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Abstract: The forthcoming implementation of national policies towards hydrogen blending into the
natural gas grid will affect the technical and economic parameters that must be taken into account
in the design of building heating systems. This study evaluates the implications of using hydrogen-
enriched natural gas (H2NG) blends in condensing boilers and Gas Adsorption Heat Pumps (GAHPs)
in a residential building in Rome, Italy. The analysis considers several parameters, including non-
renewable primary energy consumption, CO2 emissions, Levelized Cost of Heat (LCOH), and Carbon
Abatement Cost (CAC). The results show that a 30% hydrogen blend achieves a primary energy
consumption reduction of 12.05% and 11.19% in boilers and GAHPs, respectively. The presence
of hydrogen in the mixture exerts a more pronounced influence on the reduction in fossil primary
energy and CO2 emissions in condensing boilers, as it enhances combustion efficiency. The GAHP
system turns out to be more cost-effective due to its higher efficiency. At current hydrogen costs, the
LCOH of both technologies increases as the volume fraction of hydrogen increases. The forthcoming
cost reduction in hydrogen will reduce the LCOH and the decarbonization cost for both technologies.
At low hydrogen prices, the CAC for boilers is lower than for GAHPs; therefore, replacing boilers with
other gas technologies rather than electric heat pumps increases the risk of creating stranded assets.
In conclusion, blending hydrogen into the gas grid can be a useful policy to reduce emissions from
the overall natural gas consumption during the process of end-use electrification, while stimulating
the development of a hydrogen economy.

Keywords: power-to-gas; sector coupling; decarbonization cost; levelized cost of hydrogen;
energy efficiency; building refurbishment; hydrogen mixtures; renewable energy; green hydrogen;
energy policy

1. Introduction

As the phenomenon of global warming and its consequences continue to develop, the
necessity to reduce greenhouse gas (GHG) emissions is becoming increasingly apparent.
Therefore, the implementation of energy systems that integrate renewable energy sources
is of paramount importance for the immediate decarbonization of the energy sector. This
results in a significant enhancement of the flexibility of energy systems [1]. Electric batteries
can play an important role in renewable energy integration. Nevertheless, this technology
is not sufficient to address the issue, and more effective storage devices are therefore being
sought [2]. Hence, the integration of diverse strategies and the conversion of energy carriers
that enhance storage capacities represent suitable solutions for guaranteeing the flexibility
of the energy system [3]. In this context, the utilization of hydrogen becomes a crucial factor.
Indeed, numerous studies have identified hydrogen as a key vector for facilitating the
integration of renewable energy sources at high percentages [4,5]. The European Hydrogen
Strategy has the objective of making hydrogen a substantial part of the European energy
system. The ambitious targets of the strategy set forth a goal of achieving a minimum
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production of 10 million tonnes of hydrogen from renewable sources by 2030 along with
the installation of 40 GW of electrolyzers. Furthermore, the national gas grid should be
employed as a means of distributing hydrogen over long distances, thereby contributing
to the development of adequate storage facilities [6]. In order to achieve the 2050 climate
neutrality targets, it is necessary to reduce emissions from the hard-to-abate sectors, which
are characterized by high energy intensity and a lack of viable electrification solutions [7].
Currently, the chemical and petroleum refining sectors utilize hydrogen as a raw material
in the production of basic chemicals such as ammonia and methanol, as well as in a number
of refining processes [8]. Accordingly, by 2050, hydrogen carriers should represent at least
13% of the European energy mix in order to achieve the set climate neutrality targets [9].
It is of significant importance to emphasize that the European Hydrogen Strategy has
been designed with the intention of facilitating the long-term deployment of renewable
hydrogen and the transition to low-carbon hydrogen. Indeed, despite currently accounting
for the majority of hydrogen produced [10], hydrogen produced by steam reforming
remains excluded from the planning. The objective is therefore to gradually increase the
proportion of green hydrogen in industry [11]. A further hard-to-abate sector is transport,
in particular heavy [12], public [13] and maritime transport [14]. Nevertheless, in the
absence of refueling stations across the country, the production of synthetic natural gas
(SNG) [15] or other alternative fuels [16] could be considered potential applications for
immediate decarbonization of the transport segment.

The implementation of a hydrogen economy may encounter initial obstacles related
to the lack of dedicated storage and distribution infrastructures [17]. In this context,
a potential interim solution could be the injection of hydrogen into natural gas (NG)
distribution networks [18,19]. It is indeed feasible to employ limited hydrogen volumetric
fractions (f H2,vol) in hydrogen-enriched natural gas (H2NG) mixtures in such a way that
this blend can be used in end-user devices without necessitating significant operational
changes [20]. According to Jones et al. [21] and Schiro et al. [22], the threshold limit for safely
running domestic end-user devices without any modifications on commercial versions
is equal to 30% vol. of hydrogen content. Based on these studies, the limit value for the
volumetric fraction of hydrogen used in the present study was selected. It has been widely
demonstrated that the utilization of H2NG mixtures within end-user devices can result in
technical and environmental benefits [23]. In fact, the incorporation of hydrogen fractions
within the natural gas (NG) network could potentially reduce GHG emissions from heating
systems while simultaneously enhancing combustion efficiency. Indeed, hydrogen has a
high flame velocity and a wide flammability range, which would permit more complete
combustion in a mixture, thereby reducing pollutants such as CO and nitrogen oxides
(NOx). Furthermore, its higher energy density per unit mass, if compared to natural gas
(NG), enables a reduction in the volume of fuel required when used in a blend.

