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Abstract: Recent publications in the Electroencephalogram (EEG)-based brain–computer interface
field suggest that this technology could be ready to go outside the research labs and enter the market as
a new consumer product. This assumption is supported by the recent advantages obtained in terms of
front-end graphical user interfaces, back-end classification algorithms, and technology improvement in
terms of wearable devices and dry EEG sensors. This editorial paper aims at mentioning these aspects,
starting from the review paper “Brain–Computer Interface Spellers: A Review” (Rezeika et al., 2018),
published within the Brain Sciences journal, and citing other relevant review papers that discussed
these points.
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A brain–computer interface (BCI) was originally defined as “a communication system in which
messages or commands that an individual sends to the external environment do not pass through
the brain’s normal output pathways of peripheral nerves and muscles”. For example, in an
electroencephalogram (EEG)-based BCI, the messages can be directly decoded by specific EEG
features [1]. In 2012, Wolpaw and Wolpaw [2] widened the meaning of the brain-computer interface,
defining it as “a system that measures Central Nervous System (CNS) activity and converts it into
artificial output that replaces, restores, enhances, supplements, or improves natural CNS output and
thereby changes the ongoing interactions between the CNS and its external or internal environment”,
suggesting the possibility of employing this technology for different applications and targeting different
kind of potential users, starting from completely locked-in people (e.g., amyotrophic lateral sclerosis,
ALS), in which BCI can be used in its original meaning, or in other words in an “active” way (Active
BCI), in which the user voluntary modulates his/her brain activity to generate a specific command on
the surrounding environment (i.e., to replace and/or restore lost or impaired muscular abilities, [3–5]),
coming to healthy users in daily life applications. In particular, BCI for healthy users could be used to
enhance human–surroundings interaction. In this regard, the BCI (i.e., passive BCI, pBCI, [6–13]) is
able to derive its outputs from arbitrary brain activity arising without the purpose of voluntary control
(i.e., implicit information on the user states), for example, workload, attention, emotion, and most in
general task-induced states that can only be detected with weak reliability using conventional methods
such as subjective (e.g., questionnaires) and/or behavioral (e.g., reaction times) measures [14]. Systems
based on pBCIs can directly use in a closed loop this information about the user states to automatically
modify the behavior of the interface that the user is interacting with (i.e., adaptive automation), or just
to inform, even in real-time, the user himself/herself or other people about dangerous human behaviors
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(e.g., overload [15], or loss of vigilance [16,17]) that could increase the human error probability and
consequently induce possible unsafe situations.

Several giant leaps have been made in the BCI field in the last years, from several points of view.
For example, many works have been produced in terms of front-end graphical user interfaces (GUIs),
as deeply reported in the review paper “Brain–Computer Interface Spellers: A Review” recently
published in the Brain Sciences journal. In this regard, “throughout the years, scientists have worked on
spelling systems to make them faster, more accurate, more user-friendly, and, most of all, able to compete with
traditional communication methods” [18].

In this particular regard, a huge effort has been made even in back-end algorithms (i.e., classification
techniques) running under BCI systems [19], allowing for high discrimination accuracy (e.g., target
vs. no-target, low workload vs. high workload) together with high information transfer rates (ITRs)
and by using less and less features (i.e., EEG sensors). In this regard, machine-learning and deep
learning approaches based on the analysis of physiological data went through a rapid expansion in the
last decade since such methodologies are able to provide the means to decode and characterize task
relevant brain states (i.e., reducing from a multidimensionality to one dimensionality problem) and to
distinguish them from non-informative brain signals (i.e., to enhance Signal to Noise Ratio). In this
regard, Aricò and colleagues have published a few review papers demonstrating the maturity and
effectiveness of this kind of technique by testing BCI systems in daily life applications [20,21]. Figure 1
shows BCI concept and related potential fields of application.
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Last, but not least important, enhancement in technology is related to EEG recording headsets
that could finally allow BCI systems to enter the market, especially for daily life applications. In recent
years, many companies have been moving to develop more wearable and minimally invasive biosignal
acquisition devices. With particular regard to EEG systems, current effort is being made to develop dry
sensors (i.e., not requiring any conductive gel), or to eventually use water-based technology instead of
the classic gel-based technology, allowing high signal quality and higher comfort (e.g., [22]). There
is a common opinion that gel-based electrodes still have to be considered the gold standard [23,24],
however, the gap between wet and dry electrodes is being more and more reduced [25]. Several
attempts are already present in the literature about the comparison and validation of these innovative
dry EEG electrodes. In this regard, recently Di Flumeri and colleagues [25] published a paper aiming to
assess the level of maturity achieved by the EEG dry electrodes industry by comparing three different
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types of dry electrodes with traditional ones (i.e., gel-based). The results of this work highlighted
the high level of quality achieved by dry EEG solutions, since all the tested electrodes were able to
guarantee the same quality levels of the wet electrodes, allowing at the same time significantly reduced
times of montage and improvement in the users’ comfort.

