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Dedicated to my rock,
my strength, my sister Simona.

"Galileo: Le città sono piccole, le teste altrettanto. Piene di
superstizioni e di pestilenze. Ma ora noi diciamo: visto che così è,

così non deve rimanere. Perchè ogni cosa si muove, amico mio. Molto
è già stato trovato, ma quello che è ancora da trovare, è di più."

Vita di Galileo, Bertolt Brecht
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Introduction

A major challenge of modern physics and mathematics is the theoretical modeling
of living systems. Recently, methods of condensed matter physics have been
successfully applied to biological systems, providing an accurate description of
the statistical laws governing active matter.

Systems of interest in active matter are made of a large number of entities in-
teracting locally and leading to large-scale collective behavior. Manifestations of
this appear at multiple scales of living systems, from cell migration to swarming
of insects and flocking of birds. Interestingly, though these systems are micro-
scopically very different, they exhibit common macroscopic features. The study of
active matter through the lens of statistical physics aims at developing a unified
description of these behaviors.

A fruitful approach uses the theory of critical phenomena, developed in con-
densed matter physics to study phase transitions in inanimate systems. This the-
ory has allowed a systematic description of equilibrium phenomena through the
introduction of concepts like long-range correlations, scaling laws, and renormal-
ization. A major result states that an equilibrium system close to a second-order
phase transition exhibits a macroscopic behavior independent of the microscopic
details. This notion of universality has inspired the use of the same methods
to study non-equilibrium collective behaviors in biology. Hydrodynamics, active
matter models, and non-equilibrium statistical physics became paramount to the
study of self-organization in biological systems.

Several questions are still open. To what extent can the search for universality
be applied to biological collective behavior? How should equilibrium theories be
transformed in order to study non-equilibrium living systems? Only a combina-
tion of theory and experiments can provide answers to these problems.

In this thesis I try to tackle these questions, focusing on the collective behav-
ior of natural swarms. Recent field experiments unveiled long-range correlations
in swarms of midges in absence of collective motion [1], thus suggesting that this
system is disordered but with a near-critical phenomenology [2]. Moreover, exper-
iments confirmed the emergence of dynamical scaling laws in the spatio-temporal
correlation functions of different swarms [3], providing additional evidence about
the universality of their behavior.

Dynamical scaling stems from the study of time-dependent critical phenom-
ena of equilibrium systems [4]. It affirms that, close to criticality, the correlation
length ⇠ is the only relevant length scale of the system, ruling also its dynamical
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relaxation [4]. This phenomenon is known as critical slowing down, and it is ex-
pressed by the power-law ⌧ ⇠ ⇠

z, where ⌧ is the characteristic time scale and z

is called dynamical critical exponent [5]. When this property holds, the exponent
determines the dynamical universality class of the system, containing all the in-
formation on its macroscopic dynamical behavior. Natural swarms obey this law
with a dynamical critical exponent z ' 1.2, value not found in any other sta-
tistical model [3]. Moreover, the relaxation reflects an anomalous underdamped
decay of velocity correlation functions, which is not compatible with standard
models. This thesis proposes to combine classic and novel active matter models
with standard statistical field theory tools, with the purpose of rationalizing this
experimental finding. The validity of scaling laws suggests that a description in
terms of out-of-equilibrium critical phenomena is legitimate, therefore our study
will employ Renormalization Group (RG) techniques and numerical simulations
of active matter models in a near-critical regime.

The investigation focuses on the analysis of two models. The first is the Vicsek
model that describes a self-propelled dissipative dynamics in the velocities. An
analytical calculation on the related hydrodynamic incompressible field theory re-
veals that activity lowers the value of the dynamical critical exponent with respect
to the equilibrium universality class through a mechanism of crossover. Numerical
simulations confirm that this result is valid also for compressible systems. The
second studied theory is the Inertial Spin Model, which formulates a second-order
dynamics in the velocities able to qualitatively reproduce the swarms’ relaxation.
A fixed-network RG calculation highlights the role of inertia in determining the
critical dynamics of weakly damped systems: through a dynamical crossover they
can exhibit a z = 1.5 critical exponent, a value lower than the dissipative case.
The information acquired with these studies is combined in a theoretical model
that includes self-propulsion and inertial dynamics, ingredients that both con-
tribute to lower the value of the critical exponent finally arriving at consistency
with experimental data.

The thesis is organized as follows. We start with chapter 1 by providing an
overview of collective animal behaviors and by explaining which are the statisti-
cal physics tools used to quantitatively describe them. We focus on the concept
of correlation and we give a summary of experimental observations about the
collective behavior of flocks of birds and insect swarms. We introduce the dy-
namical properties of natural swarms and discuss the experimental findings that
stimulated this entire project. In chapter 2 we present the methods used for the
theoretical analysis carried out in this thesis, namely: how to write field-theory
dynamical equations of motion starting from microscopic models, and how to
perform a Dynamical Renormalization Group (DRG) calculation on them.

In chapter 3 we study the dynamical universality class of the Vicsek model
under incompressibility conditions. It is the first model we investigate to explain
the anomalous relaxation found in natural swarms. We report the analytical cal-
culation already performed by Chen, Toner, and Lee in [6], from which we unveil
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a dynamical crossover between an equilibrium to an off-equilibrium universality
class that interests active polar systems. We study it in chapter 4, where we
find out that activity plays a fundamental role with the correlation length in de-
termining the critical relaxation of a macroscopic system. In regimes of strong
self-propulsion or very large sizes, the system exhibits a dynamical critical ex-
ponent lower than the standard equilibrium value. We verify this phenomenon
on the original Vicsek model without imposing any incompressibility constraint
and by means of extensive numerical simulations. We fully confirm that the same
crossover dynamics can be found in compressible yet homogeneous systems [7].

The Vicsek model is not suitable to reproduce the behavior of natural swarms:
the active dynamical critical exponent, z = 1.7, is not consistent with the ex-
perimental data. Moreover, the exponential decay of the dynamical correlation
functions does not match with the underdamped swarming relaxation. Following
these observations, we introduce in chapter 5 the Inertial Spin Model, an active
matter model with second-order dynamics in the velocity, originally developed to
explain turning movements in bird flocks [8]. Due to its inertial nature, we believe
it is a good candidate to explain swarming behavior too. Chapter 6 is dedicated
to the one-loop DRG calculation we perform on the corresponding field theory
under a fixed network approximation. The theory involves coupling between the
order parameter and a conjugated momentum in the presence of dissipation.

In chapter 7 we show that the violation of momentum conservation generates
a crossover between an unstable fixed point with z = 1.5 in three dimensions,
reflecting a conservative dynamics, and a stable fixed point with z = 2, corre-
sponding to a dissipative dynamics. We report on-lattice numerical simulations
of the original microscopic model that confirm this crossover. We also verify that
finite-size and weakly damped systems with inertial dynamics experience a lower
dynamical exponent even at the equilibrium level [9, 10]. Even though the best
estimate of z obtained with this model is not consistent with experimental data,
the relaxation is qualitatively well reproduced.

In chapter 8 we summarize the results obtained and we explain the next steps
to take to conclude our analysis. To be consistent with experimental data it is
necessary to reinstate activity in the hydrodynamic field theory of the ISM. We,
therefore, close our investigation anticipating the results of the DRG calculation
on this out-of-equilibrium inertial model, but details will not be available in this
thesis. The outcome is a new RG fixed-point to which the active and the inertial
crossovers contribute, producing a dynamical critical exponent z = 1.3 fairly
consistent with experimental data [11].

Concluding, chapter 9 collects a series of side projects realized in collaboration
with other members of the group and not related to RG calculations. They focus
on the role of speed fluctuations in bird flocks and swarms, and how they can be
used to quantify the violation of the Fluctuation-Dissipation theorem in active
systems. We also investigate the role of external landmarks in swarming behavior.
Most of them are still ongoing projects, thus opening and stimulating interesting
future research.
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Chapter 1

Statistical Physics of collective
behavior

1.1 When statistical physics meets biology

From ferromagnets to simple water, many materials of everyday experience are
characterized by phenomena of phase transition. This latter describes a process
during which systems composed of a large number of interacting particles undergo
a transition from one state of matter to another. The complex cooperative behav-
ior shown by equilibrium second-order phase transitions has been studied in great
detail during the past sixty years, culminating in the 1970s with the formulation
of the Renormalization Group method [12, 13]. The outstanding achievement of
this theory was to formally demonstrate that the main features of equilibrium
systems at the transition point are not sensitive to the details of microscopic
interactions between the constituents. Scaling laws and critical exponents rule
instead the phenomena [14], describing in a universal way properties of a large
variety of different systems.

Condensed matter materials are not the only ones to develop complex collec-
tive behavior. Recently, particular attention has been devoted to systems which
are far from equilibrium and undergo processes of aggregations, collective mo-
tion or complex pattern formations. Examples can be drawn from the living and
the non-living world spanning several order of spatial scales, just to name few of
them: self-propelled rods [15], nematic liquid crystals [16], molecular motors [17],
cells migration and bacteria [18–20], insects swarms [1, 21] fish schools [22, 23]
and flocks of birds [24–26].

All these systems display cooperative and collective macroscopic behaviors,
spontaneously emerging from local interactions in absence of leaders or external
driving forces. The main feature of these systems is that the action of one in-
dividual in the group is strongly influenced by the others, even if they do not
directly interact [27, 28]. The similar phenomenology with critical phenomena
raised statistical physics to the appropriate science for a quantitative description
of this behavior. Indeed, since widely different biological realms are involved,
the idea that it is possible to develop minimal models to reproduce common fea-
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1.2. The Vicsek model Chapter 1

tures comes into play. A relevant boost in this direction was given by Vicsek and
coworkers with the introduction of the well-known Vicsek model [29].

1.2 The Vicsek model

In their seminal paper [29], Vicsek and coauthors introduced a model for self-
driven particles, able to describe a novel type of phase transition and to reproduce
the phenomenology of various active and living systems. It can be interpreted
as the non-equilibrium analog of classical ferromagnetic models, with the main
difference that it is inherently dynamic [29]. Every particle is identified by a
velocity vector vi(t) that determines the direction of motion, and by a positional
vector ri(t) implementing the dynamical change of positions. The equations in
d = 3 for a system of N particles read [30],

vi(t+ 1) = R⌘

 
NX

j

nij(t)vj(t)

!
(1.1)

ri(t+ 1) = ri(t) + vi(t+ 1) (1.2)
|vi(t)| = v0 8 i, t . (1.3)

The rules are simple: at every time step the direction of motion of a particle is
determined by the average direction of agents in its neighborhood of radius rc,
with some random perturbation added, eq (1.1); the particles are driven by a
constant value of speed v0, eq (1.3), and the positions are updated straightfor-
wardly, eq (1.2) [29]. The first equation of the model describes a direct alignment
interaction between the velocity vectors, which is mediated by the connectivity
matrix nij(t). The entries of this matrix are 1 if the particles interact with each
other, while are zero if they do not. The noise operator R⌘ applies a source of
scalar noise, rotating randomly and normalizing its argument within a cone of
angle 4⇡⌘ around its original direction, with ⌘ 2 [0, 1] the amplitude of the noise
playing the role of temperature [30].

The main difference with equilibrium systems is that particles are allowed to
move and the alignment interaction can be seen as a "collision event" in which the
momentum is not conserved, namely the momentum of two particles before and
after the interaction is not the same. The implementation of this statement lies in
the constraint on the value of the speed v0, which describes the source of activity in
the system, injecting energy and sustaining the self-propelled motion at a particle
level [28]. A direct consequence of it is that the interaction matrix depends on
time nij(t): particles are free to move, producing a continuous reshuffling of the
interaction network. This condition violates a fundamental requirement to reach
equilibrium, namely the validity of detailed balance [31].

Despite these relevant differences, more analogies in methods and phenomenol-
ogy can be found with equilibrium statistical physics systems, rather than with
pure non-equilibrium phase transitions, as those involving absorbing states [32]
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Chapter 1 1.2. The Vicsek model

or interface growth models [33]. The scenario presented by the Vicsek model is a
kinetic phase transition occurring from states of disordered to ordered collective
motion, through a spontaneous symmetry breaking of rotational invariance. In
the limit of v0 ! 0, the model recovers the classical Heisenberg class, while for
finite values of velocity, the observed phase transition is that of Fig 1.1: it can
describe disordered swarms, aggregating and flocking events depending on the
thermodynamic phase. The order parameter is the normalized average velocity,
which plays the role of polarization,

� =
1

N

���
NX

i

vi

|vi|

��� . (1.4)

It measures the degree of collective order and global alignment: when the system
moves in a highly polarized pattern, its value is close to 1 (panel d of Fig 1.1),
while values close to zero reflect a disordered nature of the system (panel a of
Fig 1.1). The first studies of [29] reported a second-order phase transition in
noise or in density (panels e,f of Fig 1.1), however its nature has been debated
for a long time [34, 35]. Finally, recent works agree that, in the thermodynamic
limit, the phenomenology is described by a first-order transition with microphase
separation [30, 35].

(e)

(f)

Figure 1.1: Thermodynamic phases and polarization of the Vicsek model.

Panels a-d: snapshots of Vicsek model configurations from the high noise phase (a), to
low noise phase (d). The system passes from a disordered motion, to an aggregated state
and then performs ordered collective movement. Panel e,f: polarization for different sizes
of the system as a function of noise strength and polarization as a function of density
at fixed noise strength, respectively. Figure reprinted from [29].

Thanks to its simplicity and its ability in describing different phenomenologies
of active and living systems, the model became the paradigm of active motion.
In the last years, deep theoretical studies have been performed on it, ranging
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1.3. Correlation in biological systems Chapter 1

from hydrodynamic theories [36–38] to modified interaction rules [39]. And still,
it stimulates novel frontiers of theoretical investigations and applications to liv-
ing systems. Success lies in translating into a very simple physical model the
evidence that collective behavior emerges only due to local imitation between
agents. Certainly, this class of models assumes that imitation happens through
a direct interaction between particles’ velocities, while it has been demonstrated
that an effective similar mechanism can stem also from basic positional rules
[40, 41].

1.3 Correlation in biological systems

The Vicsek model paved the way for a quantitative analysis of collective behavior
in biological systems. The degree of polarization, the average speed, or the den-
sity distribution are examples of measurements of the system’s global properties
quantifying the emergence of collective motion’s patterns in the group. However,
the key characteristic of systems displaying cooperative behavior is the strong
correlation between elements. A necessary condition for a large number of indi-
viduals to behave as a whole is that information spans rapidly across the group
through the propagation of local interactions. The outcome is that the behavior of
one individual is statistically influenced by others even at large spatial distances.

A significant link between the world of biology and physics is therefore pro-
vided by the measure of correlation. This feature is always a product of local
interaction, namely when elements exchange information within short ranges in
a direct and instantaneous way (e.g. alignment interaction). On the other hand,
correlation can extend very far in space and time and it describes how much the
behavior of an element indirectly influences that of others in the group [42].

The correlation functions are the statistical physics tool measuring this phe-
nomenon, and they can be classified in static and dynamical. The former simply
indicates how much the behavior of a part of the system influences that of an-
other part, distant in space but at the same instant of time [42]. The dynamical
processes that connect the two different areas are averaged out over all the pos-
sible configurations realized by the system. If instead, the interest lies in the
mechanism of information propagation, the right tool to adopt is the dynami-
cal correlation function, which measures to what extent a part of the system is
correlated to another part at a different time [42].

More precisely, what is really interesting is the evaluation of the average fluc-
tuations around the mean behavior of the group. Common external and environ-
mental factors can produce global effects in the movement, giving trivial degrees
of correlation to the system. Once these effects are eliminated, it is possible
to evaluate how fluctuations influence each other on large temporal and spatial
scales, thus producing a reliable measure of correlation. We therefore better refer
to connected correlation functions, which are the principal quantities to identify
properties of collective behavior.

We are interested in the degree of freedom of velocity, for which the fluctuation
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Chapter 1 1.4. A paradigmatic example: birds flocks

Figure 1.2: Flocks velocities and fluctuations. Two dimensional projection of a
real flock of size L = 36.5m. Panel a: full velocity vectors of all the individuals, they all
point in the same direction showing a high degree of global order. Panel b: fluctuations
of the velocities computed according to eq (1.5), two large correlated domains are clearly
visible. Figure reprinted from [43].

of one individual i at time t, with respect to the average of the group, is defined
as [42],

�vi(t) = vi(t) � 1

N

X

k

vk . (1.5)

This quantity represents the building block for the calculation of the correlation
functions that, in its static version, reads as [42],

C(r) =

P
N

ij
h�vi(t) · �vj(t)�(r � rij)i
P

N

kl
�(r � rkl)

, (1.6)

where, for a given particles pair i and j, the product �vi(t) · �vj(t) measures the
degree of similarity between the corresponding fluctuations. Additionally, since
biological systems are clearly out-of-equilibrium, a statistical ensemble over which
performing averaging operations is not attainable, therefore the mutual distance is
used to perform spatial averages over the number of particles at the same distance.
Finally, everything is averaged over the trajectories’ evolution [42]. The power
of the connected correlation functions is to capture connections that go beyond
the simple global behavior of the system, and to distinct collective properties
as emergent self-organized phenomena from externally driven processes. The
knowledge on animal behavior found relevant progress by the use of these tools
on experimental data of bird flocks and midges swarms, the biological systems we
are going to focus on.

1.4 A paradigmatic example: birds flocks

One of the most studied biological systems composed of groups of animals is rep-
resented by bird flocks. Several works have been dedicated to their investigation
from a theoretical and an experimental point of view [25, 44, 45]. Recently, novel
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1.4. A paradigmatic example: birds flocks Chapter 1

stereometric and computer vision techniques allowed large-scale experiments on
starling flocks containing up to 2600 birds. The analysis consisted in the 3D

reconstruction of individuals’ trajectories, thanks to which an original character-
ization of the system has been possible [24, 46–48]. The main result of the first
data acquisitions concerned the nature of the alignment interaction among birds
and the spatial organization of the flock. In [49], authors discovered that star-
lings interact with 6 � 7 neighbors, exhibiting topological interactions instead of
a metric rule. Moreover, density does not play the role one would expect for an
equivalent system with metric interaction [49].

In panel a of Fig 1.2, the two-dimensional projection of a flocking event is
reported [43]: the global order of the system is visible, all the velocity vectors are
polarized along a well-defined direction reflecting a polarization of � ' 0.9. The
computation of individuals’ fluctuations is shown in panel b of the same figure,
from which the presence of two major correlated domains emerges. The spatial
connected correlation function (1.6) computed on this data, properly measures
the extension of these correlated regions and reveals that they are much larger
than the typical interaction distance. Panels a and b of Fig 1.3 present the
connected correlation functions of the full velocity vector and of the speed of the
birds, respectively. For very short distances the degree of correlation is relevant
and positive, then it decays till crossing the zero at a length scale playing the role
of the correlation length ⇠. Due to the definition (1.5), this quantity measures
the size of correlated domains, namely when fluctuations become anti-correlated
since summing pairs of individuals that fluctuate in the opposite way with respect
to the mean direction [43] [42].

The same data elaboration has been done on several different flocks, from
which the correlation length has been extrapolated and plotted against the linear
size of the system L. Panels c and d of Fig 1.3 reveal that this quantity scales
with the linear size ⇠ ⇠ L, both for the velocity and the speed [43]. The shown
phenomenology recalls the scale-free behavior of a statistical physics model [43],
for which there is no typical length scale in the system rather than the system’s
size itself. Moreover, in the limiting case of an infinite physical system with
L ! 1, also the correlation length extends indefinitely ⇠ ! 1, reflecting the
maximum degree of correlation.

This evidence indicates that elements within a flock are able to influence each
other at very large distances, regardless of the system’s size. A possible biological
interpretation of the directional scale-free behavior is that strong correlations
achieve a fast collective response to external perturbations. With this, we mean
the way the group as a whole reacts to its environment. In analogy with statistical
systems, the maximum degree of correlation could be linked to high susceptibility,
thus yielding a significant adaptive advantage against external predators [43, 50].

The phenomenon appears not unusual from a physical perspective and we can
understand it looking at a reference equilibrium system: the Heisenberg ferro-
magnet in the deeply polarized regime [51]. The main ingredients of a flocking
model are the alignment interaction among the velocities, and the consequent ro-
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Chapter 1 1.5. Midges swarms: collective behavior in absence of collective order

Figure 1.3: Spatial correlation functions of flocks’ velocities and speeds.

Panels a,b: static correlation function of a flocking event for the velocity and for the
speed, respectively. The first one, computed following eq (1.6), reflects how much the
fluctuations of the orientations are correlated. The intercept point is a measure of
correlation length ⇠, namely the size of correlated domains. The C(r) for the speed of
panel b, is computed with the same formula of eq (1.6) but using the moduli of velocities.
Panels c,d: extrapolation of the correlation length for different flocks, plotted against
the size of the system. The linear trend manifests a scale-free behavior for both the
degrees of freedom. Figure reprinted from [43].

tational symmetry, both affecting also Heisenberg’s spins. In the low-temperature
phase, the equilibrium system spontaneously breaks the symmetry and chooses
a particular direction of polarization. In this phase, modes of fluctuations that
cost zero energy and that are scale-free emerge, and they are properly called the
Goldstone’s modes [52]. Even if flocks of birds are clearly out of equilibrium,
under reasonable conditions, we can affirm that this general theorem can provide
a natural explanation for their velocities’ scale-free behavior [42, 43].

Different is the situation for the flocks’ speed. This is a scalar quantity not
subject to any continuous symmetry, therefore Goldstone’s theorem cannot be
invoked in its case. The explanation of this experimental evidence requires more
subtle and novel investigations which have been conducted in [53, 54] and com-
pleted in [55]. A summary of the discoveries can be found in chapter 9 since the
author of this manuscript contributed to the achievement of the results.

The broken symmetry phase is not the only situation in which a system can
manifest a diverging correlation length. A typical scenario is in fact represented
by the critical point of an ordering phase transition, for instance, when the tem-
perature in the Heisenberg model reaches its critical value Tc [51]. This phe-
nomenology obviously does not apply to the case of deeply polarized flocks, but
it becomes useful when studying other strong correlated biological systems that
live in a disordered but correlated phase, namely swarms of insects, the main
players of our dissertation.
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Figure 1.4: Experiment on natural swarms. Panel a: a natural swarm of midges
(Cladotanytarsus atridorsum, Diptera:Chironomidae), in Villa Ada, Rome. Panel b:
three dimensional reconstruction of each individual’s trajectory for the same event of
panel a. Figure reprinted from [1].

1.5 Midges swarms: collective behavior in absence

of collective order

When thinking about collective behavior in biological systems, it is natural to
imagine scenarios of all individuals of a group acting in a synchronized way and
moving coherently. However, collective motion is only one of the possible mani-
festations of collective behavior, since the true hallmark relies on high correlation
between the individuals, for which global order is not a necessary condition. An
example confirming this statement is given by the biological system of midges
swarms.

Several species of midges form swarms in the natural environment for repro-
ductive purposes: groups are composed of male individuals which dance above
natural landmarks to attract females (Fig. 1.4) [1, 56]. Their movement appears
completely disordered and erratic, as if there were no interaction among them
but only between the insects and the marker. However, a quantitative analysis
of experimental data acquired with the same technology used for birds flocks,
revealed that this is actually false [1].

The first result is achieved by the computation of the system’s polarization.
The definition of eq (1.4) gives an average value of � ' 0.21, confirming the
intrinsic disordered nature of the swarming motion [1]. The second important
evidence is shown by the calculation of the connected correlation function (1.6) of
midges’ velocities. Results are reported in Fig 1.5 for three different swarms. The
exhibited trend is similar to the one observed for birds flocks: at short distances,
there is a strong positive correlation, then it decays at larger distances crossing
the zero at the correlation length ⇠ [1]. This latter quantity happens to be 4 times
larger than the mean inter particles distance r1, affirming that, contrary to what
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expected, also insects in a swarm are strongly correlated.

⇠

Figure 1.5: Static correlation functions of natural swarms. Black dots and
lines stand for the static correlation functions computed on experimental data of three
different swarms. For short distances the correlation is relevant and positive and then
it crosses the zero at the correlation length ⇠. The red lines show the result of the
same calculation on numerical data of non-interacting harmonic swarms: interaction is
necessary to reproduce strong correlation. Figure reprinted from [1].

In the previous section, we explained that correlation is a product of local
interaction. This is indeed verified for this system: in Fig. 1.5, the C(r) are
compared to those of simulated non-interacting swarms (in red), composed by
particles performing a three-dimensional random walk in a harmonic potential
[1]. When the interaction is switched off, the correlation is null. Therefore, to
explain these experimental data, it is necessary to suppose a local alignment
interaction among the individuals, like that modeled for flocks. Certainly, there
could be other different ways of modeling interaction that go beyond a direct
alignment force [57] and, besides that, single individuals feel attracted by the
landmark. It has been shown that introducing this confining interaction does not
change the behavior of the velocity correlation function [1], but we will go back
to this topic from a theoretical point of view in chapter 9.

Additional analyses have also provided more in-depth evidence on the type of
interaction characterizing the system: denser swarms are more correlated. This
fact can be explained by referring to a metric short-range interaction: midges
tend to align their direction of motion to those of the neighbors within a fixed
interaction radius rc [1]. Consequently, the density or the rescaled mean first
neighbor distance x = r1/rc, can be assumed as the control parameter, since it
regulates the amount of correlation and then the state of the system.

1.6 Near-criticality of natural swarms

The application of statistical physics to strong correlated biological systems was
recently powered by the hypothesis that some of them can be poised close to
a critical point. Namely, special points of parameters space that provide large
correlations and high susceptibility [58, 59]. From a biological point of view, a
near-critical setting could provide robustness against external perturbations and
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agility in collective response [59]. To support this statement, relevant experimen-
tal evidence has been recognized also in natural swarms of insects [2].

A more extended analysis of spatial correlation functions, like those of Fig
1.5, allowed an evaluation of the correlation length ⇠ for swarms of different
sizes, from N = 100 to N = 600 individuals [2]. The result is that this system
shows similar behavior to that of bird flocks, confirming a scale-free trend of
the correlation length with the system’s size ⇠ ⇠ L (panel b of Fig 1.6) [2]. If,
on the one hand, this phenomenon for flocks finds a reasonable explanation in
the picture of Goldstone modes, on the other this appears not applicable to the
disordered nature of the swarming behavior, for which a different mechanism has
to be invoked.

The degree of correlation is measured by the correlation function, but also by
its integrated version that gives a proxy of the standard susceptibility,

� =
1

N

NX

i 6=j

�vi · �vj ✓(⇠ � rij) . (1.7)

Experimental values of this quantity confirm a relevant extent of correlation in the
biological system and show an increasing trend with the system’s size, panel a of
Fig 1.6. Both these pieces of evidence can be explained by a physical mechanism.

Let’s assume that the phase of the system is regulated by a control parame-
ter x, which determines a bulk correlation length ⇠bulk. Computing ⇠ for many
system’s sizes at the same value of x, one would observe a linear growth of it as
long as L < ⇠bulk, and then a saturation for the opposite condition L > ⇠bulk. The
first regime could explain an effective scale-free behavior, which happens only for
small enough sizes. However, this scenario does not fit with experimental data:
the quantities � and ⇠ do not show levels of saturation for very large L. Moreover,
it seems unlikely to assume that different swarms are regulated by a single value
of control parameter.

A more reasonable mechanism provides that natural systems are able to tune
x with respect to the linear size L, such that they always maintain the maximum
degree of correlation [2]. We are basically describing a process of finite-size scaling
of a near-critical regime, in which, calling xc the critical point of a phase transition,
the following relations must hold [60],

x ⇠ xc +N
�1/3⌫ (1.8)

� ⇠ N
�/3⌫ (1.9)

⇠ ⇠ L . (1.10)

Here � and ⌫ are the exponents describing the finite-size divergence of the sus-
ceptibility and the correlation length, respectively [51].

The experimental data of Fig 1.6 support this reasoning, and a further con-
firmation arrives by numerical simulations of the Vicsek model (1.1) (1.2). The
disordered sparse phase of this active theory is able to reproduce the static phe-
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Figure 1.6: Comparison between natural swarms and Vicsek model. Top: ex-
perimental data, each dot represents a different swarm. Bottom: numerical simulations
of the Vicsek model in the near-critical disordered phase. Panels a, e: susceptibility as
a function of N ; panels b, f: correlation length as a function of L; panels c, g control
parameter (mean first interparticle distance) x as a function of 1/N ; panels d, h: sus-
ceptibility as a function of the control parameter. The comparison confirms a scale-free
behavior of the natural system, following arguments of finite-size scaling in a near crit-
ical regime. Figure reprinted from [2].

nomenology of swarms, not only from a qualitative point of view but also from a
quantitative one. A finite-size scaling approach has been performed on numerical
simulations in the near-critical regime, and the calculation of � and ⇠ is shown
in panels e-h of Fig 1.6. The comparison with experimental data is straightfor-
ward, confirming that a near-critical phase of the Vicsek model well reproduces
the scale-free behavior of swarms’ static quantities [2].

These results support the hypothesis that a description of natural swarms in
terms of quasi-critical active matter models is legitimate [2]. From a theoretical
perspective, they also suggest that tools like field theories and scaling laws, typical
of critical phenomena, could be successful in explaining additional experimental
evidence on the same system. Our attention wants to focus on the dynamical
properties of natural swarms that still urge a theoretical explanation. However,
before introducing the experimental results that stimulated our research, we need
to explain some fundamental topics of classical statistical field theory, namely the
scaling hypothesis.

1.7 Theory of dynamical scaling

The scaling hypothesis was formulated to study critical phenomena in equilib-
rium statistical systems [4, 14]. Firstly introduced as a plausible conjecture, it
found later a solid theoretical demonstration within the Renormalization Group
framework [12, 61]. The core of the idea is that, when a system undergoes a
second-order phase transition and it approaches the critical point, the divergence
of the correlation length ⇠ is the only one responsible for singularities in other
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statistical physical quantities [14, 62]. Scaling laws are the fundamental tool that
allows predictions on these diverging elements. They have been mathematically
expressed in several ways and formulated for static and dynamical critical phe-
nomena [4, 14, 63].

We start studying the statics of a system close to a critical point, where
the correlation length ⇠ is much larger than the microscopic lattice spacing a.
Under the additional condition of exploring large spatial scales r � a, the scaling
hypothesis states that the correlation length is the only relevant length scale of
the system and it is the quantity that determines the singular behavior of all
the others [14, 64]. Moreover, considering for simplicity a one-dimensional order
parameter  , the hypothesis states that its spatial correlation function has to be
a homogeneous function of the ratio r/⇠ [64], namely:

C(r) = h� (r)� (0)i = r
y
g(r/⇠) (1.11)

where � (r) =  (r)�h i, y is an exponent that needs to be determined and g is
a scaling function [64]. This latter does not have to present singularities, except
exactly at Tc and in the thermodynamic limit. Therefore, for finite r, the function
does not show discontinuities but changes smoothly along with all the thermody-
namic phases. A direct consequence of this hypothesis is the scaling invariance of
the functions at criticality when ⇠ ! 1, which leads to the characteristic power-
law of correlation. It gives also important information about relations linking the
static critical exponents, e.g. y = 2 � d � ⌘ with ⌘ the anomalous dimension of
the field [14, 63].

The static hypothesis directly reflects on the dynamical behavior of the sys-
tem. All the information to describe it is contained in the dynamical correlation
functions and in the characteristic relaxation of the order parameter. At the core
of the dynamical extension, there is the concept that the correlation length de-
termines the relaxation time of the critical quantities: the system is as spatially
correlated as it is temporally [4, 64]. To better formulate the discussion we need
to introduce the dynamical correlation function of the order parameter,

C(r, t) = h� (r, t)� (0, 0)i (1.12)

that, in Fourier space, is directly connected to the static one via the sum rule [61]

C(k) =

Z
d!

2⇡
C(k,!) . (1.13)

The dynamical scaling hypothesis then formulates in two major assumptions [4, 5]:

1. the correlation function is a homogeneous function of the product k⇠,

C(k,!) =
2⇡

!c(k)
C(k)f

✓
!