Nevertheless, the integration of hydrogen still presents unresolved problems that are
intrinsically linked to the very characteristics of H2. In addition to the lack of adequate
facilities for transport and storage, hydrogen is characterized by high flammability, which
could create safety problems, especially in residential applications [24]. Furthermore,
hydrogen is characterized by high energy losses related to compression and liquefaction
processes, with losses of 10% and 40%, respectively [25]. From a mechanical standpoint, it
is also essential to consider the potential for hydrogen embrittlement, which could impact
the yield stress and strength of the materials. Consequently, the current design process
of transmission networks can only be considered valid for low volumetric fractions of
hydrogen in the mixture, due to the low ignition energy of hydrogen, which could cause
accidents [26]. Indeed, the thermophysical properties of the mixture are significantly
influenced by the proportion of hydrogen utilized. The utilization of H2NG blends would
facilitate a more extensive diffusion of the hydrogen carrier, while also representing an
economically viable means of storage and transport [27]. The utilization of these mixtures
of H2NG would also result in an immediate reduction in CO2 emissions associated with
end-user systems, with reductions varying depending on the device considered [28–30]
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A number of European countries have already enacted legislation on the introduction
of hydrogen into the grid. For instance, France and Spain have imposed a limit of 6% and
5% by volume, respectively. In Germany, the threshold of f H2, vol in the mixture is 10%, but
only under specific conditions and in designated infrastructure sections. In many European
countries, the maximum permitted blending ratio is 4% [31]. Other countries, such as
Italy, have not yet enacted legislation to incorporate H2NG blending into their energy
systems. However, their strategy encourages the implementation of such a solution in the
next decade [32]. In fact, the employment of this vector would facilitate the achievement
of decarbonization objectives in the building heating sector, which are challenging to
attain through the implementation of efficiency enhancements or the electrification of
end-user systems in isolation [33]. Moreover, the building sector is frequently constrained
by spatial limitations and architectural constraints that preclude the installation of large-
scale renewable energy systems, thereby complicating the task of reducing emissions [34].
The utilization of mixtures of hydrogen and natural gas in the building sector will result
in increased primary fossil energy savings through the deployment of highly efficient
gas systems.

This work aims to evaluate the H2NG effects on technical, economic, and environ-
mental parameters of two different plant configurations: condensing boilers and Gas
Adsorption Heat Pumps (GAHPs). Some experimental investigations have already ana-
lyzed the effects of using H2NG mixtures on condensing boilers, while there are still few
studies on GAHPs. Lamioni et al. [35] numerically simulated the use of H2NG mixtures on
condensing boilers. Their study showed that the use of hydrogen causes the flame front to
advance towards the burner, causing the risk of flashback, but at the same time, it prevents
temperature rise due to the dilution phenomenon. The temperature reduction observed
has a positive effect on the reduction in NOx emissions. In their study of a condensing
boiler, Yang et al. [36] showed how the use of 100% hydrogen as a fuel leads to an increase
in the efficiency of the appliance of 8.8 percentage points. It was also shown that the
boiler condenser can adequately meet the heat transfer demand when using H2NG blends,
demonstrating the feasibility of this energy-saving approach. Furthermore, with an 80%
hydrogen content, the CO2 emission intensity could be reduced by 55.4%, demonstrating
the positive environmental impact of using H2NG blends. Sforzini et al. [37] focused on
developing and validating a mathematical model for a GAHP running on unconventional
gaseous fuels, specifically hydrogen-enriched natural gas blends. The study revealed that
from an energetic point of view, the hydrogen addition does not visibly influence the ma-
chine’s performance. This is due to the fact that the tested GAHP heat recovery architecture
is not able to exploit latent heat by condensing out the exhaust gas water content.

Some works analyzed the combustion effects of blending hydrogen in gas-driven
end-user systems. Other works analyzed the technical and economic aspects of feeding
gas-fired heating systems in residential buildings. However, to the best of the authors’
knowledge, there is a gap in the literature regarding the broader analysis of the energy,
environmental, and economic effects of implementing hydrogen blending policies in gas-
based countries. The present work aims to fill this gap by investigating such aspects from
the point of view of the end-users, who see variations in the quality of the gas mixture
consumed, with consequent implications for primary energy, plant efficiency, emissions,
and costs associated with their heat requirements.

In this scenario, the aim is to make a comparison between two different heat generation
systems, one traditional and widely used, such as gas boilers, and one innovative, such
as GAHPs, and to assess how the use of H2NG blends can affect several technical and
environmental parameters. Different parameters were assessed at variable H2 volumetric
fractions of the blend. Due to the effects of hydrogen on technical, environmental, and
economic parameters, different fractions of hydrogen ranging between 0% and 30% were
assessed. Finally, the economic parameters were evaluated at different hydrogen and
natural gas costs, respectively, by means of two sensitivity analyses.



Buildings 2024, 14, 2284 4 of 19

Similar analyses have been implemented for other H2NG end-uses, such as internal
combustion engines [38,39], household appliances [40,41], industrial burners [42,43], and
CHPs [44,45].

2. Materials and Methods

The purpose of this study is to evaluate the efficiency and cost-effectiveness of two
heating systems applied to a building. To conduct this evaluation, a methodology was
developed for assessing the energy, environmental, and economic performances of a con-
densing boiler and a GAHP. The proposed scenarios have been dynamically implemented
in MATLAB/SIMULINK to determine the power required to fulfill the heating demand of
the building. Several energy, environmental, and economic parameters related to boiler
operation were then evaluated. The latter is considered the reference case when supplied
with natural gas. The second system envisages the replacement of the boiler with a GAHP.
Subsequently, the operation of the two systems has been evaluated by powering them with
hydrogen fractions varying between 0 and 30% by volume, with a gradual increase of 10%.
Next, many sensitivity analyses were conducted to ascertain how the impact of variations
in the costs of the two energy vectors employed and the fraction of hydrogen replaced in
the mixture affects the economic viability of the proposed interventions.

