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ABSTRACT

Semantic communication, rather than on a bit-by-bit recovery of the
transmitted messages, focuses on the meaning and the goal of the
communication itself. In this paper, we propose a novel seman-
tic image coding scheme that preserves the semantic content of an
image, while ensuring a good trade-off between coding rate and im-
age quality. The proposed Semantic-Preserving Image Coding based
on Conditional Diffusion Models (SPIC) transmitter encodes a Se-
mantic Segmentation Map (SSM) and a low-resolution version of
the image to be transmitted. The receiver then reconstructs a high-
resolution image using a Denoising Diffusion Probabilistic Mod-
els (DDPM) doubly conditioned to the SSM and the low-resolution
image. As shown by the numerical examples, compared to state-
of-the-art (SOTA) approaches, the proposed SPIC exhibits a bet-
ter balance between the conventional rate-distortion trade-off and
the preservation of semantically-relevant features. Code available
at https://github.com/frapez1/SPIC

Index Terms— Semantic communications, image segmen-
tation, denoising diffusion probabilistic models, super-resolution
diffusion models .

1. INTRODUCTION AND RELATED WORK

Semantic communications is lately receiving great attention because
of its potential to improve the efficiency of communication systems,
focusing directly on the semantics (meaning) of the transmitted mes-
sages rather than on recovering the bits used to represent the trans-
mitted images [1,2]. In semantic communication, there is no seman-
tic error at the receiver if the reconstructed message is semantically
equivalent to the transmitted one, even if the representations of the
transmitted and recovered images do not coincide at the bit level. For
example, in the transmission of an image captured by a web camera
in an autonomous car, we might require that the reconstructed image
should retain as accurately as possible the ability to detect semanti-
cally relevant objects, e.g. pedestrians, vehicles, traffic lights, etc.,
while providing contextually a sufficiently good trade-off between
quality of the reconstructed image and the number of transmitted
bits. This is just an example of combining semantics (identification
of a class of meaningful objects) and the goal of communication
(image reconstruction and the ability to segment the image prop-
erly at the receiver side). Several works have considered “semantic
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coding” as joint source-channel coding with semantic side informa-
tion [3]. However, since legacy protocols and network architectures
are standardized according to the separation principle (OSI layers),
and link layer control mechanisms do not pass erroneous data pack-
ets to the upper layers, we consider image compression at the “ap-
plication layer” and do not consider transmission errors. The fusion
of semantic segmentation with image reconstruction techniques has
surfaced as a potent strategy to improve the quality of image recon-
struction [4–6]. By attributing semantically-relevant labels to each
pixel, SSMs represent a fundamental tool to encapsulate semantics
within the image representation and can then play a key role in se-
mantic communications.

Classical image compression techniques, such as JPEG, BPG or
JPEG2000, target to achieve the best trade-off between compression
ratio and image artifacts. However, this may come at the expense of
semantic retention. Moreover, classical approaches can efficiently
compress images without considering that some objects might be
more relevant than others. The problem becomes even more relevant
when some objects of interest have a small size, comparable to the
patches used for compression. An example might be a pedestrian
crossing the street in the distance. By applying a classical com-
pression algorithm like JPEG2000, since the pedestrian size might
occupy just a few 8 × 8 patches, a possible distortion in the recon-
structed image might involve a small degradation of the overall im-
age quality, but a big loss in the ability to recover crucial information
like detecting the pedestrian.

Our goal in this work is to design compression methods able to
balance high compression ratios and image quality while preserv-
ing the semantic information present in the original image. Exploit-
ing semantic information to guide the image reconstruction process,
ensuring the preservation of crucial details of the original image,
has already been considered. Recently, prominent approaches for
semantic-guided image reconstruction have been built using gener-
ative models like Generative Adversarial Networks (GAN) [7]. For
example, Isola et al. [5] unveiled the pix2pix model, a conditional
GAN that uses a SSM as input and outputs an image that preserves
the same semantic information as the original one. Despite its visual
allure, this method often overlooks the original image, resulting in
a substantially different image, given the fact that the reconstruction
is created starting only from the SSM. Wang et al. [6] tackled the
problem of reconstructing an image not close enough to the origi-
nal by suggesting a conditional GAN-centric model that integrates
both the SSM and features derived from the original image. This
combination ensures better retention of the original content in the
reconstructed images. Yet, these techniques often sidestep the piv-
otal aspect of efficient image compression since they are designed
solely for guaranteeing an image that uses as low as possible Bits
Per Pixel (BPP), while optimizing a metric that does not distinguish
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Fig. 1: Overview of the SPIC Architecture. The diagram illustrates our novel approach, combining a Semantic Segmentation Map (s) and
a coarse low-resolution image (c), both compressed with classical out-of-the-shelf algorithms for efficient encoding. The reconstruction
employs the proposed Semantic-Conditioned Super-Resolution Diffusion Model, leveraging both s and c for high-fidelity semantic-relevant
image recovery even at low BPP.