!c(k)
, k⇠

◆
(1.14)
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2. !c(k) is the characteristic frequency, the principal quantity characterizing
the relaxation of the dynamics. This is also a homogeneous function of the
product k⇠,

!c(k) = k
z⌦(k⇠) . (1.15)

The last equation defines z, the dynamical critical exponent, whose value discrim-
inates between different dynamical universality classes [61]. Additionally, we can
translate eq (1.15) in the time domain, obtaining

⌧c(k) = k
�z
g(k⇠) or also ⌧c(k) = ⇠

z
g
0(k⇠) (1.16)

with ⌧c the characteristic time scale, namely the inverse of the characteristic
frequency [5]. The quantities f,⌦, g and g

0 are all generic scaling functions.
Halperin and Hohenenberg provide a standard definition of the characteristic

frequency in [5]: !c is the quantity which realizes that half of the total integrated
area of the dynamic correlation functions is included in the interval �!c 6 ! 6 !c,

R
!c

�!c

d!

2⇡C(k,!)
R +1
�1

d!

2⇡C(k,!)
=

Z
!c

�!c

d!

2⇡

C(k,!)

C(k)
=

1

2
(1.17)

Inserting here the definition (1.14), a relation for the shape function f directly
follows: Z 1

�1

dxf(k⇠, x) =
1

2
(1.18)

where x = !/!c. In time domain it reads,
Z 1

0

dt
1

t
sin(t/⌧c)f(k⇠, t/⌧c) =

⇡

4
(1.19)

from which it is possible to extrapolate the value of ⌧c just knowing the normalized
dynamical correlation function [3].

The power of this hypothesis is to state that all the dependence on control
parameters and microscopic details enter in the dynamical correlation functions
only through the correlation length, especially determining its temporal decorrela-
tion. What really matters to determine the long-wavelength and small frequency
behavior is the dimension of space, the dimension of the order parameter, and the
existence of symmetries and conservation laws that identify a specific dynamical
universality class and therefore the value of the exponent z [64]. The homogene-
ity of the shape functions guarantees the scale invariance property at the critical
point also at a dynamical level. This is the main core of the concept of uni-
versality and of the Dynamical Renormalization Group’s idea, properly studying
how dynamical laws change under a rescaling of space and time [61]. Within this
framework, we will be able to provide proof of the dynamical scaling hypothesis
(see chapter 2).

An immediate consequence of the dynamic scaling is that correlation functions
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of critical systems, described by different sets of parameters, collapse on the same
shape function once space is measured in units of correlation length and time in
units of characteristic time scale [5]. This can be understood considering

k⇠ = b (1.20)

in the correlation function C(k,!), implying:

C(k,!)

C(k)
=

2⇡

kz⌦(b)
f

✓
!

kz⌦(b)
, b

◆
(1.21)

thus,
C(k,!)

C(k)
= 2⇡k�z

h(!k�z) (1.22)

where h is another scaling function that absorbs the constant terms. In the time
domain, this finally reads:

C(k, t)

C(k)
= Ĉ(tkz) (1.23)

where Ĉ(tkz) represents the shape function on which the collapse realizes, pro-
vided that time is rescaled with the proper dynamical critical exponent z. This
property can be used as proof of the validity of dynamical scaling in a system,
and indeed we are going to make extensive use of it in the following.

1.8 Experimental evidence of dynamical scaling in

natural swarms

We can now go back to the system of natural swarms for the last experimental
evidence we are going to show at this stage. In a more recent work [3], the
investigation focuses on the system’s dynamical properties, analyzed by means of
the spatio-temporal velocity correlation functions both from an experimental and
a theoretical perspective. Assuming isotropy in the 3d Fourier momentum space,
these quantities have been calculated as,

C(k, t) = h 1
N

X

i,j

sin (krij(t))

(krij(t))
�v̂i(t0) · �v̂j(t0 + t)it0 (1.24)

where k is the wave-number and the fluctuations of the velocity are always com-
puted according to eq (1.5) and then normalized to,

�v̂i(t) =
�vi(t)q

1
N

P
k
�vk(t) · �vk(t)

. (1.25)

The positions are expressed in the center of mass reference frame and the mutual
distance rij(t) stands for rij(t, t0) = |ri(t0)� rj(t0 + t)|. Additionally, everything
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Figure 1.7: Dynamical scaling in natural swarms. Panel a: normalized dynamical
correlation functions of 5 different swarms of different size. Panel b: same functions of
panel a, when time is rescaled t ! tkz, with k = 1/⇠ and z = 1.2 the value that realizes
the best collapse. Panel c: relaxation time ⌧k against wave-number, the slope of the
linear fit gives z = 1.12. Figure reprinted from [3]

is averaged on time t0,

h it0 =
1

Tmax � t

Tmax�tX

t0=1

. (1.26)

As we already mentioned, this correlation function measures how the behavior of
one insect at time t0 influences that of another element distant rij in space, and
t in time. In panel a of Fig. 1.7 curves are reported for several swarms: they are
normalized at the value Ĉ(k, t) = C(k, t)/C(k, 0) and computed at wave-number
equal to k = 1/⇠. The correlation length is extrapolated according to the static
analysis explained in the previous section.

These quantities are calculated on experimental data of different natural swarms,
therefore each function embodies all the microscopic details and parameters of the
system under consideration. In absence of general laws, all these details could
affect the observed dynamics in terms of the shape of the dynamical correlation
functions and dependence on the typical decay rate ⌧k. However, the quasi-critical
nature of the system discovered in [2] suggests referring to universality also at the
dynamical level, testing the validity of the dynamical scaling hypothesis. There-
fore, assuming that the characteristic time scale behaves like ⌧k = k

�z
g(k⇠) for

fixed k⇠ = 1, time has been rescaled in tk
z searching for the aforementioned char-

acteristic collapse of the dynamical correlation functions. In panel b of Fig. 1.7
one can appreciate that this happens to be verified by using a particular value of
the exponent, namely z = 1.2 [3]. This result can be interpreted as a surprising
proof of the validity of the scaling hypothesis in the out-of-equilibrium biological
system of natural swarms.

To confirm this evidence, from the same functions the characteristic time scale
⌧k has been extrapolated according to eq (1.19) and plotted against k, which
simply represents the inverse of the correlation length. In the plane (log k, log ⌧k),
the relation between these two quantities (1.16) has to be linear and the slope of
the line represents an estimate of the dynamical critical exponent. From a direct
linear fit of experimental data z ' 1.12 is obtained (panel c of Fig. 1.7 [3]).

This result is remarkable for two reasons: first, it is not obvious that a bi-
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ological system satisfies a property formulated for equilibrium standard critical
systems; second, the value of the exponent z is original of the system since there
are no equilibrium or out-of-equilibrium models that can predict such a value. In
the next chapters, we will study a theoretical model that reproduces qualitatively
and quantitatively this dynamical behavior of natural swarms.

1.9 The core of the thesis: two crossovers to ex-

plain the swarming behavior

The Vicsek model (VM) is the first model we will investigate to explain experi-
mental findings on the dynamical scaling in natural swarms. Its main ingredients,
alignment force, and self-propulsion proved to be necessary to reproduce the scale-
free behavior of this system [2]. For these reasons, its critical dynamics has been
studied looking for consistency also on dynamical properties.

In [3] a numerical study of the model in d = 3 and in the near-critical disor-
dered phase was carried out. Following a finite-size scaling analysis, with methods
that we are going to extensively explain in the next sections, the authors verified
that the model satisfies the dynamical scaling hypothesis showing the character-
istic collapse of the velocity’s correlation functions [3]. This feature is reported in
Fig 1.8, from which we deduce that the value of the critical exponent was found
to be z ' 2.

Figure 1.8: Dynamical scaling in the Vicsek model. Panel d: Normalized dy-
namical correlation functions in the near critical regime, evaluated at k = 1/⇠ and for
sizes N = 128, 256, 516, 1024, 2048. Panel e: same functions of panel d, when time is
rescaled t ! kzt using z = 1.96, value extrapolated from the linear fit of panel f: relax-
ation time ⌧k against wave-number. Reprinted from [3].

In contrast to the good agreement reached for the static behavior, the dy-
namical critical exponent of the VM appears quite far from the value discovered
in natural swarms z ' 1.2. What is more, this numerical estimate suspiciously
recalls the universality class typical of equilibrium dissipative dynamics [61].

This result opened several questions about the origin of the out-of-equilibrium
nature of the VM. The emergence of aggregates and heterogeneity at the edge
of the phase transition is a clear out-of-equilibrium manifestation of the model.
However, the above analysis of finite-size scaling to extrapolate critical exponents
requires homogeneous configurations, in which quantitative non-equilibrium ef-

16



Chapter 1 1.9. The core of the thesis: two crossovers to explain the swarming behavior

fects are not trivial. The dynamical scaling with z = 2 seemed to confirm that
the VM in a continuous phenomenology belongs to an effective equilibrium uni-
versality class, suggesting, in a misleading way, that activity does not play a
relevant role in determining the value of the model’s dynamical critical exponent.

To investigate this issue, we study here the hydrodynamic theory of the VM
under an incompressibility constraint. This theory was introduced in [6], where
an RG calculation was also performed. The result is that the out-of-equilibrium
critical dynamics is described by a stable fixed point characterized by z = 1.7, a
value different from the one found numerically for the original microscopic model
[3]. At that stage, the constraint of incompressibility could be addressed as the
only relevant difference between the theoretical calculation and the numerical
result.

With a deeper study on the hydrodynamic theory, we reveal that these appar-
ent contradictions are solved by a dynamical crossover between the equilibrium,
z = 2, and the out-of-equilibrium universality class with z = 1.7. The main
players are the level of the activity and the correlation length of the system. If
these quantities are really large, out-of-equilibrium effects can be quantified by
the slower relaxation. On the contrary, if the effective activity or the size is small,
the equilibrium critical dynamics rules all the physical scales even if the system
is microscopically active. Additionally, by performing numerical simulations on
the original VM in d = 3, we are able to demonstrate this crossover phenomenon
also in compressible but homogeneous systems.

With this study, we unveil the importance of crossovers between universality
classes in application to natural and finite-size systems. We prove that incom-
pressibility does not affect the value of the dynamical critical exponent and that
this latter can be used to quantify out-of-equilibrium effects in active homogeneous
systems. Finally, we demonstrate that the effect of self-propulsion on critical dy-
namics is to lower the value of the exponent with respect to the equilibrium case
[7].

An additional important experimental evidence stimulated the second part
of this project. It concerns the shape of the dynamical correlation functions of
natural swarms. What emerged from the study of [3], is that swarms show an
underdamped dynamical decay, which is not compatible with the dissipative and
exponential relaxation of the VM. The difference is evident when computing the
relaxation form factor:

h(t/⌧k) =
Ċ(t/⌧k)

C(t/⌧k)
(1.27)

where ⌧k is the relaxation time extrapolated from correlations of Fig 1.8, and
1.7. For t ! 0, the limit of this function is equal to one when the decay is
purely exponential, while it is equal to zero for higher-order dynamical rules. Fig
1.9 shows the comparison between Vicsek and natural swarms: the dynamics of
insects is different from the one of VM, the former reflecting more non-dissipative
dynamics rather than a dissipative one [3].
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Figure 1.9: Dynamical relaxation in VM and natural swarms. Panel a: com-
parison of the dynamical correlation functions of swarms and of the VM in semi-log
scale; the latter have a linear decay, while the former reflect a non-exponential behav-
ior. Panel b: form factor h(x) computed for all the natural and numerical functions:
it goes to zero for small times confirming a non-dissipative dynamics for real swarms,
while it goes to 1 for the VM as for purely-dissipative dynamics. Panel c: histograms
of h0 = h(x = 0.1), the value of the form factor for very small times; for the dissipative
dynamics is peaked on 1, while it assumes small values for the natural system.

From a quantitative and a qualitative point of view, we conclude that the
VM is not suitable to reproduce the dynamics of this natural system. Our main
goal is therefore to find a theoretical model able to rationalize these experimental
findings. The model we propose is called the Inertial Spin Model (ISM), whose
equations we report here for clarity [8]:

dvi

dt
=

si ⇥ vi

�

dsi
dt

=
vi

v0
⇥
 

J

v0

X

j

nijvj � ⌘

v0

dvi

dt
+ ⇣

i

!

dri

dt
= vi .

(1.28)

The main difference with the VM is already appreciable: the dynamics is of second
order in the velocity, being mediated by an additional variable si called spin that
is also dissipated by a friction ⌘. This is the generator of the internal rotational
symmetry of the velocity and it is directly connected to the radius of curvature
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of the particles.
We develop the hydrodynamic theory related to this microscopic model and

we study it under a fixed network approximation. The aim is to understand, sepa-
rately from the activity, how the introduction of inertial dynamics with dissipation
can affect the dynamical universality class and the critical exponent of a system.
We discover that also this equilibrium theory is characterized by a crossover. The
phenomenon involves an unstable RG fixed point, reflecting a conservative critical
dynamics with z = 3/2 and a stable fixed point with a dissipative dynamics and
z = 2 [9, 10]. In the asymptotic limit, relaxation is dissipative, but thanks to the
same mechanism of the previous crossover, weakly damped and limited systems
can experience a faster relaxation with smaller critical exponent. To this aim,
spin’s effective friction and size of the system are paramount to determine its
critical macroscopic behavior. Moreover, ISM well reproduces the underdamped
decay of experimental correlation functions.

Even though these studies do not achieve fully consistent results with exper-
imental evidence of natural swarms, they are crucial to unveil the crossovers of
equilibrium and out-of-equilibrium theories of active matter. The main achieve-
ment is that both the phenomena describe processes that go in the right direction
to explain anomalous relaxation in natural swarms: activity and inertial dynam-
ics have separated effects in lowering the value of the dynamical critical exponent
with respect to dissipative dynamics. The combination of these two ingredients
will finally fill the gap on the value of the dynamical critical exponent, thus rec-
onciling theory and experiments.

Before getting to the crux of the matter, we reserve the next chapter to meth-
ods and analytical tools necessary to understand the study of models’ critical
dynamics.
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Chapter 2

The Dynamical Renormalization
Group

In this chapter, we turn our attention to time-dependent equilibrium critical phe-
nomena, i.e. to the dynamics of systems at the critical point of a second order
phase transition. We present methods and tools, useful to understand the techni-
cal part of the subsequent chapters mostly relying on basic concepts of statistical
field theory. We start with a section dedicated to the passage from a microscopic
description to a coarse-grained mesoscopic version of the dynamical evolution of
a system, necessary to understand the long-time and large-scale physics of a crit-
ical phase. Thus we introduce the technique of the Dynamical Renormalization
Group (DRG) and its connection with dynamical scaling properties.

This branch of theoretical physics raised in the ’70s after the fruitful advance-
ment of the Renormalization Group technique to study the statics of critical
systems [12, 13, 65]. Leading representatives were Halperin, Hohenberg, and Ma,
from whose works we draw the material for the following discussion [61, 64].

2.1 From microscopic to mesoscopic equations of

motion

When studying the statics of a critical phenomenon, one is mainly interested in
the properties of the equilibrium distribution of the system’s configurations: the
problem of statics thus reduces to a problem of statistics and its consequences.
On the contrary, the study of the dynamics is much more complicated: one wants
to describe the evolution in time of these system’s configurations, how those reach
the stationary probability distributions, and how the system reacts to external
perturbations [64]. A more varied scenario spreads out in different models that
distinguish for symmetries, conservation laws, and slow quantities involved, all
constructed with the final purpose to study the time variation properties of large-
scale fluctuations of the system [61].

Crucial players are the slow modes, namely those quantities that have a very
long relaxation time. Certainly, the order parameter is always included in this set
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and it is easy to understand why: when a system is close to a critical point, it is
composed of large correlated domains in which most of the spins have the same
orientations, thermal agitations usually flip some of them, but the time to reverse
the entire patch is the longer the larger the correlated areas are. This phenomenon
is called critical slowing down and it can affect other quantities as those conserved
[66]. The purpose of the critical dynamics theory is to explain how these long
relaxation time behaviors come out in terms of small-scale interactions.

To study the dynamics, we need to consider equations of motion for the time
evolution of the system. If we want to discover its long-wavelength behavior, it
is useful to carry out a description in terms of fields that we can define starting
from a set of microscopic variables and coarse-graining them, namely:

 (x, t) =
1

V (x)

X

i2V (x)

�i(t) (2.1)

where �i(t) are the microscopic degrees of freedom belonging to the small volume
V centered in the point space x. For this operation to be meaningful, the linear
size l corresponding to the volume must be larger than the microscopic length
scale l � a and smaller than the size of correlated regions l ⌧ ⇠. This operation
identifies the field  (x, t) that, for simplicity, we are here considering as the order
parameter of one dimension.

As we mentioned before, other coarse-grained fields can also participate as slow
modes to the critical dynamics of the system, therefore we can imagine collecting
all these quantities in a vector  a, indicating with the index a the identity of the
field. Writing down mesoscopic fields from the microscopic degrees of freedom
certainly has the consequence of losing some information on the system itself: the
limit of the knowledge is fixed by the size of the coarse-grained volume l which
is better indicated in momentum space as the natural cutoff ⇤ = (2⇡)/l. This
means that fluctuations on scales larger than the cutoff are neglected and that
the Fourier transform of the fields can be computed as,

 
a(x, t) =

Z

|k|<⇤

d
d
k e

ik·x
 

a(k, t) . (2.2)

Once determined the relevant fields, we can write down the respective equa-
tions of motion, also called the kinetic equations. They are generally composed by
two different parts: i) the reversible forces F a

rev
[ ](x, t), namely those terms repre-

senting the deterministic evolution of the dynamics and describing a time-reversal
regular motion, they are also called mode-coupling terms; ii) the dissipative forces,
that are the responsible for time-irreversible effects [67]. The latter originate from
the random thermal agitations over the length scale of the coarse-graining, and
appear in the equations of motion with decay rates and noises of usual thermal
baths of stochastic dynamics [64]. A prototype equation then reads,

@ 
a(x, t)

@t
= ��a

0

@H
@ a(x, t)

+ F
a

rev
[ ](x, t) + ⇣

a(x, t) , (2.3)

22



Chapter 2 2.1. From microscopic to mesoscopic equations of motion

where the last term is a Gaussian white noise satisfying h⇣a(x, t)i = 0 with
variance

h⇣a(x, t)⇣b(x0
, t)i = 2T�a

0�
d(x � x0)�(t � t

0)�ab , (2.4)

the amplitude �a

0 is called kinetic coefficient. Moreover H corresponds to an effec-
tive Hamiltonian (properly an effective free-energy), that identifies the stationary
state at which the system relaxes when it is at the equilibrium. It can be obtained
imposing that,

@H
@ a(x, t)

= 0 . (2.5)

This happens because the thermal bath of eq (2.3) ensures the achievement of an
equilibrium Boltzmann probability distribution, whose weight is represented by
the effective Hamiltonian itself,

P [ ] ⇠ e
��H[ ] (2.6)

assuming kB = 1 and � = 1/T . Another important consequence of being at
equilibrium is the validity of the Fluctuation Dissipation Theorem [68], thanks
to which the amplitude of the noise and the damping term depends on the same
quantity �a

0, as expressed in eq (2.3). On the contrary, in out-of-equilibrium
systems these two quantities become independent and stochastic fluctuations de-
couple from dissipation.

The deterministic part of the dynamics can be expressed in terms of Poisson-
brackets between the fields and the Hamiltonian, as in the classic Heisenberg
representation [67],

F
a

rev
[ ](x, t) = { a

,H[ ]} (2.7)

that can be expanded as,

{ a
,H[ ]} =

Z
d
d
x
0
X

b

�H
� b(x0)

{ a(x), b(x0)} . (2.8)

From this last expression it is visible that the Poisson-brackets between the slow
fields crucially determine the reversible dynamics of the system. Calling indeed
{ a(x), b(x0)} = Q

ab(x,x0), we have

F
a

rev
[ ](x, t) =

Z
d
d
x
0
X

b

�H
� b(x0)

Q
ab(x,x0) . (2.9)

However, this last expression is not totally complete. To understand better the
onset of these reversible terms and how to explicitly compute them, we can con-
sider a zero temperature dynamics which simply reads,

@ 
a(x, t)

@t
= F

a

rev
[ ](x, t) (2.10)

The probability distribution associated to this process has to fulfill the stationary
condition @tP = 0 that, passing through the related Fokker-Planck equation [69],
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becomes
@

@ a
[F a

rev
[ ]e��H[ ]] = 0 . (2.11)

It can be shown that eq (2.9) does not solve the last relation but that an additional
term is needed to correctly fulfill it, namely:

F
a

rev
[ ](x, t) =

Z
d
d
x
0
X

b


�H

� b(x0)
Q

ab(x,x0) � 1

�

�Q
ab(x,x0)

� b(x,x0)

�
. (2.12)

However, if for the hydrodynamic fields considered it happpens that

�Q
ab(x,x0)

� b(x,x0)
= 0 , (2.13)

and this will be always our case, we recover the simple dynamics given by (2.9).
Finally, a last comment on the relaxation term is in order. In eq (2.3) we

consider a pure dissipative mechanism described by the kinetic coefficient �a

0: in
absence of reversible forces, starting from some initial conditions, it describes
an exponential decay to the stationary state of the field  

a. In fact, another
situation has to be taken into account: if  a indicates a field that is also a
conserved quantity of the dynamics, the relaxation cannot be the one described
by (2.3), but the kinetic coefficient has to transform in a transport coefficient of
the type,

@ 
a(x, t)

@t
= �

a

0r2 @H
@ a(x, t)

+ ⇣
a(x, t) (2.14)

with appropriate noise variance

h⇣a(x, t)⇣b(x0
, t)i = �2T�a0r2

�
d(x � x0)�(t � t

0)�ab . (2.15)

This last equation, indeed, can be read as a continuity equation which ensures
that the total integral of  a is preserved along with the time evolution.

The kinetic equations thus presented are the basis of the study of dynamical
critical phenomena, the presence of different dynamical rules and conservation
laws acts on the determination of various mode-coupling terms and types of re-
laxation, giving rise to great zoology of models which have been analyzed in [61]
and [67].

2.2 The fundamental steps of DRG

Our final objective is to find a suitable theoretical model for a good explanation of
experimental data of natural swarms [3]. To achieve this goal we need to propose
theories that can qualitatively reproduce the behavior of swarms and to study
their critical dynamics, in order to compare with experiments the value of the
dynamical critical exponent and their dynamical universality class. The way to
perform this analysis follows the path of the Dynamical Renormalization Group
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(DRG).
This is a powerful technique that consists in a set of scale transformations that,

applied to a system close to a critical point, allows a quantitative determination of
its universal and scale-invariant behavior [67]. The approach we are going to use
is the one known as momentum-shell, introduced by Wilson and Kogut in [70] and
formulated by these scientists as a strategy for dealing with complicated problems
involving many length scales, such as critical phenomena. The scheme plans to
divide the problem into subsequent steps, each one representing a different length
scale of observation that grows as the number of iterations increases. Technically,
this is made by carrying out statistical averages over thermal fluctuations on
smaller scales, with the purpose to deduce the long-range physics of the system
from the behavior of a few quantities incorporating the effects of the microscopic
degrees of freedom.

An RG transformation is practically composed of two steps, which have to be
applied to an effective theory describing the system like the one reported in eq
(2.3), namely [61]:

1. coarse-graining: the first procedure stands for integration over the short
wavelengths and over the microscopic details of the system; in momentum
space, it means that the modes within the interval ⇤/b 6 |k| 6 ⇤ are
averaged out, where b ⇠ 1 is called the scaling factor and ⇤ ⇠ 1/l is the
inverse of the microscopic length scale;

2. rescaling: since the first step changes the starting effective theory, to com-
pare the system before and after the coarse-graining, a procedure of rescaling
of fields, space, and time is needed.

The combination of the two actions describes how the field theory of a system
modifies when it is explored at larger scales and, indeed, all the physical meaning
of this transformation has to be found in the way the parameters of the theory
change within the steps. These two passages have then to be iterated many times,
such that to make the parameters flow along with the scale transformations till
eventually reach some fixed points, namely when the effective theories do not
change with a further increase of the observation’s scale. These points, therefore,
encapsulate the property of scale-invariance of a critical system and contain all
the information about the critical phenomenon, including the set of the critical
exponents [70].

2.2.1 Martin-Siggia-Rose action

The starting point of a DRG application is to build up an effective theory from the
dynamical equations of motion. This can be done by using a response function for-
malism that is valid for equilibrium and out-of-equilibrium processes [67]; it allows
to define an action S, called the Martin-Siggia-Rose (MSR) [71] or Janssen-De
Dominicis action [72], with which expressing the weight of the probability dis-
tribution of the system P ⇠ e

�S . The purpose of this technique is to transform
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averages of physical quantities over the stochastic processes in functional aver-
ages, a procedure that appears quite convenient since once obtained S, the RG
machinery can follow the same steps of the static calculation.

Let’s illustrate this formalism considering a simple dynamical equation of mo-
tion in generic dimension d,

F [ ] � ✓ = 0 (2.16)

where we mean with ✓ the source of stochastic noise and with F [ ] all the
deterministic part of the equation. Indicating with greek letters the components
of the n dimensional fields involved in (2.16), we can generically write the variance
of the Gaussian white noise as,

h✓↵(x, t)✓�(x0
, t

0)i = 2L↵��
d(x � x0)�(t � t

0) (2.17)

where L↵� has to be meant as an operator, for instance: �0�↵� for a dissipative
dynamics or ��0r2

�↵� for a conservative dynamics.
We now want to compute a thermal average of a generic operator hA[ ]i✓, but

selecting only those configurations of the field which evolve according to (2.16).
This average can be firstly written as,

hA[ ]i✓ ⇠
Z

D✓P [✓]A[ ] (2.18)

where P [✓] is the noise’s Gaussian probability distribution:

P [✓] ⇠ exp

✓
�1

4

Z
d
d
x

Z
dt ✓↵(x, t)(L↵�)

�1
✓�(x, t)

◆
(2.19)

with the repetition of indices indicating a sum over the components.
To select the right field’s trajectories in the measure, we can exploit the iden-

tity: Z Y

↵

Y

(x,t)

D ↵�(F↵[ ] � ✓↵) = 1 (2.20)

where now we substitute the integral representation of the delta function using
the additional response field  ̂ 1,

�(F↵[ ] � ✓↵) =

Z Y

↵

D[i ̂↵]e
�

R
 ̂↵(F↵[ ]�✓↵) . (2.21)

The integral in the exponential is written in a simplified version and stands forR
=
R
d
d
x
R
dt. Eq (2.20), in a more compact notation, then becomes:

Z
D[ ]

Z
D[ ̂]e�

P
↵

R
 ̂↵(F↵[ ]�✓↵) = 1 (2.22)

1
This expression is indeed valid only in the Ito stochastic scheme, where the Jacobian

| det(�F↵/� ↵)| = 1.
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Inserting this 1 in the expression of (2.18) we get,

hA[ ]i✓ ⇠
Z

D[ ]D[ ̂]D✓ e
�

R
 ̂↵(F↵[ ]�✓↵)P [✓]A[ ] (2.23)

Finally, using (2.19) and performing on it the Gaussian integral of the noise, we
obtain the expression,

hA[ ]i✓ ⇠
Z

D[ ]D[ ̂] e�S[ ̂, ]
A[ ] (2.24)

where the action,

S[ ̂, ] =
Z

d
d
x

Z
dt

⇣
 ̂↵F↵[ ] �  ̂↵L↵� ̂�

⌘
(2.25)

defines the new measure of the probability distribution in terms of the two fields
 and  ̂ [67, 71].

2.2.2 Study of the Gaussian theory

The deterministic part of the dynamics can be generally expressed by the sum
of two parts: the linear one in the field, F 0

↵�
 �, plus the non-linear part F I

↵
[ ],

which describes the non-trivial interactions in the system. The study of the linear
part usually represents the starting point of an RG analysis, since it contains all
the information about the mean-field behavior of a system.

We can focus on it neglecting for the moment the interacting terms of the
dynamics and of the effective action (2.25). Therefore, writing everything in
Fourier space, namely using the complete Fourier transform of the field

 ↵(x, t) =

Z
d
d
k

(2⇡)d

Z
d!

2⇡
e
i(k·x�!t)

 ↵(k,!) , (2.26)

we obtain the Gaussian action,

S0[ ̂, ] =

Z
dk̃
⇣
 ̂↵(�k̃)F0

↵�
 �(k̃) �  ̂↵(�k̃)L↵� ̂�(k̃)

⌘
(2.27)

where we are using the simplified notation k̃ = (k,!) and
R
dk̃ =

R
|k|<⇤ d

d
k/(2⇡)d

R
d!/2⇡.

Defining the vector u↵ = ( ↵,  ̂↵), the last equation can be written as,

S0[ ̂, ] =

Z
dk̃ u↵(�k̃)>M↵�(k̃)u�(k̃) (2.28)

with the introduction of the matrix M↵�, which stands for

M↵�(k̃) =

✓
0 F

0
↵�
(k̃)

F
0
↵�
(�k̃) �2L↵�(k̃)

◆
. (2.29)

Thanks to this simplification it is possible to easily compute Gaussian averages
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of the type,
hu↵(q̃)>u�(k̃)i0 = (M↵�(k̃))

�1
�(q̃ + k̃) (2.30)

just evaluating the inverse of the matrix M , namely:

M↵�(k̃)
�1 =

✓
2G0

↵�
(�k̃)L�µ(k̃)G0

µ�
(k̃) G

0
↵�
(�k̃)

G
0
↵�
(k̃) 0

◆
(2.31)

where
G

0
↵�
(k̃) = (F 0

↵�
(k̃))�1 (2.32)

is the Gaussian propagator of the theory. Moreover, if we recognize the correlator
C

0
↵�
(k̃) = 2L↵�(k̃)|G0(k̃)|2, we directly obtain generic forms for these basic two-

points correlation functions,

h ̂↵(q̃) �(k̃)i0 = G
0
↵�
(k̃)�(q̃ + k̃) = (F 0

↵�
(k̃))�1

�(q̃ + k̃)

h ↵(q̃) �(k̃)i0 = C
0
↵�
(k̃)�(q̃ + k̃) = 2L↵�(k̃)/|F 0(k̃)|2�(q̃ + k̃) .

(2.33)

To conclude, from the last expressions we can understand the physical meaning
of the response field and the reason of its name: if we add a magnetic field coupled
to  ↵ in the equation of motion and consequently in the effective action, the
kinetic response function can be computed as,

�h ↵(k̃)i
�h�(q̃)

= h ̂↵(q̃) �(k̃)i (2.34)

which is directly given by the dynamical propagator of (2.33) [67].

2.2.3 Shell-integration

We are now going to explain in more detail the operations that form an RG step.
Once determined the effective action of a theory, the first thing to do is perform
the coarse-graining on the system, namely averaging out the short-wavelength
details and writing the theory for the resulting degrees of freedom. It is more
useful to operate these passages in the Fourier space, in which the small length
scales become large momenta. We already met b, the scaling factor, which is the
quantity determining the range of modes we want to integrate out, namely those
included in the interval ⇤/b < |k| < ⇤, properly the momentum shell. Clearly
b ' 1 corresponds to an infinitesimal operation and ⇤ is the natural cutoff of the
theory [65].

We can then separate the modes of the field on the shell and outside the shell
(to be done also for the response field):

 ↵(k̃) =

(
 

<

↵
(k̃) for |k| < ⇤

b

 
>

↵
(k̃) for ⇤

b
< |k| < ⇤

(2.35)

In this way each integral over the momentum appearing in the effective action
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can be splitted as,
Z

|k|<⇤

dk̃f(k̃) ↵(k̃) =

Z

|k|<⇤/b

dk̃f(k̃) <

↵
(k̃) +

Z

⇤/b<|k|<⇤

dk̃f(k̃) >

↵
(k̃) (2.36)

where f is just an example function. The result is that the action is also affected
by this division,

S[ ,  ̂] = S0[ 
<
,  ̂

<

] + S0[ 
>
,  ̂

>

] + SI [ 
<
,  ̂

<

, >
,  ̂

>

] (2.37)

and it separates in two Gaussian parts: one only for the small modes and one
for the large modes; and in a non-linear part in which all the modes interact
with each other. The latter indeed represents the complicated part of the theory,
namely that describing fluctuations of the fields at every length scale.