2.1. Case Study

The residential building considered as a case study is situated within a renewable
energy community in Rome. Such a case study has already been analyzed and described
in Ref. [46]. Four distinct housing types have been identified within the building by the
study by Mancini et al. [47], whose characteristics, electrical consumptions, and heating
demands are presented in Table 1. All values in Table 1 are taken from Ref. [46]. The
total surface of the building was calculated as equal to 1990 m2. The study enabled the
estimation of the thermal demand to be carried out, starting from the definition of average
energy performance indicators for a residential complex located in Rome. The energy
performance indicator for the heating phase is considered equal to 70.3 kWh/m2 yr. The
hourly profiles related to the heating demand were evaluated from data obtained from
the Hotmaps Project [48]. In order to determine the annual thermal energy demand of
the entire building, the demands of the individual apartments, related to the m2 of each
housing unit, and the number of housing units within the structure were considered. The
annual heating demand was thus determined to be 139.9 MWh/yr as seen in Figure 1.
Therefore, for each type of dwelling, the total heat load was determined by considering
five dwelling units, while the surfaces are referred to as a single unit.
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Table 1. Dwelling characteristics and heating demand [46].

Dwelling
Typology/Building

Number of
Dwellings

Surface
(m2)

Annual Heating Demand
(MWh/yr)

Annual Electrical
Consumption (MWh/yr)

INHABITANTS
(n◦ of People)

A 5 60 4.22 4.75 2
B 5 67 4.71 9.55 3
C 5 134 9.42 12.65 4
D 5 137 9.63 12.5 3

Building 20 1990 139.9 39.45 60

2.2. Energy, Economic, and Environmental Model for Simulation

To be able to evaluate the energy, environmental, and economic performances of the
boiler and GAHP systems, several parameters were considered such as non-renewable
primary energy consumption (EPnr,t), CO2 emissions, Levelized Cost of Heat (LCOH), and
Carbon Abatement Cost (CAC).

In order to verify the viability of the proposed scenarios, they were dynamically
implemented in the MATLAB/SIMULINK environment and simulated on an hourly basis
over a full year. Initially, the fuel utilized was only natural gas (NG), followed by a transition
to H2NG blends. Specifically, knowing the power required to fulfill the heating demand
of the building, the thermal power related to the different mixtures can be obtained from
Equations (1) and (2) for the boiler and GAHP, respectively. The quantity of NG varies
according to the hydrogen fractions considered for the mixture.

PH2NG,boiler(t) =
Pth,D(t)
ηboiler(t)

(1)

PH2NG,GAHP(t) =
Pth,D(t)
ηGAHP(t)

(2)

It should be noted that when a change is made to the composition of the mixture,
the power supplied to the end-user remains constant. Consequently, the power supplied
is dependent upon the efficiency of the system under consideration. Once the supply of
thermal power was established, it was therefore possible to determine the amount of energy
produced as the mixture under consideration varied, using the following equation:

EH2NG =
∫

t
PH2NG (3)

The fraction of energy derived from hydrogen can be quantified by multiplying the
energy content of the mixture by the hydrogen fraction applied.

E f H2 = EH2NG· fH2,vol ·
LHVH2,vol

LHVH2NG,vol
(4)

The efficiency of the GAHP system was considered constant and equal to 1.4, while
the efficiency of the boiler was considered variable as the fraction of H2 varied. As Ref. [49]
points out, the indirect method, which is also certified by UNI 10389 [50] in Italy, allows for
the assessment of combustion efficiency from sensible heat losses using temperature probes
and a gas analyzer. The combustion efficiency for a condensing boiler can be determined
using the following equation:

ηC = 1 −
Ploss,sens

Pf uel
+ EFC (5)

where Energy Fraction of Condensation (EFC) indicates the fraction of latent heat resulting
from water vapor condensation relative to the energy absorbed by the boiler. It should
be noted that both the water dew point temperature and the flue gas temperature at the
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stack can be used to calculate the mass of water, the actual latent heat recovered, and the
EFC factor.

EFC =
Platent
Pf uel

(6)

In order to evaluate the efficiency variation due to different H2NG mixtures burned in
the boiler, certain parameters were defined including the flue gas outlet temperature equal
to 45 ◦C and an external ambient temperature of 0 ◦C [51]. The percentage of sensible heat
loss to the stack can be determined using Equation (7).

Ploss,sens

Pf uel
=

(
K1

20.9 − O2
+ K2

)
·∆T (7)

∆T is determined by the difference in flue gas outlet temperature and the external
ambient temperature. The oxygen content in the flue gas outlet was considered to be equal
to 4%. The values of the K1 and K2 coefficients as the H2NG mixture varies are provided in
Table 2. The EFC factor can be determined using Equation (8).

EFC = (HVR − 1)·ηcond (8)

Here, HVR is the Heating Value Ratio and is defined as the ratio between the HHV
(higher heating value) and the LHV (lower heating value) of the considered mixtures. The
other component in the equation is the condensation efficiency (ηcond), which is defined as
the ratio between the actual condensed water mass and the maximum condensable mass.
The HVR and ηcond values, obtained from Ref. [49], are based on the varying fraction of
applied hydrogen, as shown in Table 2.

