, the restricted total free energy 𝛹 takes the form

𝛹 = ∫𝑑
𝜓𝑟(𝐅𝑑 , 𝑐𝑑 , 𝑝)𝑑𝑉𝑑 + 𝜓𝑏(𝑣𝑏)𝑉𝑏 . (2.34)

At thermodynamic equilibrium, the time derivative of the free energy of the system, must be equal to the expended mechanical and
chemical power in the system. As far as the time derivative of 𝛹 is concerned, we get

�̇� = ∫𝑑

((

𝜕𝜓𝑒
𝜕𝐅𝑑

− 𝑝𝐅∗
𝑑

)

⋅ �̇�𝑑 +
(

𝜕𝜓𝑚
𝜕𝑐𝑑

+𝛺𝑝
)

�̇�𝑑 − (𝐽𝑑 − 𝐽 (𝑐𝑑 ))�̇�
)

𝑑𝑉𝑑 +
𝜕𝜓𝑏
𝜕𝑣𝑏

𝑉𝑏�̇�𝑏 . (2.35)

On the other hand, while the elementary mechanical power 𝑑𝑚 = 𝐒𝑑 ⋅ �̇�𝑑 𝑑𝑉𝑑 maintains its usual form, the chemical power must
lso take into account the bath contribution which is expressed by introducing the chemical potential 𝜇𝑏𝑐 of the liquid in the bath
esides that of the liquid in the gel body, as,

𝑐 = −∫𝜕𝑑
𝜇𝑐 𝐡𝑑 ⋅𝐦 𝑑𝐴𝑑 − ∫𝜕𝜏

𝜇𝑏𝑐 𝐡𝑖 ⋅ (−𝐧) 𝑑𝑎 = ∫𝑑

(

𝜇𝑐 �̇�𝑑 − ∇𝜇𝑐 ⋅ 𝐡𝑑
)

𝑑𝑉𝑑 + 𝜇𝑏𝑐
�̇�𝑏
𝛺
,

where the divergence theorem in combination with the local liquid molar balance (2.13) in the gel body and the global liquid molar
balance (2.31) in the bath have been employed. At thermodynamic equilibrium,

𝑚 +𝑐 = �̇� (2.36)

Following the same steps previously shown, the constitutive equations for the reference-dry stress 𝐒𝑑 , the chemical potential 𝜇𝑐 of
he liquid in the gel and the chemical potential 𝜇𝑏𝑐 of the liquid in the bath are identified:

𝐒𝑑 =
𝜕𝜓𝑒
𝜕𝐅𝑑

− 𝑝𝐅∗
𝑑 , 𝜇𝑐 =

𝜕𝜓𝑚
𝜕𝑐𝑑

+𝛺𝑝 , 𝜇𝑏𝑐 = 𝜇𝑜𝑐 . (2.37)

s discussed earlier, the homogeneous equilibrium state under isotropic free-swelling of the gel body is characterized by zero stress
nd an isotropic deformation 𝐅𝑑 = 𝜆𝐈. Moreover, the chemical equilibrium on 𝜕𝑑 between liquid in the body and in the bath, that

is, 𝜇𝑐 = 𝜇𝑏𝑐 delivers the same Eq. (2.28) already discussed.
Finally, (2.30) implies that the change in the volume of the liquid bath corresponds to the change of the body volume, that is,

𝑣𝑏 − 𝑉𝑏 = −(𝐽𝑑 − 1)𝑉𝑑 ≥ 0 . (2.38)

It means that the initial volume bath must be such to guarantee that the inequality (2.38) holds.

3. Partially cross-linked polymer gels

For partially cross-linked polymer gels, the stress-diffusion theory must include consideration of the free-chains. The liquid-
polymer mixture is still treated as a single continuum body, which allows for mass flux of the liquid and of the free-chains. The
theory is based on the balance equations governing the diffusion of the liquid and the free-chains, and the forces acting on the gel
body. Further the dissipation inequality prescribes the thermodynamic restrictions on constitutive recipes appropriate for partially
cross-linked polymeric gels.

3.1. State variables and balance laws for the polymer gel

We assume that the domain of definition of all the state variables of the polymer gel is a reference configuration 𝑑 , corresponding
o the dry polymer network, before exposure to solvent and without any free-chains. This choice is driven by the idea to extend
he current model to include the consideration of a polymer network fraction which changes in time due to cross-links breaking; in
his case, a reference configuration which corresponds to the initial polymer network fraction (before cross-links breakage) may be
ore convenient.

In order to describe the state of such a polymer, we retain the state variables introduced earlier, that is, displacement of the
ody 𝐮𝑑 (a material field) and liquid molar concentration 𝑐𝑠 (a spatial field), and further introduce the spatial field 𝑔𝑠 as the
ree-chain molar concentration per unit current volume. Consequently, the free-chains volume in any given volume element 𝑑𝑣
s 𝑑𝑣𝑓 = 𝛬𝑔𝑠𝑑𝑣 < 𝑑𝑣 with 𝛬 [m3/mol] the polymer molar volume.

With this, the volume element 𝑑𝑣 consists of liquid volume 𝑑𝑣𝑙, free-chains volume 𝑑𝑣𝑓 and network volume 𝑑𝑣𝑛; this latter
annot change in any configuration, that is, 𝑑𝑣𝑛 = 𝑑𝑉𝑑 :

𝑑𝑣 = 𝑑𝑣𝑙 + 𝑑𝑣𝑓 + 𝑑𝑣𝑛 = 𝛺𝑐𝑠𝑑𝑣 + 𝛬𝑔𝑠𝑑𝑣 + 𝑑𝑉𝑑 . (3.39)

5 Note that
𝑣𝑏 is the number of liquid moles in the bath and the derivative of 𝜓 with respect to the number of moles is indeed 𝜇𝑜.
7
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Fig. 2. Different states of the polymer gel and their relationships: the dry state 𝑑 only consists of polymer network, the as-prepared state 0 before swelling
starts consists of polymer network and free-chains, the current state  consists of polymer network, free-chains and liquid.