To integrate out the modes on the shell we have to consider the probability
distribution associated with the system, where now, to simplify the notation, we
indicate with � the couple ( ,  ̂),

P [�] ⇠ e
�S[�] ⇠ e

�S0[�<]�S0[�>]�SI [�
<
,�>]

. (2.38)

Coarse-graining practically means marginalizing this distribution with respect to
the large modes, thus obtaining a probability distribution for the remaining small
modes,

P [�<] ⇠
Z

D�>
P [ ] ⇠ e

�S0[�<]

Z
D�>

e
�S0[�>]�SI [�

<
,�>]

. (2.39)

These algebraic calculations have to be performed also in the partition function
normalizing the distribution Z =

R
D� exp(�S[�]), thanks to which it is possible

to rewrite the previous equation in

P [�<] ⇠ e
�S0[�<]he�SI [�

<
,�>]i>0

⇠ e
�SR[�<]

(2.40)

where we define the renormalized effective action,

SR[�
<] = S0[�

<] + ln(he�SI i>0 ) . (2.41)

In this last formula, the h i>0 indicates an average over the Gaussian distribution,
whose measure is represented by S0[�

>]. The result of this procedure is a prob-
ability distribution for the small scale modes whose effective action is composed
by the bare starting one, plus a term coming from the interacting part (2.41)
[64]. This latter represents the most difficult part to compute analytically and,
to achieve this goal, we are going to use the perturbation theory.
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Perturbation theory

All the nontrivial part of this first step of calculation comes from the evaluation
of the interacting term of (2.41) that cannot be computed exactly but only in an
approximated way. If we isolate in this part of the action a common prefactor �,
called coupling constant, we can indeed expand the quantity he�SI i>0 in powers of
it, obtaining:

he��SI i>0 ' e
��hSIi0+ 1

2�
2(hS2

I
i0�hSIi20)+O(�3)

. (2.42)

The expansion in terms of coupling constant, performed thanks to properties of
Gaussian distributions, becomes an expansion around the Gaussian theory which
is represented by the zeroth-order at � = 0. All these averaged terms are usually
computed by means of the Feynman-diagrams, that can be drawn remembering
(briefly) some rules [51]:

• the terms in SI represent the vertices where each line stands for a field;

• the  < fields are the external legs, while the  > are the internal legs;

• the operation of average connects the internal legs forming bare propagators
and correlators;

• each loop represents an integral over an internal momentum defined on the
shell, and on the frequency defined in all R;

• each vertex and diagram has to satisfy a conservation law of momenta and
frequencies;

• each diagram has to be multiplied by a multiplicity factor counting all the
possible combinations of fields’ contractions.

The issue is in fact subtler: the expansion is performed in terms of the coupling
constant, thinking to progressively add interaction to the system while increasing
the order of expansion; however, the right interpretation is to think about it as
an expansion in the continuous space of dimensions [51]. The coupling constants
and all the non-linear terms usually become irrelevant when the dimension is large
enough: the threshold to make it happen is called upper critical dimension d

u

c
and

it sets the limit above which the Gaussian theory is exact. Calling ✏ the distance
in dimension from this quantity ✏ = d

u

c
� d, this becomes the real parameter

fixing the order of the expansion, which indeed is better know as ✏-expansion
[70]. Everything is consistent if, at the fixed point, �⇤ ' O(✏) [62].

The outcome of the diagrams’ calculation defines the renormalized effective
action SR, which appears with the same combination of fields but with a new set
of coefficients absorbing the corrections coming from the perturbative expansion.
For instance, after this step, a generic coefficient µ0 of the bare action, belonging
with a set of parameters P0, becomes,

µR = µ0 � �µ ln b (2.43)
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where the second term of r.h.s. is the result of the integration, and ln b is the
thickness of the shell for an infinitesimal transformation, since 1 � b

�1 ' ln b for
b ' 1. Moreover, the correction �µ is usually proportional to the set of coupling
constants of the theory.

2.2.4 Rescaling

A step further is needed to complete one RG iteration and it is the step of rescaling
[64]. After the procedure of coarse-graining, one ends up with a theory described
by SR with a new upper limit, that is the cutoff ⇤/b. To make a direct compari-
son between the theory before and after the defocusing procedure, and therefore
to understand how the theory changes when explored at different length scales,
we need to ripristinate the original natural cutoff ⇤. Hence, we work out the
transformation of momenta,

k ! kb = bk , (2.44)

which inversely affects the correlation length ⇠b = ⇠/b. As a consequence, also a
rescaling of time and frequency is needed [61, 73],

! ! !b = b
z
! (2.45)

where z is the critical exponent that verifies the dynamical scaling hypothesis [5],
appearing as the wild card to be determined at the end of the scaling procedure.
Also the fields of the action have to be replaced, since their space-time dependence
is modified according to the previous scaling relations, we then define the new
fields,

 
b
(kb,!b) = b

�D  

✓
kb

b
,
!b

bz

◆

 ̂
b
(kb,!b) = b

�D
 ̂ ̂

✓
kb

b
,
!b

bz

◆ (2.46)

indicating with D and D
 ̂

the fields’ scaling dimensions. Adding those relations
together, the renormalized parameters acquire a naive scaling dimension Dµ which
can be guessed by simple dimensional analysis,

µb = b
DµµR

= b
Dµµ0

✓
1 � �µ

µ0
ln b

◆
.

(2.47)

Because the scaling factor is b ' 1, everything can be expressed in terms of bare
parameters as,

µb = b
�µµ0 (2.48)

where �µ = Dµ � �µ/µ0 is called the total scaling dimension of the parameter
µ. It is usually composed of a naive part plus the non-trivial contribution com-
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ing from the coarse-graining process. Certainly, this latter is always null in the
Gaussian (mean-field) case. Equations as (2.48) have to be written down for all
the parameters defining the theory, including the coupling constants. Finally,
iterating the total procedure l times one obtains a full set of recursion relations,

µl+1 = b
�µµl

µl+1 = b
l�µµ0 ,

(2.49)

which determine the RG flow in the parameters space [64].

2.3 Fixed points: the dynamical critical exponent

As it happens for the classical static study, the universality of the dynamic critical
behavior is determined by properties of the recursion relations’ (2.49) fixed points.
Critical exponents are indeed related to the behavior under RG of the set of
parameters in their neighborhood [64].

These points can be identified with a special set P⇤ in the parameters space,
which is invariant under an RG transformation, namely those satisfying

RbP⇤ = P⇤ (2.50)

where the operator Rb indicates both the coarse-graining and the rescaling proce-
dure. This relation tells us that the fixed points are that specific combination of
parameters realizing the critical scale-invariance property of the system, namely
when fluctuations are correlated on every length scale and the system does not
change if observed at larger distances.

The solution of eq (2.50), when it exists, can be found directly solving the cou-
pled involved recursion equations, or introducing what are called the �-functions

[62]. The latter can be extrapolated by a linearization of the dynamical relation
of each parameter, namely:

Pl+1 = Pl � �P ln b (2.51)

from which the definition follows,

�P =
@Pl+1

@(� ln b)
= ��PPl . (2.52)

Depending on the scaling dimensions, these quantities describe how the parame-
ters behave along with the RG flow and contain double information: first, their
zeros represent the fixed points of the flow:

�P(P⇤) = 0 ; (2.53)

second, their derivatives draw up the infrared stability or instability of these
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points. In our case we assume that, when

@�P(P⇤)

@P < 0 (2.54)

the fixed point is infrared stable, otherwise is unstable [62].

The critical exponents quantitatively describe the singular behavior of the
thermodynamic quantities of a system when it approaches the critical point T ⇠
Tc of a phase transition. In parameters space, this can be represented by a
starting point of the flow close to the critical manifold (i.e. when ⇠ = 1), thus
characterized by a large and finite correlation length. In this case, applying the
RG transformations, one sees its flow being attracted by the critical fixed point
and then escaping towards the other non-critical fixed points. The exponents can
be then evaluated by looking at the velocity of this process, of course in terms
of parameters and changes of spatio-temporal scales. A deeper discussion can be
found in [62, 65], but here we are going to focus only on the determination of the
dynamical critical exponent z.

The kinetic coefficient of the order parameter is what plays a fundamental
role in the game. If the dynamics follows the general scheme of eq (2.3), this
exponent can indeed be found imposing that the recursion relation �l reaches a
finite non-zero fixed-point value �⇤ or, in other words, that [64, 74]:

�⇤ ⇠ O(1) (2.55)

which implies the condition,

�l+1 = b
l���0 =) ��(z) = 0 . (2.56)

Solving the equation on the right, it is, therefore, possible to directly find the
dynamical critical exponent of the model. The reason for this derivation lies in
the fact that eq (2.55) is equivalent to requiring that eq (2.50) has a non-trivial
solution for the dynamics. Indeed, the kinetic coefficient represents a the time-
scale under which the time of the dynamical evolution can be rescaled: thus,
excluding fixed points values like �⇤ = 0 and �⇤ = 1 means excluding trivial or
insignificant dynamics of the order parameter [61, 64].

2.4 Dynamical scaling from DRG

We now dedicate the last section of this chapter to the connection between the
technique of the DRG and the dynamical scaling hypothesis introduced in chapter
1 [64].

The dynamical correlation function of a physical system C0(k,!,P0) depends
in Fourier space on the wave-number, on the frequency, and on a starting set of
bare parameters P0. When we apply the RG scaling procedure on it, we usually
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get:
C0(k,!,P0) = b

2z
Cb(bk, b

z
!,Pb) , (2.57)

valid until the term �i! takes perturbative corrections. To proceed, we can
discriminate two different cases,

1. T 6= Tc and ⇠ < 1. The correlation length decreases as ⇠l+1 = ⇠/b
l till

reaching, in the limit of l ! 1, the smallest possible scale 1/⇤. This
imposes a stop condition to the flow, namely when

⇤⇠ = b
l
. (2.58)

Substituting it in (2.57), we obtain,

C0(k,!,P0) = (⇤⇠)2zC(⇤⇠k, (⇤⇠)z!,P⇤) (2.59)

where we are assuming that, in this limit, the parameters reach their fixed
point values. If now we consider a fixed product k⇠, from this latter equation
it is evident the emergence of a characteristic frequency, scaling as,

!c(k⇠) = ⇠
�z
g(k⇠) (2.60)

which directly recalls and validates the dynamical scaling hypothesis [75].

2. T = Tc and ⇠ = 1. In this case, the maximum number of RG iterations
is fixed again by the natural cutoff but it is expressed in terms of the scale
observation k,

⇤

k
= b

l
. (2.61)

The scaling of the correlation function accordingly reads,

C0(k,!,P0) =

✓
⇤

k

◆2z

C

✓
⇤,

✓
⇤

k

◆z

!,P⇤
◆

(2.62)

which again defines the appropriate generalization of the scaling hypothesis,

!c(k) = k
z
f(k⇠) , (2.63)

finally closing the connection with the DRG transformations [64].
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Chapter 3

Renormalization of the
incompressible Vicsek Model

In this chapter, we are going to focus on the first analyzed active matter model of
swarming behavior, namely the Vicsek model. The main purpose is to analytically
understand its critical dynamics and to find an explanation to the first numerical
results shown in Fig 1.8, namely a dynamical scaling with z = 2. To start with,
we present the explicit DRG calculation of the out-of-equilibrium incompressible
case, already performed by Chen, Toner, and Lee in [6]. In this theory density
fluctuations, which are also not relevant in natural swarms, are suppressed and it
allowing to understand the role of activity in determining the universality class
of an active matter model.

3.1 Vicsek Model and Toner and Tu theory

A possible way to approach the research for universal theories of physical systems
is to build up minimal models that, with the smallest set of parameters and details,
are able to characterize the most important traits of a subject. An example of
this approach is represented by the Vicsek model, introduced in 1995 in [29]. We
already presented the model in chapter 1, but we report here again some details
for clarity [30].

The model describes an overdamped dynamics for active particles and it is
formulated in a time discrete domain (�t = 1). The equations for the particles’
velocities and positions read [28],

vi(t+ 1) = R⌘

 
NX

j

nij(t)vj(t)

!
(3.1)

ri(t+ 1) = ri(t) + vi(t+ 1) (3.2)
|vi(t)| = v0 8 i, t . (3.3)

Here i, j are the indices of the N particles of the system, and nij(t) is the con-
nectivity matrix, whose dependence on time is due to the reshuffling of the self-
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propelled network. Eq. (3.1) describes the result of the alignment interaction:
the direction of motion of one particle at time (t+1) is determined by the average
of the neighbors’ velocities at time t, to which it tends to be aligned. The number
of interacting particles can be fixed, referring to a topological interaction, while it
can change over time being determined according to a metric rule: two particles
interact only if their mutual distance satisfies rij < rc with rc the interaction
radius. The natural system of our interests belongs to this second class so we are
going to consider only metric interactions. Finally, the noise operator R⌘ applies
a scalar noise of amplitude ⌘.

Figure 3.1: Main feautures of the Vicsek model. Panel a: polarization vs noise
for different sizes in d = 2, with the increasing of the size the curve becomes steeper
passing from a second-order to a first-order phenomenology. Panel b: time series of
polarization when the system is at the interface of order and disorder, showing the
typical instability. The jumps in the polarization are given by the emergence of order
bands as those of panel c (in 2d) and d (in 3d). Panel e: qualitative phase diagram in
the (⇢0, ⌘) plane. Figure reprinted from [30].

This model describes an out-of-equilibrium dynamics, since particles contin-
uously exchange their mutual positions: interactions are thus not reversible in
time, clearly violating the detailed balance condition. Moreover, the last equa-
tion (3.3) imposes that the speed of each particle is constant and fixed to v0,
inducing a violation of momentum conservation and making the system properly
active. The speed v0, together with the noise amplitude ⌘ and the average density
⇢0 = N/V , forms the fundamental set of dynamical parameters which rules the
thermodynamics of the system. Indeed, this model exhibits a phase transition
from a disordered homogeneous state, where the system has no net motion, to a
collective flocking state in which particles move coherently in a symmetry broken
phase (Fig. 3.1). The critical point is usually identified as the noise ⌘c = ⌘c(⇢0, v0)
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that clearly depends on the other parameters of the model. Actually, once the
value of the speed is fixed, a critical line in the plane (⌘, ⇢0) exists, for which
it is possible to assume as a control parameter of the transition also the density
[30, 76]. This is the method we choose to connect this theory to the metric system
of swarms.

Several variants of the original model have been studied, and deep numerical
and analytical works focused on the investigation of the phase transition’s nature
[34, 38]. Though for small sizes the exhibited phenomenology recalls a second-
order transition, for which scaling and critical phenomena tools can be applied
[77], for asymptotically large sizes the phase transition has been shown to be of
the first order within a phase separation scenario [78] (Fig 3.1).

In chapter 1, we already discussed the range of applicability of this microscopic
model to the biological case of swarms, claiming that its dynamics is not suitable
to explain the related experimental data about their dynamical properties. We
remind that numerical simulations of the VM realized in [3] found that the disor-
dered critical phase of the model is characterized by a pure exponential relaxation
with z ' 2, a result not consistent with experiments both from a quantitative
and a qualitative point of view. However, this evidence opens several general
questions about the critical dynamics of the theory that needs to be addressed.
The way to do it is to write a hydrodynamic field theory and study its large-scale,
long-time physics.

Hydrodynamic theory

Toner and Tu wrote their seminal paper in 1995 introducing a field theory version
of the VM [36]. This theory describes the system as an active fluid with ferro-
magnetic interactions, a picture that proved to be very successful in explaining
many large-scale properties of the microscopic model. The equations of motions
involve two fields: the particles number density ⇢(x, t) and the velocity v(x, t),
namely [36, 37]:

@t⇢+ r · (⇢v) = 0 (3.4)
@tv + �0(v · r)v + �1(r · v)v + �2r|v|2 = (3.5)

�0r2v � (a0 + J0v
2)v � rP +D1r(r · v) +D2(v · r)2v + f

with noise variance

hf(x, t)f(x0
, t

0)i = 2�̃0 �
(d)(x � x0)�(t � t

0) (3.6)

The first equation eq (3.4) describes the conservation of particles’ number, which
is the only conservation law admitted in the system [36]. Unlike simple fluids, ac-
tive fluids do not conserve the momentum since the velocity field assumes also the
role of polarity. A Landau-Ginzburg potential V (v) = a0v

2 + J0v
4 confines field

fluctuations around a reference value, translating the constant speed constraint
into a mesoscopic formulation. This fact breaks the Galilean invariance, reflecting
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in the presence of multiple terms of advection. In (3.5) we observe an advective
term multiplied by the coefficient �0, which also classically appears in the Navier-
Stokes equation, and additional advective �1,�2 terms that are gradient terms of
the same order allowed by the violation of Galilean invariance [37].

This latter is a special feature of active systems, and it stems directly from the
constraint of constant speed v0 imposed at a microscopic level. The application of
a simple Galilean boost brings to a violation of the constraint, thus breaking the
invariance. Hence, the dynamics has to be kinematically interpreted as expressed
in a special reference frame, represented by the resistive medium in which the
system moves [37]. At the hydrodynamic level, applying a Galilean boost means
performing the transformations,

v ! v + v̂ (3.7)
x ! x � v̂t (3.8)

on the eq (3.4) (3.5). A strict invariance would force �0 = 1 and �1 = �2 = 0,
but, due to this violation, all the additional terms are allowed to be different from
zero and one [37].

The other players of the theory are: the coefficients �0, D1 and D2, represent-
ing diffusion constants of velocity’s fluctuations; the amplitude of the Gaussian
white noise �̃0, which is different from any other kinetic coefficient because of
the violation of Fluctuation Dissipation Relations; and finally the parameters a0,
the mass, and J0, the ferromagnetic coupling. These last coefficients describe the
ordering transition in polarization: when the mass a0 < 0 the system shows long-
range polar order with a mean-field velocity |v| =

p
�a0/J0, while for a0 > 0

the system lives in a disorder phase with |v| = 0. The gradient of pressure rP

maintains the local density ⇢(x, t) around its mean value ⇢0 [36] and, additionally,
all the coefficients appearing in eq (3.5) depend in a non-trivial way on density
and on all the microscopic parameters.

This theory was formulated within a phenomenological approach in terms
of gradients expansion and, although it initially had not a direct connection
with the microscopic starting model, it was able to reproduce its fundamental
traits: long-range order in two dimensions [36] (the consequence of a violation
of the Mermin-Wagner theorem [79]), giant density fluctuations and propagat-
ing density-dependent modes [80]. Most of the performed studies focus on the
ordered phase with application to flocking systems. A first investigation on the
pure critical phase was carried out in [6] under the incompressibility condition.

3.2 Adding incompressibility

For a long time, the ordering transition described by eq (3.4) (3.5) was believed
to be continuous belonging to a new universality class of active matter. However,
several theoretical and numerical studies [35, 78] revealed that the phase transition
is in fact of the first-order. A phase separation scenario characterizes the change
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from a disordered to a homogeneous ordered state, where all the results of Toner
and Tu’s studies can be applied. This process occurs because density instabilities
cause the formation of bands transversal to the direction of motion, which coexist
with the disordered state of matter [78] 1.

This phenomenon is one of the most evident manifestations of the out-of-
equilibrium nature of the system. The active motion of the agents produces a
strong coupling between the density and the velocity fields, establishing a positive
feedback that gives birth to the band structure. To condensate this concept:
denser regions order more strongly, but since they are more ordered than the rest
of the system, they coherently travel recruiting other particles in the path, thus
forming the transverse patterns of Fig 3.1 [76]. In the hydrodynamic equations,
the coexistence phase reveals itself in the dependence of the mass on the density
a0 = a0(⇢) [80], whose variations are the main responsible for the first-order
transition scenario.

In [6], Chen et al. proposed to suppress density fluctuations making the sys-
tem incompressible, i.e. imposing r ·v = 0. A major effect is that the mechanism
being at the core of band instabilities is completely turned off, since the density
field ⇢0 becomes homogeneous and constant. Certainly, the condition of incom-
pressibility implies that the system is homogeneous, thus allowing a continuous
phenomenological description of its statistical physics. On the other hand, the
opposite implication is not always true, a physical system can be homogeneous
and compressible at the same time, especially without the long-range interac-
tions entailed in an incompressible active fluid scenario. However, this condition
simplifies by a lot the theory that now reads:

@v

@t
+ �0(v · r)v =�0r2v � (a0 + J0v

2)v � rP + f

hf(x, t)f(x0
, t

0)i =2�̃0 �
(d)(x � x0)�(t � t

0)

r · v = 0

(3.9)

where the pressure P enforces the incompressibility constraint [6].
The authors were able to perform a one-loop DRG analysis at the critical point

a = 0, discovering a rich scenario and a new dynamical universality class with
exponent z = 1.7 in three dimensions [6]. The theory produces also an unstable
fixed point reached for zero effective activity, which describes an equilibrium
dynamics with z = 2 thus recalling the numerical exponent found in [3]. To
understand better these results and to explore the role of the activity and of the
incompressibility constraint in the critical dynamics of the VM, we present the
complete DRG calculation.

1
In fact, a recent numerical study [81] demonstrates the existence of an additional thermo-

dynamic phase of the Vicsek model: the cross-sea phase. It is interposed between the bands’ and

disordered phase and it is characterized by crossing patterns moving into opposite directions.

However, a theoretical investigation of this phenomenon is still lacking.
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3.3 Field dynamical equations

We want to perform a Dynamical Renormalization Group analysis of the theory
(3.9). To do this, we briefly recall which are the main steps of the calculation:

1. start from the stochastic dynamical equation of motion;

2. write the MSR effective action and identify correlators and propagators of
the free theory;

3. perform a perturbative expansion in terms of non-linearities around the
Gaussian approximation;

4. apply iteratively coarse-graining and space-time rescaling, to write recursion
relations for the parameters’ flow extracting all the relevant information at
the fixed points.

To effectively start the calculation, we must firstly ponder over the incompress-
ibility condition r ·v = 0. We consider the Fourier transform of the velocity field
in space, namely:

v↵(x, t) =

Z
d
d
k

(2⇡)d
e
ik·x

v↵(k, t) (3.10)

where with ↵ we are indicating the cartesian component of the n dimensional
vectorial field, and we are using the same symbol v↵ to indicate the field in the x

and k space. Applying the incompressibility condition then reads,

@↵v↵(x, t) = 0 ! k↵v↵(k, t) = 0 . (3.11)

The second equation of (3.11) tells us two important things: first, to perform a
scalar product between the momentum and the field and to maintain it null, the
dimension of the order parameter must be equal to the space’s one, namely n = d;
second, the projection of ṽ(k, t) on the direction of k is always null, meaning that
only the transverse modes are significant for the dynamics, while the longitudinal
ones are fixed by the constraint.

It is, therefore, useful to introduce the operator of projection along the or-
thogonal direction to the wavenumber k, as:

P↵�(k) ⌘ �↵� � k↵k�

k2
(3.12)

thanks to which, eq (3.11) becomes

P↵�(k)v�(k, t) = v↵(k, t) (3.13)

We can now apply the Fourier transform to the two sides of the equation (3.9)
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and then the projection operator to obtain:

@tv↵(k, t) = �(�0k
2 + a0)v↵(k, t) � i

�0

2
P↵��(k)

Z
d
d
q v�(q, t)v�(k � q, t)

(3.14)

�J0

3
Q↵��⌫

Z
d
d
q

Z
d
d
p v�(k � q � p, t)v�(q, t)v⌫(p, t) + f↵(k, t)

The noise variance becomes,

hf↵(k, t)f�(k0
, t

0)i = 2�̃0P↵�(k)�(k + k0) �(t � t
0) . (3.15)

Additionally, in the non-linear terms of interaction, we needed to symmetrize with
respect to the integrals’ momenta and projectors, thus obtaining the following
additional operators appearing in (3.14):

P↵��(k) = P↵�(k)k� + P↵�(k)k� (3.16)
Q↵��⌫(k) = P↵�(k)��⌫ + P↵�(k)��⌫ + P↵⌫(k)��� (3.17)

3.4 MSR action and Gaussian theory

Using a Fourier transform in time,

v↵(x, t) =

Z
dk̃ e

�i(!t�k·x)
v↵(k̃) (3.18)

we derive the Martin-Siggia-Rose effective action with the standard procedure
indicated in chapter 2. This action is thus composed by the two canonical parts:

S[v, v̂] = S0[v, v̂] + SI [v, v̂] (3.19)

the Gaussian part:

S0[v, v̂] =

Z
dk̃

h
v̂↵(�k̃)(�i! + �0k

2 + a0)v↵(k̃) (3.20)

��̃0v̂↵(�k̃)P↵�(k)v̂�(k̃)
i

and the interacting one,

SI [v, v̂] =

Z
dk̃


i�0

2
v̂↵(�k̃)P↵��(k)

Z
dq̃ v�(�k̃ � q̃)v�(q̃) (3.21)

+
J0

3
v̂↵(�k̃)Q↵��⌫(k)

Z
dq̃

Z
dp̃ v�(k̃ � q̃ � p̃)v�(q̃)v⌫(p̃)

�
.

From the free part of the action it is easy to recognize the expressions of the
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bare propagator and correlator:
⌦
v↵(�k̃)v̂�(k̃)

↵
= �↵�G0(k̃) = �↵�

⇥
�i! + �0(k

2 + a0)
⇤�1 (3.22)

⌦
v↵(�k̃)v�(k̃)

↵
= P↵�(k)C0(k̃) = 2P↵�(k)�̃0|G0(k̃)|2 (3.23)

which can also be easily derived starting from eq (3.14) with null non-linearities
coefficients, u0 = 0 and �0 = 0,

�i!v(k̃) = ��0(k
2 + a0)v(k̃) + f(k̃). (3.24)

and then solving it with the Green function method. The solution is indeed

v(k̃) = G0(k̃)f(k̃) (3.25)

with
G0(k̃) =

1

�i! + �0k
2 + a0

(3.26)

from which the scalar part of the correlator directly follows,

C0(k̃) =
2�̃0

!2 + (�0k
2 + a0)2

. (3.27)

3.5 Vertices and perturbation expansion

From the interacting part of the effective action, we instead deduce the form of the
vertices that, together with bare propagator and correlator, will be the building
blocks of the perturbative expansion around the Gaussian theory. We recognize
two vertices, namely:

V1 =
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improves the accuracy of the perturbation theory [21], the mass will be set to 0.
Dynamical renormalization group techniques desxribed in Chapter 1 will be used

in order to investigate the long wavelength and time behaviuor and to explicitly
compute the dynamical critical exponent z which defines, given the static universality
class of the transition, the dynamic universality class.

2.3.1 Martin Sigga Rose e�ective action

The bare MSR action for the Toner and Tu theory, builded following the procedure
described in Section 1.2, takes the following form

S [v̂,v] =
�

k̃
v̂�(�k̃)

�
�i�k + �0k

2
�
v�(k̃) � v̂�(�k̃)�̃0P��(k)v̂�(k̃)+

+ i�v,02

�

k̃,q̃
v̂�(�k̃)P���(k)v�(q̃)v�(k̃ � q̃)+

+ J0
3

�

k̃,q̃,p̃
v̂�(�k̃)Q����(k)v�(q̃)v�(p̃)v�(k̃ � q̃ � p̃)

(2.31)

where the index 0 indicates the parameters and couplings take their bare value.

Gaussian theory and vertices

The free theory of Toner and Tu is defined by the green function �v�(q̃)v̂�(k̃)�0 and
correlation function �v̂�(q̃)v̂�(k̃)�0 of the field v, namely

�v�(q̃)v̂�(k̃)�0 �, q̃ �, k̃ = ���
�i�k + �0k2 + µ

�̃
�
k̃ + q̃

�
(2.32)

�v̂�(q̃)v̂�(k̃)�0 = �, q̃ �, k̃ = 2�̃0 P�� (k)
�2
k +

�
�0k2 + µ

�2 �̃
�
k̃ + q̃

�
(2.33)

The non-linear terms, namely self propulsion and ferromagnetic-like alignment
interaction, are represented in Feynman diagrams as vertexes. Graphical representa-
tions of the two vertexes is

�, �k̃

�, q̃

�, p̃

= �i�v,02 P��� (k) �̃
�
p̃+ q̃ � k̃

�
(2.34)v̂↵

v�

v�

 ̂↵

 ↵

 �

 �

v̂↵

v�

v�

v�

= �i
�0

2
P↵��(k)v̂↵(�k̃)v�(q̃)v�(k̃ � q̃) (3.28)

V2 =
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improves the accuracy of the perturbation theory [21], the mass will be set to 0.
Dynamical renormalization group techniques desxribed in Chapter 1 will be used

in order to investigate the long wavelength and time behaviuor and to explicitly
compute the dynamical critical exponent z which defines, given the static universality
class of the transition, the dynamic universality class.

2.3.1 Martin Sigga Rose e�ective action

The bare MSR action for the Toner and Tu theory, builded following the procedure
described in Section 1.2, takes the following form

S [v̂,v] =
�

k̃
v̂�(�k̃)

�
�i�k + �0k

2
�
v�(k̃) � v̂�(�k̃)�̃0P��(k)v̂�(k̃)+

+ i�v,02

�

k̃,q̃
v̂�(�k̃)P���(k)v�(q̃)v�(k̃ � q̃)+

+ J0
3

�

k̃,q̃,p̃
v̂�(�k̃)Q����(k)v�(q̃)v�(p̃)v�(k̃ � q̃ � p̃)

(2.31)

where the index 0 indicates the parameters and couplings take their bare value.

Gaussian theory and vertices

The free theory of Toner and Tu is defined by the green function �v�(q̃)v̂�(k̃)�0 and
correlation function �v̂�(q̃)v̂�(k̃)�0 of the field v, namely

�v�(q̃)v̂�(k̃)�0 �, q̃ �, k̃ = ���
�i�k + �0k2 + µ

�̃
�
k̃ + q̃

�
(2.32)

�v̂�(q̃)v̂�(k̃)�0 = �, q̃ �, k̃ = 2�̃0 P�� (k)
�2
k +

�
�0k2 + µ

�2 �̃
�
k̃ + q̃

�
(2.33)

The non-linear terms, namely self propulsion and ferromagnetic-like alignment
interaction, are represented in Feynman diagrams as vertexes. Graphical representa-
tions of the two vertexes is

�, �k̃

�, q̃

�, p̃

= �i�v,02 P��� (k) �̃
�
p̃+ q̃ � k̃

�
(2.34)v̂↵

v�

v�

 ̂↵

 ↵

 �

 �

v̂↵

v�

v�

v�

= �J0

3
Q↵��⌫(k)v̂↵(�k̃)v�(k̃� q̃� p̃)v�(q̃)v⌫(p̃) (3.29)

in which we are indicating with solid lines the fields, distinguishing the response
fields with an arrow entering in the vertex. The vertex V2 is quite similar to the
standard ferromagnetic vertex used in equilibrium field theories, indeed it is indi-
cating the fundamental alignment interaction proper of this kind of polar systems.
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Incidentally, we could have interpreted the l.h.s. of the velocity’s equation (3.9),
as a dissipative force coming from a generalized Landau-Ginzburg free-energy:

H =

Z
d
d
x dt

✓
1

2
(rv)2 +

1

2
r0v

2 +
u0

4
v
4

◆
(3.30)

mapping a0 ! r0�0 and J0 ! u0�0. On the other hand, the first vertex is the
pure out-of-equilibrium element of the theory: it embeds the transport of the
velocity and then all the activity of the system.

We are now ready to perform the perturbative expansion in the non-linearities
represented by these vertices, which therefore will be determined by the interplay
of these two physical components: activity and alignment interaction. The rel-
evant terms of the expansion are built with the use of Feynman’s diagrams as
explained in chapter 2. However, to finally draw them, we need to fix a graphical
representation of the bare propagator and correlator, that we chose as

G0 = C0 = . (3.31)

We use a simple line for the average of two velocity fields, while we use a line with
an arrow for the propagator to highlight the presence of the response field and
the consequent relevant ordering of time. From a simple power counting, it can
be shown that both the non-linearities become irrelevant when d > 4, where the
Gaussian mean-field theory happens to be exact. Therefore, the real parameter
of the expansion is the distance from this upper critical dimension d

u

c
= 4, that it

✏ = 4� d. Moreover, calculations are performed at 1-loop, and then at first order
in ✏.