Table 2. Parameter calculation required with changes in hydrogen fraction [49].

f H2 (% vol.) K1 K2 HVR ηcond

0 0.007852 2.27425 × 10−5 1.1062 0.549
10 0.007808 2.23817 × 10−5 1.1084 0.565
20 0.007756 2.19601 × 10−5 1.1109 0.581
30 0.007695 2.14608 × 10−5 1.1139 0.597

The values of the combustion efficiency obtained for different H2NG mixtures are
shown in Table 3.

Table 3. Boiler’s combustion efficiency with changes in hydrogen fraction.

f H2 (% vol.) ηc

0 1.04034
10 1.04340
20 1.04671
30 1.05043

The non-renewable primary energy consumption and the CO2 emissions were calcu-
lated using factors determined by Ref. [52] as the H2NG mixture used in the two systems
varied. EPnr,t for the reference year was calculated using Equation (9).

EPnr =
(

EH2NG − E f H2

)
· fnr,NG (9)
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In this equation, fnr,NG is the factor for non-renewable primary energy related to NG.
In order to consider the annual equivalent CO2 emissions of the two systems, it is necessary
to establish the following relationship (10):

CO2,eq =
(

EH2NG − E f H2

)
· fe,NG (10)

In this equation, fe,NG is the factor required to calculate the emissions associated
with NG.

2.2.1. Levelized Cost of Heat

The Levelized Cost of Heat is an economic parameter that assesses the costs of heat
produced by a defined system and helps to compare the various technologies for process
heating and power generation [53]. The LCOH was calculated as the sum of the annual
costs divided by the energy supplied annually, in accordance with Ref. [54].

LCOH =
P·CAPEX·cr f + CO&M + CFUEL

Eth
(11)

The dimensions of the two devices were determined from the rated power (P) of the
entire building, which was calculated to be 88 kW [46]. The annual costs were calculated
on the basis of an initial installation cost (CAPEX) in EUR/kW for each of the two devices,
with the cost varying according to the technology implemented. In order to evaluate the
part of the installation costs related to each year of the useful life of the plant, a capital
recovery factor (crf ) was considered. This is defined from Equation (12) as the ratio of the
present value of the net cash inflows to the initial investment [55].

cr f =
i·(1 + i)t

(1 + i)t − 1
(12)

In Equation (12), i stands for the interest rate applied and t is the lifetime of the plant
considered. The data provided by the Danish Energy Agency enabled the estimation of
the percentage of costs required to operate and maintain the plants [56]. The annual fuel
purchase cost was then estimated, varying according to the efficiency of the device and
the mixture of hydrogen and methane considered. This cost is calculated according to the
following relationship (13):

CFUEL = Eth·η·PH2NG,E (13)

where Eth is the total heat demand of the whole building, η is the efficiency of the device
used, and (PH2NG,E) is the calculated price for the mixture. The efficiency of the GAHP was
considered to be constant, whereas for the condensing boiler, the variation in efficiency due
to the use of mixtures with different hydrogen fractions inside was taken into account. The
efficiency values when varying the volumetric fraction of hydrogen used are presented in
Table 1. The price of the mixture was then evaluated through the following relationship
(14) [57]:

PH2NG,E = fH2,vol ·
PH2

LHVH2,mass
·

LHVH2,vol

LHVH2NG,vol
+ PNG·(1 − fH2,vol)·

LHVNG,vol

LHVH2NG,vol
(14)

The relationship allows the cost per unit of energy of the mixture to be assessed. It
is a function of the price of hydrogen considered in EUR/kg, the price of natural gas
in EUR/MWh, the lower heating value (LHV) of natural gas in MJ/Nm3, the LHV of
hydrogen in mass and volume, in MJ/kg and MJ/Nm3, respectively, and the LHV of the
mixture depending on the volumetric percentage of H2 involved.
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2.2.2. Carbon Abatement Cost

The Carbon Abatement Cost (CAC) is an economic parameter expressed in EUR/tonne
of CO2 avoided [58]. This parameter refers to the cost associated with the implementation of
measures or technologies aimed at reducing carbon dioxide emissions when compared with
a reference scenario in which no such measures are taken. In simpler terms, CAC represents
the cost of avoiding the emission of one ton of CO2. It is evident that the Carbon Abatement
Cost (CAC) may fluctuate considerably in accordance with the technologies employed, the
geographical and economic context, and specific local conditions [59]. Consequently, the
utilization of this metric, as observed in this paper, is a prevalent methodology employed for
the assessment of the cost-effectiveness of measures designed to reduce carbon emissions.
Additionally, this approach enables an evaluation of the efficacy of these strategies in terms
of climate change mitigation. Furthermore, it can be observed that this value, in addition
to the LCOH described above, is also affected by the quantity of hydrogen utilized in the
H2NG mixture. The Carbon Abatement Cost is thus defined as the ratio of the difference
between the investment and O&M costs for the technology under consideration and the
CO2 emissions avoided with the use of this technology [57], as shown in Equation (15).

CAC =

(
CAPEXi·cr f i + CO&M,i + C f uel,i, f H2

)
−

(
CAPEXboiler·cr f boiler + CO&M,boiler + C f uel,boiler,0%

)
CO2, i, f H2 − CO2, boiler,0%

(15)

2.3. Techno-Economic Assumptions

In order to determine the different parameters, some techno-economic assumptions
are needed. To proceed with the calculation of EPnr and the assessment of CO2 emissions,
two different factors were defined. From Ref. [52], it was possible to determine the value
of the factor fnr,NG to be equal to 1.05, while the factor fe,NG was considered equal to
201.4 kgCO2/MWh. Table 4 shows the values of the lower heating value (LHV) and the
density of the H2NG mixture. The LHV mass for hydrogen is defined as 120 MJ/kg and
the density ρ of H2 as 0.0899 kg/Nm3, as a function of the fraction of hydrogen within the
H2NG mixture. All values in Table 4 are taken from Ref. [49].