The initial configuration 0 of the polymer, before any diffusion starts, consists of network and free-chains. We denote it the
as-prepared state and write

𝑉0 = 𝑉𝑑 + 𝑉𝑓 , (3.40)

where 𝑉𝑓 is the volume of free-chains present in 𝑉0 and 𝑉𝑑 is the volume of the dry configuration 𝑑 . We write 𝑔𝑑 = 𝐽𝑑 𝑔𝑚 for the
free-chains concentration per unit dry volume of the polymer network, where 𝑔𝑚(𝑋, 𝑡) = 𝑔𝑠(𝑓𝑑 (𝑋, 𝑡), 𝑡) is the material representation
of the spatial field 𝑔𝑠 and

𝑑𝑣 = 𝛺𝑐𝑑 𝑑𝑉𝑑 + 𝛬𝑔𝑑 𝑑𝑉𝑑 + 𝑑𝑉𝑑 . (3.41)

As 𝑑𝑣 = 𝐽𝑑 𝑑𝑉𝑑 , it holds

𝐽𝑑 = 1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑 = 𝐽𝑑 (𝑐𝑑 , 𝑔𝑑 ) , (3.42)

which corresponds to a local constraint that is similar to (2.16) of the perfectly cross-linked case.
At the initial state, 𝑐𝑑 = 0 and the concentration 𝑔𝑑0 of the free-chains is assumed to be known. So, we evaluate the volume 𝑉𝑑

of the polymeric dry network as

𝑉𝑑 = 𝜙0 𝑉0 with 𝜙0 =
1
𝐽0

and 𝐽0 = 1 + 𝛬𝑔𝑑0 . (3.43)

It corresponds to say that the operation of cleaning free-chains out is described through a homogeneous deformation 𝑓−1
0 of gradient

𝐅−1
0 = (1 + 𝛬𝑔𝑑0)−1∕3𝐈 from 0 to 𝑑 , which is assumed to be known (see Fig. 2).

So, 𝜙0 characterizes the polymer at its initial as-prepared state. A perfectly cross-linked polymer corresponds to 𝜙0 = 1, that is,
𝑉0 = 𝑉𝑑 . On the other side, a polymer solution, that is, the set of long-chain polymers before the cross-linking process, corresponds
to 𝜙0 → 0; in this case, 𝑉0 → 𝑉𝑓 and 𝑉𝑑 → 0. We call 𝜙0 the initial network fraction; it can take values in the range (0, 1].

Within the present study, 𝜙0 is a design parameter which can be controlled in the polymerization phase. It affects the polymer
network component of the as-prepared state, whose volume 𝑉𝑑 changes with 𝜙0.

In addition to the local liquid molar balance (2.13) in the gel body and the balance (2.5) of force, we need to introduce the
free-chain molar balance, written as,

�̇�𝑑 = −𝚍𝚒𝚟 𝐣𝑑 in 𝑑 ×  , (3.44)

where 𝐣𝑑 is the flux of the free-chains across any elementary surface within the reference configuration of the body and it could be
specified as a Neumann BC. One can show that, this flux can be decomposed additively into two contributions, which allow us to
describe the two physical mechanisms of transport: (1) transport due to diffusion of free-chains within the gel body, corresponding
to a contribution 𝐣𝑑 , and (2) transport due to the advection of the free-chains along with the liquid, corresponding to a contribution
(𝑔𝑑∕𝑐𝑑 )𝐡𝑑 . As a consequence, Eq. (3.44) admits the alternative representation

�̇�𝑑 = −𝚍𝚒𝚟 𝐣𝑑 − 𝚍𝚒𝚟

(

𝑔𝑑
𝑐𝑑

𝐡𝑑
)

in 𝑑 ×  . (3.45)

The Dirichlet BCs associated to the molar balances can be specified implicitly, as explained earlier, and are for the liquid and the
free-chains, respectively,

𝜇 = 𝜇𝑏 and 𝜇 = 𝜇𝑏 on 𝜕 , (3.46)
8
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where 𝜇𝑏𝑔 is introduced as the chemical potential of the free-chains in the bath. It is to be noted that in the case of perfectly cross-
linked polymer swelling in a pure liquid bath, the right-hand side of the Dirichlet BC (2.24)2 involved a constant, that was the
chemical potential 𝜇𝑒 = 𝜇𝑜𝑐 of the bath. For partially cross-linked polymer gels, the bath cannot be considered as a pure liquid owing
to the possible presence of free-chains released from the gel body. Thus, the right-hand sides of the Dirichlet BC (3.46) involve 𝜇𝑏𝑐
nd 𝜇𝑏𝑔 , which are functions of the bath composition, as we will see in the following. Finally, we assume that at the initial time the
ree-chains concentration in the body is 𝑔𝑑0.

.2. State variables and balance laws for the bath

We adopt a global view of the bath by introducing the total number 𝑁𝑐 of liquid moles and 𝑁𝑏 of free-chain moles, as the
state variables of the bath. Such a choice implies that we are not concerned with the local flow within the bath and consequently
there is no need to introduce the local molar concentrations. Within this framework, the liquid molar balance within the domain
𝜏 occupied by the bath is written as

�̇�𝑐 = ∫𝜕𝑖𝜏
𝑞𝑖 𝑑𝑎 + ∫𝜕𝑒𝜏

𝑞𝑒 𝑑𝑎𝑒 = −∫𝜕𝑖𝜏
−𝐡𝑖 ⋅ (−𝐧) 𝑑𝑎 − ∫𝜕𝑒𝜏

𝐡𝑒 ⋅ 𝐧𝑒 𝑑𝑎𝑒 , (3.47)

here the pedix 𝑒 identifies quantities associated to the external boundary 𝜕𝑒𝜏 of the bath, 𝜕𝑖𝜏 = 𝜕𝜏 and 𝜕𝜏 = 𝜕𝑖𝜏 ∪ 𝜕
𝑒
𝜏 . We

ransform the integral on 𝜕𝑖𝜏 into an integral on the current boundary 𝜕𝜏 of the polymer by employing the continuity of the liquid
cross the shared boundary, that is, we set 𝑞𝑖 𝑑𝑎 = −𝑞𝑠 𝑑𝑎. Moreover, we assume that 𝜕𝑒𝜏 is an impermeable boundary and set
𝑒 𝑑𝑎𝑒 = 0.6 With this, Eq. (3.47) reduces to

�̇�𝑐 = ∫𝜕𝑑
𝐡𝑑 ⋅𝐦 𝑑𝐴𝑑 . (3.48)

his is an ODE in time, coupled to the mechanical and fluid problems of the polymer. It needs to be solved along with an initial
ondition; we assume that at time 𝜏 = 0 the bath consists of pure solvent with a given number of moles, 𝑁𝑐0, implying a known
nitial volume 𝑉𝑏 = 𝛺𝑁𝑐0 of the bath.