The first corrections we compute regard the two points vertex functions. These
contributions can be summarized in the Dyson equation for the propagator [51] ,
which can be expressed as

G
�1(k̃)↵� = G

�1
0 (k̃)�↵� � ⌃↵�(k̃) (3.32)

where ⌃↵� represents the self-energy, whose graphical representation is:

+ + =  0

V R
1 = V R

2 = V R
3 =

�↵� =  ̂↵  �

s�s↵
�↵� =

v̂↵ v� (3.33)

The blob indicates the sum of all amputated one-particle irreducible diagrams
with the same external legs as the propagator and contains the leading contribu-
tions to the perturbative expansion.

In the effective action we recognize that the Gaussian part is not only com-
posed by the v̂v term, which takes correction in the form of self-energy, but also
by the Gaussian part of response fields v̂v̂ coming from the noise integration.
This latter represents the renormalization of the correlation function which, in
this case, has to proceed independently from that of the response functions. In-
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deed, the system is out-of-equilibrium and there is no Fluctuation-Dissipation
Relation valid to connect these two quantities. Therefore, to take into account
corrections for the amplitude of the noise �̃0, we additionally define the noise
strength as,
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improves the accuracy of the perturbation theory [21], the mass will be set to 0.
Dynamical renormalization group techniques desxribed in Chapter 1 will be used

in order to investigate the long wavelength and time behaviuor and to explicitly
compute the dynamical critical exponent z which defines, given the static universality
class of the transition, the dynamic universality class.

2.3.1 Martin Sigga Rose e�ective action

The bare MSR action for the Toner and Tu theory, builded following the procedure
described in Section 1.2, takes the following form

S [v̂,v] =
�

k̃
v̂�(�k̃)

�
�i�k + �0k

2
�
v�(k̃) � v̂�(�k̃)�̃0P��(k)v̂�(k̃)+

+ i�v,02

�

k̃,q̃
v̂�(�k̃)P���(k)v�(q̃)v�(k̃ � q̃)+

+ J0
3

�

k̃,q̃,p̃
v̂�(�k̃)Q����(k)v�(q̃)v�(p̃)v�(k̃ � q̃ � p̃)

(2.31)

where the index 0 indicates the parameters and couplings take their bare value.

Gaussian theory and vertices

The free theory of Toner and Tu is defined by the green function �v�(q̃)v̂�(k̃)�0 and
correlation function �v̂�(q̃)v̂�(k̃)�0 of the field v, namely

�v�(q̃)v̂�(k̃)�0 �, q̃ �, k̃ = ���
�i�k + �0k2 + µ

�̃
�
k̃ + q̃

�
(2.32)

�v̂�(q̃)v̂�(k̃)�0 = �, q̃ �, k̃ = 2�̃0 P�� (k)
�2
k +

�
�0k2 + µ

�2 �̃
�
k̃ + q̃

�
(2.33)

The non-linear terms, namely self propulsion and ferromagnetic-like alignment
interaction, are represented in Feynman diagrams as vertexes. Graphical representa-
tions of the two vertexes is

�, �k̃

�, q̃

�, p̃

= �i�v,02 P��� (k) �̃
�
p̃+ q̃ � k̃

�
(2.34)v̂↵

v�
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 ̂↵

 ↵

 �

 �

v̂↵

v�

v�

v�

�̃↵� =
 ̂↵  ̂�v̂↵ v̂�

. (3.34)

3.6 Renormalization of the linear dynamics

The first step of a Renormalization Group transformation is the coarse-graining,
namely averaging the small length scale modes with wave-number in the shell
⇤/b < k < ⇤, with b ⇠ 1 the scaling factor. This step produces some additional
corrections in the effective action that have to be reabsorbed from the coefficients
of the theory. In this way, they become what we called renormalized coefficients.
In this section, we are going to focus on those characterizing the Gaussian part,
whose renormalizing contributions come directly from the self energies we just
introduced. Diagrammatically, the one of the propagator appears:

+ + =  0

V R
1 = V R

2 = V R
3 =

�↵� =  ̂↵  �

s�s↵
�↵� =

v̂↵ v�

2.3 RG study of the Toner and Tu theory at criticality 26

�, �k̃ �, p̃

�, q̃

�, h̃

= �J0
3 Q���� (k) �̃

�
p̃+ q̃ + h̃� k̃

�
(2.35)

2.3.2 Diagrams, flow and fixed points

Staring from the gaussian theory and expanding in �v,0 and J0, one can construct the
perturbation theory in order to get the correct propagators for the interacting case
and compute the e�ective values of the coupling constants in the long wavelength
and long time limit.

Diagrams

Since both �v and J are irrelevant in dimensions grater than dc = 4, thus recovering
mean field behaviour, one can perform an expansion in � = 4�d in order to evaluate
di�erences from mean field theory. At the first order in � (one loop) the perturbative
corrections, after a shell integration of thickness ln b, are given by the following
non-vanishing diagrams

�, �k̃ �, k̃ = �1
4

�̃0�2
v,0

�2
0

�d�4KdP�� (k) k2 ln b (2.36)

�, �k̃

�, k̃ � q̃

�, q̃

= i�v,02
1
2

�̃0J0
�2

0
�d�4KdP��� (k) ln b (2.37)

�, �k̃

�, k̃ � q̃

�, q̃

= i�v,02
7
6

�̃0J0
�2

0
�d�4KdP��� (k) ln b (2.38)

�, �k̃ �, q̃

�, p̃ �, k̃ � q̃ � p̃

= J0
3

17
2

�̃0J0
�2

0
�d�4KdQ���� (k) ln b (2.39)

where (2�)dKd is the surface area of a unit sphere in d dimensions.
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In principle one could compute the same quantities looking at the corrections of the
noise amplitudes and using the self-energies (6.48) and (6.49):

�R = �0

�

�1 + 1
2�0

�̃b

����
k=0
�=0

�

� (6.59)

�R = �0

�

�1 + 1
2�0

��̃b

�k2

����
k=0
�=0

�

� (6.60)

�R = �0

�

�1 + 1
2�0

�̃b

����
k=0
�=0

�

� . (6.61)

since the validity of FDT and of Einstein relation implies:
��b

�k2

����
k=0
�=0

= �1
2 �̃b

����
k=0
�=0

��b

�k2

����
k=0
�=0

= �1
2
��̃b

�k2

����
k=0
�=0

�b

����
k=0
�=0

= �1
2�̃b

����
k=0
�=0

(6.62)

At this point the reader could have noticed that we introduced three non-linear
vertices for the expansion but we used only the ones coming entirely from the
dynamics (i.e. proportional to g0) to construct the � and � self-energies. If on the
one hand it is clear that no diagrams involving (6.41) are possible to contribute to
�, one can see that to � this following diagram could be added:

= ��0u0
6 ���

�
�2

2

�
1� 1

b2

�
� r0 ln b

�

(6.63)

However, a computation of it is straightforward and it ensures that it is indepen-
dent on the external momentum k, therefore it does not account corrections for the
dynamical quantity �0 but only for the mass r0. However, the evolution along RG
of this latter quantity follows the standard static path [?] and therefore we are not
going to report it here. On the other hand, we are going to deal only with dynamical
parameters substituting to the bare mass r0 its renormalized value r = 0, so that we
evaluate all the integrals at the critical point and we increase the accuracy of the
expansion.

The expressions for the kinetic coe�cients appear:

�R = �0

�

1 + 2 g2
0

�0

� �

�/b

ddp

(2�)d
1

p2[(�0 + �0)p2 + �0]

�

(6.64)

�R = �0

�

1 + 1
2

g2
0

�0�0

� �

�/b

ddp

(2�)d
1
p4

�

(6.65)

�R = �0 (6.66)

= + (3.35)

thus defining the renormalization of the coefficients of the linear dynamics:

aR ⌘ G
�1

����
k=0
!=0

= a0

 
1 � 1

a0
⌃↵�

����
k=0
!=0

!
(3.36)

�R ⌘ @G
�1

@k2

����
k=0
!=0

= �0

 
1 � 1

�0

@⌃↵�

@k2

����
k=0
!=0

!
. (3.37)

On the other hand, since at one loop

�̃↵� =
 ̂↵  ̂�v̂↵ v̂�

= = 0 (3.38)

we can easily say that the amplitude of the noise does not take any correction,
implying �̃R = �̃0.

Every loop of the diagrams represents an integral in the internal momentum
on the shell and in the unbounded internal frequency �1 < ! < +1. The result
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of this integration for equations (3.36) (3.37) reads,

aR = a0

 
1 +

J0�̃0

a0

(d � 1)(d+ 2)

d
Kd⇤

d
ln b

(a0 + �0⇤2)

!
(3.39)

�R = �0

 
1 +

�
2
0�̃0

2�3
0

(d � 2)

d
Kd⇤

d�4 ln b

!
(3.40)

where we used rules for angular averages that are reported in Appendix A and
the fact that in the limit of the scaling factor b ! 1, i.e. for an infinitesimal RG
transformation, the shell is also infinitesimal, specifically of thickness 1 � 1/b ⇠
ln b. Moreover, an underlying tensorial structure should be taken into account for
the perturbative corrections, coinciding with a �↵� for aR and a P↵�(k) for �R,
however these are simply reabsorbed by the fields in the effective action.

Finally, one can see that the first equation contains a dependence on the bare
mass a0, which has been kept in the evaluation of the diagrammatic integral
since it is necessary to study the flow of itself. On the other hand, all others
graphs are evaluated at the critical point and then at aR = 0. To write down
the recursion relations for these quantities, it is clear that we still need to know
how to renormalize the parameters �0 and J0. We gain this information from the
vertices corrections.

3.7 Vertices corrections

We represent in a similar way of the self energies the renormalized effective ver-
tices, namely

+ + =  0

V R
1 = V R

2 = . (3.41)

Also here blobs represent the sum of the irreducible one-loop diagrams, directly
identified for the vertex of self-propulsion in:

�̃↵� =
 ̂↵  ̂�v̂↵ v̂�

= = 0
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�, �k̃ �, p̃

�, q̃

�, h̃

= �J0
3 Q���� (k) �̃
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p̃+ q̃ + h̃� k̃

�
(2.35)

2.3.2 Diagrams, flow and fixed points

Staring from the gaussian theory and expanding in �v,0 and J0, one can construct the
perturbation theory in order to get the correct propagators for the interacting case
and compute the e�ective values of the coupling constants in the long wavelength
and long time limit.

Diagrams

Since both �v and J are irrelevant in dimensions grater than dc = 4, thus recovering
mean field behaviour, one can perform an expansion in � = 4�d in order to evaluate
di�erences from mean field theory. At the first order in � (one loop) the perturbative
corrections, after a shell integration of thickness ln b, are given by the following
non-vanishing diagrams
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v,0

�2
0

�d�4KdP�� (k) k2 ln b (2.36)
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0
�d�4KdQ���� (k) ln b (2.39)

where (2�)dKd is the surface area of a unit sphere in d dimensions.
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where (2�)dKd is the surface area of a unit sphere in d dimensions.

V R
1 = +
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where (2�)dKd is the surface area of a unit sphere in d dimensions.
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while in the following one for the ferromagnetic coupling:

�̃↵� =
 ̂↵  ̂�v̂↵ v̂�

= = 0
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where (2�)dKd is the surface area of a unit sphere in d dimensions.

V R
2 = (3.43)

These contributions have a tensorial structure, which is fundamental to recon-
struct the right correction to the terms appearing in the effective action. Let’s
focus first on the self-propulsion vertex for which the sum of the two diagrams
have a dependence on indices that we can display as

V
R

1 = V
↵��

1 (k̃, q̃) = P↵��(k)qv̂vv(k̃, q̃) (3.44)

where we are indicating with qv̂vv the contribution of the diagrams once the tenso-
rial part is gathered. Therefore, we can express the renormalized active parameter
as,

�R = �0

 
1 � 2

i�0
qv̂vv

����
k̃=0
q̃=0

!
. (3.45)

The same considerations are valid for the ferromagnetic vertex, for which we
write:

V
R

2 = V
↵��⌫

2 (k̃, q̃, p̃) = Q↵��⌫(k)qv̂vvv(k̃, q̃, p̃) (3.46)

where qv̂vvv is the contribution coming from V
R

2 without tensorial structure. The
coarse-graining corrections to this vertex’ parameters are,

JR = J0

0

B@1 � 3

J0
qv̂vvv

����k̃=0
q̃=0
p̃=0

1

CA (3.47)

A direct evaluation of equations (3.45) (3.47) leads to,

�R = �0

 
1 � J0�̃0

�2
0

3d2 � 8

d(d+ 2)
Kd⇤

d�4 ln b

!
(3.48)

JR = J0

 
1 � J0�̃0

�2
0

✓
d+ 1 +

6(d2 � 2)

d(d+ 2)

◆
Kd⇤

d�4 ln b

!
(3.49)

which concludes the first step of RG for the renormalized parameters of the theory.
For a complete discussion we must specify that the diagrams shown in this section
are the only resulting non-null diagrams. It is indeed possible to construct other
graphs within the 1-loop approximation, that anyway are null by symmetry. A
diagrammatic list, for both the two vertices, is reported in the following.
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+ + =  0

+ + =  0

(3.50)

At this point, we simplify the equations for all the coefficients, defining a
set of effective coupling constants read from the prefactors of the perturbative
corrections, namely:

↵0 =
�
2
0�̃0

�3
0

Kd⇤
d�4; u0 =

J0�̃0

�2
0

Kd⇤
d�4

. (3.51)

The first quantity ↵0 is the coupling constant that describes the activity of the
system since it is proportional to �0, the coefficient of the advective dynamical
term; the second equation identifies, instead, the ferromagnetic coupling constant
since it depends on J0, that is the strength of the alignment interaction.

It is worth noticing that both these quantities are proportional to ⇤d�4, con-
firming that their scaling dimension is ✏ = 4�d. With this property they assume
the role of effective dynamical coupling constants of the theory, namely the expan-
sion’s parameters of the perturbative calculation. They here result in a non-trivial
combination of dynamical coefficients different from the simple parameters of the
non-linear terms. Since we are interested in corrections of order ✏ coming from
the RG, we therefore evaluate the rest of the integrals’ results at d = 4. Finally,
we summarize:

aR = a0 � 9

2
(a0 � �0⇤

2)u0 ln b

�R = �0

⇣
1 +

↵0

4
ln b
⌘

�̃R = �̃0

�R = �0

✓
1 � 5

3
u0 ln b

◆

JR = J0

✓
1 � 17

2
u0 ln b

◆

(3.52)

3.8 RG flow and fixed points

Once carried out the stage of coarse-graining, to compare the effective theories
before and after this procedure, we need to rescale the space-time. This means
applying the scaling relation k ! bk to the wave-number, and ! ! b

z
! to the

frequency. Moreover, we have to define the scaling dimensions of the fields that
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transform as:

v↵(k/b,!/b
z) = b

�vv
b

↵
(k,!), v̂↵(k/b,!/b

z) = b
�v̂ v̂

b

↵
(k,!) (3.53)

Since the term �i! in the effective action does not take any perturbative cor-
rection, because of @⌃↵�/@(�i!) = 0, we can state that the following identity,
linking the two fields’ scaling dimensions, applies,

�v + �v̂ = 2z + d . (3.54)

Using this result and the standard rules of rescaling, we write down the relations
for all the parameters,

a0 ! b
z
a0

�0 ! b
z�2�0

�̃0 ! b
3z+d�2�v �̃0

�0 ! b
�v�d�1

�0

J0 ! b
2�v�2d�z

J0

(3.55)

which combine in the definitions of the coupling constants to give,

↵0 ! b
4�d

↵0, u0 ! b
4�d

u0 (3.56)

still confirming themselves as the true couplings of expansion of the model because
now their irrelevant behavior for d > 4 is manifest.

We now merge (3.52) and (3.55) to obtain the final recursion relations of the
dynamical parameters,

al+1 = b
z


al �

9

2
(al � �l⇤

2)ul ln b

�

�l+1 = b
z�2�l

⇣
1 +

↵l

4
ln b
⌘

�̃l+1 = b
3z+d�2�v �̃l

�l+1 = b
�v�d�1

�l

✓
1 � 5

3
ul ln b

◆

Jl+1 = b
2�v�2d�z

Jl

✓
1 � 17

2
ul ln b

◆

(3.57)

and of the coupling constants,

↵l+1 = b
✏
↵l

✓
1 � 10

3
ul ln b � 3

4
↵l ln b

◆

ul+1 = b
✏
ul

✓
1 � 17

2
ul �

1

2
↵l ln b

◆ (3.58)

where l indicates the iteration of the RG transformation. These equations il-
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lustrate the results of Chen et al’s calculations [6] and define the flow of the
parameters in the parameters’ space. This space coincides with the critical mani-
fold (aR = 0, i.e. ⇠ = 1), the place of existence of the critical fixed points. These
latter can be found from the zeros of the �-functions, computed as,

�↵ = ↵

✓
10

3
u � 3

4
↵� ✏

◆

�u = u

✓
17

2
u � 1

2
↵� ✏

◆
.

(3.59)

The above system is solved by a set of three non-trivial solutions, corresponding
to three different fixed points (clearly, the null solution ↵

⇤ = 0 and u
⇤ = 0 is

always admissible and it represents the Gaussian theory, unstable for d < 4):

1. the equilibrium fixed point, characterized by ↵⇤ = 0 and u
⇤ = (2/17)✏.

This is IR-unstable along the ↵ direction for dimensions below the upper
critical dimension d

u

c
= 4, it belongs to the universality class of the isotropic

ferromagnet with long-range dipolar interactions [82];

2. the random stirred fluid fixed point, when ↵
⇤ = (4/3)✏ and u

⇤ = 0. This
is also IR-unstable but in the u direction, it was previously studied in [83]
and it describes an incompressible normal fluid subject to random Gaussian
forces;

3. the off-equilibrium, active, fixed point reached for ↵⇤ = (124/113)✏ and
u
⇤ = 6/113✏. This is the only IR-stable fixed point for d < 4, and the only

one where activity and ferromagnetic interaction combine in an interesting
way to originate the universality class of incompressible active matter.

Finally, from these fixed points, one can extrapolate all the information about
the critical exponents. We are interested in the dynamical critical one z, which is
derived imposing that the kinetic coefficient is finite at the fixed point �⇤ ⇠ O(1).
A condition here satisfied by the equation:

z = 2 � ↵
⇤

4
+ O(✏2) . (3.60)

As a consequence, the equilibrium fixed point presents a z = 2 dynamical crit-
ical exponent, while the stable active fixed point exhibits z = 1.7 in d = 3 and
in first-digit approximation. The latter exponent characterizes the new out-of-
equilibrium dynamical universality class [6], from which we learn that, for incom-
pressible theories, activity has the effect to lower the exponent with respect to an
equilibrium counterpart. A summary of the results obtained from this analytical
calculation is provided by Fig 3.2.
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Figure 3.2: Critical manifold in the parameters space. This plane represents the
critical manifold of the incompressible Toner and Tu theory. On the axes there are the
two coupling constants, u that is the ferromagnetic coupling constant and ↵ that is the
active coupling constant. The result of the DRG calculation provides four fixed points,
of which three unstable: black circle with u⇤ = 0 and ↵⇤ = 0 that represents the mean-
field theory; purple triangle with u⇤ = 0 and ↵⇤ = (4/3)✏ that is an incompressible fluid
with random forces [83]; green square with u⇤ = (2/17)✏ and ↵⇤ = 0 with z = 2 that
describes the universality class of the equilibrium isotropic and dipolar ferromagnet
[82]. Finally the red circle identifies the stable fixed point with u⇤ = (6/113)✏ and
↵⇤ = (124/113)✏ and z = 1.7, the fixed point relevant for active matter. Reprinted from
[6] and [7]
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The first crossover:
from an equilibrium to an
off-equilibrium universality class

The ultimate aim of our research is to find a theoretical model able to provide
a quantitative explanation to the dynamical scaling evidence in natural swarms
of insects [3]. As we explained, the first attempt to achieve this goal concerns
the study of the critical dynamics of the Vicsek model, which has already been
tackled from two complementary sides. A first numerical approach, reported in
[3], performed a finite-scaling analysis in the near-critical paramagnetic phase of
the original model of eq (3.1) (3.2). It found out the validity of the dynamical
scaling hypothesis for a critical exponent equal to z = 2 (Fig. 4.1). On the
other hand, the second outlook involved a DRG calculation on the corresponding
incompressible hydrodynamic field theory. This study discovered that the critical
dynamics of active systems manifests with z = 1.7 in d = 3, while the exponent
z = 2 indicates the equilibrium universality class [6].

These two results are apparently in contrast with each other, thus stimu-
lating many questions about the consistency between the two aforementioned
approaches. Why do numerical simulations of an active system reproduce an
equilibrium-like critical exponent? To what extent is activity important in the
critical dynamics of this system?

A first possible answer is based on the most evident difference between the
calculation and the numerical simulations: the constraint of incompressibility.
Simulations were indeed performed without imposing any condition on the ve-
locities, thus reproducing compressible systems, although homogeneous to justify
a finite size-scaling analysis. Conversely, compressibility represented a hard con-
straint to fulfill in the calculation, leading to think that the active fixed point
with z = 1.7 is an artifact of the incompressibility requirement. In this chapter,
we are going to demonstrate that this hypothesis is in fact false and that both
the results can be reconciled together with the introduction of the concept of
crossover between an equilibrium to an out-of-equilibrium universality class.
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Figure 4.1: Dynamical scaling in the Vicsek model d) Normalized dynamical
correlation functions evaluated at criticality for sizes N = 128, 256, 516, 1024, 2048 with
wave-number k = 1/⇠. e) Same functions of panel d) when time is rescaled by t ! kzt
using z = 1.96 ± 0.04, value extrapolated by the linear fit of panel f) where ⌧k indicates
the relaxation time of the correlation functions. Reprinted from [3].

4.1 Activity drives the crossover in parameters

space

The inspiration to solve this issue comes from the representation of the flow
diagram of the hydrodynamic theory, reported again in Fig.4.2. The plane of
ferromagnetic and active coupling constants (u,↵) contains all the fixed points
of the critical manifold. Our attention focuses on the equilibrium ferromagnetic
fixed point (green square with z = 2) and on the stable active fixed point (red
circle with z = 1.7) since they contain all the information needed to describe
polar active systems.

The idea is that the equilibrium, and unstable, fixed point gives rise to an
interplay with the active stable fixed point leading to a dynamical crossover be-
tween the respective universality classes. We believe this crossover contains the
key information to understand how the level of the activity affects the real criti-
cal dynamics of a natural and finite-size system. The analytical result definitely
concerns incompressible systems, but we are going to prove with numerical sim-
ulations that it characterizes also compressible ones [7].

To develop this concept, we show in Fig 4.2 the numerical integration of the
recursion relations (3.58) in three dimensions: the blue oriented lines represent
different evolution of the system at various bare conditions of the coupling con-
stants (u0,↵0). The red dots, each one representing an RG iteration, picture the
case of a physical value of the activity ↵0 very small, whose flow starts in the
left bottom corner of the phase space. Following the red path, the flow is firstly
attracted by the unstable fixed point, lingering in its vicinity for many RG it-
erations, and then it moves asymptotically towards the stable fixed point. The
value of the dynamical critical exponent accordingly changes. We can compute it
at every iteration as,

zl = 2 � 1

4
↵l , (4.1)

and follow its RG evolution. The curve zl shows a plateau at the effective equi-
librium value z = 2 and then a smooth descend to the active off-equilibrium
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Figure 4.2: RG flow and crossover (I). Critical manifold resulting from the cal-
culation of chapter 3: the fixed points of our interest are the equilibrium ferromagnet
with z = 2 (green square), and the Vicsek active-ferromagnetic fixed point, with z = 1.7
(red circle). They give rise to the equilibrium to off-equilibrium crossover: if the initial
value of the activity ↵0 is small, the flow, starting from the left bottom corner, quickly
approaches the equilibrium fixed point (red dots) and remains around it for many RG
iterations, before crossing over to the out-of-equilibrium fixed point. Reprinted from
[7].

z = 1.7 (Fig.4.3), suggesting that the system indeed experiences both the criti-
cal dynamics. Every RG iteration represents a length scale of observation of the
system, therefore this result is saying that, for a system microscopically weakly
active, there exist some length scales at which an equilibrium-like critical dynam-
ics emerges with the corresponding exponent. On the other hand, if the bare
activity is really large, the flow goes directly to explore the stable fixed point
exhibiting only an out-of-equilibrium dynamics.

The origin of this crossover can be fully understood by paying attention to
the principal quantity characterizing a critical system: the correlation length.
Each red dot of Fig.4.2 represents a length scale of observation of the system, but
also an effective theory with a corresponding physical correlation length ⇠. This
quantity is reduced by the RG iterations as ⇠l+1 = ⇠l/b = ⇠/b

l, thus setting a
maximum limit to the applicability of the scale transformations [74]:

⇠l+1 =
1

⇤
=) b

lstop = ⇤⇠ . (4.2)

The largest RG iteration is lstop, namely when the correlation length is decreased
till the microscopic length scale 1/⇤. If at this stop condition the physical bare
parameters allow the system to reach only the neighborhood of the equilibrium
fixed point, then the active system shows a z = 2 equilibrium exponent at all its
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Figure 4.3: RG flow and crossover (II). Numerical integration of the coupling
constants recursion relations vs number of RG iterations. The dynamical crossover is
evident especially in the trend of the running dynamical critical exponent zl, which
starts from the equilibrium value z = 2 to arrive to its off-equilibrium value, z = 1.7 (in
d = 3).Reprinted from [7].

physical scales. Conversely, if the correlation length is very large the flow reaches
the stable fixed point, belonging to the z = 1.7 universality class.

We can look at the behavior of the dynamical correlation functions and their
scaling properties introduced in chapter 1 and 2. At step l of RG, the temporal
correlation function has to scale accordingly with:

C(t, ⇠, k,P0) = b
2lzlC(tb�lzl , ⇠/b

l
, kb

l
,Pl) (4.3)

where P stands for the set of parameters of the theory, bare and at the transformed
level, respectively. When the RG flow arrives at its end, namely when (4.2) is
satisfied, we can calculate the correlation function in the neighborhood of the
reached fixed point, becoming

C(t, ⇠, k,P0) = (⇤⇠)2zlSTOP C(t/⇠zlSTOP ,⇤�1
, k⇤⇠,P⇤) . (4.4)

We can appreciated that, when the product k⇠ is kept fixed, the function majorly
depends on t/⇠

zlstop , identifying a characteristic time scale that decays as

⌧c ⇠ ⇠
zlstop . (4.5)

The value of zlstop is therefore determined by the closest fixed point attained by
the flow and it represents the quantity that rules the real critical dynamics and
the dynamical scaling of the system, even if it is not the exponent of the stable
fixed point.

Additionally, we are able to identify what is the condition that separates these
two different regimes of the dynamical crossover [7]. If the system explores only
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the unstable fixed point, we can expand eq (3.58) around it, obtaining

↵l+1 = ↵lb
✏�(10/3)u⇤

= ↵lb
 (4.6)

with  = (31/51)✏. Since the value of the active coupling constant in the vicinity
of the stable fixed point is ↵⇤ = O(✏), asking to be away from it, it is equivalent
to state that ↵stop ⌧ ✏, which is verified when

↵0b
lstop = ↵0(⇤⇠)

 ⌧ ✏ . (4.7)

If now we define the crossover length scale as

Rc = (✏/↵0)
1/⇤�1 (4.8)

the inequality in (4.7) translates into ⇠ ⌧ Rc, which appears as a requirement
for the system to visit only the equilibrium fixed point. The crossover scenario
can then be measured in terms of an interplay between the correlation length
and the value of the physical activity of the system. The crossover length scale
is indeed determined once the value of the effective activity is assigned, allowing
the following cases:

⇠ ⌧ Rc =) ⌧c ⇠ ⇠
2

⇠ � Rc =) ⌧c ⇠ ⇠
1.7

.
(4.9)

This result has interesting applications for physical finite size systems, which
are characterized by size L and by a certain extent of self-propulsion. If the ac-
tivity is so large that Rc < 1/⇤, the entire system lives in the off-equilibrium
critical regime to all physical scales up to the linear size L. On the other hand,
when the value of the bare activity is sufficiently small, the crossover length scale
can be arbitrarily large. When Rc > L, the system exhibits only the equilibrium
critical dynamics despite being microscopically active. Concluding, it is the ef-
fective activity that really drives the crossover, making the system show relevant
off-equilibrium dynamics only for very large values of it or for very large system’s
sizes [7].

The mechanism we just presented would totally explain the result of the nu-
merical simulations performed in [3] if the constraint of incompressibility had
been implemented also at the numerical level, while it had not. However, these
preliminary simulations can instead suggest that this crossover mechanism is way
more general than a strict application to incompressible systems. It could indeed
regard compressible but nonetheless homogeneous systems as the ones described
by the original Vicsek model with limited system sizes and small values of activity.

This is the idea we are going to explore in detail in this chapter, showing its
validity by means of numerical simulations of the original compressible VM. We
indeed believe that finding the crossover in the critical dynamics of this active
matter model would confirm that the out-of-equilibrium universality class with
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z = 1.7 is not an artifact of the incompressibility condition but it represents a
pure feature of the out-of-equilibrium nature of active systems. Certainly, these
considerations apply as long as the phenomenology of the VM’s phase transition
stays of the second order, while in the thermodynamic limit we expect another
crossover ruled by density fluctuations towards a phase-separation scenario. On
the other hand, this would also confirm that an incompressibility condition does
not change the dynamical universality class of an active model when consider-
ing systems of finite-size. To demonstrate this, we need to understand how to
practically tune activity in a microscopic system.

4.2 How to tune activity

Our main purpose is to numerically observe the dynamical crossover produced
by the RG calculation on the incompressible hydrodynamic theory of the Vicsek
model. We saw that what regulates this phenomenon is the active coupling con-
stant, namely ↵ = �

2 (�̃/�3)⇤�✏ (to lighten the notation we drop here all the 0
subscripts of the bare parameters). Indeed, when this quantity is different from
zero, it grows along with the RG flow, carrying the system from the equilibrium
and unstable fixed point, to the stable and out-of-equilibrium one [7].

It is natural to ask what is the microscopic parameter of the original model
(4.24) that corresponds to the active coupling constant in the continuous pa-
rameters space, and that has to be tuned in order to observe the crossover in
finite-size systems. The intuitive candidate is the speed v0, since for v0 = 0 the
Vicsek model reduces to an equilibrium ferromagnet. We can appreciate it simply
reformulating the microscopic model in these terms,

'
i
(t+ 1) =R⌘

 
X

j

nij(t)'j
(t)

!

ri(t+ 1) =ri(t) + v0'i
(t+ 1) ,

(4.10)

where we substituted vi = v0'i
and we wrote the dynamics only for the ori-

entations '
i
. It is clear that, in the limit v0 ! 0, the network freezes and the

dynamics of the orientations becomes an equilibrium dynamics belonging with
the universality class of Model A [74]. However, it is not transparent how to
connect this limit to the parameters of the incompressible field theory (3.9). For
clarity, let’s report here the continuous equations for the velocity,

@v

@t
+ �(v · r)v =�r2v � (a+ Jv

2)v + f

hf(x, t)f(x0
, t

0)i =2�̃ �
(d)(x � x0)�(t � t

0) .
(4.11)

Each coefficient appearing in these equations contains a non-trivial dependence
on the microscopic parameters, which is also coarse-graining dependent. For the
compressible case, one can look at [84, 85] for a derivation within the kinetic
approach. In our case, we do not know a priori the limit of these quantities for
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the speed v0 ! 0, therefore, to make progress, we can try to write directly the
hydrodynamic theory of eq (4.10) and then compare it with (4.11).