Table 4. Density and LHV values for H2NG mixtures [49].

f H2 (% vol.) ρn (kg/Nm3) LHVH2NG,mass (MJ/kg) LHVH2NG,vol (MJ/Nm3)

0 0.717 49.98 35.857
10 0.655 50.99 33.3822
20 0.592 52.22 30.9074
30 0.529 53.73 28.4326

The price of the mixture was evaluated considering a natural gas price of 93 EUR/MWh [60]
and an estimated hydrogen price of 5 EUR/kg [61]. In order to annualize the investment
costs, it was necessary to estimate an interest rate of 3% and determine the life cycle of the
devices considered. The main techno-economic assumptions related to the two systems
used are shown in Table 5.

Table 5. Techno-economic assumptions for the condensing boiler and GAHP systems [46,56,62].

Technology CAPEX (EUR/kW) O&M Costs (% of CAPEX) Lifetime (y) Ref.

Boiler 228 4.9 15 [46,56,62]
GAHP 429 4.9 20 [56,62,63]

3. Results

In this section, the outcomes of the work are presented and discussed.
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3.1. Environmental Effects of H2 Addition on Boiler and GAHP Systems

In order to verify the impact of H2NG on the boiler and GAHP, it is first necessary to
consider the annual non-renewable primary energy consumption and the CO2 emissions
for both systems.

As illustrated in Figure 2, the utilization of the GAHP results in a reduction in primary
energy consumption, even when only NG is burned in the system. This reduction is
attributed to the enhanced efficiency of the GAHP system. Indeed, in the NG fuel case,
there is a 25.69% reduction in the EPnr,t between the boiler and GAHP, with a value of
non-renewable primary energy consumed of 104.93 MWh/y. However, when the H2NG
mixture is employed, a linear decrease in non-renewable primary energy consumption
can be observed, reaching 124.19 MWh/y and 93.18 MWh/y for the boiler and the GAHP,
respectively, with a 30% volume fraction of hydrogen in the mixture. This phenomenon
can be attributed to the progressive increase in the hydrogen volumetric fraction, which
consequently results in a reduction in natural gas consumption. Furthermore, it can be
observed that as the hydrogen fraction increases, the reduction is marginally greater in the
boiler than in the GAHP, due to enhanced boiler efficiency by increasing f H2,vol. Indeed, a
reduction in EPnr,t of 12.05% and 11.19% for the boiler and GAHP, respectively, is achieved
when 30% hydrogen is implemented in the mixture.
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A similar trend and percentage reduction can be observed for CO2 emissions since they
are directly related to the NG consumption recorded for the system. In fact, if we consider
the boiler, we can observe a reduction in CO2 emissions from 27.08 to 23.82 tons per year.
Similarly, for the GAHP, we can see a reduction from 20.13 to 17.87 tons per year. This
reduction is achieved by increasing the hydrogen fraction within the mixture from 0% vol.
to 30% vol. The GAHP is more cost-effective when fueled with natural gas (NG) due to its
higher efficiency, which enables it to consume smaller quantities of fuel and consequently
produce less carbon dioxide. Even when the two systems are fed the H2NG mixture with
different H2 volumetric fractions, the GAHP remains a more cost-effective option, with
lower CO2 emissions and a lower consumption of non-renewable primary energy. The
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results demonstrate that the GAHP is a technology that can reduce emissions by more
than 25%. This potential can be further enhanced by implementing policies pertaining to
hydrogen injection and by encouraging the decarbonization of the gas grid in the future.

3.2. Levelized Cost of Heat

The LCOH parameter is used to evaluate the cost of heat production in the different
heating system configurations and hydrogen fraction scenarios. Figure 3 illustrates the
variation in the cost of the H2NG mixture as the f H2,vol changes considering an NG price
equal to 93 EUR/MWh. Also, two maximum and minimum values for the price of natural
gas were then evaluated according to the data collected in Ref. [60] for residential con-
sumption over the last four years, equal to 121 EUR/MWh and 63 EUR/MWh, respectively.
The cost of the H2NG mixture increases as the f H2,vol increases, due to the higher cost of
hydrogen compared to natural gas when considering a price of 5 EUR/kg for the purchase
of hydrogen [61]. At f H2,vol of 30%, the fuel price increases by 6.88% when a price for the
NG equal to 93 EUR/MWh is considered.

Buildings 2024, 14, x FOR PEER REVIEW 10 of 20 
 

A similar trend and percentage reduction can be observed for CO2 emissions since 
they are directly related to the NG consumption recorded for the system. In fact, if we 
consider the boiler, we can observe a reduction in CO2 emissions from 27.08 to 23.82 tons 
per year. Similarly, for the GAHP, we can see a reduction from 20.13 to 17.87 tons per year. 
This reduction is achieved by increasing the hydrogen fraction within the mixture from 
0% vol. to 30% vol. The GAHP is more cost-effective when fueled with natural gas (NG) 
due to its higher efficiency, which enables it to consume smaller quantities of fuel and 
consequently produce less carbon dioxide. Even when the two systems are fed the H2NG 
mixture with different H2 volumetric fractions, the GAHP remains a more cost-effective 
option, with lower CO2 emissions and a lower consumption of non-renewable primary 
energy. The results demonstrate that the GAHP is a technology that can reduce emissions 
by more than 25%. This potential can be further enhanced by implementing policies per-
taining to hydrogen injection and by encouraging the decarbonization of the gas grid in 
the future. 