different regions of the image, like PSNR. Instead, we would like to
tackle the problem of high-quality image reconstruction and ensure
that the method can be used as a valid alternative to classical image
compression algorithms, which is essential for real-world applica-
tions with bandwidth and storage limitations.

Recently, DDPM [8], a class of generative models that match a
data distribution by learning to reverse a gradual multi-step noising
process, has exhibited incredible results in image synthesis [9–11].
The authors of [12] improved the works of Isola and Wang et al.
introducing a DDPM model that conditions the image generation to
its semantic map, hinging on the previous work [13]. The results
obtained in these works are promising, but the regenerated images
are again obtained considering the SSM solely without taking into
account the coarse image.

In this paper, we propose an innovative semantic image com-
munication scheme where the transmitter encodes the SSM loss-
lessly, together with a low-resolution version of the image itself. The
receiver uses the proposed Semantic-Conditioned Super-Resolution
Diffusion Model (SCSRDM) to regenerate the full-resolution image.
While slightly suboptimal with respect to conventional approaches,
in terms of the overall rate-distortion curve, the proposed method
enables a much better reconstruction and positioning of the semanti-
cally relevant objects. The scheme is similar to what proposed in [4],
but with some important differences: i) our approach uses a DDPM,
as opposed to [4] that uses a GAN, because diffusion models are
known for having better image synthesis capabilities [9]; ii) differ-
ently from [4], we do not transmit the residual error between the
input and the reconstruction, to make our transmitter much simpler
to implement and to limit the transmission rate; iii) instead of using a
single end-to-end architecture that learns, jointly the Semantic Seg-
mentation Map (s) and the compressed low-resolution image (c), as
in [4], we use a modular approach that computes them separately.
This simplifies the method considerably, enabling a separate con-
trol of the segmentation and compression tasks, using SOTA task-
specific algorithms for the SSM generation, e.g. INTERN-2.5 [14],
and employing classical compression algorithms, e.g. BPG [15]
and FLIF [16], to compress the coarse image and the SSM. From
the computational and explainability points of view, the proposed
modular approach is more efficient. Exploiting off-the-shelf SOTA
components, rather than training a much bigger DNN for the joint
approach, allows a model with fewer parameters to train and total
control over s and c. Moreover, the modular approach allows the
framework to be improved easily, for example, by implementing a
new SOTA model for semantic segmentation and replacing only the
semantic block without the need to retrain the whole model.

2. PROPOSED METHOD

In this section, we introduce the encoding and decoding parts of
our semantic-preserving image coding based on conditional diffu-
sion model.

2.1. Encoder

As illustrated in Figure 1, the encoder is composed of two separate
blocks that extract s and c from the input image x.

For the segmentation part, in this work, we used the INTERN-
2.5 model [14], known to have high performance in terms of seman-
tic segmentation, but of course, as discussed before, other choices
are possible. After generating the SSM, we compress it with a loss-
less encoder since we assign high priority to the accurate recon-
struction of the SSM at the receiver. More specifically, we applied
the lossless compression technique FLIF, ensuring efficient encoding
with an average of 0.112 BPP. As far as the generation of the coarse
image is concerned, we adopted different approaches. The first and
simplest one is the average down-scaling operator that shrinks the
image dimensions from 256× 512 to 64× 128. Based on top of the
down-scaled version, to further compress the coarse image before
transmission, we employed the BPG compression algorithm on the
down-scaled image.