Following a similar derivation, the free-chain molar balance within the domain 𝜏 is written as,

�̇�𝑔 = ∫𝜕𝑑
𝐣𝑑 ⋅𝐦 𝑑𝐴𝑑 , (3.49)

ith an initial condition 𝑁𝑔0 = 0 corresponding to the pure solvent bath.
We introduce two global constraints requiring that the total volume of the liquid and of the free-chains at any time 𝜏 within the

ystem must be equal to the corresponding volumes at the initial time:

𝛺𝑁𝑐 + ∫𝑑
𝛺𝑐𝑑𝑑𝑉𝑑 = 𝑉𝑏 , 𝛬𝑁𝑔 + ∫𝑑

𝛬𝑔𝑑𝑑𝑉𝑑 = ∫𝑑
𝛬𝑔𝑑0𝑑𝑉𝑑 , (3.50)

wing to the impermeability of the external boundary of the bath. These equations play the same role as Eq. (2.30) when no
ree-chains flow through the body.

It is worth noting that, differently from what happens when the bath consists of liquid only, now the two variables 𝑁𝑐 and 𝑁𝑔
ffect the chemical equilibrium of the body and, consequently, Eqs. (3.50) need to be considered as internal constraints.

.3. Thermodynamics of the body and bath system: partially cross-linked polymer gels

We introduce a reduced total free energy 𝛹 , that includes, in addition to the reduced FR free energy of the gel body:

(a) the Flory–Huggins (FH) free energy density 𝜓𝑏(𝑁𝑐 , 𝑁𝑔) of the bath, viewed as a mixture of liquid and free-chains;
(b) the two global constraints (3.50) through the introduction of Lagrange multipliers 𝜋𝑐 and 𝜋𝑔 respectively.

he FR free energy of the gel body is represented as a generalization of the FR free energy which holds for perfectly cross-linked
olymer gels. As we shall see in the following, it includes the elastic energy density associated to the polymer network and the
ixing free energy corresponding to both the liquid molecules and the free-chains. Thus, the total free energy reads

𝛹 = ∫𝑑

(

𝜓𝐹 (𝐅𝑑 , 𝑐𝑑 , 𝑔𝑑 ) − 𝑝(𝐽𝑑 − 𝐽𝑑 (𝑐𝑑 , 𝑔𝑑 ))
)

𝑑𝑉𝑑 + 𝜓𝑏(𝑁𝑐 , 𝑁𝑔)𝑉𝑏

− 𝜋𝑐
(

𝛺𝑁𝑐 + ∫𝑑
𝛺𝑐𝑑𝑑𝑉𝑑 − 𝑉𝑏

)

− 𝜋𝑔
(

𝛬𝑁𝑔 + ∫𝑑
𝛬(𝑔𝑑 − 𝑔𝑑0)𝑑𝑉𝑑

)

. (3.51)

t is worth noting that the free energy 𝜓𝐹 (𝐅𝑑 , 𝑐𝑑 , 𝑔𝑑 ) is a FR-like free energy density of partially cross-linked polymers defined up
o a constant corresponding to the value it takes on the as-prepared state and 𝜓𝐹 (𝐈, 0, 0) = 0, that is, the reference configuration is a
atural configuration for the body.

6 We infer that the right-hand-side of (3.47) would possibly be a known quantity if the flux on 𝜕𝑒 is specified.
9
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Following the same procedure as is Section 2.4.1, we study the thermodynamic equilibrium by equating the time derivative of
he free energy of the system and the expended power in the system. The time derivative of 𝛹 now reads,

�̇� = ∫𝑑

((

𝜕𝜓𝐹
𝜕𝐅𝑑

− 𝑝𝐅∗
𝑑

)

⋅ �̇�𝑑 +
(

𝜕𝜓𝐹
𝜕𝑐𝑑

+𝛺(𝑝 − 𝜋𝑐 )
)

�̇�𝑑

)

𝑑𝑉𝑑

+ ∫𝑑

((

𝜕𝜓𝐹
𝜕𝑔𝑑

+ 𝛬(𝑝 − 𝜋𝑔)
)

�̇�𝑑 − (𝐽𝑑 − 𝐽𝑑 (𝑐𝑑 , 𝑔𝑑 ))�̇�
)

𝑑𝑉𝑑

+
(

𝜕𝜓𝑏
𝜕𝑁𝑐

𝑉𝑏 −𝛺𝜋𝑐

)

�̇�𝑐 +
(

𝜕𝜓𝑏
𝜕𝑁𝑔

𝑉𝑏 − 𝛬𝜋𝑔

)

�̇�𝑔

−
(

𝛺𝑁𝑐 + ∫𝑑
𝛺𝑐𝑑𝑑𝑉𝑑 − 𝑉𝑏

)

�̇�𝑐 −
(

𝛬𝑁𝑔 + ∫𝑑
𝛬(𝑔𝑑 − 𝑔𝑑0)𝑑𝑉𝑑

)

�̇�𝑔 . (3.52)

he mechanical power still retains its usual form, that is, 𝑑𝑚 = 𝐒 ⋅ �̇�𝑑 𝑑𝑉𝑑 . On the other hand, the chemical power must now take
nto account the contributions of both the liquid and the free-chains in the entire body–bath system. The chemical power thus reads,

𝑐 = −∫𝑑

(

𝜇𝑐 𝐡𝑑 ⋅𝐦 + 𝜇𝑔 𝐣𝑑 ⋅𝐦
)

