
Citation: Sciacchitano, S.;

De Francesco, G.P.; Piane, M.;

Savio, C.; De Vitis, C.; Petrucci, S.;

Salvati, V.; Goldoni, M.; Fabiani, M.;

Mesoraca, A.; et al. Complete

Pseudo-Anodontia in an Adult

Woman with

Pseudo-Hypoparathyroidism Type

1a: A New Additional Nonclassical

Feature?. Diagnostics 2022, 12, 2997.

https://doi.org/10.3390/

diagnostics12122997

Academic Editor: Dong Han

Received: 4 November 2022

Accepted: 28 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Case Report
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Abstract: Pseudo-anodontia consists in the clinical, not radiographic, absence of teeth, due to failure
in their eruption. It has been reported as part of an extremely rare syndrome, named GAPO syndrome.
Pseudo-hypoparathyroidism type 1a (PHPT-1a) is a rare condition, characterized by resistance to
the parathyroid hormone (PTH), as well as to many other hormones, and resulting in hypocalcemia,
hyperphosphatemia, and elevated PTH. We report here the case of a 32-year-old woman with a
long-standing history of non-treated hypocalcemia, in the context of an undiagnosed PHPT-1a. She
had an intellectual disability, showed clinical features of the Albright hereditary osteodystrophy
(AHO) and presented signs of multiple hormone resistances. She received treatment for seizures
since the age of six. Examination of her mouth revealed a complete absence of teeth. Treatment
of hypocalcemia and hormone deficiencies were started only at 29 years of age. Genetic testing
demonstrated the presence of a frameshift variant in the GNAS gene in the proband as well as in her
mother. A Single Nucleotide Polymorphism (SNP) array analysis failed to demonstrate pathogenic
copy number variants (CNVs) but showed several regions with loss of heterozygosity (LOHs) for a
final percentage of 1.75%, compatible with a fifth degree of relationship. Clinical exome sequencing
(CES) ruled out any damaging variants in all the teeth agenesis-related genes. In conclusion, although
we performed an extensive genetic analysis in search of possible additional gene alterations that could
explain the presence of the peculiar phenotypic characteristics observed in our patient, we could not
find any additional genetic defects. Our results suggest that the association of genetically confirmed
PHPT-1a and complete pseudo-anodontia associated with persistent patchy alopecia areata is a new
additional nonclassical feature related to the GNAS pathogenic variant.

Keywords: pseudo-anodontia; pseudo-hypoparathyroidism type 1a; PHPT-1a; GNAS

1. Introduction

Anodontia (OMIM 206780) is a rare disorder characterized by the failure to develop
all primary teeth by the age of 12 to 13 months or permanent teeth by the age of 10 years.
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Pseudo-anodontia is defined as the clinical, but not radiographic, absence of teeth due to a
failure in their eruption. In these cases, radiographic examination allows the disclosure
of the retained teeth in the jaws. The exact incidence of this condition is not known
and it can be due to many different possible causes [1]. It has been reported as part
of a rare syndrome, with only 60 cases reported so far, named GAPO syndrome (OMIM
230740) [2]. In addition to pseudo-anodontia, this syndrome is also characterized by growth
retardation, alopecia and ocular manifestations. Primary failure of tooth eruption (PFE)
of permanent teeth (OMIM 125350) is a rare disorder, associated with some syndromes
involving skeletal development, but is also known as a non-syndromic autosomal dominant
condition [3]. Pseudo-hypoparathyroidism type 1a (PHPT-1a) (OMIM: 103580) is a rare
condition, too. Its exact prevalence is not known and it has been estimated at 1/295,000 in
Japan and at 1/150,000 in Italy. It is characterized by a resistance to the parathyroid hormone
(PTH), resulting in hypocalcemia, hyperphosphatemia, and elevated PTH. In addition,
patients with this condition often develop resistance to other hormones that act through the
common alpha subunit of the stimulatory G protein (Gsα) signaling pathway, including
TSH, gonadotropins, growth-hormone-releasing hormone (GHRH) and α-melanocyte-
stimulating hormone. Clinical features consist in a variety of manifestations, generally
known as Albright hereditary osteodystrophy (AHO). Symptoms related to hypocalcemia
include numbness, seizures, tetany, cataract or dental problems. This condition is part
of the highly heterogeneous group of diseases caused by impairments in the parathyroid
hormone (PTH) signaling pathway. They have been classified by the EuroPHP network
under the common term ‘inactivating PTH/PTHrP signalling disorder’ (iPPSD) [4]. The
common feature is, in fact, represented by an impairment in PTH and/or the PTHrP
cAMP-mediated pathway. According to this new nomenclature, there are some criteria
that are considered major in making this diagnosis. They include the resistance of the
renal proximal tubule to the action of PTH, the presence of ectopic calcifications and the
brachydactyly type E. Other minor criteria consist in TSH resistance, other hormonal
resistances, motor and cognitive retardation or impairment, intrauterine and postnatal
growth retardation, obesity/overweight, and flat nasal bridge and/or maxillar hypoplasia
and/or round face. In approximately 70–80% of PHPT-1a, haploinsufficiency of GNAS,
due to heterozygous-inactivating mutations in the maternally inherited allele (locus 20q13),
can be detected [5,6]. Such mutations are scattered along the entire GNAS gene [7] and
lead to a diminished stimulatory Gsα expression and/or function, resulting in AHO with
multiple hormone resistances [8]. We report here a rare case of complete pseudo-anodontia
which occurred in a female patient affected by PHPT-1a, showing some peculiar phenotypic
characteristics. We performed an extensive genetic analysis in search of possible additional
gene alterations that could explain the presence of the peculiar phenotypic characteristics
observed in our patient.