2.2. Semantically-Conditioned Super-Resolution Diffusion Model
Decoder

The Decoder takes the received SSM s and the coarse image c and
sends them to the SCSRDM, depicted in the right side of Figure 1,
whose goal is to reconstruct a Super-Resolution (SR) image, i.e. an
image with the same dimension as the original one and similar (or
even better) resolution.

At the model’s core lies a U-net structure [17], encompassing
three different substructures: an encoder, a central bottleneck, and
a decoder. As with every DDPM, synthesizing a singular image ne-
cessitates passing through the same U-net multiple times. At each it-
eration, the model inputs the previous iteration’s output and the con-
ditioning variables to predict the noise to be removed from the input
image at that time step. Because of this iterative approach, DDPMs
can progressively refine the image, starting from white noise. Be-
cause of the random nature of this process, it is necessary to direct
the denoising process to avoid a purely random generation discon-
nected from the original image. Different approaches [10, 18, 19]
can be employed to avoid this purely random generation. The two
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Fig. 2: (a) Resulting image compressed with the BPG algorithm at 0.176 BPP. (b) Reconstructed image employing our approach at 0.166
BPP. (c) Detail of the image compressed with the BPG. (d) Detail of the image reconstructed with our approach.

main methods are guidance and conditioning; in this work, we adopt
a conditioning approach, as it allows us to implement the dual con-
ditioning process, which lies at the core of the proposed SCSRDM,
in an efficient manner. As stated before, the idea builds on the very
foundation of DDPM and, more specifically, on the concept of SR
Diffusion Models [20], properly modified to guarantee the dual con-
ditioning used in our strategy.

Differently from a classical DDPM, our SR Diffusion Model,
during the learning phase, instead of starting the denoising process
from white noise alone, concatenates the noise with a coarse image
expanded to its original size. This conditioning recurs at every step
during training, ensuring that the model is consistently driven from
the coarse image. Specifically, during training, the model starts with
a tensor of dimensions 6× 256× 512, with the initial three (colour)
channels representing white noise and the subsequent three channels
containing the expanded coarse image. Throughout the training, the
model undergoes 1000 iterations to operate the transition from the
white noise of the first three channels to the reconstructed image and
leave the coarse image conditioning unchanged. During inference,
only 20 iterations are executed to save time (and energy), using as
input always a tensor of size 6×256×512, but this time substituting
the noise of the first three channels with the coarse image itself. This
ensures that the starting point is closely aligned with the original
image. The second conditioning is the one on the SSM. To do so,
we adapted the SPADE technique [13] to our model. As shown in
Fig. 1, the conditioning occurs at every ResBlock layer [21] of the
bottleneck and decoder subnetworks of the U-net, as also depicted
in [12]. In essence, the proposed SCSRDM introduces a contextual
diffusion strategy, conditioned on dual inputs, achieving superior SR
outcomes, properly steered by the SSM.

3. NUMERICAL RESULTS

In this section, we delve into a comprehensive presentation of the
results and advantages associated with the proposed SPIC. It is im-
portant to clarify that while the images utilized for these compara-
tive analyses are sourced from the validation folder of the Cityscapes
dataset, none of these images were employed during the training or
validation phase.

As mentioned before, a paramount advantage of our model is
its capability to retain semantic information while able to provide a
good trade-off between the overall image quality and compression
rate. Several existing compression algorithms and SR models often
reconstruct visually pleasing images. However, a closer inspection
reveals a significant drawback: the degradation of semantic content,
particularly evident as the size of the semantically relevant objects
within the image diminishes. For larger foreground objects, most
available approaches are able to detect and generate the correct se-
mantic segmentation correctly. However, as the object size shrinks,
conventional models falter, failing to accurately process the image
and evaluate a precise SSM. This aspect can be grasped by looking
at Figure 2: on the left, we see the image reconstructed after com-
pression with a BPG algorithm (a) and its zoom on the center part
(c); on the right, we observe the image reconstructed using our ap-
proach ((b), and the corresponding detail (d). At first glance, even
because of the little advantage in BPP (0.176 vs 0.166), the image on
the left looks clearer and more detailed than the one on the right. But,
as soon as we zoom in, the story is completely different because our
reconstruction clearly shows a person on a bicycle on the right and a
pedestrian in the distance, which are not at all clear in the left image.
As a further example, in Figure 3, we compare the reconstruction ca-
pabilities of our model with the SOTA SR model introduced in [22].