𝑑𝐴𝑑 − ∫𝜏

(

𝜇𝑏𝑐 𝐡𝑖 ⋅ (−𝐧) 𝑑𝑎 + 𝜇
𝑏
𝑔 𝐣𝑖 ⋅ (−𝐧)

)

𝑑𝑎

= ∫𝑑

(

𝜇𝑐 �̇�𝑑 − ∇𝜇𝑐 ⋅ 𝐡𝑑 + 𝜇𝑔 �̇�𝑑 − ∇𝜇𝑔 ⋅ 𝐣𝑑
)

𝑑𝑉𝑑 + 𝜇𝑏𝑐 �̇�𝑐 + 𝜇𝑏𝑔 �̇�𝑔 , (3.53)

here the divergence theorem in combination with the local molar balances (2.13) and (3.44) in the gel body, global molar balances
n the bath of the liquid (3.48) and of the free-chains (3.49), were employed. Consequently, at thermodynamic equilibrium the
ollowing state equations hold,

𝐒𝑑 =
𝜕𝜓𝐹
𝜕𝐅𝑑

− 𝑝𝐅∗
𝑑 , 𝜇𝑐 =

𝜕𝜓𝐹
𝜕𝑐𝑑

+𝛺(𝑝 − 𝜋𝑐 ) , 𝜇𝑔 =
𝜕𝜓𝐹
𝜕𝑔𝑑

+ 𝛬(𝑝 − 𝜋𝑔) ,

𝜇𝑏𝑐 =
𝜕𝜓𝑏
𝜕𝑁𝑐

𝑉𝑏 −𝛺𝜋𝑐 , 𝜇𝑏𝑔 =
𝜕𝜓𝑏
𝜕𝑁𝑔

𝑉𝑏 − 𝛬𝜋𝑔 . (3.54)

.3.1. Free energy density of a partially cross-linked polymer gel
As noted in Section 2.2, the classical FR theory for swelling polymers is based on a linear superposition of the elastic and mixing

ree energies, resulting in a free energy density of the gel body. Such superposition is as well assumed to be applicable to partially
ross-linked polymer gels with some modifications, as was done in Douglas and McKenna (1993) and Nandi and Winter (2005).
nly the cross-linked polymer chains are assumed to contribute to the network’s elasticity. However, it is also assumed that the
lastic free energy density 𝜓𝑒 of the gel body is affected by the free-chains only due to their presence/absence.

In what follows, 𝜙 represents the local gel fraction of the polymer that is the ratio, within any given volume element, of the
ross-linked network volume 𝑑𝑉𝑑 to the current total polymer volume 𝑑𝑉𝑑 + 𝑑𝑣𝑓 . Dividing the numerator and denominator of this
atio by 𝑑𝑉𝑑 , one can obtain the following expression for the local gel fraction,

𝜙(𝑔𝑑 ) =
1

1 + 𝛬𝑔𝑑
; (3.55)

t holds 𝜙(𝑔𝑑0) = 𝜙0. Note that the gel fraction is a function of the molar concentration of the free-chains and as 𝑔𝑑 → 0, 𝜙(𝑔𝑑 ) → 1.
Another property of interest concerning the polymer gel is the impact of the presence of the free chains on its cross-link density 𝜈,

hich is the ratio of the density 𝜌𝑛 of the bulk polymer and the average molecular weight 𝑀𝑐 of the strands between the cross-links.
t is a measure of the quality of cross-linking within the network and is related to the initial concentration of the free-chains after
he cross-linking process according to the expression,

𝜈 =
𝜌𝑛
𝑀𝑐

𝜙0 . (3.56)

o take into account that the contribution to the elastic free energy density is only due to network chain connectivity, we assume
hat

𝐺𝑑 = 𝜅𝑘𝐵𝑇 𝜈 = 𝜅𝑘𝐵𝑇
𝜌𝑛
𝑀𝑐

𝜙0 . (3.57)

In the equation above, 𝜅 ≤ 1 is a parameter determined by experimental fitting and it accounts for the various inhomogeneities and
angling chains that represent network imperfections, and 𝑘𝐵 is the Boltzmann constant. Note that as 𝑔𝑑0 → 0, 𝜙0 → 1 and 𝐺𝑑 tends
o the classical elastic modulus of a perfectly cross-linked polymer introduced in Section 2.2.

The polymer-solvent mixing free energy is assumed to be an extension of the classical expression introduced in (2.21) to the
ontext of a partially cross-linked polymer (Nandi & Winter, 2005). It is written as,

𝜓𝑚(𝑐𝑑 , 𝑔𝑑 ) = 𝜇𝑜𝑐 𝑐𝑑 +
𝑅𝑇
𝛺
ℎ(𝑐𝑑 , 𝑔𝑑 ) + 𝜇𝑜𝑔 𝑔𝑑 +

𝑅𝑇
𝛬
𝑗(𝑐𝑑 , 𝑔𝑑 ) , (3.58)

with the functions ℎ(𝑐𝑑 , 𝑔𝑑 ) and 𝑗(𝑐𝑑 , 𝑔𝑑 ) defined as

ℎ(𝑐𝑑 , 𝑔𝑑 ) = 𝛺𝑐𝑑 ln
(

𝛺𝑐𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+ 𝜒 𝛺𝑐𝑑

(

1 + 𝛬𝑔𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

,

𝑗(𝑐𝑑 , 𝑔𝑑 ) = 𝛬𝑔𝑑 ln
(

𝛬𝑔𝑑
)

.
(3.59)
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Note that we have considered the enthalpic interaction parameter 𝜒 to be same for the interactions of the liquid with either the
network or the free-chains, as the latter have the same nature as that of the polymeric network.