In conclusion, because of the leaps and bounds performed in terms of front-end interfaces and
back-end algorithms of BCIs, and the huge technology improvement in terms of wearable devices and
dry EEG sensors, we can infer that BCIs are not too far from leaving the labs, and entering the market
as a new consumer product.
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Curio, G.; Müller, K.R. The Berlin brain-computer interface: Progress beyond communication and control.
Front. Neurosci. 2016, 10, 530. [CrossRef]

8. Cartocci, G.; Maglione, A.G.; Vecchiato, G.; Di Flumeri, G.; Colosimo, A.; Scorpecci, A.; Marsella, P.;
Giannantonio, S.; Malerba, P.; Borghini, G.; et al. Mental workload estimations in unilateral deafened
children. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBS, Milan, Italy, 30 August–3 September 2015; pp. 1654–1657.

9. Zander, T.O.; Kothe, C. Towards Passive Brain-Computer Interfaces: Applying Brain-Computer Interface
Technology to Human-Machine Systems in General. J. Neural Eng. 2011, 8. [CrossRef]

10. Valeriani, D.; Cinel, C.; Poli, R. Brain-computer interfaces for human augmentation. Brain Sci. 2019, 9, 22.
[CrossRef]

11. Vecchiato, G.; Borghini, G.; Aricò, P.; Graziani, I.; Maglione, A.G.; Cherubino, P.; Babiloni, F. Investigation of
the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks. Med. Biol.
Eng. Comput. 2016, 54, 1503–1513. [CrossRef]

12. Astolfi, L.; Toppi, J.; Borghini, G.; Vecchiato, G.; He, E.J.; Roy, A.; Cincotti, F.; Salinari, S.; Mattia, D.; He, B.;
et al. Cortical activity and functional hyperconnectivity by simultaneous EEG recordings from interacting
couples of professional pilots. In Proceedings of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, EMBS, San Diego, CA, USA, 28 August–1 September 2012; pp. 4752–4755.

http://dx.doi.org/10.1016/S1388-2457(02)00057-3
http://dx.doi.org/10.1088/1741-2552/aaf12e
http://www.ncbi.nlm.nih.gov/pubmed/30523919
http://dx.doi.org/10.1016/j.artmed.2013.07.006
http://www.ncbi.nlm.nih.gov/pubmed/24080078
http://dx.doi.org/10.1002/ana.24390
http://dx.doi.org/10.3389/fnhum.2018.00509
http://dx.doi.org/10.3389/fnins.2016.00530
http://dx.doi.org/10.1088/1741-2560/8/2/025005
http://dx.doi.org/10.3390/brainsci9020022
http://dx.doi.org/10.1007/s11517-015-1420-6


Brain Sci. 2020, 10, 157 4 of 4

13. Sciaraffa, N.; Borghini, G.; Aricò, P.; di Flumeri, G.; Colosimo, A.; Bezerianos, A.; Thakor, N.V.; Babiloni, F.
Brain Interaction during Cooperation: Evaluating Local Properties of Multiple-Brain Network. Brain Sci.
2017, 7, 90. [CrossRef]

14. Zander, T.O.; Jatzev, S. Context-aware Brain-Computer Interfaces: Exploring the Information Space of User,
Technical System and Environment. J. Neural Eng. 2012, 9, 016003. [CrossRef]