2. Case Presentation

A 32-year-old woman, whose diagnosis of iPPSD was made at 29 years of age, came to
our attention, accompanied by her mother. The hypocalcemia was not recognized nor treated
until that age; therefore, she suffered from many complications related to both hypocalcemia
and resistance to various hormones. The patient was born at 41 weeks of gestation by cesarean
section. She had a normal weight at birth but quickly began to gain weight excessively, with a
consequent early onset of obesity. In addition to obesity, the mother referred a history of motor
and mental retardation and epilepsy in infancy, treated with carbamazepine and phenobarbital.
Both parents (Dominicans in origin) were healthy. The patient was not treated with calcium
until the age of 29 when hypocalcemia was detected and oral calcium supplementation was
started. The patient experienced menarche at 11 years of age, but gonadotropin resistance
resulted in the incomplete development of secondary sexual characteristics. At 15 years of
age, she developed bilateral cataracts, and underwent cataract surgery. At 30 years of age,she
underwent surgery for the removal of an ovarian serous cystadenoma, measuring 15 cm in
diameter. At 29 years of age, the lab tests were remarkable for calcium of 6.7 mg/dL (8.4–10.2),
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phosphorus of 4.2 mg/dL (2.5–4.5) and magnesium of 1.5 mg/dL (1.5–2.6). The PTH was
markedly elevated at 453 pg/mL (15–68), while the 25-hydroxy vitamin D was insufficient
at 28 ng/mL (30–100), and the diagnosis of pseudohypoparathyroidism (PHP) was made.
Three years later, she came to our attention and she was receiving supplementation with
calcium 1 gr QD and with calcifediol 50 µg/dose at 1-week interval, and with levothyroxine
at the dose of 50 µg QD, because of hypothyroidism due to TSH resistance. Treatment
normalized the calcium level at 8.4 mg/dL (8.4–10.2), and the PTH was still high but
reduced to 329 pg/mL (15–68), while the 25-hydroxy vitamin D was sufficient at 43 ng/mL
(30–100). At the physical examination, the patient was conscious, cooperative and alert. The
blood pressure was 103/71 mmHg and the pulse rate 81/min. Even if the serum calcium
level was normal, the muscle showed generalized hypertonicity and stiffness, and the arms
were hard to maneuver. She had a singular phenotype, showing the typical features of the
AHO (Figure 1).
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Figure 1. (a) Clinical characteristics of the patient with short stature. Closeup of the face (b) of the
mouth (c), of the hands (d), of the feet (e) and of the hair (f).