3.2. Levelized Cost of Heat 
The LCOH parameter is used to evaluate the cost of heat production in the different 

heating system configurations and hydrogen fraction scenarios. Figure 3 illustrates the 
variation in the cost of the H2NG mixture as the fH2, vol changes considering an NG price 
equal to 93 EUR/MWh. Also, two maximum and minimum values for the price of natural 
gas were then evaluated according to the data collected in Ref. [60] for residential con-
sumption over the last four years, equal to 121 EUR/MWh and 63 EUR/MWh, respectively. 
The cost of the H2NG mixture increases as the fH2, vol increases, due to the higher cost of 
hydrogen compared to natural gas when considering a price of 5 EUR/kg for the purchase 
of hydrogen [61]. At fH2, vol of 30%, the fuel price increases by 6.88% when a price for the 
NG equal to 93 EUR/MWh is considered. 

 
Figure 3. Price variation in the H2NG mixture with changes in hydrogen fraction and NG price. 

In Figure 4, the LCOH of the GAHP and boiler systems supplied by different H2NG 
blends are depicted. The LCOH of the GAHP fed by NG is equal to around 102 EUR/MWh. 
This cost is lower than the NG boiler due to the higher efficiency of the GAHP system, 
which allows a lower amount of fuel to be purchased for the same amount of energy pro-
duced. Such an efficiency increase allows offsetting of the higher investment cost. As the 
proportion of hydrogen in the mixture increases, the LCOH rises due to the higher cost of 
hydrogen compared to natural gas. A 30% hydrogen volume fraction for the GAHP results 
in an increase in the LCOH of 4.47% compared to the case with NG alone. In the case of 

Figure 3. Price variation in the H2NG mixture with changes in hydrogen fraction and NG price.

In Figure 4, the LCOH of the GAHP and boiler systems supplied by different H2NG
blends are depicted. The LCOH of the GAHP fed by NG is equal to around 102 EUR/MWh.
This cost is lower than the NG boiler due to the higher efficiency of the GAHP system,
which allows a lower amount of fuel to be purchased for the same amount of energy
produced. Such an efficiency increase allows offsetting of the higher investment cost. As
the proportion of hydrogen in the mixture increases, the LCOH rises due to the higher cost
of hydrogen compared to natural gas. A 30% hydrogen volume fraction for the GAHP
results in an increase in the LCOH of 4.47% compared to the case with NG alone. In the
case of the boiler, the LCOH also demonstrates an increasing trend, with an increase of
4.93% observed when an H2NG mixture with a 30% vol. H2 content is employed.
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3.3. Carbon Abatement Cost

Figure 5 shows the CAC trend for the two devices as the f H2,vol varies. The change in
boiler efficiency when the f H2,vol in the H2NG mixture varies affects this parameter. An
increase in efficiency of 0.96% is achieved by using a 30% volumetric hydrogen fraction,
resulting in a 27.7% reduction in CAC compared to the base case. The decarbonization cost
has been calculated with respect to the reference scenario involving the NG boiler. The
GAHP can reduce the overall cost of heat production; therefore, the CAC achieves negative
values representing cost-effectiveness in its use. Furthermore, even when f H2,vol values
up to 20% are considered, the CAC of the GAHP is negative. Taking into consideration a
f H2,vol of 30%, the CAC is nevertheless very low. From this trend, it can be inferred that
the economic advantage of the GAHP is reduced as the volumetric fraction of H2 used
increases, due to the higher cost of fuel purchasing. Nevertheless, it is important to note
that while the hydrogen price causes costs to rise, the increased quantity of hydrogen used
in the heating process helps to reduce CO2 emissions. In contrast, different considerations
must be made about the boiler, as the CAC in these scenarios is linked only to the hydrogen
blending in the gas grid. Therefore, the emission reduction as well as the increase in blend
price is due to the increase in f H2,vol. The current hydrogen prices are correlated with high
values of CAC, approximately 220 EUR/kgCO2,avd. Such value is correlated to the difference
in the purchase cost of the two energy vectors. Furthermore, a slight variation in the CAC
is observed in the case of the boiler as the fraction of hydrogen involved increases, which is
due to the aforementioned increase in efficiency.