Finally, we can define the FR like free energy density 𝜓𝐹 of partially cross-linked polymers employing a linear superposition of
elastic and mixing free energies:

𝜓𝐹 (𝐅𝑑 , 𝑐𝑑 , 𝑔𝑑 ) = 𝜓𝑒(𝐅𝑑 ) + 𝜓𝑚(𝑐𝑑 , 𝑔𝑑 ) , (3.60)

ith the elastic energy 𝜓𝑒(𝐅𝑑 ) given by Eq. (2.20). Using the new free-energy density in the Eqs. (3.54), the Coleman–Noll procedure
llows to identify the admissible constitutive relations for the reference stress 𝐒𝑑 , the chemical potential 𝜇𝑐 of the liquid in the gel
nd the chemical potential 𝜇𝑔 of the free-chains in the gel as

𝐒𝑑 (𝐅𝑑 , 𝑝) =𝐺𝑑𝐅𝑑 − 𝑝𝐅∗
𝑑 , (3.61)

𝜇𝑐 (𝑐𝑑 , 𝑔𝑑 , 𝑝, 𝜋𝑐 ) =𝜇𝑜𝑐 + 𝑅𝑇 ln
(

𝛺𝑐𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+ 𝑅𝑇
(

1 − (𝛺 − 𝛬)𝑔𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+ 𝑅𝑇𝜒
(

1 + 𝛬𝑔𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)2
+𝛺(𝑝 − 𝜋𝑐 ) , (3.62)

𝜇𝑔(𝑐𝑑 , 𝑔𝑑 , 𝑝, 𝜋𝑔) =𝜇𝑜𝑔 + 𝑅𝑇 ln
(

𝛬𝑔𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+ 𝑅𝑇
(

1 + (𝛺 − 𝛬)𝑐𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+ 𝑅𝑇𝜒

(

𝛺𝛬𝑐2𝑑
(

1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑
)2

)

+ 𝛬(𝑝 − 𝜋𝑔) . (3.63)

3.3.2. Free energy of a biphasic bath
The expression for the change in the total free energy of the bath viewed as a Flory–Huggins solution composed of the liquid as

the solvent and the free-chains as the solute is

𝛹𝑏(𝑁𝑐 , 𝑁𝑔) = 𝜓𝑏(𝑁𝑐 , 𝑁𝑔)𝑉𝑏
= 𝜇𝑜𝑐 𝑁𝑐 + 𝑅𝑇𝑁𝑐 ln 𝜈𝑐 + 𝜇𝑜𝑔 𝑁𝑔 + 𝑅𝑇𝑁𝑔 ln 𝜈𝑔 + 𝑅𝑇𝜒 𝑁𝑐 𝜈𝑔 ,

(3.64)

here the volume fractions of the liquid 𝜈𝑐 and of the free-chains 𝜈𝑔 are introduced and defined as

𝜈𝑐 (𝑁𝑐 , 𝑁𝑔) =
𝛺𝑁𝑐

𝛺𝑁𝑐 + 𝛬𝑁𝑔
, 𝜈𝑔(𝑁𝑐 , 𝑁𝑔) =

𝛬𝑁𝑔

𝛺𝑁𝑐 + 𝛬𝑁𝑔
. (3.65)

onsequently, the constitutive equations for the chemical potential of the liquid 𝜇𝑏𝑐 and of the free chains 𝜇𝑏𝑔 in the bath can be
erived by using Eqs. (3.54). As noted earlier, the reference dry configuration 𝑑 of the polymer body is its natural state. At the
nitial time, we have 𝜓𝐹 (𝐅0, 0, 𝑔𝑑0) = 𝜓𝐹0 ≠ 0 in the body and 𝛹𝑏(𝑁𝑐0, 0) = 𝛹𝑏0 ≠ 0 in the bath.

4. Free-swelling of a partially cross-linked polymer: homogeneous steady-states

A free-swelling state corresponds to zero tractions on the boundary of the gel body. A distinguished free swelling state is the
homogeneous equilibrium state corresponding to an isotropic deformation 𝐅𝑑 = 𝜆𝑑𝐈 of the gel body. Due to the homogeneous nature
of the body, the balance of forces implies a zero stress within the gel body: 𝐒𝑑 = 0. With this, (3.54)1 yield

𝜕𝜓𝐹
𝜕𝐅𝑑

− 𝑝𝜆2𝑑𝐈 = 𝟎 , (4.66)

hich holds true everywhere within 𝑑 . The chemical equilibrium at the shared boundary between the bath and the body requires
hat 𝜇𝑐 = 𝜇𝑏𝑐 and 𝜇𝑔 = 𝜇𝑏𝑔 . By using the state Eqs. (3.54) for the chemical potentials, the two conditions can be written as

𝜕𝜓𝐹
𝜕𝑐𝑑

−
𝜕𝜓𝑏
𝜕𝑁𝑐

𝑉𝑏 +𝛺𝑝 = 0 and
𝜕𝜓𝐹
𝜕𝑔𝑑

−
𝜕𝜓𝑏
𝜕𝑁𝑔

𝑉𝑏 + 𝛬𝑝 = 0 . (4.67)

s 𝐅𝑑 = 𝜆𝑑𝐈, the local volumetric constraint is written as

𝜆3𝑑 − 1 −𝛺𝑐𝑑 − 𝛬𝑔𝑑 = 0 , (4.68)

nd the global constraints (3.50) remains the same:

𝛺𝑁𝑐 +𝛺𝑐𝑑𝑉𝑑 = 𝑉𝑏 , 𝛬𝑁𝑔 + 𝛬𝑔𝑑𝑉𝑑 = 𝛬𝑔𝑑0𝑉𝑑 . (4.69)

qs. (4.66)–(4.69) are a system of 6 algebraic equations to be solved to get the 6 scalar unknowns, which characterize the
omogeneous isotropic free-swelling problem: (𝜆 , 𝑐 , 𝑔 ,𝑁 ,𝑁 , 𝑝).
11
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Table 2
Material properties of the gel body and the bath.
𝛺 𝛬 𝜒 𝑅 𝑇 𝜅 𝑘𝐵 𝜌𝑛 𝑀𝑐
[m3 mol−1] [m3 mol−1] [–] [J mol−1 K−1] [K] [–] [J K−1] [kg m−3] [kg mol−1]