She was short-statured (height 143 cm) and overweight (weight 59.0 kg, BMI = 28.9 kg/m2),
with a round face, a short neck, a broad chest and obese abdomen (Figure 1, panels a, b).
Physical examination of the hands indicated a type E brachydactyly, that affected the 4th
and 5th fingers more, and a type D brachydactyly (Figure 1, panel d). She had a positive
knuckle sign (Archibald’s sign), consisting in the appearance of a dimple at the position of
the 4th and 5th knuckles on clenching of the fists. Physical examination of the feet indicated
brachydactyly, with shortening of the first toe in both feet as well as of the 4th metatarsal
bone (Figure 1, panel e). Examination of the mouth showed that the upper lip was larger
than normal and the lower lip was prominent (Figure 1, panel c). Intraoral examination
revealed complete anodontia, broad, flat alveolar ridges, and shallow vestibules. The
mucosa over the ridges was pale and atrophic with smooth, globular elevations along the
ridges, probably implying that the teeth were present within the bone. The hair showed a
persistent patchy alopecia areata that the patient was masquerading with hair extensions
(Figure 1, panel f). An ultrasonographic examination of the thyroid gland and of the
parathyroid did not show any alteration, and both sonography and Rx mammography of
the breast revealed the presence of bilateral subcutaneous calcifications (data not shown).
No optic atrophy was detected at fundoscopic examination. Moreover, no other ocular man-
ifestations, typical of the GAPO syndrome, were detected, including glaucoma, strabismus,
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photophobia, megalocornea, myelinated retinal nerve fiber layer, keratoconus, nystagmus
or ptosis. An X-ray of her hands and feet revealed significant shortening of the 4th and 5th
metacarpals (Figure 2, panels c, d) and of the 4th metatarsal (Figure 2, panel e, f). An X-ray
of the skull showed a copper beaten appearance and hyperostosis of the calvaria (Figure 2,
panel a, b). Abnormal calcifications were also visible (Figure 2, panel b).
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Figure 2. Radiologic findings of the patient. (a,b) X-ray of the skull, (c,d) X-ray of the hands, (e,f) X-ray
of the feet.

Dental panoramic radiography revealed peculiar alterations. In particular, bone
anomalies were visible, with reduced height of the mandibular body, especially in molar
regions, and reduced height of maxillary bones, especially in the anterior area, below the
nasal cavities. Radiopaque areas appear to involve some teeth (specifically the upper and
lower left first molars). Dental anomalies consisted in 16 abnormal un-erupted teeth in
the maxilla and 12 in the mandible. It was not possible to define if they are deciduous or
permanent. Many of these teeth had very short roots and many had no roots at all. Many
of them were mal-positioned, with various degrees of inclination. No teeth were visible in
the incisive area of the mandible. Almost all teeth appeared small and morphologically
not-well-defined. Only a few of them showed a different degree of radiopacity between the
superficial crown layer and the remaining part of the tooth. This was possibly due to no
difference in the degree of mineralization between dentine/cement and enamel, or due to a
lack of enamel (Figure 3).

Treatment Outcome and Follow-Up

The patient is now receiving supplementation with calcium 1 gr BID and with calcife-
diol 50 µg/dose at 1-week interval. She is also receiving levothyroxine supplementation at
the dosage of 50 µg QD. Treatment of epilepsy consists in administration of carbamazepine
and phenobarbital. After one year of observation, before she returned to her country of
origin, there was no change in the clinical condition of the patient.
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Figure 3. Dental panoramic radiography.

3. Aim of the Study

Since the typical clinical presentation of PHPT-1a does not include complete pseudo-
anodontia and alopecia, we decided to perform an extensive molecular genetic analysis in
search of the molecular bases of such novel presentation. To this purpose, we first identified
the specific mutation responsible for the occurrence of PHPT-1a. Then, we searched for pos-
sible pathogenic copy number variants (CNVs) or loss of heterozygosity (LOH) that could
suggest the presence of homozygous damaging variants due to consanguinity/uniparental
disomy. Finally, we performed a genetic analysis by clinical exome sequencing (CES) in
search of alterations in genes known to be related to the pathogenesis of tooth agenesis.