To this end, we use the fact that the coarse-grained velocity can be zero for
two distinct reasons: i) because the microscopic speed v0 is zero; ii) because
the system is misaligned and disordered, so that the local average of microscopic
vectors gives a zero value. Hence, in terms of fields, we can express these two
features writing

v(x, t) = v0'(x, t) (4.12)

where '(x, t) represents the field of polarization. By using the same exact argu-
ments that lead from (4.24) to (4.11), we can associate to (4.10) its corresponding
dynamical field theory,

@'

@t
+ �

0(v0' · r)' =�0r2'� (a0 + J
0
'
2)'+ f 0

hf 0(x, t)f 0(x0
, t

0)i =2�̃0
�
(d)(x � x0)�(t � t

0)
(4.13)

where we relabeled the coefficients to highlight the original microscopic difference
with those of (4.11). The remarkable thing is that now an explicit dependence of
the mesoscopic theory on the microscopic speed appears. Thi is due to the fact
that the material derivative always expresses the transport made by the velocity
field. We can therefore make a comparison between eq (4.13) and eq (4.11),
multiplying the first one for v0 and getting,

@v

@t
+ �

0(v · r)v = �0r2v �
✓
a
0 +

J
0

v
2
0

v
2

◆
v + v0f

0
. (4.14)

This theory must be equal to (4.11), because coarse-graining the microscopic po-
larizations '

i
and then multiplying them by v0, must give the same hydrodynamic

theory as coarse-graining directly the microscopic velocities, vi, as long as v0 does
not fluctuate. Therefore, we can read the parameters of the hydrodynamic theory
for v in terms of that of ',

� =�0

� =�0

a =a
0

J =J
0
/v

2
0

�̃ =v
2
0�̃

0

(4.15)

The great advantage of doing this detour is that now we know the limit for
v0 ! 0 of the primed parameters, since the corresponding microscopic theory has
to reflect the standard equilibrium dynamics of the polarization of a Heisenberg
ferromagnet [61], that is:

@'

@t
= ��eq

@H
@'

+ ⇣ , h⇣⇣i = 2�eq (4.16)
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where �eq is the equilibrium kinetic coefficient and simultaneously the amplitude
of the noise. The H stands for the classic Landau-Ginzburg Hamiltonian,

H =

Z
d
d
x (r')2 + req'

2 + ueq'
4 (4.17)

that contains the equilibrium mass req and the equilibrium ferromagnetic coupling
constant ueq. We can then conclude that,

a
0(v0 = 0) =�eq req

J
0(v0 = 0) =�eq ueq

�0(v0 = 0) =�eq

�̃0(v0 = 0) =�eq

(4.18)

have to be valid in order to respect the correct equilibrium limit. This means that
all the parameters of the dynamical field theory for the orientation have a well-
defined and non-singular behavior in the limit v0 ! 0. Only the coefficient of the
advective term �

0 remains undetermined, but this is reasonable since it is turned
off from the explicit dependence on the speed v0. By using this information and
eq (4.15), we can extrapolate the small v0 ! 0 behavior of the coefficients of the
velocity dynamics, which states

a ⇠ �eq req

J ⇠ �eq ueq/v
2
0

� ⇠ �eq

�̃ ⇠ v
2
0 �eq .

(4.19)

By combining them in the definition of the active coupling constant ↵ = �
2 (�̃/�3)⇤�✏,

we explicitly gain its dependence on the microscopic speed:

↵ =
�
2
v
2
0

�2
eq

⇤�✏ ⇠ v
2
0 . (4.20)

It is worth noticing that the parameter decisively affecting the result is the am-
plitude of the noise �̃ that scales as v

2
0, while we simply assume a reasonable

non-singular behavior for the transport coefficient �.

Eq (4.20) represents the first important result of this analysis [7]. Dependence
of the active coupling constant on the speed v0 was expected, however, eq (4.20)
tells something more. Activity grows with a non-trivial exponent 2, showing a
rather rapid increase with v0 and confirming that small changes in the speed have
great effects on the system’s critical dynamics. This result demonstrates that
the microscopic parameter that has to be tuned in order to verify the dynamical
crossover in the numerical simulations is the speed of the particles v0. This is the
reason why we decide to run simulations fixing all the dynamical parameters and
just varying the speed.

58



Chapter 4 4.3. Numerical simulations

To close this section, we can briefly analyze the behavior of the ferromagnetic
coupling constant, indeed from the second equation of (4.19), one might be led to
think that the parameter J diverges in the limit v0 ! 0. This is only an apparent
problem since this quantity alone does not represent the real effective coupling
constant, but rather one must consider the more complete

u ⇠ �equeq v
2
0 �eq

v
2
0 �

2
eq

⇤�✏ = ueq⇤
�✏ (4.21)

whose small speed limit is again well defined as it coincides with the equilibrium
ferromagnetic relevant parameter.

4.3 Numerical simulations

In order to test the dynamical crossover explained in the previous sections, we
perform numerical simulations of the original Vicsek model (3.1) (3.2) in its near-
critical regime. However, before going through the numerical results, let’s clarify
two important points for the discussion.

First of all, we remark that, in contrast to the analytical calculation, we
do not explicitly impose any incompressibility condition in our simulated model.
Assuming that the divergence of the velocity field is null implies that the system is
homogeneous, but also that long-range dipolar interactions can be involved. Here,
we decide just to passively monitor the homogeneity of the near-critical system
without imposing incompressibility in the system, hence without imposing any
long-range interaction. We maintain the more general and original formulation of
the Vicsek model, monitoring density fluctuations and considering the system’s
sizes not too big to ensure a continuous phenomenology of the phase transition.
In these conditions, we are sure to be able to apply the dynamical scaling theory
to numerical data and, thanks to homogeneity, to compare our results with the
RG predictions [6, 7]. Additionally, this situation reflects that of natural swarms,
which are of limited sizes and do not show relevant density fluctuations.

Secondly, we decide to treat the numerical data in the same way as the exper-
imental ones are analyzed in [2] and [3], being motivated by the final objective
to compare the theoretical critical dynamics of active matter to that of natural
swarms. This choice affects the calculation of statistical quantities, first of all,
the nature of fluctuations of the order parameter and consequently its correlation
functions. Due to the out-of-equilibrium nature of biological systems and of self-
propelled particles, we indeed define fluctuations of the velocity at time t like the
difference between the velocity of one particle and the velocity of the center of
mass at the same time [42], namely:

�vi(t) = vi(t) � 1

N

NX

i=1

vi(t) (4.22)
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This definition implies what we call the sum rule:

NX

i

�vi(t) = 0, (4.23)

a spatial constraint that simply encodes the fact that there cannot be a global
net motion of the system when considered in the center of mass reference frame
[42]. Moreover, to make a direct comparison with experimental data of natural
swarms we follow the same strategy of [3], namely, in the simulations of the
Vicsek model, we use the finite-size scaling method to extrapolate the dynamical
critical exponent. Indeed, from the analysis performed in [2], it is evident that
this powerful technique can reproduce the quasi-criticality of the natural system
into consideration.

We briefly repeat the simulated equations of the Vicsek model [28], which read:

vi(t+ 1) = R⌘

 
X

j

nij(t)vj(t)

!

ri(t+ 1) = ri(t) + vi(t+ 1)

|vi(t)| = v0 8 i, t

(4.24)

where the applied noise is scalar and the interaction is metric (rc = 1). The simu-
lated systems live in d = 3 and have sizes equal to N = 128, 256, 384, 512, 1024, 2048,
with N the number of particles. Periodic boundary conditions (PBC) are im-
plemented and all the simulations are run at constant noise, ⌘ = 0.45. As it
is believed to happen in the biological system of swarms [1], the density (or,
more precisely, the mean first-neighbor distance) is tuned to follow the ordering
transition at various N , exploring the near-critical scaling regime. Finally, the
parameter v0 represents the speed, which is identical for all the particles and it is
preserved as a constraint along with the evolution of motion. We studied several
cases of different values of speed but we report results for v0 = 0.05 and v0 = 0.2.
As we have seen, the activity coupling constant grows as the square of the speed;
hence we expect this change of a factor of 4 to be sufficient to reproduce the
crossover we want to test.

4.3.1 Static behavior and correlation length

To compute the dynamical critical exponent from the simulations the first thing
to ascertain is the finite-size criticality of the system. With this sentence, we mean
to fix the size of the system N and then identify the critical value of the tuning
parameter, namely the density, at which the system is maximally correlated. To
locate this finite-size critical point, we compute for each value of density explored
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Figure 4.4: Static correlation functions Three static correlation functions of the
Vicsek model in d = 3 for sizes N = 128, 256, 384 and v0 = 0.05. Each curve is a function
of the size N and of the tuning parameter, ⇢. They all show the same behavior, being
null when k = 0 and going to 1 for large momenta. The point of maximum k0 and its
value change with N , this latter representing a measure of the susceptibility �.

the equal time correlation function in wave-number space [42], that is:

C(k) =
1

Nv
2
0

*
X

ij

sin(krij)

krij
�vi(t) · �vj(t)

+
, (4.25)

where the velocity fluctuations are calculated according to eq (4.22), rij = |ri(t)�
rj(t)| and h i indicates an average in time. Examples of these functions are
reported in Fig. 4.4 for three different sizes and densities at the same value of
speed. From this graph a particularity emerges: the C(k) computed at k = 0 are
identically null, and this is due to the sum rule (4.23) since,

C(k = 0) =
1

Nv
2
0

X

i

�vi(t)
X

j

�vj(t) = 0

while in the limit k ! 1 the only self-contribution survives, implying C(k !
1) = 1/Nv

2
0

P
i
|vi|2 = 1.

This fact has the consequence that the usual definition of susceptibility � =

C(k = 0) =
R
d
d
r C̃(r) looses its meaning, being itself null. However, we can

take as a measure of this statistical quantity � the peak of the static correlation
function, that is where the correlation is maximum, and that occurs at a particular
inverse length scale k0 (Fig. 4.4). We compute the susceptibility for each value
of the control parameter and for each size we analyze, obtaining the graph in Fig
4.5, shown just for one value of the speed, namely v0 = 0.05.

As in normal equilibrium systems, we interpret the point of maximum of
susceptibility as the transition point of the system which is located at a critical
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Figure 4.5: Surfing of susceptibility. Susceptibility vs density for Vicsek model
simulations in d = 3, with v0 = 0.05 and sizes N = 128, 256, 384, 512, 1024, 2048. The
red dots identify the maxima of susceptibility for each N and correspond to the finite-size
critical points ⇢c, which follow the FFS expected trend. Continuous lines are formed
by points of simulations, dashes lines are extrapolations of the high and low-density
regimes.

value of the density ⇢c (red dots of Fig4.5). Certainly, we can see that this point
is size dependent ⇢c = ⇢c(N) and grows as the size of the system increases. This is
correct in view of finite size scaling (FSS) analysis [60]: indeed, to be precise, the
real control parameter associated to the ordering transition is x = r1/rc, the mean
first-neighbor distance rescaled for the interaction radius, which, for homogeneous
systems, is expected to scale as x ⇠ 1/⇢1/3. When the susceptibility reaches its
peak, the system is deeply correlated and, if FSS holds, these relations have to
be valid

⇠ ' L (4.26)

x ' xc +N
� 1

3⌫ (4.27)

where ⌫ is the static critical exponent that describes the divergence of the corre-
lation length at criticality:

⇠ ' 1

(x � xc)⌫
(4.28)

and L is the linear size of the system L = (N/⇢)1/3. Combining this information
we can appreciate that FFS holds for the peaks of the susceptibility in terms of
density as a control parameter (Fig. 4.5). Finally, to extrapolate the correlation
length, we go back to analyze the C(k) relative to that particular ⇢c and we
interpret ⇠ = 1/k0 as the maximum correlation length of the system [2].
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4.3.2 Dynamical behavior and relaxation time

The second important ingredient we need to analyze the critical dynamics of the
model is the relaxation time of the velocity dynamical correlation functions. For
these latter, we use a definition always in k-space [86], already used for experi-
mental data (1.24), namely:

C(k, t) =

⌧
1

N

X

ij

�vi(t0) · �vj(t0 + t)
sin(krij)

krij

�

t0

, (4.29)

where rij = |ri(t0) � rj(t0 + t)| and

h it0 = 1/(Tmax � t)
Tmax�tX

t0=1

(4.30)

with Tmax the length of the simulation. From this latter quantity the characteristic
time scale can be computed as the value of ⌧ that verifies the condition [5],

1

2⇡
=

Z 1

0

dt
1

⌧
sin

✓
t

⌧

◆
C(k, t)

C(k, 0)
, (4.31)

as also explained in the previous chapters.
Being this function k dependent, we have to decide at which length scale

looking at the system. In analogy with experimental data of natural swarms
[3], we decide to fix the product k⇠ = 1 and then to evaluate correlations at
k = 1/⇠. Certainly, this helps in verifying the dynamical scaling hypothesis
because, if it holds and this product is kept constant, then the relaxation time
has to scale as ⌧(k) = ⇠

�z
f(k⇠) and the different correlation functions, computed

for different sizes, have to collapse one on each other to the same shape function
C(k, t)/C(k, 0) = F (kz

t), when time is also properly rescaled.

4.4 Dynamical crossover in numerical experiments

We now use the tools just introduced to explore and try to verify the dynamical
crossover predicted by the RG study [7]. As we explained before, the speed v0 is a
key parameter to move coherently the effective theory in the parameter space and
visit the different fixed points. When the speed v0 is changed at a microscopic
level, also the bare activity coupling constant ↵0 is changed, determining the
well-known RG flow.

From Fig.4.2, we understood that, if this initial value is quite small, the system
will show the transition between the two different types of critical dynamics.
Therefore, following this reasoning, we should be able to see the crossover fixing
a small value of v0 and then exploring the system at very large sizes: at least two
decades in correlation length to appreciate the change of the exponent in a power
law. However, this is numerically very hard to implement: we are studying out-of-
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equilibrium systems in d = 3 and the computational time to evaluate quantities as
(4.29) and (4.25) is quite demanding already at N ⇠ 2000. Therefore, we decide
to carry out another strategy translating this crossover in size into a crossover in
speed.

1 v0 = 0.05, � = 0.45, simulazioni come in NP2017
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Ĉ
(k

,t
k

z
)

ln ⇠

ln
⌧

v0 = 0.05
v0 = 0.20

low activity
z = 2.0

z = 2.0

z = 1.7
high activity

z = 1.7

(c)

Ĉ
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Figure 4.6: Vicsek critical dynamics in three dimensions (I). Relaxation time
vs correlation length for the two different values of speed v0 = 0.05, 0.20 and sizes
N = 128, 256, 384, 512, 1024, 2048. Lines are the best fit to the RG results, z = 1.7
(blue, high v0, high activity) and z = 2 (red, low v0, low activity). This result confirms
the realization of the dynamical crossover in speed.

To achieve this goal, we remember that once the value of v0 is assigned, we
determine the effective coupling constant but, above all, we fix the crossover
length scale (eq. (4.8)) Rc ⇠ 1/↵0. Choosing very high values for ↵0, i.e v0

means reducing this length scale that can eventually shrink to zero or be smaller
than the mean interacting distance. If this happens, the system is in the regime
where ⇠ ⇠ L � Rc, directly feeling the attraction of the stable fixed point and
exhibiting a z = 1.7 off-equilibrium critical dynamics. On the other hand, if the
speed is small enough, implying Rc � L, then the system will explore solely
the neighborhood of the unstable fixed point showing an effective equilibrium
critical dynamics with z = 2. This is what we test in our simulations, which are
performed at two values of the speed, namely v0 = 0.05, 0.2 [7].

In Fig.4.6, we report in the plane (ln ⇠, ln ⌧) the critical quantities we have
computed as explained before, at each size N for the two values of speed. The
slope of the two lines represents an estimate of the dynamical critical exponent
z. Here we show the best fit of data using as fixed slopes the theoretical values
of the exponents predicted by RG. For v0 = 0.05, representing the low activity
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regime, simulations reproduce a critical dynamical scaling with z = 2, belonging
to the equilibrium universality class. In the high speed regime v0 = 0.20, the
system crosses over to the off-equilibrium class, clearly fitting a z = 1.7 critical
exponent.
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Figure 4.7: Vicsek critical dynamics in three dimensions (II). Left: nor-
malized dynamical correlation functions, Ĉ(k, t) = C(k, t)/C(k, 0), at k = 1/⇠
for v0 = 0.05 (top) and v0 = 0.20 (bottom), respectively. Explored sizes N =
128, 256, 384, 512, 1024, 2048. Right: same correlation functions plotted against the scal-
ing variable tkz, using z = 2 (top) and z = 1.7 (bottom). The characteristic collapse
of the curves states the validity of the dynamical scaling hypothesis for the respective
values of dynamical critical exponent.

In order to confirm the numerical crossover and the full validity of the dynami-
cal scaling, we also directly test the collapse of the dynamical correlation functions
for these values of the exponents. In Fig4.7, we show these functions and the same
curves when time is rescaled in tk

z, again with z = 2.0 for v0 = 0.05 and z = 1.7

for v0 = 0.20. The collapse is satisfying and it still confirms the realization of the
dynamical crossover in the microscopic and compressible model. Additionally, we
report here the opposite scaling of the functions in Fig.4.8, namely exchanging
the two values of the exponents in the two different cases: we can appreciate a
relevant difference with Fig 4.7.

Statistical tests about the critical exponents’ estimate

To enhance the robustness of our critical exponents’ evaluation, we perform two
additional basic statistical tests on our simulations [87].

Test 1: We examine the consistency of the z values extrapolated by linear
fits of the data of Fig 4.6 with the theoretical expectations. First of all, for each
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Figure 4.8: Vicsek critical dynamics in three dimensions (III). Panels (a),
(c) Scaling of dynamic correlation functions Ĉ(k, t) in semi-log scale using values of z
extrapolated by the linear fits of Fig.4.6: (a), v0 = 0.05 with z = 2.0 and (b), v0 = 0.20
with z = 1.7. Panels (b), (d) same correlation functions reversing the scaling procedure:
(c), v0 = 0.05 with z = 1.7 and (d), v0 = 0.05 with z = 2.0. The scaling hypothesis is
not well verified for (b) and (d).

value of speed v0, we fit the data on the plane (ln ⇠, ln ⌧) with the simple linear
function f(x) = mx + c. Since we know that ⌧ ⇠ ⇠

z, the slope m is the value of
z we are looking for. We obtain:

• v0 = 0.05: zsim = 2.10 ± 0.04

• v0 = 0.20: zsim = 1.65 ± 0.03

The value of the exponent zsim is affected by an uncertainty �, which is computed
assuming that data on correlation time belong to a Gaussian distribution and
that their standard deviation can be determined with the least squares method.
Then, we perform a simple hypothesis test to verify the compatibility with the
analytical theoretical values zth. We compute the variable

t =
zsim � zth

�
, (4.32)

which measures the distance between the theoretical and the simulation value of
z in units of uncertainty. If |t| > 3, the probability that the value extracted from
simulations is compatible with the theoretical one is less than 1%. We got:

• v0 = 0.05: zth = 2.0 ! t = 2.5, consistent;

zth = 1.7 ! t = 10.0, not consistent.
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• v0 = 0.20: zth = 2.0 ! t = �11.7, not consistent;

zth = 1.7 ! t = �1.7, consistent.

This result validates the thesis we found the dynamic crossover in the Vicsek
model.

Test 2: We evaluate the quality of the linear fits of Fig.4.6 using theoretical
values of the dynamic critical exponents as fixed slope. To achieve this, we carry
out a �2-test. For each data set with activity v0, we perform a linear regression
using both values of zth = 2.0, 1.7 and extrapolating only the intercept c of the
linear function from data. With uncertainties on ln ⌧ derived by the least square
method, as in the point above, we computed the standard �

2 for N � 1 degrees
of freedom for both analyses. If this variable results larger than 11, we can say
that the probability that the fit is compatible with data is less than 5%, hence

• v0 = 0.05: zth = 2.0 ! �
2 = 9.98, consistent;

zth = 1.7 ! �
2 = 415, not consistent.

• v0 = 0.20: zth = 2.0 ! �
2 = 131, not consistent;

zth = 1.7 ! �
2 = 7.04, consistent.

Once again, this analysis confirms the result of this work, namely that, increas-
ing the activity of the self-propelled particles in the standard Vicsek model, we
can numerically verify the dynamic crossover from the equilibrium to the out-of-
equilibrium dynamic universality class.

4.5 Checking homogeneity

As we stressed before, we run simulations of the original Vicsek model without
imposing incompressibility. We merely check that homogeneity conditions are
preserved along with the analyzed configurations, in order to assert that the only
important thing to determine the two different dynamical universality classes is
the absence of relevant density fluctuations. These inspections become also more
necessary when increasing the speed v0 of the model, indeed it has been shown in
[78] that the threshold size, above which a first-order transition become visible,
shows a regime in which it boils down when v0 grows, and then it increases for
very large speed.

We carefully look at the numerical data to primarily exclude the presence of
heterogeneous structures like bands, typical of the near-ordering phase of these
active systems. For all the simulations collected we examine the temporal series
of the polarization � = 1

N
|
P

vi|, monitoring eventual jumps in its value that can
reflect the presence of denser and more ordered zones (Fig.4.9a).

Moreover, for both sets of simulations, we verify the trend of the mean first
neighbor distance with the average density: for homogeneous systems, these quan-
tities are expected to behave as x ⇠ 1/⇢1/30 , and this is also fully confirmed by our
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Figure 4.9: Numerical simulations: test of homogeneity. Analysis of homo-
geneity for data sets with v0 = 0.05 (red) and v0 = 0.2 (blue). (a) Temporal series of
polarization � for both activities and for size N = 2048 at the critical point. (b) The
mean first neighbor distance is computed for each size N = 128, 256, 384, 512, 1024, 2048:
it scales as x ⇠ ⇢1/30 as predicted for homogeneous systems. (c) Temporal series of nt:
the number of particles entering in a box of size l0 = L/7 and centered in the middle
of the bigger box of size L for N = 2048. (d) Average on time of nt for all the sizes N
and speed: this quantity scales linearly with N , as predicted for homogeneous systems
hnti = N/73 [30].

data (Fig.4.9b). Finally, we localize a small box of size l0 = L/7 in the center of
the big box of the simulation and we record the number of particles nt entering
in the first one during the evolution of motion [30]. The temporal series of this
quantity does not show consistent fluctuations that can help in identifying denser
clusters going through the sample box and, what is more, its time-averaged value
verifies:

hnti ⇠ ⇢0l
3
0 , (4.33)

a relation proper of systems traveling without bands or aggregates [30]. Inserting
in this expression the fact that ⇢0 = N/L

3, we affirm its validity looking at
the linear trend hnti ⇠ N/73 (Fig.4.9 c,d). Concluding, all the simulated data
presented here reflect a homogeneous second order phenomenology, and can be
used to test RG predictions of the original theory.

4.6 Breakdown of hydrodynamics for large speed

To explore the dynamical crossover between an equilibrium to an out-of-equilibrium
universality class, we showed results regarding only two values of speed v0, one

68



Chapter 4 4.7. Conclusions on the Vicsek Model

representing the low activity regime and one the high activity regime. Between
the two there is a change of factor 4, that translates into a factor 16 in the activity
coupling constant because of their reciprocal squared relation (4.20). This turned
out to be a sufficient condition for the manifestation of the crossover, however,
one could argue that v0 = 0.2 is not such a high value and we could have per-
formed simulations at a larger speed. This is partly true, but we realized that
going to arbitrary large v0 is not functional for the purpose to make a comparison
between numerical data of microscopic models and field theory’s predictions.

The reason is that the hydrodynamic and continuous description of a model
breaks down for very high values of v0. Remembering that the time step, in
this discrete model, is �t = 1, the condition to preserve the applicability of
hydrodynamics reads as v0 ⌧ L that, given the sizes under consideration, means
for v0 in the range 0.2 � 0.3. The quantitative explanation of this statement lies
in the kinetic theory of [88], in which the Knudsen number is introduced as,

Kn =
�

L
(4.34)

where � is the mean free path of a particle, and L is the macroscopic length scale.
For hydrodynamics to be consistent, it must be Kn ⌧ 1, meaning that particles
have to undergo many interactions with other active elements within the coarse-
grained volume, in order for the coarse-graining procedure to make sense at all.
In our case of the Vicsek model, � ⇠ v0�t = v0, therefore one always has to
respect the condition

v0 ⌧ L . (4.35)

In the opposite case, namely when v0 becomes comparable with the linear size
L, the rewiring of the interaction’s network is so relevant, that the notion of
local interaction disappears, and studying the critical dynamics of the simulations
appears quite problematic, especially in comparison with RG calculations.

4.7 Conclusions on the Vicsek Model

In the last two chapters, we saw that an active matter model characterized by
the presence of self-propulsion and ferromagnetic alignment as the Vicsek model
(both in incompressible, but finite-size, or compressible scenarios) belongs to a
universality class that is different from its equilibrium counterpart. From the
study of the critical dynamics of the incompressible Toner and Tu theory in the
near-critical phase, we understood that the off-equilibrium universality class is
identified by a dynamical critical exponent z = 1.7 in d = 3 when the calcula-
tion is performed at 1-loop. Moreover, numerical simulations confirm that the
same scenario is applicable also to homogeneous compressible systems, and the
aforementioned value of z is not an artifact of incompressibility.

Therefore, the main take-home message relies on the result that out-of-equilibrium
effects manifest in a lowering of the dynamical critical exponent’s value with re-
spect to the corresponding fixed network universality class, and the ingredient
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that realizes this is the self-propulsion of the active particles. This fact confirms
the intuitive idea that, when individuals are allowed to move and exchange con-
tinuously their interaction network, the information spreads more easily across
the group reducing the value of the exponent z.

However, the fil rouge of this work is to identify the dynamical universality
class of natural swarms, therefore it is important to highlight that this result is still
far from a complete agreement with experimental data on this system. Swarms
exhibit the dynamical scaling property with an exponent in the experimental
window 1.1 < z < 1.3 and, what is no less concerning, the decay of the dynamical
correlation functions does not match with the first-order exponential relaxation
of the Vicsek model. These discrepancies suggest that this theory is not capable
to describe the relevant features that characterize the swarming behavior, and
that some fundamental ingredients are missing in our mathematical description.
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Reinstating inertia in the
microscopic dynamics

If, on the one hand, the Vicsek model is able to reproduce the quasi-critical
phenomenology and the static properties of natural swarms, on the other, its
dynamics does not capture some fundamental traits of their dynamical correlation
functions. First of all, even taking into consideration relevant levels of activity,
the out-of-equilibrium universality class studied in the previous chapter gives the
exponent z = 1.7 that is quite far from the experimental value z ' 1.2. Second,
the shape of their functions is reproduced by the exponential decay of the VM. We
need, therefore, to modify our theoretical approach searching for new mechanisms
in addition to the relevant effect of the activity.

The inspiration comes from the world of classical condensed matter physics
of equilibrium systems. The literature of critical dynamics [67, 74] provides an
overview on the main causes of the lowering of the dynamical critical exponent
with respect to the standard dissipative case z = 2. These mechanisms emerge in
the presence of symmetry and conservation laws that affect the nature of the order
parameter’s dynamics. The main results are mode-coupling terms that modify
the classical dynamics (2.3) making it inertial or of second order. Models in which
this effect is visible are the classic Model E, Model G or Model F of [74].

These theories work already on a coarse-grained level, to which we want to
arrive starting from a microscopic ground with the aim to continue a comparison
with the biological system of interest. What really drives us is the non-exponential
decay of the C(k, t) of natural swarms’ velocities (Fig 1.9), which represents the
key starting point of this investigation. The clear zero derivatives for small times
can be explained, in fact, considering a microscopic model with a non-dissipative
structure in the dynamics of the velocity, maintaining the main features of the
VM: activity and ferromagnetic alignment. The model that has been proposed
to fill these gaps is called the Inertial Spin Model (ISM), and it will be the main
player of this chapter. We are going to introduce its microscopic derivation from
the VM and its main characteristics, while in the next chapter we will proceed
with the related field theory RG study.
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5.1 From the Vicsek Model to the Inertial Spin

Model

The ISM was introduced in [8] with the purpose to explain the phenomenon
of information propagation in flocks of birds. Experiments show that starlings’
collective turns are described by a linear propagation of purely directional in-
formation that does not involve any relevant local change in the density of the
system [89]. This means that, when a bird starts to change direction, a wave-
front of information, originating from it, rapidly propagates traveling fast and
undamped through the whole homogeneous system. This scenario turns out to
be quite different from the one predicted by the Toner and Tu theory: in the
hydrodynamic limit k ! 0, it shows anisotropic propagating modes coupled to
density fluctuations [36], which have not been observed in flocks’ experimental
data [89]. From this scenario, the introduction of a model with a new dynamics
able to capture these traits appeared necessary [90].

We firstly introduce the equations of the model and then comment its deriva-
tion starting from the continuous version of the Vicsek model. In three dimensions
of space and vectors the ISM reads:

dvi

dt
=

si ⇥ vi

�

dsi
dt

=
vi

v0
⇥
 

J

v0

X

j

nijvj � ⌘

v0

dvi

dt
+ ⇣

i

!

dri

dt
= vi

(5.1)

with noise correlator:

h⇣
i
(t) · ⇣

j
(t0)i = 2d⌘T �ij�(t � t

0) (5.2)

Here ri identifies the position in space of the particle i, vi its velocity with fixed
speed |vi| = v0 and si is a new variable that represents the generalized momentum
connected to the rotation of the particle in its internal space. Due to these features
and in analogy with quantum mechanics, it is named spin. The parameter � is the
behavioral inertia, ⌘ is a friction coefficient acting on the spin and J represents
the strength of the alignment. Finally, T is a generalized temperature that fixes
the amplitude of the noise.

To explain the origin of this model we can use a more convenient version
of VM, which is its continuous-time version [42]. This is characterized by some
formal differences with the original model introduced in the previous chapters,
however, it preserves all the most important features of the discrete version. Using
a Lagrange multiplier to enforce the constraint on the fixed modulus, in the limit
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for dt ! 0, the model appears:

⌘
dvi

dt
= J

X

j

nijvj + �ivi + ⇣i (5.3)

dri

dt
= vi (5.4)

where ⌘ now can be interpreted as the timescale of the dynamical update, �i is
the Lagrange multiplier to fix the condition |vi| = v0 and ⇣

i
is the same Gaussian

noise introduced above. In this formulation the velocity’s dynamics is very similar
to a Langevin spin dynamics with ferromagnetic interactions, namely:

⌘
dvi

dt
= �@H

@vi

+ �ivi + ⇣i (5.5)

with the force coming from the pseudo-Hamiltonian:

H = �J

X

hiji

nijvi · vj . (5.6)

On the other hand, compared to the lattice ferromagnetic case, in this model the
network is not fixed, the connectivity matrix depends generally on time nij =

nij(t) and the system is out of equilibrium [42]. As the original model, also
this kind of dynamics generates long-range order and scale-free correlations in
the conditions of low noise and high polarization (Goldstone modes), or at the
critical point and low polarization.

We said that the flaw of the VM is that it does not correctly reproduce the
way collective turns occur in natural flocks and that ISM was formulated to fill
this gap. Therefore, to understand its origins, let’s focus on the ordered flocking
phase of these models, forgetting for a moment the disordered swarming regime.

A useful path to go is the computation of the dispersion relation in the case
of fixed network approximation. In the polarized phase, it is indeed reasonable
to assume that the connectivity matrix does not depend on time, because flocks’
collective turns occur on time scales smaller than the rearrangement scale of the
network [91]. To calculate it, we then consider eq (5.3) in the limit of low tem-
perature, where a spin-wave approximation can be used to expand each velocity
vector around the mean velocity direction (that here we consider as the x axis)
[42]:

vi = v
x

i
nx + ⇡i ⇠ nxv0

✓
1 � 1

2

⇡
2
i

v
2
0

◆
(5.7)

where ⇡ = v0(0,�y
,�

z) is the vector of transverse fluctuations with � the vector
of phases. In this approximation, the equation of motion for the phases, in both
the two directions, states:

⌘
d�

↵

i

dt
= �J

X

j

⇤ij�
↵

j
+ ⇣

↵

i
(5.8)
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where we introduced the discrete Laplacian defined as: ⇤ij = �nij + �ij

P
k
nik,

indicating with ↵ the phase’s components. If we look at spatial scales larger than
the microscopic ones, we can transform the discrete Laplacian to its continuous
counterpart, namely: X

j

⇤ij ! �Jnca
2r2 (5.9)

where a is the mean inter-particle distance, multiplied in order to respect the
dimensional analysis, and nc the number of interacting neighbors. Following this
point of view, we can substitute the individual phases with the continuous field:

�
↵

i
(t) ! �

↵(x, t) . (5.10)

with ↵ indicating the cartesian component. Therefore the equation for the phase
becomes:

⌘
@�

↵(x, t)

@t
= Jnca

2r2
�
↵(x, t) + ⇣

↵(x, t) (5.11)

accompanied by the noise’s variance:

h⇣↵(x, t)⇣�(x0
, t

0)i = 2⌘Ta3�(x � x0)�(t � t
0)�↵� . (5.12)

To study the dispersion relation, we can go to Fourier space and use the Green
function method to obtain the modes’ frequency, which, in this case, results purely
imaginary:

!(k) = i
Jnca

2

⌘
k
2
. (5.13)

The last equation identifies a diffusive process of information propagation with
D = Jnca

2
/⌘ as diffusion coefficient, meaning that a disturbance that originates

in a point of the group spreads diffusely through the system [42]. When few
individuals, willing to turn, change direction of motion, turning information is
transmitted diffusively and attenuated or, in other words, the turning modes are
non-propagating overdamped modes. As a consequence in the long time limit
the whole group loses coherence and disperses [8], as represented in Fig. 5.1. To
summarize, a diffusion-like equation as the last one is clearly not ideal for the
description of propagating information phenomena in flocks of birds.