9.92E−05 3.29E−05 0.2 8.3145 373.15 1.0 1.38E−23 7.12E02 7.3E03

Once known the free-swelling deformation 𝜆𝑑 from 𝑑 , the deformation 𝜆 = 𝜆𝑑∕𝜆0, with 𝜆0 = (1+𝛬𝑔𝑑0)−1∕3 from the initial state
an be calculated. Employing the particular expressions for 𝜓𝐹 (𝐅𝑑 , 𝑐𝑑 , 𝑔𝑑 ) and 𝜓𝑏(𝑁𝑐 , 𝑁𝑔) defined earlier, the previous system of 6
lgebraic equations can be reduced as follows:

𝐺𝑑𝜆𝑑𝐈 − 𝑝𝜆2𝑑𝐈 = 0 ,

ln
(

𝛺𝑐𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+
(

1 − (𝛺 − 𝛬)𝑔𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+𝜒
(

1 + 𝛬𝑔𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)2
− ln 𝜈𝑐 −

(

1 − 𝛺
𝛬

)

𝜈𝑔 − 𝜒𝜈2𝑔 +
𝛺
𝑅𝑇

𝑝 = 0 ,

ln
(

𝛬𝑔𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+
(

1 + (𝛺 − 𝛬)𝑐𝑑
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

)

+𝜒

(

𝛺𝛬𝑐2𝑑
(

1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑
)2

)

− ln 𝜈𝑔 −
(

1 − 𝛬
𝛺

)

𝜈𝑐 − 𝜒
𝛬
𝛺
𝜈2𝑐 +

𝛬
𝑅𝑇

𝑝 = 0 ,

𝜆3𝑑 − 1 −𝛺𝑐𝑑 − 𝛬𝑔𝑑 = 0 ,

𝛺𝑁𝑐 +𝛺𝑐𝑑𝑉𝑑 − 𝑉𝑏 = 0 ,

𝛬𝑁𝑔 + 𝛬(𝑔𝑑 − 𝑔𝑑0)𝑉𝑑 = 0 .

(4.70)

t is worth noting that the initial configuration 0 of the gel body before diffusion starts is an equilibrium configuration that can
e obtained as the solution of the above system of equations corresponding to the boundary conditions describing an empty bath,
hat is, 𝑁𝑐 = 0 and 𝑁𝑔 = 0, that is, neglecting the chemical equilibrium Eqs. (4.70)2,3 and assuming 𝑐𝑑 = 0 and 𝑔𝑑 = 𝑔𝑑0. On the

other side, the reference configuration 𝑑 of the gel body is an equilibrium configuration that can be obtained as the solution of
the Eqs. (4.70)1,4 with 𝜆𝑑 = 1 and the pressure 𝑝 = 𝐺𝑑 .

The new equilibrium and swollen configuration 𝑒 of the gel body can be obtained as solution of the system of 6 algebraic
equations, and its characteristics are discussed in the following study.

4.1. Results and discussion

The study aims to highlight how the free-chains which are in the gel body at its initial state impact on the swelling properties
of the gel. We do it by assuming that the as-prepared state of the body is known, that is, the initial volume 𝑉0 before swelling
starts and the initial polymer network fraction 𝜙0 are known. Specifically, we fix 𝑉0 and view 𝜙0 as a parameter in the study. As
𝜙0 = (1 + 𝛬𝑔𝑑0)−1, the parametric study is equivalently based on the parameter 𝑔𝑑0, that is, the initial homogeneous concentration
of the free-chains in the gel.7 We also assume that the initial volume of the liquid bath 𝑉𝑏 is known and fixed.

It is worth noting that the reference volume of the dry network scales with the parameter 𝜙0 as 𝑉𝑑 = 𝜙0 𝑉0, so affecting the
concentration measures per unit reference volume of both the liquid and the free-chain components 𝑐𝑑 and 𝑔𝑑 in the gel body,
respectively.

We fix 𝑉0 = 2.5E−07 m3 and 𝑉𝑏 = 1E−03 m3 as initial volumes of the gel and of the pure liquid bath, and list the numerical
values for all the material parameters involved in the study in Table 2.

Liquid and free-chains concentration in the gel body. As first, we know that fixing the initial volume 𝑉0 means that as 𝜙0 decreases
the free-chains component increases, and the shear modulus decreases as 𝐺𝑑 ≃ cost ⋅𝜙0 (see Eq. (3.57)). So, the standard mechano-
diffusion theory for perfectly cross-linked polymers with lower and lower shear modulus would suggest that for 𝜙0 decreasing the
amount of the liquid volume 𝑣𝑙 uptaken by the body at the equilibrium increases.

The blue starred curve in the left panel of Fig. 3 confirms our expectations. At 𝜙0 = 1, we get 𝑣𝑙 ≃ 30𝑉𝑑 , that is, as for 𝜙0 = 1
𝑉𝑑 = 𝑉0, 𝑣𝑙 ≃ 30𝑉0. However, for 𝜙0 ≪ 1, the initial volume 𝑉0 is kept fixed whereas the initial polymer network 𝑉𝑑 decreases with
𝜙0 (see Eq. (3.43)).

7 Let us remember here that 𝜙 = 1 means zero free-chains component and 𝜙 = 0 means zero polymer network component in the initial volume.
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Fig. 3. 𝑣𝑙∕𝑉0, 𝑣𝑙∕𝑉𝑑 , 𝑣𝑓 ∕𝑉0, 𝑣𝑓 ∕𝑉0 steady-state homogeneous solutions of the system of Eqs. (4.70), for various initial gel fractions 𝜙0 employing a constant
shear modulus 𝐺𝑑 = 𝜙0(4E04) Pa.

Fig. 4. Compositional representation of the swelling mechanism from the as-prepared state (top row) to the swollen steady state (bottom row) of the gel body.
The volumes used are from the results in Fig. 3 for 𝜙0 = 0.25, 0.75, 1. The volume of liquid uptaken 𝑣𝑙 is scaled-down in all cases by 10 for clarity.