4. Materials and Methods

After obtaining written informed consent, genomic DNA samples of the proband and
her mother were extracted from peripheral blood lymphocytes, using the DNeasy Blood
& TissueKit and QIAamp DNA Blood Mini Kit according to the manufacturers’ instructions.
The coding regions and boundaries of flanking introns (±25 nucleotides) of the GNAS
gene (Refseq: NM_000516.4) have been analyzed through Sanger sequencing (Applied
Biosystems SeqStudio Genetic Analyzer, Thermofisher), using owner-designed primers
(Table 1).

Table 1. Primers used for the amplification and analysis of the GNAS gene.

Gene Exon Primers Sequence

GNAS EX1 1F 5′ TCCTTGCCGAGGAGCCGAG 3′

GNAS EX1 1R 5′ CACAGACAGAGCCCGCGAAC 3′

GNAS EX2 2F 5′ GTCAAGGAAAGTTGCAAGTCTG 3′

GNAS EX2 2R 5′ AGAGCCCTTCCCAGGATTTTC 3′

GNAS EX3 3F 5′ TGGCTGATGGTTGAGGAATGTA 3′

GNAS EX3 3R 5′ TATGCCAATATGGCTGATGGTC 3′
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Table 1. Cont.

Gene Exon Primers Sequence

GNAS EX4+5 4+5F 5′ GAACCCACAACTCCCTGAAGA3′

GNAS EX4+5 4+5R 5′ TTCCTATATGGACACTGTGCTC 3′

GNAS EX6 6F 5′ GTGTCGGTCACATAGGGAACT 3′

GNAS EX6 6R 5′ CAGTGGGGTAACTGGTTGGC 3′

GNAS EX7+8 7+8F 5′ GGGACGGTCACTTCCGTTGA3′

GNAS EX7+8 7+8R 5′ ACAGCTGGTTATTCCAGAGGG 3′

GNAS EX9+10 9+10F 5′ CCCTCTGGAATAACCAGCTGT 3′

GNAS EX9+10 9+10R 5′ CTTGGGAGAAGCGCGCTTTC 3′

GNAS EX11 11F 5′ AGGAGGCCCTGGTCTGCAC 3′

GNAS EX11 11R 5′ ATGGTTTGGTGGTGGGAGGG 3′

GNAS EX12+13 12+13F 5′ AGGGTTTTGAAGACTTCAGGAG 3′

GNAS EX12+13 12+13R 5′ GCCCTATGGTGGGTGATTAACT 3′

The identified variants have been evaluated, based on evidence from the scientific
literature, and classified according to the criteria of the American College of Medical
Genetics and Genomics (ACMG). Only those predicted to alter the protein and with a
minor allele frequency, (MAF) < 0.01, were considered.

We also performed Affymetrix Single Nucleotide Polymorphism (SNP) array in our
patient, to detect possible pathogenic copy number variants (CNVs) or loss of heterozy-
gosity (LOH) that could suggest the presence of homozygous damaging variants due to
consanguinity/uniparental disomy [9]. Genomic screening for CNVs was performed using
a SNP array platform (Cytoscan HD, Thermo Fisher Scientific, Waltham, MA, USA), follow-
ing the manufacturer’s recommendations, and analyzed with ChAS software (v4.1; Thermo
Fisher). A total of 270 healthy controls belonging to the International HapMap Project were
used as a reference sample in data analysis (Thermo Fisher). Called CNVs were represented
by at least 25 contiguous probes and 75 kb as minimum size, and were classified according
to the American College of Medical Genetics (ACMG) recommendations [10]. Moreover,
all CNVs represented by at least 5 contiguous probes and laying within a candidate disease
gene (OMIM, Online Mendelian Inheritance in Man; https://www.omim.org/ accessed on
4 November 2022) were considered.

Runs of Homozygosity (ROH) analysis of autosome chromosomes was performed
using the SNPs and filtered considering 3 Mb of length as a minimum size [11]. CES was
carried out using the TruSight One Sequencing Panel (Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions. The panel covers 4813 disease-associated
genes. Targeted exonic regions underwent paired-end sequencing on an Illumina platform
using a NextSeq 500 sequencing system (NextSeq High Output Kit, 300 cycles). The
data analysis variant was carried out with the Illumina Variant Studio software v3.0 and
BaseSpaceVariant Interpreter Beta (Illumina). Detected variants were annotated and filtered
based on information of functional prediction (e.g., Polyphen2, SIFT, REVEL), disease
association (e.g., ClinVar, HGMD, OMIM and GWAS) and population allele frequency
(e.g., dbSNPs, ALFRED). Variant filtering was restricted to high quality variants in known
pathogenic genes related to tooth agenesis (HP:0009804).