One could blame the fixed network approximation as the responsible for this
behavior. Indeed, reinstating density fluctuations in the system, it is possible
to show that propagating modes emerge in the hydrodynamic limit k ! 0 [37],
although strictly depending on the density itself. Possibly due to the finite size
of real flocks, experimental data of these systems never revealed such a coupling
between velocity and density that could justify a proper use of this hydrodynamic
theory [89]. A possible way to obtain a real and linear dispersion relation em-
bedding propagating sound modes is to make this theory inertial using effective
variables, symmetries, and conservation laws.

74



Chapter 5 5.1. From the Vicsek Model to the Inertial Spin Model

Figure 5.1: Schematic representation of turning events in real and Vicsek

flocks. In real flocks, left panel, the information of turning propagates from a bird to
the rest of the group, thus allowing a compact and coherent collective movement. In
the Vicsek model, right panel, the turning information does not propagate: one element
starts to turn and the flock does not follow it, with the consequence that the whole
group loses coherence. Reprinted from [8].

5.1.1 The double role of velocity

To make progress, we analyze the role of the velocity in these active models, going
back to the hydrodynamic theory of Toner and Tu. We can here briefly recall the
equation that identifies the latter in absence of noise,

Dtv = J r2v � rP +
@V

@v
, (5.14)

where with V we are indicating the classic quartic potential. We focus on the
physical meaning of the first term of the r.h.s. that, in a usual Navier-Stokes
interpretation, represents the dissipation responsible for the diffusive behavior of
the fluid, with J assuming the role of kinematic viscosity. This equation can
be therefore interpreted in a mechanistic sense for which Dtv is the acceleration
of the fluid, and the remaining terms of the right side play the role of external
dissipative forces.

However, we saw from the previous section that the Laplacian contribution
directly comes from a continuous limit of the interaction term J

P
nijvj, which

describes more a social force than a viscosity. From this perspective, J is what
regulates the dynamics of the velocity acting like a stiffness of an orientation force.
As a consequence, the velocity v assumes the role of the fundamental degree of
freedom of the theory. This point of view is already explicit in the microscopic
formulation of the model of (5.5), where the force is expressed as the derivative
of an effective Hamiltonian with respect to the velocity itself F i = �@H/@vi.

Under this second interpretation, equation (5.14) can be viewed as an over-
damped first order Langevin equation for the orientations, instead of an under-
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damped second order Newton equation. To recover propagating orientational
modes independent of the density, it seems reasonable to write the velocity un-
derdamped limit of this model [42]. Nevertheless, if going from an inertial equa-
tion to its overdamped limit is quite easy, performing the opposite limit can be
complicated. Symmetries and conservation laws help us in reaching this goal.

5.1.2 Rotational symmetry and spin

The hint of the existence of a symmetry comes again from the world of flocks of
birds. Experimental data highlight that, when the flock performs a collective turn,
each individual follows a specific trajectory in space that can be described with
an equal-radius turning scenario [92]. This rotation is different from the usual
rigid body turning, for which individuals rotate around the same axis with the
same angle of rotation but different radii of curvature. In this latter case, from an
external observer, the main effect is that particles change their relative positions
but do not with respect to the center of the reference frame. On the other hand,
in the case of equal-radius turning, the relative positions among individuals do
not change from an external observer since all the particles turn with the same
radius of curvature but with different centers of rotation (the difference can be
appreciated in Fig 5.2, [42]). The biological advantage of this behavior is that
flocks maintain stronger cohesion in the group flying at an almost constant speed
and preserving the symmetry of invariance under a fixed-radius rotation.

Figure 5.2: Schematic representation of a rigid and an equal-radius turn.

Velocities are rotated of 90� degrees in the rigird turn (left) and in the equal-radius case
(right). In the latter case the orientational topology of the system is changed. Reprinted
from [42].

To see how to make wise use of this symmetry, it is instructive to analyze
the two-dimensional case. What changes during an equal radius turning is the
direction of the velocity vectors: the rotation takes place in the internal space of
velocity and not in the external space of positions. Of course, also in this case,
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we can keep on assuming the constraint of constant speed v0 and then express
the directional vector as:

vi = v0e
i�i (5.15)

where now the single phase �i assumes the role of the new generalized coordinate
[42]. The Hamiltonian formalism suggests to pair it to its conjugated momentum,
namely the generator of rotation in the internal space that is the spin angular
momentum si [8]. Therefore, the presence of this underlying symmetry allows
us to identify a new pair of canonical variables (�, s) that follow the classical
equations of motion:

d�i

dt
= {�i, H} (5.16)

dsi

dt
= {si, H} (5.17)

where the Poisson parenthesis are defined as:

{A,B} =
X

i

@A

@�i

@B

@si
� @A

@si

@B

@�i

(5.18)

and the Hamiltionan, in the non-interacting case, is:

H =
X

i

s
2
i

2�
. (5.19)

Here we can map the parameter � with a generalized moment of inertia: it em-
bodies the resistance of the active particle to change the instantaneous radius
of curvature of its trajectory, thus justifying the name of behavioral inertial [8].
In the case of free-particles, we observe a simple circular motion during which
particles rotate with constant angular velocity, indeed:

d�i

dt
= {�i, H} =

@H

@si
= si/� (5.20)

dsi

dt
= {si, H} = �@H

@�i

= 0 (5.21)

and the single particle’s spin is conserved. We can now add the interaction
through a generic potential V ({�i}) in H, whose derivative describes the align-
ment interaction force between particles, in such a way that:

d�i

dt
=
@H

@si
= si/� (5.22)

dsi

dt
= �@H

@�i

= �@V

@�i

= Fi (5.23)

and the forces on the phases are mediated by the equation of the spin. A clear
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generalization of the interacting Hamiltonian follows,

H =
X

i

s
2
i

2�
+
X

i

V ({�i}) (5.24)

where we can easily distinguish the kinetic term and the potential V acting on
the phases. In order to preserve the complete rotational invariance of the Hamil-
tonian, V is required to be also rotational symmetric [8]. This means that if the
phase of each particle is changed by a global quantity ��, the (5.24) is invariant
under this global transformation and, thanks to the Noether’s theorem, there ex-
ists an associated conserved quantity in the system. It is easy to show that what
is preserved along the dynamical evolution is the total spin of the system, namely
S =

P
i
si, since

dS

dt
= �

X

i

@V

@�i

= 0

because of the discrete Laplacian properties and of the symmetry V ({�i}) =

V ({�i + ��}). We stress this symmetry since it will be an important player in all
the following field theory analysis.

For the moment, we wrote the dynamical equations for the phase and for the
spin, but not for the velocity, which, we remember, is not the canonical variable
coupled to the internal angular momentum. The update equation for the vi is
not trivial, but we can use again the Hamiltonian formalism to compute the time
evolution of observable that does not depend explicitly on time, using the Poisson
brackets tool. In the simple planar case, where vi = v0 exp(i�i) lies on the 2d
plane and s on its orthogonal direction, we get for the first equation:

dvi

dt
= {vi, H} =

X

j

@vi

@�j

@H

@sj
= ivi

si

�
(5.25)

In three dimensions, both vi and si become three dimensional vectors. Rein-
stating back the three different phases that parameterize the rotation around the
three axis {�↵

i
}(↵ = x, y, z), we can use the following relation:

@v
↵

i

@�
�

i

=
X

�

✏↵��v
�

i
, (5.26)

where ✏↵�� is the antisymmetric Levi-Civita tensor, to generalize the equations of
motion to [8]:
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(5.28)

Finally, using a more compact vectorial notation, we can write the underdamped
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equations of ISM in the deterministic and conserved case:

dvi

dt
=

si ⇥ vi

�
(5.29)

dsi
dt

= vi ⇥ F i (5.30)

dri

dt
= vi (5.31)

These equations of motion clarify that the spin si assumes a direct kinematic
meaning: it is related to the instantaneous radius of curvature of the particle’s
trajectory R ⇠ v0�/|si| and it has the main role to mediate a not-instantaneous
update of the force on the particles: the alignment interactions manifest on the
spin and not directly on the velocity vi, hence they cannot change the motion
abruptly, but only through a slower and inertial timescale [8].

5.2 Spin dissipation and overdamped limit

The last deterministic formulation of the model is not complete, since we have to
enrich the dynamics applying terms of noise and dissipation to the conservative
force F i = ��H/�vi, always preserving the constraint on the fixed modulus of
the velocity. A reasonable choice is to insert a dissipation on the spin’s dynamics,
in a way to reproduce a rectilinear motion in absence of interaction or external
forces. Clarifying the social force, we obtain the final equations of the Inertial
Spin Model (5.1), that we can report here for the sake of completeness [8]:

dvi

dt
=

si ⇥ vi

�
(5.32)

dsi
dt

=
vi

v0
⇥
 

J

v0

X

j

nijvj � ⌘

v0

dvi

dt
+ ⇣

i

!
(5.33)

dri

dt
= vi (5.34)

where ⇣
i
is still a Gaussian white noise that satisfies:

h⇣
i
(t)⇣

j
(t0)i = 2d⌘T �ij�(t � t

0) . (5.35)

Also from a biological point of view, it is reasonable to hypothesize the pres-
ence of a spin dissipation of the form �⌘ �H/�si, such that of eq (5.33), otherwise
in absence of interaction and noise (J = 0 and T = 0) an individual would main-
tain an everlasting state of circular motion. The dissipation ⌘ acts as damping
and reinstates a ballistic motion of the agent in this particular situation, mod-
ifying its curvature in the long run. Additionally, the presence of this friction
actually violates the conservation of the total spin, making the theory not strictly
invariant under rotation. However, this violation in the biological systems hap-
pens to be always weak, since very small values of ⌘ reproduce in a compelling
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way the related experimental data [42].

Interestingly, the Vicsek Model can be recovered as the overdamped limit of
these equations, that is in the limit for which inertia becomes negligible compared
to the spin dissipation,

�

⌘2
! 0 . (5.36)

To see it more carefully, we can take a further derivative in time of (5.1), obtaining
a second order differential equation for the velocity,

�
d
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dt2
+ �
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v
2
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✓
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+ ⌘
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+ v0⇠
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i

(5.37)

where with the symbol ? we mean the orthogonal projection to the direction of
motion, i.e.:

⇠?
i
= ⇠

i
�
✓
⇠
i
· vi

v0

◆
vi

v0
(5.38)

used to implement the constraint. The first term on l.h.s. of (5.37) represents the
inertial term of the underdamped dynamics, while the second can be interpreted
as a centripetal acceleration of the circular motion. Now it is clear that performing
the limit of (5.36), we recover directly the continuous version of the Vicsek Model
(5.3) where the Lagrange multiplier has been explicitly computed [8].

This mechanism can be interpreted in terms of time-scales and information
propagation. In the ISM, we have a fundamental time scale given by:

⌧ ⇠ �

⌘
. (5.39)

The overdamped limit corresponds to taking into consideration the asymptotic
long-time regime t � ⌧ , where the damping kills the inertial terms. This is the
time domain described by the VM, which carries only a diffusive propagation
[93]. Reinstating the inertial term, we are basically focusing on the underdamped
regime, namely, to times t ⌧ ⌧ that are those important to describe the fast
information which runs through the biological group [42].

Like the VM, also the ISM is a model which undergoes a phase transition
from a disordered paramagnetic phase to an ordered one (even in d = 2 if the
system is not at the equilibrium), indeed it has been derived in order to preserve
the static properties of VM. Moreover, looking a the dynamics presented in the
deeply polarized phase, we can confirm that the model exhibits propagating modes
of spin-waves [93]. To confirm it, it is possible to repeat the same passages we
did for the VM under the same assumptions: polarized phase, fixed network and
large spatial scales. Managing eq (5.32) and (5.33), we extrapolate the dispersion
relation of ISM taking into account, of course, the term of second order in time
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derivative. This relation appears:

!(k) = i� ± ck

q
1 � k

2
0/k

2 (5.40)

where � = ⌘/2�, k0 = �/c and c is a second sound speed: c =
p
Jnca

2/�.
Crucial is the presence of a real part for k > k0, which becomes linear in

the limit k � k0. This confirms that, in this situation, the model admits signal
propagation and underdamped modes of information transfer. On the other hand,
for k < k0 and in the limit k ! 0, the frequency becomes imaginary and the
dynamical regime results diffusive and overdamped. The differences with the case
of VM are represented in Fig.5.3 and Fig. 5.4 where the success of this inertial
model in reproducing the collective phenomena of turning is clearly visible.

Figure 5.3: Dispersion relations of VM and ISM. Dispersion relation of Vicsek
Model (a) and of Inertial Spin Model (b). The blue line represents the real part of the
!(k) and the red line the imaginary part. In panel (a) we see that the VM has not a
propagating part, but the frequency is only dissipative and quadratic in k. On the other
hand, for ISM (b) a real propagating part emerges for k > k0, and it becomes linear
if k � k0; for k ! 0 the real part is zero and the imaginary part goes to zero as k2.
Figure reprinted from [93].

5.3 Another derivation of the ISM equations

When the interaction matrix nij is taken symmetric (for instance, in the met-
ric interaction), a formulation in terms of Lagrangian dynamics is possible and
formally correct [94]. Indeed, calling {ri(t),vi(t), si(t)}N

i=1 the solutions of equa-
tions (5.32) (5.33) (5.34), the set {vi(t)}N

i=1 can be proved to be a solution of
the constrained mechanical system described by the following time dependent
Lagrangian:

L0({vi}, {v̇i}, t) =
m

2

X

i

v̇2
i
� V ({vi}, t) (5.41)

where again we mean the potential V as the generator of the social force F i =

�@V/@vi in the equations of motion, and the kinetic term involves a generalized
inertia m different from the � we discussed above. When a Lagrangian problem
includes a set of holonomic constraints identified by level curves f↵({vi}) = 0,
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Figure 5.4: Comparison of turning events. Attempts to propagate turning infor-
mation in a group in the Vicsek Model (top) and Inertial Spin Model (bottom): in the
VM the turn cannot propagate and the individual leaves the flock; in ISM the whole
group follows the turning individual. Panels a : 2-d trajectories; panels b: cosine of the
individual velocities with respect to the original direction; panels c: individual acceler-
ation profiles. Figure reprinted from [8].

it can be mapped in a new Lagrangian function that explicitly contains this
information:

L = L0 +
X

↵

�↵

X

i

v̇i

@f↵

@vi

(5.42)

with �↵ a Lagrangian multiplier, one for each constraint [95]. In the case of ISM
the holonomic rule is represented by the fixed speed of the particles, i.e. |vi| = v0,
which can be reformulated as:

f({vi}) =
X

j

(v2
j
� v

2
0) = 0 . (5.43)

Inserting it in the Lagrangian (5.41) we get,

L =
m

2

X

i

v̇2
i
� V ({vi}, t) + 2�

X

i

viv̇i . (5.44)

At this point, the equations of motion of the system can then be derived either
using the standard Euler-Lagrange equation:

d

dt

⇢
@L
@v̇i

�
� @L
@vi

= 0 (5.45)

or using the classical Hamiltonian formalism, which involves the definition of a
conjugate momentum related to the generalized variable. In this case, we are
addressing this role to the velocity, therefore, by definition, the conjugate mo-
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mentum will not be the spin but rather:

⇡i(t) =
@L
@v̇i

= mv̇i + 2�vi (5.46)

Certainly, this quantity just introduced now does not assume a direct physical and
mechanistic interpretation. What we are doing is only reformulating the problem
in a phase space composed by the variables {v,⇡} that could be mathematically
connected to the standard {q,p} of the Hamilton’s formalism. Following this
analogy, we can express the internal angular momentum as:

si = vi ⇥ ⇡i (5.47)

In these terms, the Hamilton equations look like,

v̇i =
1

m
(⇡i � 2�vi) (5.48)

⇡̇i = F i + �

X

j

@
2
f

@vi@vj

v̇j = F i + 2�v̇i (5.49)

where the force F i is the derivative of V ({vi}). We can finally write it explicitly
solving for the Lagrange multiplier. This latter can be derived by the constraint
condition vi · v̇i = 0, which makes the calculation straightforward to obtain,

dvi

dt
=

si ⇥ vi

�
(5.50)

with the behavioral inertial � = mv
2
0. To get the equation of the spin, it is

sufficient to derive in time eq (5.47), so that:

dsi
dt

= vi ⇥ v̈i = vi ⇥ F i (5.51)

finally recalling the original (deterministic) equations of motion of ISM (5.29).

5.4 Why ISM for natural swarms?

Until now we presented this model only referring to the biological system of flocks
of birds, actually highlighting its relevance in the context of information propa-
gation in turning movements. We remind that the claimed consistency is evident
when the model is studied in its low-temperature phase (i.e. high polarization
phase). On the contrary, natural swarms of insects cannot be described by the
same set of parameters because they are not a polarized system. They do not show
global motion, which means that their global mean velocity is nearly zero. To re-
produce the disordered phenomenology of this second biological system, together
with the high degree of directional correlation [3], we can transpose the study of
ISM in its near critical and paramagnetic region of parameters, i.e. T ' Tc, to see

83



5.4. Why ISM for natural swarms? Chapter 5

if this model is capable to quantitatively reproduce and predict the experimental
evidence of natural swarms.

We take into consideration this particular model because of its inertial nature
in the dynamics of the velocity. Therefore, the first preliminary thing we can com-
pare with experimental data is the shape of the dynamical correlation functions
of orientations when the ISM is posed at criticality from the disordered side of
the transition. Before analyzing the comparison between experimental data and
correlation functions of ISM, we are going to introduce the analytical method we
use to treat the dynamical correlation functions.

Figure 5.5: Toy model to understand the behavior of h(x): we report the corre-
lation function of the stochastic harmonic oscillator at different values of the damping
ratio. a) Underdamped regime: there is a clear oscillatory behavior of the function.
b) Critically damped regime: propagating modes are no longer present but the deriva-
tive for small times it’s clearly flat. c) Overdamped regime: the correlation function
are more nearly exponential, but inertial effect are still present for short time. d) The
function h(x) shows how the correlation function crosses over from a non-exponential
behavior (h(x) ⇠ 0 per x ⇠ 0), to a pure exponential trend (h(x) ⇠ 1 per x ⇠ 0), as the
damping grows. Reprinted from [3].

In a more general framework, when the dynamical propagator of a model has
more than one pole in the complex !-plane, the first derivative of the dynamic
correlation function vanishes for small times [3]. Therefore, we can take this
feature as a good sign of a non-dissipative nature of the dynamics and we can
quantitatively measure it computing the form-factor function,

h(x) = �1

x
log(Ĉ(x)) (5.52)

where x = t/⌧ and Ĉ is the dynamic correlation function normalized at time
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t = 0.
We better visualize the information given by this function if we consider a toy

model, namely the stochastic harmonic oscillator in d = 1, which has a dynamics
of second order:

m ¨u(t) + ⌘u̇(t) + ku(t) = ⇣(t) (5.53)

where u is the generalized coordinate, m is the inertia, ⌘ is the viscosity, k is
the elastic constant (or stiffness), and ⇣ is the usual white noise. Depending on
the strength of the damping, which is determined by the ratio between stiffness
and dissipation, the dynamical correlation functions of this model can behave
in different ways. In the first three panels of Fig. 5.5 we can appreciate these
different regimes. Increasing the damping, the shape of the normalized Ĉ(t)

crosses from a shape with oscillatory modes and flat derivative at time t = 0,
to a more nearly exponential form, even though non-exponential effects are still
present for short times [3].

In panel d of the same figure we can see what is the behavior of the func-
tion h(x) applied to this model. Because Ĉ(0) = 1, a purely exponential time
correlation implies that:

lim
x!0

h(x) = 1 (5.54)

while, for a non-exponential behavior we have:

lim
x!0

h(x) = 0 (5.55)

Therefore, for a model with a second-order dynamics, h(x) at x = 0 is always
null. But increasing the damping, the function becomes effectively exponential
and the departure from 1 becomes smaller and smaller. This difference can be
appreciated in the graphs of this toy model of Fig. 5.5 [3].

In panel a of Fig. 5.6, the spatio-temporal correlation functions of natural
swarms, of Vicsek and ISM simulated swarms are compared when time is properly
rescaled by their characteristic time scale [10]. The difference between the two
types of active dynamics is relevant: the function of ISM fits in a compelling
way the experimental data, especially reproducing the curvature of the C(k, t)

for small times Fig 5.6. This is even more appreciable when computing the
relaxation form factor h(t/⌧) introduced before. This result indicates the type of
dynamics described by ISM well reproduces the relaxation of natural swarms from
a qualitative point of view. We will therefore work under the hypothesis that the
ISM in the paramagnetic phase describes the inertial dynamics of natural swarms.
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Figure 5.6: Comparison of dynamical correlation functions: models and

swarms’ data. Panel (a): Normalized dynamical correlation functions C(k, t)/C(k, 0)
coming from experimental data on swarms, and from numerical simulations of ISM and
of VM. Every curve is evaluated at a proper wave number that verifies k⇠ = 1. Panel (b):
for the same curves of panel (a), the relaxation form factor h(t/⌧) ⌘ Ċ(t/⌧)/C(t/⌧),
which goes to 1 for overdamped exponential relaxation of the VM, while it goes to 0
for inertial relaxation of ISM and swarms [3]. These preliminary simulations suggest
that the ISM is able to qualitatively reproduce the dynamics of natural swarms. Figure
reprinted from [9].
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Chapter 6

Renormalization of the Inertial Spin
Model in a fixed network
approximation

In this chapter, we perform an RG study on the Inertial Spin Model to test
it as a good representative of the natural swarms’ dynamics. The analysis is
carried out under the relevant approximation of fixed-network, assumed mainly
for two reasons: first, it represents the first step of a quite more complex out-of-
equilibrium calculation that will follow it; second, we decide to investigate how
an inertial dynamics with dissipation influences the dynamical critical exponent
of a model at equilibrium, decoupling the problem from the self-propulsion effects
studied in the previous chapters.

6.1 ISM in the fixed network approximation

Starting from the microscopic theory of the Inertial Spin Model (5.1), we explore
the characteristic critical dynamics of the associated field theory. The first step to
achieve this goal is to perform a coarse-graining of the microscopic variables and
derive the proper dynamical equations of motion for the fields. However, before
introducing them, we can linger for a moment on the complexity of the theory we
are going to analyze.

The ISM involves the dynamical evolution of particles’ position, velocity, and
spin, which should translate in a field theory for three coupled fields, namely the
density, the velocity (or polarization), and the spin itself. Moreover, the system
described by this model is clearly active, hence out-of-equilibrium, additionally
distinguished by a non-trivial coupling between the density and the other fields
that in general enriches and complicates a lot its critical nature [11]. To finally
assert if this theory can really reproduce the biological system of swarms, we need
to take into account all these important features, especially the non-equilibrium
ones. However, as a further stepping stone of the analysis, we decide first to
treat the simpler (and yet non-trivial) equilibrium case, in which we consider
not-moving particles fixed on a lattice [9, 10].
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This scenario contains already interesting aspects that deserve attention: first
of all, it includes non-dissipative terms and effective friction, an interplay that
has never been studied before, not even in the equilibrium case. Secondly, we
believe it is going to provide useful insights concerning the behavior of swarm’s
correlation function. It is indeed worth remembering that our main concern is
to correctly reproduce both the shape of the dynamical correlation functions and
the dynamical critical exponent z of this natural system. We saw that a complete
study of the critical dynamics of the self-propelled Vicsek case, even though it
led to a lower value of z with respect to the equilibrium case, fails short of the
actual experimental value. This fact suggests that self-propulsion may not be the
only source of the anomalous natural exponent, but that the inertial dynamics
could, instead, play a prominent role in determining it. Finally, we believe that
facing the equilibrium problem will give us the right setup and mindset to tackle
the more complicated off-equilibrium case and that will definitely clarify the role
of dissipative inertial dynamics in the determination of the universality class of a
system.

Therefore, here we study a fixed-network version of the ISM, in which the
particles belong to a lattice and the connectivity matrix does not depend on
time. In this context, we can neglect the dynamical update of the positions, and
we can interpret the order parameter no longer as a physical velocity, but just as
the polarization of the system. Therefore, we call  

i
= vi/v0 and we write the

microscopic equilibrium model in the following way,

d 
i

dt
=

1

�
si ⇥ 

i
(6.1)

dsi
dt

=  
i
⇥ J

X

j

nij j
� ⌘

�
si + i

⇥ ⇣
i

(6.2)

where nij is the fixed interaction matrix, and the modulus of the order parameter
is still considered constant | 

i
|2 = 1. Thanks to these considerations, we can still

interpret the equations in a Hamiltonian formalism as,

d 
i

dt
= � 

i
⇥ @H

@si
(6.3)

dsi
dt

= � 
i
⇥ @H

@ 
i

� ⌘
@H

@si
+ 

i
⇥ ⇣

i
, (6.4)

with microscopic Hamiltonian,

H = �J

X

i,j

nij i
· 

j
+
X

i

s
2
i

2�
. (6.5)

These equations represent the starting point of a coarse-graining procedure that
will lead into a corresponding dynamical field theory [10].
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6.1.1 Coarse-grained field theory

We are interested in describing the large-scale properties of the system, therefore
it is convenient to move onto a description of the model in terms of space and
time-dependent fields. Writing hydrodynamics continuous equations of motion for
active matter models is a quite well-established procedure that basically follows
two different main paths that arrive at similar conclusions.

The first one is called the kinetic (or Boltzmann-Ginzburg-Landau) approach
and the central idea is to work out a Boltzmann equation for the one-particle dis-
tribution, interpreting active polar interactions as binary collisions between agents
[96, 97]. The success of this procedure is that the resulting continuous models
consist of field theories characterized by a set of coarse-grained parameters, whose
dependence on the microscopic ones is explicit. Thanks to this fact, linear insta-
bility analysis of the outcome equations carried the community to demonstrate
and predict the nature of ordering transition for many of these models [97–99].
Moreover, recent works highlight the role of fluctuations in this context and they
could lead to a revision of the deterministic methodology [100].

The second way to write a field theory for active matter models is a phe-
nomenological approach, coming from Landau-Ginzburg theories [51]. This method
was also used by Toner and Tu in their seminal paper [36]. It involves a space-
temporal gradient expansion that obeys all symmetries and conservation laws of
the system. For instance, a Vicsek-like dynamics is characterized by the rota-
tional symmetry, the conservation of number, and the lack of Galilean invariance.
Since the goal is to describe the long-distance, long-time properties of the system,
only the lowest terms in gradients and derivatives of the field are inserted in the
equations and their relevance is subsequently justified by a renormalization group
approach. In our discussion, we are going to follow this second methodology, but
it is worth noticing that a calculation with the kinetic approach has been per-
formed also for the original ISM and the result is shown in [101].

We therefore consider smoothly varying polarization and spin fields  (x, t),
and s(x, t), where x is interpreted as the center of a small spatial volume in
which averages are performed. Since the system is at equilibrium, the original
Hamiltonian (6.5) translates into an effective field Hamiltonian H[ , s] of the
classical ferromagnetic-like systems [51, 65], which reads

H[ , s] =

Z
d
d
x

⇢
1

2
(r )2 + 1

2
r0 

2 +
u0

4!
 

4 +
s
2

2�0

�
, (6.6)

and that is characterized by the following mesoscopic parameters: �0 as the
effective inertia, r0 as the bare mass (whose value is negative in the ordered
phase), and u0 that is the bare static coupling constant. We can here briefly
remind that the gradient term describes the reciprocal alignment interaction and
favors spatially smooth configurations; the quartic and quadratic elements in  
stand for a confining potential, stemming from the microscopic constraint on the
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modulus of  
i
, and from the coarse-grained entropy. The spin s contribution is

just a Gaussian term as also in the original microscopic model (6.5).

We are now ready to write down the dynamical mesoscopic equation of mo-
tion of our model; in the general framework of inertial dynamics (mode-coupling
theories [61]), these are formed by two main contributions: the reversible and the
dissipative terms. Recalling the notions of chapter 2, the former are those aris-
ing from the presence of underlying symmetries and conservation laws, namely
describing a deterministic (zero temperature) dynamics for the slow fields. Here
we have,

@ 

@t
= { ,H} (6.7)

@s

@t
= {s,H} (6.8)

that we express for each cartesian component as:

@ ↵(x, t)

@t
=

Z
d
d
x
0 �H
� �(x0)

{ ↵(x), �(x0)} +

Z
d
d
x
0 �H
�s�(x0)

{ ↵(x), s�(x0)}

(6.9)
@s↵(x, t)

@t
=

Z
d
d
x
0 �H
� �(x0)

{s↵(x), �(x0)} +

Z
d
d
x
0 �H
�s�(x0)

{s↵(x), s�(x0)}

(6.10)

with repeated indices meaning a sum over the components and x = x in a d

dimensional space. These terms are the only reversible terms allowed when the
system is considered at zero temperature. For a different T , one should consider
additional terms that ensure the drifts to reproduce an equilibrium Boltzmann
distribution P ⇠ e

�H/T (see [67] and chapter 2). However, thanks to the rotational
symmetry of this case, they are zero, therefore we are not going to include them
from the beginning.

The only non-zero elements of these Poisson parenthesis are those that express
the spin as the infinitesimal generator of rotation of  , namely:

{ ↵(x), s�(x0)} = g0 ✏↵�� �(x
0)�d(x � x

0) (6.11)
{s↵(x), s�(x0)} = g0 ✏↵��s�(x

0)�d(x � x
0) (6.12)

where ✏↵�� is the Levi-Civita antisymmetric tensor and g0 assumes the role of
non-dissipative mode-coupling constant [61]. In three dimensions the resulting
equations read as,

@ 

@t
= g0 ⇥ �H

�s
(6.13)

@s

@t
= g0 ⇥ �H

� 
, (6.14)
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conserving the same microscopic structure of the dynamics (6.3) (6.4)1 . At this
point, we can add the dissipative terms that ensure the relaxation of the system to
the equilibrium distribution. This step is somehow different from the microscopic
counterpart since we have to include all the possible relevant terms compatible
with the dynamics, we then obtain:

@ 

@t
= ��0

�H
� 

+ g0 ⇥ �H
�s

+ ✓ (6.15)

@s

@t
= (�0r2 � ⌘0)

�H
�s

+ g0 ⇥ �H
� 

+ ⇣ , (6.16)

where the noise correlators are chosen to have a Boltzmann-like static probability
distribution, i.e.:

⌦
✓↵(x, t)✓�(x

0
, t

0)
↵
= 2�0�↵��

(d)(x � x
0)�(t � t

0)
⌦
⇣↵(x, t)⇣�(x

0
, t

0)
↵
= 2(⌘0 � �0r2)�↵��

(d)(x � x
0)�(t � t

0)
(6.17)

It is worth noticing that the amplitudes of the noises are described by the same
kinetic/transport coefficients of the equations of motion. Since the model fits
in an equilibrium scenario, the Einstein relation holds and therefore connects
these two quantities, reducing the number of free parameters with respect to the
out-of-equilibrium case of chapter 4.

The dissipative terms are accompanied by the bare kinetic and transport co-
efficients: �0 for the primary field  , while ⌘0 and �0 for the spin s. A rele-
vant difference with the microscopic equations of motions (6.15)-(6.16) is that
this dynamics shows two additional dissipative terms, namely ��0�H/� and
�0r2

�H/�s, which are fundamental in a hydrodynamic description of the sys-
tem.