15. Borghini, G.; Aricò, P.; di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Herrero, M.-T.; Bezerianos, A.; Thakor, N.V.;
Babiloni, F. A new perspective for the training assessment: Machine learning-based neurometric for
augmented user’s evaluation. Front. Neurosci. 2017, 11, 325. [CrossRef]

16. Di Flumeri, G.; De Crescenzio, F.; Berberian, B.; Ohneiser, O.; Kramer, J.; Aricò, P.; Borghini, G.; Babiloni, F.;
Bagassi, S.; Piastra, S. Brain–Computer Interface-Based Adaptive Automation to Prevent Out-Of-The-Loop
Phenomenon in Air Traffic Controllers Dealing With Highly Automated Systems. Front. Hum. Neurosci.
2019, 13, 296. [CrossRef]

17. Sebastiani, M.; Di Flumeri, G.; Aricò, P.; Sciaraffa, N.; Babiloni, F.; Borghini, G. Neurophysiological Vigilance
Characterisation and Assessment: Laboratory and Realistic Validations Involving Professional Air Traffic
Controllers. Brain Sci. 2020, 10, 48. [CrossRef]

18. Rezeika, A.; Benda, M.; Stawicki, P.; Gembler, F.; Saboor, A.; Volosyak, I. Brain–computer interface spellers:
A review. Brain Sci. 2018, 8, 57. [CrossRef] [PubMed]

19. Schettini, F.; Aloise, F.; Aricò, P.; Salinari, S.; Mattia, D.; Cincotti, F. Self-calibration algorithm in an
asynchronous P300-based brain–computer interface. J. Neural Eng. 2014, 11, 035004. [CrossRef] [PubMed]

20. Aricó, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Babiloni, F. Passive BCI in operational
environments: Insights, recent advances, and future trends. IEEE Trans. Biomed. Eng. 2017, 64, 1431–1436.
[CrossRef] [PubMed]

21. Pietro, A.; Gianluca, B.; Gianluca, d.; Nicolina, S.; Fabio, B. Passive BCI Beyond the Lab: Current Trends and
Future Directions. Physiol. Meas. 2018, 39. [CrossRef]

22. Von Lühmann, A.; Müller, K.-R. Headgear For Mobile Neurotechnology: Looking Into Alternatives For
Eeg And Nirs Probes. In Proceedings of the Berlin Brain Computer Interface View Project M3ba: Mobile,
Modular, Multimodal Biosignal Acquisition: Hybrid Eeg-Nirs For Neurotechnology Out Of The Lab View
Project pr, Graz, Austria, 18–22 September 2017; pp. 496–501.

23. Tallgren, P.; Vanhatalo, S.; Kaila, K.; Voipio, J. Evaluation of commercially available electrodes and gels for
recording of slow EEG potentials. Clin. Neurophysiol. 2005, 116, 799–806. [CrossRef]

24. Lopez-Gordo, M.A.; Sanchez Morillo, D.; Pelayo Valle, F. Dry EEG electrodes. Sensors 2014, 14, 12847–12870.
[CrossRef]

25. Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The dry revolution: Evaluation
of three different eeg dry electrode types in terms of signal spectral features, mental states classification and
usability. Sensors 2019, 19, 1365. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/brainsci7070090
http://dx.doi.org/10.1088/1741-2560/9/1/016003
http://dx.doi.org/10.3389/fnins.2017.00325
http://dx.doi.org/10.3389/fnhum.2019.00296
http://dx.doi.org/10.3390/brainsci10010048
http://dx.doi.org/10.3390/brainsci8040057
http://www.ncbi.nlm.nih.gov/pubmed/29601538
http://dx.doi.org/10.1088/1741-2560/11/3/035004
http://www.ncbi.nlm.nih.gov/pubmed/24838347
http://dx.doi.org/10.1109/TBME.2017.2694856
http://www.ncbi.nlm.nih.gov/pubmed/28436837
http://dx.doi.org/10.1088/1361-6579/aad57e
http://dx.doi.org/10.1016/j.clinph.2004.10.001
http://dx.doi.org/10.3390/s140712847
http://dx.doi.org/10.3390/s19061365
http://www.ncbi.nlm.nih.gov/pubmed/30893791
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	References