To correctly estimate the result for different 𝜙0 ≪ 1, we should compare the uptaken liquid volume 𝑣𝑙 with respect to the same
amount of polymer network, that is, 𝑣𝑙∕𝑉𝑑 . Indeed, the blue starred curve confirms our expectations: increasing the amount of free
chains, that is, decreasing 𝜙0, the ratio 𝑣𝑙∕𝑉𝑑 grows. Fig. 3, left panel, shows as the amount of liquid volume uptaken by the body
is about 60 times the polymer network volume for 𝜙0 = 0.25, 30 times the polymer network volume for 𝜙0 = 0.75 and 25 times the
polymer network volume for 𝜙0 = 1. The misleading aspect of the blue circled curve is that it describes the ratio 𝑣𝑙∕𝑉0 between
the uptaken liquid volume and the initial volume, whose polymer network component is smaller and smaller as 𝜙0 is smaller and
smaller. In these cases, the ratio 𝑣𝑙∕𝑉0 described by the blue circled curve does not deliver a significative measure of the uptaken
liquid. A schematic of the compositions of the various components is shown in Fig. 4 to aid the above interpretation. Likewise, the
black starred curve shows the ratio between the volume 𝑣𝑓 of free-chains in the body at equilibrium and its initial value 𝑉𝑓 . For 𝜙0
decreasing, that is 𝑉𝑓 decreasing, the final volume of free chains is lower and lower.

Liquid and free-chains concentration in the bath. The right panel of Fig. 3 shows the situation from the side of the bath. Firstly, if we
do not have free-chains in the body at the initial state (𝜙0 = 1), we cannot have them at the final state as the bath at the initial state
consists only of liquid (black triangled curve). On the other hand, if we have more free-chains at 0, we also find more free-chains
in the bath at the final state.

Secondly, the liquid in the bath changes with 𝜙0, coherently with the change of the liquid volume in the body. To see it, it is
convenient to compare the blue circled curve 𝑣𝑏𝑙 ∕𝑉𝑏 in the right panel with the blue circled curve 𝑣𝑙∕𝑉0 in the left panel. Indeed,
in this case, we are comparing the two key quantities 𝑣𝑙 and 𝑣𝑏𝑙 , which are conveniently represented with respect to fixed, even if
different, volumes, which do not change with 𝜙0.

Swelling deformation and free-chains concentration. Fig. 5 (left panel) shows the change in the final values of the two key state
variables of the problem, which are 𝑐𝑑 and 𝑔𝑑 , due to changes in 𝜙0. We represented the liquid concentration density per unit initial
volume, that is, 𝑐𝑑∕𝐽0 as it is a fixed volume for different 𝜙0. Considering 𝑐𝑑∕𝐽0 means considering the number of moles per unit of
as prepared volume 𝑉 . The blue circled curve shows that, as already shown by the blue circled curve in Fig. 3, to 𝜙 decreasing it
13
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Fig. 5. 𝑐𝑑∕𝐽0, 𝑔𝑑∕𝑔𝑑0, 𝜆𝑑 , 𝜆 solutions of the steady-state homogeneous solutions of equations (4.70), for various initial gel fractions 𝜙0 employing a constant
shear modulus 𝐺𝑑 = 𝜙0(4E04) Pa.

Fig. 6. 𝜙(𝑔𝑑 ) and 𝑑.𝑜.𝑠. steady-state homogeneous solutions of the system of Eqs. (4.70), for various initial gel fractions 𝜙0 employing a constant shear modulus
𝐺𝑑 = 𝜙0(4E04) Pa.

corresponds a decreasing concentration field. On the other side, the black triangled curve shows that the ratio between the amount
of free-chains at the final state and at the initial state decreases with the decrease in the initial network fraction.

Fig. 5 (right panel) puts in contrast the swelling deformation from the reference and from the initial state. For 𝜙0 = 1, the two
state coincide, that is, 𝜆0 = 1 and 𝜆𝑑 = 𝜆. For 𝜙0 ≪ 1, the swelling deformation from the reference dry state grows when the initial
polymer network decreases.

Polymer network fraction and degree of swelling. Finally, Fig. 6 (left panel) shows the polymer fraction 𝜙(𝑔𝑑 ), that is, the ratio
ithin any given volume element, of the cross-linked network volume 𝑑𝑉𝑑 to the current total polymer volume 𝑑𝑉𝑑 + 𝑑𝑣𝑓 as given

by Eq. (3.55). The same figure (right panel) shows the 𝑑.𝑜.𝑠. quantity, defined as degree of swelling in Nandi and Winter (2005).
pecifically, it is defined as

𝑑.𝑜.𝑠. =
1 +𝛺𝑐𝑑 + 𝛬𝑔𝑑

1 + 𝛬𝑔𝑑
, (4.71)

nd aims to roughly estimate the amount of change in volume due to the liquid (indeed, for 𝑐𝑑 = 0, 𝑑.𝑜.𝑠. = 1). The black triangled
urve in the left panel shows that the polymer network fraction is always smaller than the initial network fraction 𝜙 , for any value
14
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Fig. 7. Schematics depicting the various stages of response of the parallelepiped gel (in yellow) within the bath (light blue) for the case 𝜙0 = 0.25: (a) The
initial state 0, (b) the equilibrium swollen state 𝑒 with zero imposed uni-axial load, (c) 𝑒 with positive imposed uni-axial load of 𝜎𝑒 = 10 kPa.

of 𝜙0. So, free-chains are released in the bath. The black triangled curve in the right panel shows that the 𝑑.𝑜.𝑠. is much more
important for decreasing initial polymer fraction, as already discussed above.