3.4. Sensitivity Analysis

The values of the LCOH and CAC are closely related to the assumptions made about
the cost of hydrogen and the cost of NG. In order to assess how the future cost of hydrogen
production affects the techno-economic parameters used in this paper, a sensitivity analysis
was carried out. The LCOH and CAC values were evaluated by changing the hydrogen
price. The latter can be identified as the Levelized Cost of Hydrogen (LCOH2) production,
transmission, and distribution, which represents the total cost of hydrogen distributed
evenly over the lifetime of the production plant. In the reference scenario, such cost
was considered equal to 5 EUR/kg in order to take into consideration current hydrogen
production costs. In the sensitivity analysis, a decrease of up to 1 EUR/kg was considered.
This assessment is based on the assumption of a high future market penetration of the
hydrogen vector, which would lead to a reduction in purchase costs. As with all scale
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economies, the increase in hydrogen production would reduce production costs through
process optimization and increased efficiency. Achieving such a low price threshold for
the purchase of hydrogen would, in fact, allow a much greater penetration of this vector
within the energy system.
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Figure 6 illustrates the trend of the LCOH as the LCOH2 varies. The forthcoming
hydrogen price reduction allows the LCOH to be substantially reduced in the different
scenarios. The two lines representing mixtures with f H2,vol of 30% exhibit a steeper slope
than those representing mixtures with 10% volume fraction. The graph illustrates that, at
the same LCOH2, the use of the GAHP is less expensive than the configuration with the
boiler. However, this difference decreases as the price of hydrogen decreases. Moreover, it
can be observed that, for a given f H2,vol, the GAHP consistently exhibits a lower LCOH. In
detail, when the LCOH2 is equal to 1 EUR/kg, the most advantageous configuration is that
which involves the GAHP fed by a 30% fH2,vol mixture. As shown in Figure 6, the threshold
values between the GAHP (10%) and GAHP (30%) lines and between the Boiler (10%) and
Boiler (30%) lines, respectively, represent the point at which the purchase cost of hydrogen
equals the purchase cost of natural gas. At higher hydrogen prices, blending within the
system is no longer cost-effective. The LCOH2 values resulting from the intersection of the
aforementioned straight lines are 3.17 EUR/kg and 3.38 EUR/kg for the GAHP and boiler,
respectively. The meeting point of the two straight lines for boiler technology is slightly
displaced to the right. This phenomenon can be attributed to the variation in the efficiency
of the device as the percentage of hydrogen used changes, which therefore balances out the
purchase price even for a slightly higher cost.

Figure 7 illustrates the CAC trend as a function of the LCOH2 value. The configuration
characterized by the boiler is more susceptible to fluctuations in the LCOH2 since the only
variable is the fuel cost. Conversely, for the GAHP configuration, there are fixed installation
and maintenance costs that are constant beyond the fuel, thus reducing the significance
of the variation linked to the LCOH2. The CAC values linked to the GAHP system are
consistently negative, indicating that the intervention is advantageous across the entire
LCOH2 range under consideration, with the exception of the final point on the GAHP
straight line (30%), which becomes marginally positive. It can be observed that up to
an LCOH2 of 3 EUR/kg, the boiler configuration is more convenient than the GAHP, as
no expenditure is required to replace the existing system. Consequently, while Figure 7
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indicates that the GAHP configuration is cost-effective for low hydrogen purchase values,
Figure 8 indicates that the boiler configuration is more cost-effective.
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Figures 8 and 9, on the other hand, show the variation in the LCOH and CAC as a
function of both the price of natural gas and the LCOH2. The NG price was considered
to be equal to two values representing the maximum and minimum observed in Ref. [60],
equal to 121 EUR/MWh and 63 EUR/MWh, respectively. This analysis allows us to assess
how the variation in the cost of the two fuels, taking into account a 30% hydrogen content
in the blend, affects the cost of heat production and the reduction in emissions.

As demonstrated in the sensitivity analysis above, an increase in the LCOH2 results in
an increase in the LCOH. However, Figure 8 shows that the LCOH is more influenced by
the NG price than by the hydrogen price, as evidenced by the gentle slopes of the straight
lines. This is undoubtedly related to the fact that NG still represents the largest volumetric
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share in the mixture, 70% volumetric in this case, and to the considerable price variations
assessed for natural gas. In fact, considering an initial configuration characterized by an
NG price of 93 EUR/MWh and a hydrogen price of 5 EUR/kg, the increase that occurs with
an NG price of 121 EUR/MWh is 21.27% for the boiler and 16.63% for the GAHP, whereas
with a price of 63 EUR/MWh, there is a decrease of 22.79% and 17.81% respectively, for the
boiler and the GAHP. This analysis demonstrates that at a low natural gas (NG) cost, the
boiler is more cost-effective than the gas absorption heat pump (GAHP), regardless of the
Levelized Cost of Heat, despite the GAHP’s superior efficiency. This is due to the higher
installation cost of the GAHP, which is not offset by the lower cost of NG. On the other
hand, a higher NG price demonstrates the advantage of using the GAHP system, which
has a higher efficiency.
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Figure 9 illustrates the variation in the CAC as the price of NG and H2 fluctuates, with a
constant 30% by volume hydrogen mixture. Upon examination of the boiler and the GAHP
individually, it becomes evident that as the cost of natural gas increases, the corresponding
values for the Carbon Abatement Cost also increase. For each of the three values considered
for the price of NG, it can be observed that for an LCOH2 of 3 EUR/kg, the two technologies
are equivalent. This hydrogen price is, therefore, the one that compensates for the purchase
difference between the two analyzed energy sources. With an NG price of 121 EUR/MWh,
it is evident that an LCOH2 of 4 EUR/kg is sufficient to eliminate the CAC and thus the
cost of reducing emissions. On the other hand, for a lower NG price of 63 EUR/MWh, an
LCOH2 value of around 2 EUR/kg is required to make the use of hydrogen for the boiler
economically viable. In contrast, when considering the system with the GAHP, it can be
observed that at low NG prices, the CAC remains positive for any H2 cost considered,
making the system unprofitable.