The main genes investigated were AXIN2, EDA, LRP6, MSX1, PAX9, WNT10A,
WNT10B, BMP4, DKK1, EDAR, EDARADD, GREM2, KREMEN1, LTBP3 and SMOC2 [12,13].
Phenomizer algorithm was also utilized to semantically match the patient’s clinical features
(HPO terms) to known disease–gene associations. Moreover, the Exomiser software was
used to prioritize candidate variants based on gene–disease association, pathogenicity
variant, and genetic algorithm based on a freely database. However, the CES analysis

https://www.omim.org/
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did not identify any pathogenic variants in investigated genes; instead, it confirmed the
presence of the c.623_624dup pathogenic variant in the GNAS gene, which was prioritized
with a significant p-value (p > 0.001) by the Exomiser tool when clinical phenotypes of
PHPT-1a were set up in bioinformatic analysis tool.

5. Results

Genetic testing revealed the pathogenic insertion c.624dup, p.(Glu209*), in the exon 8 of
the GNAS gene, leading to premature termination codon and truncated protein (Figure 4).
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Figure 4. Sanger sequencing of the GNAS exon 8, showing (blue arrow) the heterozygous variant
NM_000516.4: c.624dup (p.Glu209*).

Segregation analysis confirmed the maternal origin of the identified variant. The
SNP array did not identify any clinically significant deletions or duplications. However, it
revealed ~1.75% autosomal homozygosity across multiple chromosomes, affecting a total
of ~664 Mb (blocks ≥3 Mb), higher than the general population (Figure 5).
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Figure 5. Loss of heterozygosity regions identified with SNP array.

This level of homozygosity is consistent with a close parental relationship or more
distant relatedness in an isolated population. In order to investigate the presence of possible
damaging variants in tooth agenesis genes, including AXIN2, EDA, LRP6, MSX1, PAX9,
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WNT10A, WNT10B, BMP4, DKK1, EDAR, EDARADD, GREM2, KREMEN1, LTBP3 and
SMOC2 genes, or in recessive genes located in the LOH regions and related to the proband’s
phenotype, a CES was performed in the patient. No damaging mutations emerged in all
those genes analyzed by CES, with the exception of the already-known c.624dup pathogenic
variant in GNAS.