5. Partially cross-linked gels under step traction: homogeneous steady-states

We consider a parallelepiped-like gel whose edges are aligned along the directions of an orthonormal basis (𝐞1, 𝐞2, 𝐞3) of the three-
dimensional vector space  (see Fig. 7). The equilibrium swollen state 𝑒 of the gel that we aim to characterize is determined by the
amount 𝑔𝑑0 of the free-chains in the initial state 0 and by a traction 𝜎𝑒 applied on the end faces of the parallelepiped in the direction
of its long axis 𝐞1. We assume that the parallelepiped at its initial state has a volume 𝑉0 = 2.5E−07 m3 and 𝑉𝑓 = 𝛬𝑔𝑑0𝑉𝑑 = (1−𝜙0)𝑉0
is the initial content of free-chains that is expected to affect the traction test. The initial volume of the bath is 𝑉𝑏 = 1E−03 m3. The
imposed uni-axial load is assumed to induce a homogeneous and transversely isotropic deformation, which we represent as:

𝐅 = 𝜆1𝐞1 ⊗ 𝐞1 + 𝜆𝑇 �̌� , �̌� = 𝐈 − 𝐞1 ⊗ 𝐞1 , (5.72)

from the initial state 0; hence, 𝐅𝑑 = 𝜆0𝜆1𝐞1 ⊗ 𝐞1 + 𝜆0𝜆𝑇 �̌�, where 𝜆1 and 𝜆𝑇 are introduced as the principal stretches along the
longitudinal and transverse directions respectively. The stress shares a similar structure as that of the deformation. The Cauchy stress
𝐓 = 𝜎1𝐞1 ⊗ 𝐞1 + 𝜎�̌�, can be derived by an appropriate push-forward from the constitutive equation for the reference Piola–Kirchhoff
stress (3.61) as

𝐓 = 1
𝐽𝑑

𝐒𝑑𝐅𝑇𝑑 = 1
𝐽𝑑

(𝐺𝑑𝐅𝑑 − 𝑝𝐅∗
𝑑 )𝐅

𝑇
𝑑 , (5.73)

that is,

𝜎1 =
𝐺𝑑
𝜆2𝑇 𝜆0

𝜆1 − 𝑝 and 𝜎𝑇 =
𝐺𝑑
𝜆1𝜆0

− 𝑝 . (5.74)

It is to be noted that starting from the initial state 0, both the diffusion process across the body–bath boundary and the deformation
due to the imposed uni-axial traction are assumed to start simultaneously. The instantaneous (fast) response of the gel to such a
traction would be a pure mechanical deformation assuming that the diffusion process has a much higher characteristic time compared
to the mechanical response. The slow response, on the other hand, is described by a system of equations which are slightly different
from the earlier case of free-swelling Section 4 with respect to the mechanical part. Indeed, instead of the condition 𝐓𝐧 = 𝟎 on 𝜕𝑡,
the stress traction on the boundary now has to satisfy the conditions

𝐓𝐧 =

{

𝜎𝑒 𝐧 for 𝐧 = ±𝐞1
𝟎 for 𝐧 = ±𝐞2 ,±𝐞3

on 𝜕𝑡.

In what follows, we are interested in this slow response of the gel. The corresponding mechanical equilibrium under the prescribed
external traction implies a homogeneous stress state within the gel body given by

𝜎1 = 𝜎𝑒 and 𝜎𝑇 = 0 in 𝑡 . (5.75)

By using the Eqs. (5.74), we have:

𝐺𝑑
𝜆2𝑇 𝜆0

𝜆1 − 𝑝 = 𝜎𝑒 and
𝐺𝑑
𝜆1𝜆0

− 𝑝 = 0 . (5.76)

Moreover, since 𝐅𝑑 = 𝜆0𝐅 and Eq. (5.72) holds, the local volumetric constraint can be rewritten as

𝐽 (𝜆 𝜆2 ) − 1 −𝛺𝑐 − 𝛬𝑔 = 0 . (5.77)
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006).
Fig. 8. Uni-axial traction test results of a parallelepiped gel in the 𝜆1–𝜆𝑇 plane. The iso-lines in grey represent the initial network fractions ranging 𝜙0 = [0.05, 1].
The extreme red and blue iso-lines represent respectively the maximum positive and negative tractions studied, whereas the straight iso-line is of the zero
imposed traction.

Apart from (5.76) and (5.77), the remaining set of equations that do not change compared to the earlier free-swelling case are
the pair of chemical potential balances (4.67) and the pair of global constraints on the number of moles within the bath (4.69).
Together these form a system of 7 algebraic equations to be resolved for 7 scalar unknowns, which characterize the homogeneous
isotropic swelling problem under uni-axial traction: (𝜆1, 𝜆𝑇 , 𝑐𝑑 , 𝑔𝑑 , 𝑁𝑐 , 𝑁𝑔 , 𝑝). The system of 7 algebraic equations is resolved for the
same material parameters as in Section 4 for ranges of uni-axial traction 𝜎𝑒 = [−10, 10] kPa and initial network fraction 𝜙0 = [0.05, 1].
See results in Fig. 8. For the case of 𝜎𝑒 = 0 kPa, i.e. essentially free-swelling, a reduction in 𝜙0 corresponds to a decrease in the
stretch (𝜆1 or 𝜆𝑇 ) which is exactly the same as what can be observed in Fig. 5 for 𝜆. For positive imposed tractions as 𝜙0 reduces
𝜆1 increases and 𝜆𝑇 decreases as expected. On the other hand, compressive tractions follow an inverse trend.

6. Conclusions and future directions

We have presented a theory for the swelling of a partially cross-linked polymer gel, based on an enriched mechano-diffusion
theory of polymer gels. The equation accounts for the elastic deformation of the network and the diffusive motion of both the solvent
and the free-chains in the polymer network. We focused our study on the characterization of the equilibrium solution of the swelling
problem under free conditions (absence of loads and constraints) and under uniaxial traction.

The analysis we carried on shows as the mechanics of swelling for partially cross-linked polymers can be described as usually
done for perfectly cross-linked polymer, by enlarging the point of view to include the liquid bath in the model. It also shows as the
mechanics of swelling for perfectly cross-linked polymer arises as a special case from this theory.

We left a few interesting issues for future studies. Firstly, the analysis of the so-called residual swelling between polymer gels,
occurring when two different polymer gels, one softer and one stiffer, are put in contact and due to the flow of free-chains from the
softer to the stiffer polymer gel relevant changes of shapes can take place (see Pezzulla et al., 2015).

Secondly, we will aim to investigate the possibility to describe through our theory, appropriately reduced, the blossom of the
flow of free-chains in dry polymer under loads, as shown in Wang et al. (2024).

Finally, we will aim to take into account breaking of chemical bonds in the polymer network, which would cause a decrease in
the volume of the polymer network and an increase in the amount of free-chains in the gel, by polymer remodeling (Wang et al.,
2022).
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