The kinetic coefficient of the first equation contains information of two kinds:
first, a derivative of the confining potential  2+ 4, and second, a diffusive piece,
�0r2 (x, t), which describes the role of fluctuations in the dynamical process;
altogether this is the item that allows the field to relax to its stationary value.
The microscopic theory of ISM can be mapped in the choice �0 = 0, for which
this kind of fluctuations can be considered negligible as in the low-temperature
phase [90], however, they become crucial in the near-critical regime and have
to be taken into account in a field theory calculation. About the role of this
kinetic coefficient, we can also argue that it can be interpreted as the inverse of
the characteristic bare time-scale of the order parameter. Therefore, to study a
non-trivial critical dynamical behavior, the model has to start with a finite value
of �0, preserving this feature also at the fixed points of the renormalized theory
[64].

Definetely less intuitive is the presence of spin transport term, �0r2s(x, t),
which has not a microscopic counterpart in the original formulation of the ISM.

1
We reabsorbed the minus sign in front of the cross products in (6.3-6.4) into the definition

of the coarse-grained dynamical coupling constant, g0, so to obtain in (6.15-6.16) the same

field-theory notation as the classic reference papers, [74] and [102].
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At the one particle level, the dynamics of the spin is ruled by dissipation, there-
fore one would have expected to observe in the field-theory equations only the
�⌘0s(x, t) contribution. Nevertheless, as we will explain in the next sections, this
additional element arises spontaneously from the first RG coarse-graining step,
indicating that it must be included in the starting continuous theory as a relevant
term. The physical meaning of the term represented by the kinetic coefficient �0
is also evident if we focus on the deterministic version of eq (6.16) with also g0 = 0

and ⌘0 = 0,
@s

@t
= �0r2 �H

�s
= �0r2s . (6.18)

This equation is nothing else than a continuity equation for the spin density that,
consequently, implies a conservation law for the quantity

M =

Z
d
d
x s(x) = const (6.19)

whose value is preserved in time. This conservation law reflects the one regarding
the total spin we described for the microscopic case in absence of inter-particle
interaction. Hence, we are going to refer to the dynamics depicted by this trans-
port coefficient with the expression conservative dynamics. The introduction of
the dissipation ⌘0 has the same effect as in the microscopic theory: it violates the
conservation law dissipating the spin but reproducing the more realistic dynam-
ics of biological entities. The coefficient ⌘0 will be then the representative of a
dissipative dynamics.

Since the model expresses an equilibrium theory, its static properties only
depend on the Hamiltonian H. As we can see from (6.6), it reads as a Heisenberg
model for the order parameter  , which undergoes a phase transition when the
mass assumes the value r0 = rc, plus a pure Gaussian theory for the spin [61].
This fact makes the angular momentum a non-critical field and, as a consequence,
it is possible to know a priori that the inertia �0 does not acquire any perturbative
contribution from the RG calculation. Hence, to simplify the notation, we choose
the units of s such that �0 = 1. Additionally, in contrast to the Toner and
Tu theory, here the equilibrium scenario in which we work allows us to take for
granted all the results given by the classical theory of critical phenomena on
the Heisenberg Hamiltonian, i.e. all the values of static critical exponents [51].
We will see that, since we perform a 1-loop calculation, the statics completely
decouples from the critical dynamics, with the effect that the dynamical properties
of the model result entirely ruled by the transport and kinetic coefficients we just
introduced, and by the reversible mode-coupling terms represented by the g0

coupling constant.

Finally, we notice that for ⌘0 = 0, equations (6.15) and (6.16) are exactly those
of Model G (antiferromagnet in d = 3) or Model E (liquid Helium in d = 2). The
dynamical RG study of these models has been performed in [74, 102] and it will
be for us an important reference point in the following analysis. Indeed, we will
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show that in the regime of small dissipation ⌘0, our model can resemble their fully
conservative critical dynamics.

6.2 MSR action and Gaussian theory

Before starting the calculation, let’s briefly recall the main passages we have to
follow in order to compute the dynamical critical exponent:

• write the dynamical equations of motion;

• build the MSR effective action and study the Gaussian theory;

• expand the correlation functions in powers of non-linearities (perturbative
expansion);

• apply the main steps of RG to write recursion relations of the parameters
and derive the critical exponents at the fixed points.

If we explicitely compute the derivatives of the Hamiltonian in eq (6.15)(6.16)
we obtain the dynamical evolution for the singles cartesian component ↵ of the
fields, namely:

@ ↵

@t
= �0r2

 ↵ � �0r0 ↵ � �0u0

6
 ↵( � �) + g0✏↵�� �s� + ✓↵

@s↵

@t
= (�0r2 � ⌘0)s↵ � g0✏↵�� �r2

 � + ⇣↵

(6.20)

The non-linearities of the theory are represented by all the terms multiplied by
the static and dynamic coupling constant, u0 and g0 respectively. Putting them
to null values is equivalent to studying the Gaussian theory.

Following the standard manipulations explained in chapter 2, and using the
Fourier transforms of the fields defined as,

 ↵(x, t) =

Z
dk̃ e

�i(!t�k·x)
 ↵(k̃)

s↵(x, t) =

Z
dk̃ e

�i(!t�k·x)
s↵(k̃)

(6.21)

One can build the Martin-Siggia-Rose action from the dynamical equations of
motion (6.15) (6.16),

S[ ,  ̂, s, ŝ] = S0, [ ̂, ] + S0,s[ŝ, s] + SI [ ,  ̂, s, ŝ] . (6.22)

With S0, and S0,s we mean the free actions of the fields  and s, respectively;
their explicit expressions are the following

S0, =

Z
dk̃  ̂↵(�k̃)[�i! + �0(k

2 + r
2
0)] ↵(k̃) � �0 ̂↵(�k̃) ̂↵(k̃)

(6.23)
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S0,s =

Z
dk̃ ŝ↵(�k̃)

⇥
�i! + (⌘0 + �0k

2)
⇤
s↵(k̃) � (⌘0 + �0k

2)ŝ↵(�k̃)ŝ↵(k̃)

(6.24)

where repeated indices are summed as usual. The interaction part of the effective
action involves non linear contributions of the dynamics, including mixed terms
of both s, ŝ and  ,  ̂ and it is given by:

SI = � g0

2
✏↵��

Z
dk̃1dk̃2(k

2
2 � k

2
1) �(k̃2) �(k̃1)ŝ↵(�k̃1 � k̃2)

�g0✏↵��

Z
dk̃1dk̃2  ̂↵(k̃1) �(k̃2)s�(�k̃1 � k̃2)

��0u0

6

Z
dk̃1dk̃2dk̃3  ̂↵(k̃1) ↵(k̃2) �(k̃3)

 �(�k̃1 � k̃2 � k̃3) .

(6.25)

From the free part of the action (6.23)(6.24) it is easy to read the expressions for
the bare propagators and correlation functions for the effective field theory:

⌦
 ↵(�k̃) ̂�(k̃)

↵
= �↵�G0, (k̃) = �↵�

⇥
�i! + �0(k

2 + r0)
⇤�1 (6.26)

⌦
 ↵(�k̃) �(k̃)

↵
= �↵�C0, (k̃) = 2�↵��0|G0, |2 (6.27)

⌦
s↵(�k̃)ŝ�(k̃)

↵
= �↵�G0,s(k̃) = �↵�

⇥
�i! + (⌘0 + �0k

2)
⇤�1 (6.28)

⌦
s↵(�k̃)s�(k̃)

↵
= �↵�C0,s(k̃) = 2�↵�(⌘0 + �0k

2)|G0,s|2 (6.29)

Additionally, one could find directly the same quantities starting from eq (6.15)
(6.16) and setting to zero the non-linear coupling constants, namely g0 = 0 and
u0 = 0. In this way one recovers only the linear dynamical evolution that can be
solved with the Green function method in Fourier space. The free equations of
motion become,

�i!  (k̃) = ��0(k
2 + r0)  (k̃) + ✓(k̃) (6.30)

�i! s(k̃) = �(⌘0 + �0k
2) s(k̃) + ⇣(k̃) . (6.31)

Therefore inverting (6.30) and (6.31), one obtains:

 (k̃) = G0, (k̃)✓(k̃) (6.32)
s(k̃) = G0,s(k̃)⇣(k̃) , (6.33)

where the free propagators (or Green functions) are the inverse of the dynamical
operators in Fourier space, of course coinciding with(6.26) (6.28):

G
�1
0, (k̃) = � i! + �0(k

2 + r0) (6.34)

G
�1
0,s(k̃) = � i! + (⌘0 + �0k

2) . (6.35)
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By using (6.32) and (6.33), and the noise’s variances (6.17), we finally get an
explicit expression for the correlators,

C0, = 2�0|G0, |2 =
2�0

!2 + �2
0(k

2 + r0)2
(6.36)

C0,s = 2(⌘0 + �0k
2)|G0,s|2 =

2(⌘0 + �0k
2)

!2 + (⌘0 + �0k
2)2

. (6.37)

These four quantities, propagators and correlators, are the building blocks of the
perturbative expansion.

6.3 Vertices and perturbative expansion

From the expression of the interacting part of the action, we see that there are two
types of dynamical vertices. Those coming from the mode-coupling dynamics,

V1 =

 ̂↵

 �

s� = �g0✏↵��s�(k̃1) ̂↵(k̃2) �(�k̃1 � k̃2)

(6.38)

V2 =

 �

 �

ŝ↵ = �g0

2
✏↵��(k

2
2 � k

2
1) �(k̃1) �(k̃2)ŝ↵(�k̃2 � k̃1)

(6.39)
and one static vertex, i.e. proportional to the static coupling constant u0:

V3 =  ̂↵

 ↵

 �

 �

= ��0u0

6
 ̂↵(k̃1) ↵(k̃2) �(k̃3) �(�k̃1 � k̃2 � k̃3)

(6.40)
In these graphs, we are indicating with a solid line the fields  ,  ̂, and with wavy
lines the fields s,ŝ. Moreover, the representation of the response fields includes
an arrow entering the vertex.
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At this level, we can notice that the second vertex carries with it a fac-
tor (k2

2 � k
2
1). This is a consequence of the symmetry of the non-linearity of

the spin equation (6.16), indeed this mode-coupling term can be rewritten as
�(g0/2)✏↵��( �r2

 � �  �r2
 �) giving rise to this difference of momenta when

in k-space. A practical implication is that every Feynman diagram realized with
this vertex and evaluated for ŝ(k = 0,!) is null.

These vertices can now be used to analytically compute a perturbative ex-
pansion in the coupling constants around the Gaussian theory. The leftover of
this procedure is composed of terms that involve only free propagators and free
correlators which are connected through the interaction vertices. To complete the
tools we are going to use, it is necessary to assign to each of these bare quantities
graphic symbols. We represent propagators with bold or wavy lines with an ar-
row to reflect the fact that, because of the response fields, they are time-ordered,
while the correlators only with simple lines.

G0, ↵,� = ; C0, ↵,� = (6.41)

G0,s↵,� = C0, ↵,� = (6.42)

Finally, from a power counting analysis in the effective action, it is possible to
deduce that the parameters g0 and �0u0 are irrelevant for d > 4, thus recovering a
mean-field behavior. Therefore the real parameter of expansion can be assumed to
be ✏ = 4�d as in standard critical phenomena [12]. Moreover, the terms of the ex-
pansion that we are going to take into consideration are at first order in ✏ (1-loop).

The first manifestation of this expansion appears with corrections in the expres-
sion of the free propagators that we call self-energies. In this model, they are
respectively two: one for the field  and one for the field s. The inverse of
renormalized propagators can be then defined using the Dyson equation [51] that
involves these quantities:

G
�1
 
(k̃)↵� = G

�1
0, (k̃)�↵� � ⌃↵�(k̃) (6.43)

G
�1
s
(k̃)↵� = G

�1
0,s(k̃)�↵� � ⇧↵�(k̃) (6.44)

⌃ and ⇧ are the self-energies of the order parameter and of the spin, respectively,
and to which we can attribute also a graphical representation:

�↵� =  ̂↵  �

s�s↵
�↵� =

(6.45)
�↵� =  ̂↵  �

s�s↵
�↵� = (6.46)

Also here the blobs indicate the sum of all 1PI diagrams with amputated external
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legs that take part in the expansion with an incoming  ̂ (or ŝ) field and an out-
coming  (or s) field; we are going to explicitly compute them in the next section.

Before going on, it is important to highlight a fundamental difference with the
out-of-equilibrium case we analyzed in the previous chapters. Also in this context,
the Gaussian part of the effective action is not composed only by the  ̂ and ŝs

parts that take corrections from the perturbative expansion via (6.43) (6.44), but
also by the terms coming from the noise’s distribution integration, namely  ̂ ̂
and ŝŝ. Hence, we should take into account the self energies also for the noise
strengths:

�̃↵� =
 ̂↵  ̂�

(6.47)�̃↵� =
 ̂↵  ̂�

�̃↵� =
ŝ↵ ŝ�

(6.48)

which correct respectively the amplitude of the noise �0 and ⌘0 + �0k
2 through

the proper Dyson equations. However, we can skip this part of calculation since
the contributions coming from the tilde self-energies have to be identical to those
computed using (6.45) (6.46): we are at equilibrium and the Einstein relations
must hold.

6.4 Renormalization of the parameters

The coarse-graining is the first stage of RG, which we recall consists of integrating
out the short-wavelength fluctuations of the system, namely the modes in the
shell ⇤/b < k < ⇤. It has to be performed through perturbative expansion whose
result is not harmless when non-linear interactions are taken into account. The
resulting effective theory is characterized by additional terms in the equations of
motion and consequently in the propagators, with the effect to renormalize the
coefficients both of the linear and non-linear terms [51].

This renormalization procedure starts with the self-energies of eq. (6.43) (6.44)
for which we can give a diagrammatic and an analytical expression. Diagram-
matically, at one loop level, we have:

�↵� =  ̂↵  �
(6.49)

�↵� =  ̂↵  �

s�s↵
�↵� =

(6.50)

where external legs have to be considered amputated. Their respective analytical
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expressions read:

⌃↵�(k̃) = �2g20�↵�

Z
dp̃


G0, (p̃)C0,s(k̃ � p̃)

+(k2 � p
2)C0, (p̃)G0,s(k̃ � p̃)

� (6.51)

⇧↵�(k̃) = �2g20�↵�

Z
dp̃


C0, (p̃)G0, (k̃ � p̃)((k � p)2 � p

2)

�
(6.52)

Performing the frequency integration, whose range is between �1 and +1, we
get the following expressions:

⌃↵�(k̃) = � 2g20�↵�

Z
d
d
p

(2⇡)d
(k2 + r0)

(p2 + r0)(�i! + �0(p2 + r0) + �0(k � p)2 + ⌘0)
(6.53)

⇧↵�(k̃) = �g
2
0�↵�

Z
d
d
p

(2⇡)d
1

(p2 + r0)((k � p)2 + r0)

[p2 � (k � p)2]2

(�i! + �0(p2 + (k � p)2 + 2r0))
(6.54)

We can appreciate that these quantities have only diagonal non-zero contribu-
tions for ↵ = �. We can therefore neglect the coordinate index and indicate
them simply as ⌃b and ⇧b to highlight that the integrals over the momentum are
performed on the shell between ⇤/b and ⇤. Inserting these expressions in the
propagators (6.43) (6.44), we can derive the corrections to the kinetic coefficients
of the linear part of the dynamics, namely:

�R ⌘
@G

�1
 

@k2

����
k=0
!=0

= �0

 
1 � 1

�0

@⌃b

@k2

����
k=0
!=0

!
(6.55)

�R ⌘ @G
�1
s

@k2

����
k=0
!=0

= �0

 
1 � 1

�0

@⇧b

@k2

����
k=0
!=0

!
(6.56)

⌘R ⌘ G
�1
s

����
k=0
!=0

= ⌘0

 
1 � 1

⌘0
⇧b

����
k=0
!=0

!
. (6.57)

Moreover, one could compute the same quantities looking at the corrections of
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the noise amplitudes and using the self-energies (6.47) and (6.48):

�R = �0

 
1 +

1

2�0
⌃̃b

����
k=0
!=0

!
(6.58)

�R = �0

 
1 +

1

2�0

@⇧̃b

@k2

����
k=0
!=0

!
(6.59)

⌘R = ⌘0

 
1 +

1

2⌘0
⇧̃b

����
k=0
!=0

!
. (6.60)

since the validity of FDT and of Einstein relation implies:

@⌃b

@k2

����
k=0
!=0

= �1

2
⌃̃b

����
k=0
!=0

@⇧b

@k2

����
k=0
!=0

= �1

2

@⇧̃b

@k2

����
k=0
!=0

⇧b

����
k=0
!=0

= �1

2
⇧̃b

����
k=0
!=0

(6.61)

At this point, the reader could have noticed that we introduced three non-
linear vertices for the expansion, but we used only the ones coming entirely from
the dynamics (i.e. proportional to g0) to construct the ⌃ and ⇧ self-energies.
If on the one hand, it is clear that no diagrams involving (6.40) are possible to
contribute to ⇧, one can see that to ⌃ only the following one-loop diagram can
be added:

= ��0u0

6
�↵�


⇤2

2

✓
1 � 1

b2

◆
� r0 ln b

�
(6.62)

However, from the direct inspection one can see that it is independent of
the external momentum k, therefore it does not account for corrections for the
dynamical quantity �0 but only for the mass r0. However, the evolution along RG
of this latter quantity follows the standard static path [12, 13] and therefore we
are not going to report it here. On the other hand, we are going to deal only with
dynamical parameters substituting to the bare mass r0 its renormalized value
r = 0, so that we evaluate all the integrals at the critical point, increasing the
accuracy of the expansion.

The expressions of the kinetic coefficients finally appear:

�R = �0


1 + 2

g
2
0

�0

Z ⇤

⇤/b

d
d
p

(2⇡)d
1

p2[(�0 + �0)p2 + ⌘0]

�
(6.63)

�R = �0


1 +

1

2

g
2
0

�0�0

Z ⇤

⇤/b

d
d
p

(2⇡)d
1

p4

�
(6.64)

⌘R = ⌘0 (6.65)
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from which we deduce that the effective friction ⌘ does not get any correction from
the step of coarse-graining. This means that, if the spin’s dissipation is present at
the microscopic scale, then the RG will follow its flow (that we will see it is going
to diverge). On the contrary, if the theory presents a null value ⌘0 = 0 at a bare
level, the RG will not produce it through shell integration. Therefore, the presence
in the theory of this effective friction is completely determined at a microscopic
level, and it is more linked to biological motivations than to physical processes.
Analytically, this happens because ⇧b(k = 0) = 0, which is a consequence of
the structure of the spin’s mode-coupling vertex necessary to build the ⇧. We
mentioned this particular feature when introducing (6.39) in the theory. We can
then assert that this result is valid at every order of perturbation and it can be
interpreted as a manifestation of the strength of symmetry law that rules the
system.

Different is the situation for the conservative kinetic coefficient �0. After one
step of integration over short wavelengths, a �R is inevitably produced, even if
the original transport coefficient were �0 = 0, thus absent in the microscopic
theory. The fact that the RG structure produces itself a relevant correction of
the type @⇧/@k2 directly entails that a similar term has to be inserted in the
original coarse-grained theory from the beginning of the calculation. The scenario
is therefore opposite to that of the friction ⌘ and highlights that the natural way
of the theory to have equilibrium fluctuations is a conservative way.

We can now perform the integrals (6.63) (6.64), however it is convenient to
rewrite the first of them as:

�R = �0

2

41 + 2
g
2
0

�0(�0 + �0)

Z ⇤

⇤/b

d
d
p

(2⇡)d
1

p2
⇣
p2 + ⌘0

�0+�0

⌘

3

5 . (6.66)

changing variables with p = ⇤x, we obtain,

�R = �0

2

41 + 2
g
2
0⇤

d�4

�0�0(1 +
�0
�0
)

Z 1

1/b

d
d
x

(2⇡)d
1

x2
⇣
x2 + ⌘0

�0

⇤�2

1+�0/�0

⌘

3

5 (6.67)

�R = �0


1 +

1

2

g
2
0⇤

d�4

�0�0

4

d

Z 1

1/b

d
d
x

(2⇡)d
1

x4

�
, (6.68)

To simplify these expressions, we can define a set of effective parameters to indi-
cate the prefactors of the pertubative corrections,

f0 =
g
2
0

�0�0
Kd⇤

d�4
, w0 =

�0

�0
, R0 =

s
�0

⌘0
, (6.69)

where Kd is the unit sphere volume in dimension d. To compute the integrals we
use the fact that in the limit b ! 1, indicating an infinitesimal RG transformation,
the shell becomes infinitesimal, namely of thickness 1 � 1/b ⇠ log b. Therefore
the result of the integral are expressed by this last factor times the integrating
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function evaluated at x = 1. The three kinetic parameters read,

�R = �0


1 +

2f0
1 + w0

Z 1

1/b

d
d
x

x2

1

x2 + (R0⇤)�2(1 + w0)�1

�

= �0


1 +

2f0
1 + w0

X0 log b

�
(6.70)

�R = �0


1 +

f0

2

Z 1

1/b

d
d
x

x4

�
= �0


1 +

1

2
f0 log b

�
(6.71)

⌘R = ⌘0 , (6.72)

In the expression of �R, we introduced the crossover parameter X0,

X0 =
(R0⇤)2(1 + w0)

1 + (R0⇤)2(1 + w0)
, (6.73)

which happens to be dimensionless as also the parameter w0, but will play a
fundamental role in the critical dynamics of the system. The quantity w0 does
not play a real crucial role in the following analysis, in the sense that it represents
a useful way to condensate notation, it is finite or null at the fixed points, but
no relevant physical information can be extrapolated directly from it [61]. The
combination of dynamical parameters f0, instead, plays one of the principal roles
in the RG calculation. First, it can be noticed that it is proportional to ⇤d�4 and
this suggests its scaling dimension to be ✏ = 4 � d. As we already learned, this
fact represents a feature which usually belongs with the real coupling constant of
an RG calculation and indeed, f0 assumes the role of dynamical coupling constant

of our study: the perturbative expansion is not performed in simple powers of g0
but rather in a combination of g20 and the other dynamical coefficients.

Finally, we have to comment on the last term of (6.69). R0 is given by the
ratio between the transport coefficient of the spin and its effective friction. A
dimensional analysis reveals that it is a length scale that we can interpret as
a measure of the spatial scale under which a conservative dynamics dominates
over a dissipative dynamics. Hence, we are going to refer to it as conservation

length scale. It contains all the information about the interplay between the
two different regimes of dynamics that are included in our theory and that will
compete in a non-trivial crossover mechanism. To give a small insight of this,
we can analyze two opposite limits staying superficially at a bare level: the first
one is for R0 = 1 that happens when ⌘0 = 0. The crossover factor becomes
X0 = 1 and the equations reduce to those of the fully conservative Model G [61],
describing a scenario where all the system is included in this conservation length
scale. On the other hand, when the friction is very large, R0 can shrink to zero
together with the crossover factor X0 ⇠ 0, with the consequence that the kinetic
coefficient �0 assumes very weak perturbative corrections and the dynamics of  
becomes purely dissipative.

Just following these considerations we can understand how the emergence of
a new typical length scale of the system will determine its non-trivial dynamical
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large-scale behavior. It is common to discover these particular scenarios charac-
terized by mechanisms of crossover when the problem involves new relevant length
scales in addition to the correlation length ⇠ [103, 104]. This is indeed what we
are going to explore in the next sections.

6.5 Vertices corrections and Ward identities

Until now we computed corrections only for the dynamical parameters belong-
ing to the Gaussian part of the action. However, we should also evaluate the
Feynman diagrams related to the mode-coupling constant g0 and to the ferro-
magnetic coupling constant u0, in order to analyze their renormalization under
coarse-graining.

Let’s start from the latter, u0 is a parameter of the effective Hamiltonian,
therefore, as we did for the mass r0, it can be considered a pure static parameter,
such that all the knowledge from the standard static RG can be directly applied
to it [12, 13]. On the other hand, the renormalization of the dynamical coupling
constant is not at all trivial and it deserves some attention. It appears in both
the mode-coupling vertices (6.38) (6.39), whose perturbative corrections can be
computed as,

+ + =  0

V R
1 = V R

2 = V R
3 =(6.74)

The diagrams that contribute to the correction of the vertex V1 of the dynam-
ical equation of the order parameter are,

(6.75)

together with the ones coming from the use of the static vertex V3,

(6.76)
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While those contributing to the vertex V
R

2 of the spin’s equation appear,

(6.77)

From a direct calculation of the integrals they represent, it can be shown that
all these corrections are null. It is reasonable to believe that this does not happen
by chance or because of the one-loop approximation. In fact, this stands as a non-
perturbative result and it is a direct manifestation of the rotational symmetry that
characterizes the problem. This result has been proved to be valid in the fully
conservative case [74, 102], here we show that it is valuable also including the
spin dissipation as we did in our model. The proof comes by the use of the Ward
identities that, in the dynamical case, relate response functions of different order
[102].

The spin is the generator of the rotational symmetry of the order parameter  ,
therefore in absence of dissipation, its total integral is preserved. If we stay for a
moment in this case and we imagine applying a homogenous field H(t) coupled to
the spin, the dynamics for the global polarization in an equilibrium state results,

dh�i
dt

= g0H ⇥ h i , (6.78)

i.e. the effect of this perturbation, as we could have expected, is to simply rotate
the polarization. In the more complex situation where we add an additional
magnetic field h(x, t) coupled to the order parameter, the outcome is that it
produces a space-dependent and local polarization h (x, t)i that it is still rotated
by H. If then we consider also a friction acting on the spin, we obtain

dh� (x, t)i
dt

= g0 (H(t) � �s(t)) ⇥ h (x, t)i (6.79)

dh�s(t)i
dt

= �⌘0�s(t) + ⌘0H(t) (6.80)

where �s is the change of spin per volume due to the dissipation, and where we
are considering only the part of the dynamics which changes when both of the
fields are applied. The total integral of the spin is not conserved anymore and
its variation influences with a further contribution the rotational frequency of the
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order parameter. We can now integrate over time the equations, so that,

h� ↵(x, t)i =g0✏↵��

Z
t

0

dt
00h �(x, t00)i [H�(t

00) � ⌘0

Z
t
00

0

dt
0
e
�⌘0(t00�t

0)
H�(t

0) ]

(6.81)

The average value of the order parameter in the l.h.s. still depends on h, therefore,
deriving with respect to it the entire equation, we get,

dh� ↵(x, t)i
dh�(x1, t1)

����
h=0

= g0✏↵��

Z
t

0

dt
00
H�(t

00)

⇥

R

h

��
(x, t00;x1, t1) � ⌘0

Z
t

t00
dt

0
e
�⌘0(t0�t

00)
R

h

��
(x, t0;x1, t1)

� (6.82)

where we are renaming integration variables for convenience and we are indicating
the linear response of the order parameter with:

R
h

��
(x, t;x1, t1) =

�h �(x, t)i
�h�(x1, t1)

����
h,H=0

(6.83)

Exploiting further this relation, the l.h.s. of (6.82) can also be written as

dh� ↵(x, t)i
dh�(x1, t1)

����
h=0

=

Z
t

0

dt
00
dx

00
H�(t

00)RhH

↵��
(x, t;x1, t1;x

00
, t

00) , (6.84)

where now

R
hH

↵��
(x, t;x1, t1;x

00
, t

00) =
�
2h ↵(x, t)i

�h�(x1, t1)�H�(x00, t00)

����
h,H=0

(6.85)

is the non-linear quadratic response coupled also to the field acting on the spin.
Comparing the r.h.s. of (6.82) and (6.84), we finally obtain

Z
dx

00
R

hH

↵��
(x, t;x1, t1;x

00
, t

00) = g0✏↵��

⇥
R

h

��
(x, t00;x1, t1)

�⌘0
Z

t

t00
dt

0
e
�⌘0(t0�t

00)
R

h

��
(x, t0;x1, t1)

� (6.86)

with t1 < t
00
< t, otherwise it is zero. We notice that considering ⌘0 = 0 eq

(6.86) corresponds to the Ward identity of Model E in [74]. This result is cru-
cial to deduce some information about the renormalization of the mode-coupling
constant g0, indeed it has been derived without any approximation or expansion;
consequently, it has to be preserved at any order of RG calculation. To better
understand this fact, let’s consider the case ⌘0 = 0, from which a generalization
for non-zero effective friction can easily follow. If we rewrite eq (6.86) as,

Z
dx

00 �

�H�(x00,t00)
R

h

↵�
(x, t;x1, t1) = g0✏↵��R

h

��
(x, t00;x1, t1) (6.87)
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it is clear that, when we want to consider the perturbative corrections coming
from RG to this formula, we need to compute the renormalized version of both the
response functions, of g0 and of a term that dimensionally scales as the spin field
(i.e.

R
dx �/�H). Since the system is at equilibrium, the fluctuation dissipation

theorem ensures that all the renormalizing corrections of the response functions
appearing in eq (6.87) are directly linked to those of correlation functions, thus
coming from the renormalized correlators h  i that we are able to compute.
These contributes are then identical on the two sides of the equality and cancel
each other; consequently, to state the validity at all orders of perturbation of
(6.87), we conclude that the constant g0 has to renormalize as the field s does.
However, we know a priori that the spin is a non-critical field, meaning that
its scaling dimension will not take any perturbative correction from the coarse-
graining procedure but will stay equal to its naive static dimension. This implies
that the quantity on the r.h.s. of the equation has to behave similarly and, finally,
that g0 is preserved from any type of renormalization.

The validity of the Ward identity is a clear manifestation of the symmetry in
the equilibrium system, and it has the effect of protecting the renormalization of
the mode-coupling constant g0 [102]. This result fully agrees with what we saw
by direct inspection with the diagrammatic calculation.

6.6 RG flow and fixed points

We now proceed with the second main step of the Renormalization Group, namely
the rescaling of space and time to compare the effective theories before and after
the coarse-graining. Applying the usual rescaling relations, k ! bk and ! ! b

z
!,

all the dynamical parameters acquire some scaling naive dimensions,

�0 ! b
z�2�0 , �0 ! b

z�2
�0

⌘0 ! b
z
⌘0 , g0 ! b

z�d/2
g0

(6.88)

that combine in the effective quantities as,

f0 ! b
4�d

f0 , w0 ! w0 , R0 ! b
�1R0 . (6.89)

It is here clearer that the naive dimension of f0 is equal to ✏ = 4 � d, confirming
the role of the dynamical coupling constant of this parameter and the fact that the
upper critical dimension is du

c
= 4. Unlike the previous case of the hydrodynamic

theory of the Vicsek model, here we can save from the dissertation the rescaling
of the fields, especially of  , since the first contribute to its anomalous dimension
comes from a two-loop static calculation.

Combining eq (6.88) with (6.70)-(6.72), we write the following RG recursion
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relations for the dynamical parameters:

�l+1 = b
z�2 �l

✓
1 +

2fl
1 + wl

Xl log b

◆

�l+1 = b
z�2

�l

✓
1 +

1

2
fl log b

◆

⌘l+1 = b
z
⌘l

gl+1 = b
z�d/2

gl ,

(6.90)

and for the relevant effective quantities:

fl+1 = fl b
✏


1 � fl

✓
1

2
+

2Xl

1 + wl

◆
log b

�

wl+1 = wl


1 � fl

✓
1

2
� 2Xl

1 + wl

◆
log b

�

Rl+1 = Rl b
�1


1 +

1

4
fl log b

�
,

(6.91)

where with Xl we simply mean Xl = [(Rl⇤)2(1 + wl)]/[1 + (Rl⇤)2(1 + wl)].

The scaling dimension of the crossover length scale R is composed by the
first term b

�1, that is proper of a naive length scale scaling, and by a non-trivial
term proportional to the dynamical coupling constant, namely b

1
4fl , which will

be crucial in the following study of the crossover. From these expressions, the
computation of the related �-functions is straightforward,

�f = �f


✏� f

✓
1

2
+

2X

1 + w

◆�

�w = wf


1

2
� 2X

1 + w

�

�R = R

1 � 1

4
f

�
.

(6.92)

and the fixed points follow from the searching for their zeros.