6. Discussion

We describe here, for the first time, a new clinical feature of PHPT-1a in a patient
carrying the damaging variant c.624dup in the GNAS gene. Although this variant has never
been described to date, neither in patients with GNAS-related diseases nor in the general
population, null variants in GNAS are predicted to be pathogenic, as loss of function of
this gene is a known mechanism of disease. The same variant was also detected in the
asymptomatic mother. The absence of clinical manifestations in the older woman may be ex-
plained by the complex imprinted expression pattern of GNAS. Indeed, this gene produces
paternally (XLAS), maternally (NESP55) and biallelically (Gsα) expressed transcripts from
alternative promoters in the 5′-UTR. However, in the proximal renal tubule, adenohypoph-
ysis and thyroid, the expression of Gsα is exclusively maternal. Thus, damaging variants in
GNAS on the maternal allele cause multihormonal resistance syndrome with AHO, while
damaging variants in the GNAS paternal allele are associated only with isolated AHO
(also known as pseudo-pseudo hypoparathyroidism). Realistically, the mother, not affected
by PHPT-1a, has the pathogenic variant on the paternal allele, while, in the proband, the
same variant, inherited from the mother, is the cause of her complex phenotype. The oral
manifestations found in patients with parathyroid deficiency had been initially recognized
by Gottlieb in 1920 [14]. In 1956, Hinrichs confirmed that hypoparathyroidism was asso-
ciated with a delayed eruption and affected both matrix formation and calcification [15].
Pseudohypoparathyroidism is a disease very similar to idiopathic hypoparathyroidism,
with almost identical clinical, radiographic, and histological dental manifestations. There-
fore, the manifestations found in patients with PHPT-1a are primarily a late tooth eruption
and/or aplasia or hypoplasia of the dental enamel [16,17]. However, it has been reported
that dental manifestations of AHO are seldom sought after and they have only occasionally
been described in a few case reports [18–22]. Recently, four patients presenting PHPT-1a
and dental alterations have been described [23]. All patients exhibited dental anomalies,
class III malocclusion with maxillary retrusion, and a copper beaten appearance of the
skull. Treatment of hypocalcemia with supplementation of vitamin D and calcium im-
proved the medical condition. However, the occurrence of complete pseudo-anodontia
in a patient with PHPT-1a has not been reported so far and it is not even reported among
the non-classic features of this disease [24]. The pathogenesis of tooth un-eruption in our
patient is not clear. Several hypotheses may be postulated. The complete absence of tooth
eruption could be due to prolonged hypocalcemia, or to the high level of serum PTH or
of serum parathyroid hormone-related protein (PTHrP). In this regard, the importance of
early diagnosis of PHPT-1a, when calcium serum levels are still in the normal range, has
been recently emphasized to avoid the severe hypocalcemic symptoms, such as seizures,
paresthesia, and tetany [25]. The relevance of PTHrP, as well as of the PTH/PTHrP receptor
(PPR), in tooth eruption has been known for some time [26]. In particular, loss-of-function
mutations in the PPR gene are responsible for the cessation of tooth eruption, causing
primary failure of tooth eruption [27–30]. This was also confirmed by using a mouse model
harboring a specific deletion of the PTHrP [31]. In this study, the loss of PTH-1r within
PTHrP-expressing cells produced a dramatic periodontal and root phenotype. A deletion of
signaling starting 3 days after birth, which is the start of the intraosseous phase of eruption,
resulted in a severely underdeveloped periodontal ligament (PDL), as shown by the loss of
the periostin marker. The acellular cementum, the layer of mineralized tissue that covers
most of the root, was replaced with cellular cementum. The ultimate phenotype was a
failure of the molars to emerge into the oral cavity (68% of first molars in knockout mice
failed to erupt). However, no relationship between plasma PTHrP levels and failure of
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tooth eruption, as well as other dental manifestations of PHP, was found by others [32].
The mechanism leading to an uncompleted eruption process in our patient might be due
to: (i) the lack of root formation and development that has long been considered the force
responsible for eruption; (ii) the lack of biophysical traction forces exerted by the PDL;
(iii) the incorrect tooth position that could hinder the eruption path of some teeth; and,
finally (iiii) the extreme bone density of some areas that could represent an obstacle to
dental progression. Molecular tests ruled out damaging chromosomal and genetic variants
involving teeth agenesis-related genes. We cannot exclude the presence of other genetic
defects not investigable with the available assays (e.g., mutations located in regulatory or
non-coding regions), or alterations in the expression of genes as the results of the thyroid
hormone resistance. In this regard, it has been reported that thyroid hormones promote
osteoblast differentiation via the BMP/Smad signaling pathway [33] and, in particular,
BMP2 gene expression in the dental follicle is considered essential for tooth eruption [34,35].
The absence of mutations in the teeth agenesis-related genes indicate that the GNAS null
mutation identified in our patient could play a pivotal role in determining her peculiar
phenotype. We believe that this mutation, associated with the delay in the treatment of
hypocalcemia, could be responsible for the occurrence of complete pseudo-anodontia, in
addition to the other manifestations of the disease.

7. Conclusions (Learning Points)

1. Dental manifestations of AHO are seldom sought after and they have only occasionally
been described in a few case reports.

2. Complete pseudo-anodontia, defined as the clinical, but not radiographic, absence of
all teeth, due to a failure in their eruption, has, so far, never been reported in patients
with PHPT-1a.

3. In our patient, complete pseudo-anodontia may be the result of long-standing, un-
treated hypocalcemia.

4. Early diagnosis and treatment of hypocalcemia in patients affected by PHPT-1a is of
paramount importance in order to avoid severe hypocalcemic symptoms, such as seizures,
paresthesia, and tetany, and to allow physiological tooth formation and eruption.
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