In summary, the integration of hydrogen carriers into the natural gas infrastructure
can help reduce consumption and emissions from heating systems. However, the ultimate
goal for decarbonizing the residential sector lies in the electrification of low-temperature
heat demand. While GAHPs can reduce emissions in the short term, further investment in
natural gas technologies could lead to the risk of creating stranded assets.
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This research shows that the costs of decarbonization remain lower when hydrogen
prices are below 3 EUR/kg, without the necessity to replace boilers with GAHPs. Con-
sequently, the use of H2NG blends can effectively reduce the emissions associated with
natural gas, with no need for further investments in gas infrastructure. This strategy allows
to reduce carbon emissions without disrupting the shift towards electrification of energy
consumption. A complete overhaul of heating systems is desirable, but this would be
challenging to realize in the short–medium term. Hydrogen blending can contribute to the
decarbonization of the not-yet electrified heating demand and in the meantime boost the
deployment of hydrogen technologies. Therefore, the implementation of national hydrogen
policies should not delay the process of end-use electrification. This approach can be
suitable, especially for countries such as Italy, where the heating sector is heavily reliant on
natural gas.

In addition, the potential interrelationships and synergies between gas-based and
electrification-based decarbonization strategies in the energy transition are issues that can
be further explored in future developments of this work.

4. Conclusions

This work aims to assess the technical, economic, and environmental impacts of
hydrogen blending on the condensing boiler and GAHP systems in a building. Furthermore,
a detailed sensitivity analysis was carried out to evaluate the impact of varying hydrogen
and natural gas costs.

The main findings of this study can be summarized as follows:

• The use of the GAHP results in a reduced non-renewable primary energy consumption
compared with the boiler of up to 25.69%. The GAHP records an EPnr,t of 93.18 MWh/y
when fueled with 30% vol. of H2.

• At a hydrogen volumetric fraction of 30%, the CO2 emissions reductions recorded for
the condensing boiler and the GAHP are 12.05% and 11.19%, respectively.

• The GAHP records a lower LCOH than NG boilers (102.26 EUR/MWh vs. 106.06
EUR/MWh) due to its higher efficiency. The greater the hydrogen rate in the blend,
the greater the LCOH.

• Due to its reduction in the overall cost of heat production, the GAHP shows negative
values of CAC at fH2,vol values ranging between 0 and 20%. The economic advantage
of the GAHP is reduced as the volumetric fraction of H2 used increases, which is due
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to the higher cost of fuel purchasing. The current hydrogen prices are correlated with
high values of CAC, which are approximately 220 EUR/kgCO2,avd.

• The forthcoming cost reduction in hydrogen will reduce the Levelized Cost of Heat and
the decarbonization cost for both technologies. At a hydrogen cost of 1 EUR/kg, the
LCOH for the boiler and GAHP systems are 98.49 EUR/MWh and 97.22 EUR/MWh,
respectively, with a 30% vol. of hydrogen in the mixture.

In conclusion, hydrogen blending in the NG grid allows an immediate reduction
in final heating consumption. Nevertheless, H2NG represents merely a bridging energy
carrier toward decarbonization. In the long term, the main solution to decarbonize the
building stock is the electrification of the low-temperature heat demand. Therefore, while
the GAHP may reduce emissions in the short term, there is a risk of developing stranded
assets by investing in additional natural gas-related technologies.

Furthermore, as shown in this article, the overall cost of decarbonization for hydrogen
prices below 3 EUR/kg is lower without considering the replacement of the boiler with the
GAHP. Therefore, although gas-fired boilers with high volume fractions of hydrogen lead
to an increase in overall heating costs, replacement with other gas-fired heating systems
may not be the best strategy in the long run. Therefore, blending hydrogen into the gas
grid can be a useful policy to reduce emissions from the overall natural gas consumption,
including the building sector, without contradicting the process of electrification of energy
end-uses.

This policy may have a particular impact in NG-based countries, such as Italy, which
has an extensive capillary gas network and where the building stock is mostly supplied
by gas boilers. It is challenging to envision a complete replacement of heating systems
within the next few years. Consequently, in the near future, hydrogen blending represents
an intriguing approach to supporting the decarbonization process while stimulating the
development of an industrial hydrogen technology supply chain.
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Abbreviations

Nomenclature
C Costs (EUR/yr)
CAPEX Initial Capital Expenditure (EUR)
CO2,eq Annual CO2 equivalent emissions (tCO2/yr)
Eth Thermal energy required (MWh/yr)
EH2NG Thermal energy from fuel (MWh/yr)
EfH2 Thermal energy from hydrogen fraction (MWh/yr)
EP Primary energy consumption (MWh/yr)
f H2,vol Hydrogen volumetric fraction
f e,NG Emission factor (kgCO2/MWh)
f nr,NG Non-renewable primary energy factor
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i interest rate (%)
P Thermal power (kW)
PH2NG Thermal power from fuel (MW)
PH2 Price of hydrogen (EUR/kg)
PNG Price of natural gas (EUR/MWh)
t Lifetime (yr)
yi,H2 Hydrogen Mass Fraction
∆T Temperature difference between exhaust gas and external air (◦C)
ηboiler Boiler efficiency
ηGAHP Gas Adsorption Heat Pump efficiency
ηcond Condensation efficiency
ηc Combustion efficiency
Subscripts
D Demand
fuel Fossil fuel
latent Latent heat losses
loss, sens Sensible heat losses
nr Non-renewable energy
O&M Operation and maintenance
th Thermal
Abbreviations
and
Acronyms
CAC Carbon Abatement Cost
crf Capital recovery factor
EFC Energy Fraction of Condensation
GAHP Gas Adsorption Heat Pump
GHG Greenhouse gas
H2NG Hydrogen-enriched natural gas blends
HHV Higher heating value
HVR Heating Value Ratio
LCOH Levelized Cost of Heat
LCOH2 Levelized Cost of Hydrogen
LHV Lower heating value
NG Natural gas
SNG Synthetic natural gas
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