Both models are evaluated on their ability to amplify the image size
by a factor of four, transitioning from 128× 64 to 512× 256 pixels,
without any further source compression. The distinguishing differ-
ence between the two approaches is that our model is conditioning
the reconstruction on the SSM. Looking at Fig. 3, which reports the
zoom on the central part of the reconstructed images, we can see
that the resolution of our model is better and, more specifically, the
three pedestrians between the two cars and the road signs are clearly
visible in our case, while they are only barely observable using the
SOTA SR model proposed in [22].

To compare the performance of our model with available alter-
natives, in terms of semantic segmentation retention, we used as
a performance metric the mean Intersection over Union (mIoU), a
number that quantifies the degree of overlap between the ground
truth and the predicted regions corresponding to the objects of in-
terest. More specifically, given two boxes si1 and si2, with i =
1, . . . , nc, computed over the ground truth and the reconstructed im-
age, where nc is the number of classes of objects of interest, the
mIoU(s1, s2) is defined as follows:

mIoU(s1, s2) =
1

nc

nc∑
i=1

IoU(si1, s
i
2) =

1

nc

nc∑
i=1

|si1 ∩ si2|
|si1 ∪ si2|

In the given semantically-preserving coding scheme, the quality of
the reconstructed image cannot be assessed by using conventional
metrics, like PSNR, which focus only on a pixel-by-pixel reconstruc-
tion, and then fail to capture the semantic content. For this reason,
since the reconstructed images are also sensitive to various types of
distortion, such as blurriness, noise, and artifacts, we assess the dif-
ference between the original and reconstructed images in terms of
the Frechet Inception Distance (FID) [23], a widely used metric in
computer vision, which compares the features maps extracted by an
Inception-v3 model [24], and is expressed as follows:

FID = ∥µf(x)−µf(y)∥2+Tr(Σf(x)+Σf(y)−2(Σf(x)Σf(y))
1/2)

with f(·) the output of the pool3 layer of the Inception-v3, and µ and
Σ are the mean and covariance matrix of the 2048 feature vectors.

Fig. 3: Detail comparison between (top) the image reconstructed
with the SOTA SR model [22] and (bottom) the image reconstructed
with our model

In Figure 4 (a) and (b) we report the mIoU and the FID, vs. the
BPP, used to encode the transmitted data, averaged over the whole

validation dataset. All the SSM are generated using the INTERN-
2.5 model. In Figure 4a, the black dotted vertical line, positioned at
0.112 BPP, represents the BPP required for the lossless compression
of the SSM. The blue point represents the mIoU evaluated on the re-
constructed images x̂ obtained applying SCSRDM at a BPP given by
the sum of the BPP necessary for the lossless encoding of the SSM
and the lossy encoding of the coarse image. The green and magenta
curves represent the results achieved with BPG and JPEG2000 com-
pression methods. We can clearly see that both BPG and JPEG2000
exhibit worse performance than our method in terms of mIoU. To
let BPG be able to achieve mIoU results akin to our model, the rate
should be in the order of 1 BPP.
Looking now at Figure 4b, we can see that while being able to re-
tain most of the semantic segmentation information, our method can
reconstruct images that have a low FID score, outperforming both
JPEG2000 and BPG.

In summary, our numerical results show that the proposed
method, compared to alternative approaches, achieves a better bal-
ance between fidelity reconstruction and ability to extract semantic
features from the reconstructed image.

BPP

m
Io

U

(a) mIoU vs BPP

BPP

F
ID

(b) FID vs BPP

Fig. 4: Comparison in terms of mIoU (a) and FID (b) vs. BPP.

4. CONCLUSIONS

In this work, we propose a novel image coding scheme, building on
a doubly conditioned super-resolution diffusion model, able to better
preserve the semantic content of the image than SOTA compression
algorithms and SR methods while at the same time, having a better
rate/quality trade-off when compared to the best compression meth-
ods. The proposed model harnesses the power of dual conditioning
on a SSM and a compressed version of the original image. The dou-
ble conditioning is obtained with a modular framework that allows
SPIC to be easily adapted to different tasks. Future investigations in-
clude the extension to semantic video coding and the incorporation
of errors due to transmission over a noisy channel.
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