Imposing the condition �⇤ = O(1), we obtain the dynamical critical exponent
z,

z = 2 � 2f ⇤

1 + w⇤X
⇤ (6.93)

depending from the fixed point values of f, w and X. Solving their �-functions,
we discover that the length scale R has two different fixed points,

R⇤ = 0 and R⇤ = 1 , (6.94)

of which, since we expect f
⇤ ⇠ ✏, the first one is IR-stable and the other is

IR-unstable. These two values decisively determine the behavior of the other
dynamical quantities.
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The IR-unstable conservative fixed point

First of all, we analyze the case when R⇤ = 1, which happens to be unstable.
This fixed point is characterized by the set,

f
⇤ = ✏, w

⇤ = 3, R⇤ = 1, X
⇤ = 1, ) z = d/2 (6.95)

The dynamical critical exponent is, therefore, z = d/2 as the classic Model G of
[61]. Indeed, relations (6.95) imply ⌘

⇤ = 0: the dissipation becomes irrelevant
and the dynamics of the model appears completely conservative. This condition
is preserved only if the starting bare effective friction ⌘0 = 0, otherwise, as soon
as a small dissipation is turned on the system flows to visit the stable fixed point.

The IR-stable dissipative fixed point

The stable fixed point stands out for R⇤ = 0, which produces:

f
⇤ = 2✏, w

⇤ = 0, R⇤ = 0, X
⇤ = 0, ) z = 2 (6.96)

as a consequence of the fact that dissipation completely dominates the dynamics
(i.e. ⌘

⇤ = 1). As a matter of fact, this fixed point describes a dynamics in
which the order parameter field  totally decouples from the secondary field s

that becomes a fast variable of the system. The mode-coupling terms become
negligible and the primary field feels only a dissipative dynamics of the Model A
type [61].

The dissipative fixed point is the only stable fixed point of the parameter space.
Hence, asymptotically, all the bare theories with non-null starting effective friction
belong to its universality class with z = 2. However, this kind of scenario can
generate a dynamical crossover between the two different fixed points, assuming
particular importance for finite-size physical systems. We are going to explain it
better in the next chapter.
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The second crossover:
from a conservative to a dissipative
universality class

In the previous two chapters, we introduced the Inertial Spin Model, an active
matter model whose main feature is a second-order dynamics for the degree of
freedom of the velocity in an extended Hamiltonian space. Due to its inertial
nature, we already tested its ability in reproducing the decay of dynamical cor-
relation functions of natural swarms (Fig 5.6) while, to investigate its dynamical
universality class, we performed an RG study on the related field theory under
and a fixed-lattice approximation.

The scenario depicted by this calculation highlights the presence of two fixed
points on the critical manifold: one unstable with zero effective friction and
z = d/2, and a stable one characterized by infinite friction and z = 2. We
can therefore repeat here a similar reasoning we carried out in chapter 4, where
we studied the dynamical crossover between an equilibrium to an off-equilibrium
universality class [7], and try to understand if a similar phenomenon between these
two equilibrium dynamics can give us useful information on the applicability of
this model to the natural system.

What really captures our attention is the unstable and conservative fixed
point and the reason is twofold. First, natural swarms exhibit an inertial shape
of correlation functions [3], therefore, although we cannot totally neglect the
presence of dissipation in the system, we can assert that it is not so relevant in
the dynamics; second, the dynamic critical exponent of the conservative fixed
point is interestingly smaller than the Vicsek-like universality class (z = 1.7)
getting closer to the one found experimentally, already at the level of equilibrium
approximation.

Hence, following these motivations, we are going to carefully explore the
crossover between the conservative and the dissipative critical dynamics of the
fixed network ISM.
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7.1 The crucial role of dissipation
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Figure 7.1: Renormalization group flow and crossover (I). Flow diagram on
the (X, f) plane. In the plane there are two fixed points: the unstable one (red dot)
describes a conservative dynamics with zero effective friction, the second one (green
square) represents a dissipative dynamics with infinite friction. When the initial ⌘0
is small, X0 ⇠ 1, the flow converges towards the unstable fixed point, z = d/2, and
remains in its proximity for many iterations, before crossing over to the stable z = 2
fixed point. Figure reprinted from [9].

To fully understand this phenomenon and especially the conditions under
which it occurs, we start from the RG recursion relations (6.91) we derived in
the previous chapter, numerically integrating them and simulating the flow of
the parameters in the parameters’ space. In the limit of infinitesimal RG trans-
formation (b ! 1), the eq (6.91) can be read as a system of coupled differential
equations, from which, calling x = l log b, we perform a continuous limit, mapping
for instance fl ! f(x). We obtain,

f
0(x) = �f (f, w,R)

w
0(x) = �w(f, w,R)

R0(x) = �R(f, w,R) ,

(7.1)

where the prime indicates a derivative with respect to x. These equations can be
integrated and represented on the plane (X, f) since they are the most meaningful
players of the theory. The result is shown in Fig.7.1 where each line corresponds
to different initial values of the set ⌘0,�0,�0 (and therefore of f0 and X0). The
initial condition of X0 (and then of the bare dissipation ⌘0) is paramount for
the solution of the dynamical system, indeed we can see that when its value is
close to one (low friction), the flow starts feeling the attraction of the unstable
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Figure 7.2: Renormalization group flow and crossover (II). Running parameters
fl and Xl, and critical exponent zl as a function of the iteration step along a flow line
at small ⌘0. A starting transient regime in which the exponent is z = 1.5 in three
dimensions is evident. Figure reprinted from [9].

and conservative fixed point (⌘0 = 0), to then end the journey on the stable and
dissipative one (⌘0 = 1).

Moreover, under this condition of small bare dissipation, the flow of the param-
eters approaches the z = d/2 fixed point and spends there many RG iterations.
Each red dot of the figure represents an RG step, namely an effective theory de-
scribing the system at a particular length scale which increases with the number
of steps. Hence, if the flow lingers about the conservative fixed point for many
iterations, it means that for many length scales a physical system experiences a
conservative-like critical dynamics with a z = d/2 dynamical critical exponent. In
the asymptotic limit of an infinite system, the RG can be indefinitely applied to
explore larger and larger scales. Following the flow, the system is trapped by the
stable fixed point, where the nature of the critical dynamics changes becoming
dissipative with z = 2.

In Fig.7.2 the same dynamical crossover is represented in terms of running
values of z, of the coupling constant f and of X. An intermediate and transient
regime where the exponent assumes the value of the conservative fixed point can
be clearly appreciated before crossing over to the z = 2 value.

This crossover has important manifestations on the relaxation properties of the
system that we can deduce by looking at the scaling properties of the correlation
functions. To make a direct comparison with the study on the critical manifold
we have just carried out, we can first analyze the crossover when ⇠ = 1 and we
observe the system at a particular length scale 1/k. Under RG transformations,
the correlation function of the order parameter follows the flow as [64],

C(t, k,P0) = (bl)2zlC(tb�lzl , kb
l
,Pl) (7.2)

where we are indicating with Pl the set of parameters of the theory after l steps
of RG and starting with the bare values P0. The running dynamical critical
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exponent has to be interpreted as the quantity,

zl = 2 � 2fl
1 + wl

Xl (7.3)

that, at the two fixed points, assumes its physical and macroscopic value (its
behavior is also represented in Fig 7.2). As we already noticed, the observation
scale fixes the maximum number of RG iterations, that is when the rescaled wave-
number becomes kl = kb

lSTOP = ⇤ [74]. Assuming that at the end of flow the
system is attracted by one fixed point, we use this relation in eq (7.2) obtaining,

C(t, k,P) =

✓
⇤

k

◆2z⇤

C(t(k/⇤)z
⇤
,⇤,P⇤) . (7.4)

The leading dependence of this function is therefore on t(k/⇤)z
⇤ , meaning that

the characteristic time scales as,

⌧c(k) ⇠ k
�z

⇤
. (7.5)

The value assumed by z
⇤ depends on which of the two fixed points is reached by

the flow at the stop condition.

If the bare system is characterized by a very small effective friction, we can
state that as long as the crossover parameter remains around Xl ' 1, the unstable
fixed point is the only relevant for the dynamics. This also implies that Rl ' ⇤�1.
Hence, the condition to explore only the unstable fixed point can be formulated
as,

if Rl � ⇤�1 =) !c ⇠ k
d/2

. (7.6)

The conservation length scale Rl =
p
�l/⌘l rules the condition to observe the con-

servative dynamics, which appears as an interplay between the correlation length
and the ratio of the two transport coefficients. However, even if the flow starts
with a very large bare conservation length scale, it can happen that the wave-
number in consideration is so small that it allows a great number of iterations
reducing the R by a lot so that

if Rl ⌧ ⇤�1 =) !c ⇠ k
2
. (7.7)

We can then understand that the condition Rl ' ⇤�1 fixes a threshold for
making the system to remain around the conservative fixed point. This can
be translated in a crossover wave-number: from the recursion relation Rl =

R0b
l(�1+f

⇤
/4) we substitute the unstable fixed point value for the coupling constant

f
⇤ = ✏ , obtaining:

Rl = R0b
l(�d/4) (7.8)

so that the threshold wave-number is easily computed,

kc = ⇤(⇤R0)
�4/d

. (7.9)
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1 2 3 4 5
1

2

3

4

5

⇠, k�1

R
0

z = 2

z =
d

2

Figure 7.3: Different critical regions. Different values of k, ⇠ and R0 correspond
to different critical behaviors. The red region reflects the conservative critical dynamics
with z = d/2, while the green region corresponds to dissipative critical dynamics with
z = 2. We set ⇤ = 1 so that physical values for lengths are k�1 > 1, ⇠ > 1 and R0 > 1.
On the critical manifold relaxation is studied in the (k�1, R0) plane: the two different
regimes are separated by the curve R0 = k�d/4. Off the critical manifold relaxation
is studied in the (⇠, R0) plane: the two different regimes are separated by the curve
R0 = ⇠d/4. The black dashed line represents, respectively, R0 = k�1 or R0 = ⇠ (i.e.
scaling at the upper critical dimension). The figure refers instead to the d < dcu case
and it is reprinted from [10].

To summarize, for a system with ⇠ = 1, the nature of its critical dynamics
depends on the interplay between the observation scale and the starting conser-
vation length scale, which is fixed by the level of effective friction of the system,
namely:

k ⌧ ⇤(⇤R0)
�4/d =) z = 2

k � ⇤(⇤R0)
�4/d =) z = d/2 .

(7.10)

Very similar reasoning can be applied to the case of a finite-size system that
stands out to have a large but finite correlation length ⇠ < 1. The difference is
that now the RG takes place out of the critical manifold and also the correlation
length changes under rescaling as ⇠l+1 = ⇠l/b. The correlation function along the
flow can then be expressed as,

C(t, ⇠,P0) = (bl)2zlC(tb�lzl , ⇠/b
l
,Pl) (7.11)

where now we can substitute the stopping condition of the flow around the critical
fixed points, which reads as b

lSTOP = ⇠⇤. Following the same steps as before, we
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discriminate between the two regimes when

Rl � ⇤�1
, ⇠ ⌧ ⇠c =) !c ⇠ ⇠

�d/2

Rl ⌧ ⇤�1
, ⇠ � ⇠c =) !c ⇠ ⇠

�2
.

(7.12)

with a crossover length scale,

⇠c '
�
R0⇤

�4/d
⇤�1

. (7.13)

We can therefore confirm that the relationship between the correlation length
and the conservation length scale is crucial to determine the real critical behavior
observed in the system. We finally notice that this latter quantity scales with an
anomalous dimension R ⇠ b

�d/4 that becomes equal to the naive one only at the
upper critical dimension d = 4. As long as the dimension is d < d

c

u
, ⇠, and R

behave differently under RG and this has the effect to expand the conservative
critical dynamics region with respect to the case of the naive scaling at d = d

c

u

(see Fig 7.3).

7.2 More details on the stable dissipative fixed

point

The phenomenon we showed in the previous chapters has been derived by an
analytical calculation of the integrals on the shell of the self-energies ⌃b and
⇧b. However, all come from an assumption we implicitly did when computing the
integral (6.66) for the kinetic coefficient �0. Indeed, we assumed that the effective
friction was finite and we managed the calculation under this condition. In fact,
this assumption remains valid as long as we are in the vicinity of the conservative
fixed point, and, since we are interested in the crossover stemming from it, we
can safely state that all the previous results are solid under this approximation.

What crucially drives the flow to explore the dissipative fixed point is the
growth of the effective friction under RG transformations (i.e. ⌘l+1 = b

z
⌘l),

which can become very large and eventually diverge with the number of itera-
tions. Therefore, the calculation of (6.66) has to be revised when considering the
proximity of the stable fixed point, namely:

�l+1 = b
z�2 �l


1 + 2

g
2
l

�l

Z ⇤

⇤/b

d
d
p

(2⇡)d
1

p2[(�l + �l)p2 + ⌘l]

�
(7.14)

= b
z�2 �l

2

41 + 2
g
2
l

�l⌘l

Z ⇤

⇤/b

d
d
p

(2⇡)d
1

p2
⇣

�l+�l
⌘l

p2 + 1
⌘

3

5

If now we evaluate the last integral for ⌘l � 1, we obtain

�l+1 = b
z�2 �l


1 + 2

g
2
l

�l⌘l

Z ⇤

⇤/b

d
d
p

(2⇡)d
1

p2

�
(7.15)
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describing a logarithmic UV-divergence of order 1/p2 instead of the previous 1/p4.
From the prefactor of the integral we can deduce that the coupling constant to
describe the relevance of the mode-coupling interaction is not anymore fl but
rather ql = g

2
l
⇤2�d

/�l⌘l, whose naive scaling dimension is d � 2 and not d � 4.
This fact suggests that the upper critical dimension for this type of interaction
lowers to d̃

c

u
= 2.

In the case of our interest, namely for d = 3 the scaling dimension of q

becomes negative, meaning that it approaches the stable fixed point characterized
by q

⇤ = 0. Consequently, the perturbative contribution to �, given by the mode-
coupling self-energy ⌃, vanishes and its recursive relation reads,

�l+1 = b
z�2�l . (7.16)

At one loop, the dynamical critical exponent is simply z = 2, in agreement to
the previous result, and the dynamics becomes identical to that of Model A
[61]. The effect of imposing g

⇤ = 0 or ⌘⇤ = 1 is to make the two equations of
motion completely decoupled from each other since the spin can be considered as
a fast variable not entering into the hydrodynamics of the system (correlator and
propagator of the spin are identically null: Cs = 0, Gs = 0).

Finally, the upper critical dimension of the mode-coupling dynamics at the
dissipative fixed point is d̃

c

u
= 2. This indicates that the fluctuations of the

order parameter due to the inertial dynamics are irrelevant at d = 3. However,
the real upper critical dimension of the whole dynamics and statics remains still
d
c

u
= 4 since the relevant coupling constant becomes unique coinciding with ul.

This brings corrections to the dynamics only at two loops level as it happens for
the classic Model A [61]. Certainly, this changing of upper critical dimension
could open a deeper future study of the neighborhood of the stable fixed point,
however, for the moment, our biological motivations focus our interest mainly on
the conservative fixed point, and therefore we are not going to elaborate more on
it.

7.3 Numerical simulations

To test the crossover in microscopic systems we performed numerical simulations
in d = 3 of the on lattice ISM, whose equations we report here again for clarity:

d 
i

dt
=

1

�
si ⇥ 

i

dsi
dt

=  
i
⇥ J

X

j

nij j
� ⌘

�
si + i

⇥ ⇣
i
.

with noise correlator:

h⇣
i
(t) · ⇣

j
(t0)i = 2d⌘T �ij�(t � t

0)
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We remind that i is the particle index, ⌘ indicates the microscopic dissipation
of the spin and the dynamics obeys the constraint |vi| = v0. The simulations
are performed in the same spirit of fixed-network approximation of the analytical
analysis, because we want to emphasize the role of behavioral inertia in the de-
termination of the critical dynamics at an equilibrium level, without necessarily
coming to full consistency with experimental data of natural swarms. Particles
are disposed on cubic lattices with interaction radius rc = 1.05, PBC are used
and the numerical integration follows the RATTLE algorithm which is explained
in Appendix B.

The strategy to explore the crossover will be the following: we fix the param-
eters J = 1, � = 1, and v0 = 1 and we perform simulations at different values of
temperature T and of friction ⌘. The T determines the value of the correlation
length, while the spin dissipation regulates the conservation length scale R0. We
then study the characteristic time scale’s ⌧ behavior of the system and we analyze
the dynamical scaling in different regions of the (⇠,R0) parameters space.

7.3.1 Static behavior and correlation length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 1 1.5 2 2.5

h�
i

T

N=512
N=1000
N=2197
N=4096
N=8000

T

h�
i

(a)

0

2

4

6

8

10

12

14

16

18

0.5 1 1.5 2 2.5

�

T

N=512
N=1000
N=2197
N=4096
N=8000

T

�

(b)

Figure 7.4: Static critical behaviour. Panel (a), average scalar polarization for
temperatures 0.5  T  2.5 and for different sizes (N = 512, 1000, 2197, 4096, 8000).
An ordering transition occurs at approximately Tc ' 1.5. Panel (b), susceptibility as
a function of temperature, same sizes as in panel (a); the maximum of each curve is
located at a temperature that decreases with increasing the size of the system, and
approaches the critical temperature Tc in the thermodynamic limit.

Before going into the study of the crossover we need, first of all, to identify the
near-critical paramagnetic regime of the system. To achieve this goal we define
as order parameter of the system the polarization, namely:

� =
1

N

����
X

i

 
i

���� (7.17)
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and we compute it for different sizes, N = 512, 1000, 2197, 4096, 8000, and for
different values of the control parameter, which is clearly the temperature since
we are on lattice at fixed density ⇢ = 1. The results are plotted in panel a of Fig.
7.4, while in panel b we show the susceptibility simply computed as for standard
ferromagnetic systems from the connected fluctuations of the polarization,

� = �N [h�2i � h�i2] (7.18)

with � = 1/T and the brackets indicate a phase average. From the analysis of
these two figures it is evident that the ordering transition occurs at Tc ' 1.5

and that, due to expected finite-size effects, the critical point moves to lower
temperatures when the size of the system increases [60].

Since the model is on the lattice, it has to satisfy the static scaling hypothesis,
which tells that the spatial correlation function C(r) has to be a homogeneous
function of the distance r and ⇠. We, therefore, exploit this concept to extrapolate
the characteristic correlation length. We compute the correlation function as
introduced in chapter 1 [42],

C(r) =

P
i,j

h� i(t) · � j(t)i�(r � rij)P
i,j
�(r � rij)

(7.19)

with:
� i(t) =  i(t) � h ii (7.20)

where averages are now phase averages, and rij the distance between two labeled
sites i and j. We expect the behavior of the correlation function to be:

C(r) =
e
�r/⇠

rd�2
(7.21)

where we are neglecting in the exponent of the denominator the anomalous scaling
dimension because we want to compare our results to a one loop calculation. In
d = 3 we are then able to write the identity:

rC(r) = e
�r/⇠ (7.22)

and consequently extrapolate the correlation length ⇠ from a linear fit of the
ln(rC(r)). In Fig. 7.5 we report these equal time correlation functions for the
maximum size we took into consideration N = 8000, corresponding to the linear
size L = 20 and considering temperatures just above the ordering transition (for
this size Tc = 1.455). The maximum correlation length registered is ⇠ = 10.15

for T = 1.48, obviously coinciding with the maximum effective distance of the
system when PBC are implemented: L/2.

To test the reliability of our measure of correlation length, we compute two
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Figure 7.5: Static correlation functions. Top: Spatial correlation functions C(r)
for different temperatures at N = 8000; the curves stop at r = 10 since for r > L/2 it is
meaningless to compute this quantity because of the periodic boundary conditions used
in the simulations. Bottom: we plot log(rC(r)) at different temperatures for the same
size: the curves are linear according to theoretical predictions, and we can use them to
compute the correlation lengths extrapolated by linear fits.
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Figure 7.6: Static critical exponents and FFS analysis. Top: extrapolation of
static critical exponents: ⌫ = 0.712 and �/⌫ = 1.905 from the behavior of the correlation
length ⇠ and � vs (T � Tc), respectively; the size is fixed at N = 8000. Bottom: test
of the finite size scaling laws for the correlation length and the susceptibility using
the above estimate of critical exponents, both the sets of data are evaluated at N =
2197, 4096, 8000. All these results confirm that the static of the model belongs to the
Heisenberg universality class.

static critical exponents: ⌫, that describes the divergence of ⇠ at criticality,

⇠ ⇠ 1

(T � Tc)⌫
(7.23)

and � that carries the singularity of the susceptibility as,

� ⇠ 1

(T � Tc)�
. (7.24)

Combining these two expressions we obtain that � ⇠ ⇠
�/⌫ [51]. In Fig. 7.6 the

extrapolation of these quantities for the maximum size N = 8000 are reported, we
found ⌫ = 0.712 to be compared with ⌫H = 0.707 of the Heisenberg universality
class and �/⌫ = 1.905 to be compared with the theoretical prediction �/⌫

H
=

1.973.

Finally, using the aforementioned critical exponents we verified the finite size
scaling predictions for N = 2197, 4096, 8000, namely;

⇠ = Lg(L(T � Tc)
⌫), � = L

�/⌫
h(L(T � Tc)

⌫) (7.25)
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where g and h are the respective scaling functions. The results of Fig. 7.6
fully confirm that the static universality class of the fixed network ISM is the
Heisenberg one.

7.3.2 Dynamical behavior and relaxation time

The second important and necessary ingredient to investigate the dynamical scal-
ing is the characteristic time scale ⌧ , which represents the scale over which fluc-
tuations of the order parameter become decorrelated. To compute it, we recall
the spatio-temporal correlation function in isotropic momentum space, that is:

C(k, t) =
1

N

X

i,j

sin(krij)

krij
h� 

i
(t0) · � 

j
(t0 + t)it0 ,

h(· · ·)it0 =
1

Tmax � t

Tmax�tX

t0=1

(· · ·)
(7.26)

with Tmax the length of the simulation. Since we saw that the number of opera-
tions to compute it is of order ⇠ TmaxN

2, we here now exploit the fact that we
are on lattice and we use phase averages, therefore we compute the easier:

C(k = 0, t) =
N

Tmax � t

Tmax�tX

t0=1

� (t0) · � (t0 + t)

� (t0) =
1

N

X

i

� 
i
(t0)

(7.27)

which turned to be identically null in the out-of-equilibrium case, because of the
sum rule (4.23). From this latter quantity we compute the characteristic time
scale using the same definition given in chapter 1 (1.19), that we report here for
simplicity:

1

2⇡
=

Z 1

0

dt
1

⌧
sin

✓
t

⌧

◆
C(k = 0, t)

C(k = 0, t = 0)
. (7.28)

We recall that this equality corresponds to requiring that half of the total inte-
grated area of the dynamic correlation function in the frequency domain comes
from the interval �!c < ! < !c, with !c = 1/⌧ . This definition of ⌧ has the
advantage of capturing the relevant time-scale both when relaxation is dissipa-
tive, and when propagating modes are present, and it is the standard definition
adopted in the literature on dynamic critical phenomena [5].

7.4 Dynamical crossover in numerical experiments

We have now all the tools to compute the dynamical critical exponent z. Indeed
at k = 0, the power law that links the correlation in time and space reads,

⌧(k = 0) ' ⇠
z (7.29)
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Figure 7.7: Numerical protocol in the (⇠, R0) plane. Simulations performed at
fixed ⌘ and different T correspond to exploring the (⇠, R0) plane along with horizontal
segments. Since the size of the system is finite (L  20), only a limited window of ⇠
can be accessed and the length of such segments is finite (1 = ⇤�1 < ⇠ < ⇠max = 10).
According to the RG prediction, for all values of ⌘ corresponding to R0 > 103/4 the
segments belong entirely to the conservative region (upper segment). For larger values
of ⌘, such that 1 < R0 < 103/4, the segments cross from the conservative region to the
dissipative one (middle segment): in this case, there is no sufficient span in each region
to extract the exponent z from the ⌧ vs ⇠ plot. Since the minimum physical value of
R0 is ⇤�1 = 1, larger values of ⌘ are all equivalent to the R0 = 1 case (lower segment).
Figure reprinted from [10].

Our primary goal is to observe the crossover in the critical dynamics of the
model to verify the RG predictions we derived before. From a conceptual point of
view, the simplest thing to do would be to follow the analytical path also in the
simulations and then, to fix a value of dissipation ⌘, i.e. of R0, and to observe the
two different regimes enlarging more and more the correlation length by tuning
the temperature T . One would expect to observe a power law with z = d/2 for
small ⇠ and then a changing to z = 2 for very large values of the correlation
length. However, to observe in simulations’ data this phenomenon it is necessary
to span several orders of magnitudes in ⇠, at least three decades, which makes the
numerical work quite demanding, especially considering we are studying systems
in three dimensions with a large number of particles.

We decide to follow another strategy, certainly more doable from a numerical
point of view: we translate the crossover in ⇠ in a crossover in effective friction
fixing the size of the system at N = 8000. The reason can be well understood
looking at figure Fig 7.7 that represents the (⇠,R0) plane. On the x-axis we
report the upper limit of the correlation length, which is fixed by the linear size
of the system L/2, and its lower bound that is determined by the microscopic
length scale ⇤�1 = 1. This latter belongs also with the conservation length scale,
which in turn is fixed once the microscopic value of friction ⌘ is chosen. The
corresponding values of R0 are represented by the horizontal lines in the graph:
high values of dissipation correspond to small values of it, which, for very large
but finite dissipation, reaches its lower boundary R0 = 1.
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Figure 7.8: Dynamic critical exponents. Relaxation time vs correlation length in
d = 3, for L = 20, N = 8000, and T 2 [1.48 : 2.00], at various values of the friction
coefficient, ⌘̂ = 1.0, 2.0, 4.0. Each point is an average over 10 samples, apart from the
lowest T (largest ⇠ and ⌧) at ⌘̂ = 4, for which we have 4 samples (one such sample takes
7 days to run on a i7-8700-3.20GHz CPU workstation). Lines are the best fit to z = 1.5
(low friction - ⌘̂ = 1.0, 2.0) and z = 2 (large friction - ⌘̂ = 4.0). Figure reprinted from
[9].

Fig. 7.7 clearly shows that there exists an intermediate region of values of ⌘
in which the respective horizontal lines traverse the crossover curve R0 = ⇠

3/4,
determined by eq (7.13), and where one would observe the transition between
the two different power laws. However, the interval in ⇠ in the two regimes is
too narrow to perform reasonable linear fits to extrapolate trustworthy critical
exponents. Therefore, it appears more convenient to choose values of ⌘ such that
the horizontal lines are all included in one or in the other region, where all the
disposable data can be used to show a z = 3/2 dynamics (for small dissipation)
or a z = 2 dynamics (for large dissipation), according to the RG predictions.

This is exactly what we find in our numerical simulations, that fully confirm
the RG crossover’s scenario. Fig. 7.8 shows the results for simulations with
⌘ = 1, 2, 4. It is possible to appreciate the two regimes of critical dynamics: the
conservative one is exhibited by the system at low values of ⌘ = 1, 2, while the z =

2 emerges when ⌘ = 4. We could not explore larger values of dissipation because
the time for the equilibration was numerically too long. The lines reported are
the best fit of data points at fixed slopes z = 1.5 and z = 2.

These values of dynamical critical exponents are also those that have to verify
the dynamical scaling hypothesis of spatio-temporal correlation functions. In
Fig. 7.9 we present two sets of normalized C(k = 0, t) computed at different
temperatures and respectively for ⌘ = 1 (panels a and c) and ⌘ = 4 (panels b
and d), from which we extracted the characteristic times reported in Fig. 7.8.
When time is rescaled by t/⇠

z with the appropriate value of the exponent, it is
possible to appreciate a good collapse of the functions that testifies to the validity
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of the dynamical scaling hypothesis in the conservative and in the dissipative
regime. We, therefore, conclude that the ISM exhibits a dynamical crossover just
as predicted by the RG calculation.
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Figure 7.9: Dynamic scaling for correlations. Test of the dynamic scaling hy-
pothesis on the dynamic correlation functions at k = 0. Upper panels: spatio-temporal
correlation functions at various values of the temperature for ⌘ = 1 (panel a) and ⌘ = 4
(panel b). Lower panels: same curves plotted as a function of t/⇠z with, respectively,
z = 1.5 (panel c) and z = 2 (panel d): in both cases the functions verify the dynamic
scaling hypothesis. Figure reprinted from [9].

7.5 Dynamical scaling at k⇠ = 1

The behavior of the dynamic correlation function at k = 0 is a peculiar case that
we tested in the section above. The wavenumber k represents the inverse of the
scale of the system which we are looking at, therefore k = 0 means that the system
is considered in all its entirety, more precisely in the thermodynamic limit. We can
explore what happens at these dynamic features when we restrict our attention to
smaller scales. The purpose is to test the dynamic scaling hypothesis evaluating
the dynamic correlation functions for values of k⇠ fixed while the system lives in
the conservative regime. As we explained in chapter 1, if the scaling hypothesis
is verified for this model, we expect to see the collapse of the dynamic correlation
curves one over the other for different temperatures (eq. (1.23)). We, therefore,
compute the functions as eq. (1.24) states, using the values of temperatures
already reported and changing the wavenumber k in order to maintain the product
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Figure 7.10: Dynamic scaling for correlations at k⇠ = 1 and ⌘ = 1. Top:
dynamic correlation functions at different temperatures but with the wave number that
satisfies the product k⇠ = 1. They are normalized at the value at t = 0 and computed
for N=8000. Bottom: same functions when time is rescaled for t/⇠z using z = 1.5 of
the conservative regime. The characteristic collapse is verified, thus stating the validity
of the dynamical scaling hypothesis for k 6= 0.

fixed. Choosing k⇠ = 1 and ⌘ = 1, the results of the scaling are reported in Fig.
7.10, from which it can be deduced that the dynamical critical exponent z = 1.5

satisfies a robust scaling regime in the conservative case also at different values
of wave-number.

To conclude our numerical analysis on the equilibrium ISM, we can finally focus
on the qualitative shape of the dynamical correlation functions. In the previous
chapters, indeed, we mentioned that this model is able to reproduce the inertial
decay of the velocities’ correlations of natural swarms. These latter quantities are
computed using data satisfying k⇠ = 1 [3], therefore we can take the last analyzed
results as the example for a qualitative comparison.

Even though the shapes of the simulated C(k, t) appear almost exponential,
carefully looking at small times we can appreciate a non-vanishing derivative
Ċ(t ! 0) ' 0. Recalling the definition of the relaxation form factor of eq (5.52),
we saw that for natural swarms (Fig. 1.9 [3]) h(x) ! 0 for x ! 0, reproducing,
for small times, the flat derivative typical of a dynamics of second order. This
is a result found in the numerical simulations of ISM as well, as depicted in Fig.
7.11. The analysis has been realized for values of the wave-number satisfying the
condition k⇠ = 1, thus recalling the conditions of natural swarms; the emerging
scenario is similar to the experimental one since these functions of the near-critical
ISM go to zero as those experimental, highlighting how an inertial nature of the
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Figure 7.11: ISM reproduces the inertial decay of natural swarms. Left panel:
function h(x) computed for ISM numerical simulations at different temperatures and at
N = 8000; the wave numbers satisfy k⇠ = 1. It is clear that, for small times, the curves
go to zero reflecting the flat derivative of the dynamic correlation functions at t = 0,
typical of a model with an inertial dynamics. This scenario is similar to the one found
in experimental dato of natural swarms, which are always in the regime k⇠ ' 1 (right
panel ).

dynamics is paramount to reproduce the nature of natural systems with respect
to the fully dissipative case as the Vicsek model. A meaningful superposition of
curves of these three different systems was reported in Fig. 5.6.

7.6 Conclusions on the equilibrium Inertial Spin

Model

We conclude here the study of the fixed network ISM. We can say that, even if
it involved a relevant equilibrium assumption, quite far from the living system
of swarms, this analysis produced very interesting results that we are going to
summarize here.

We understood that a microscopic dynamics with a second-order law for the
velocity, describing a non-instantaneous update of the alignment force, fits in
a compelling way the shape of the dynamical correlation functions of natural
swarms; suggesting that an inertial model with small dissipation can be a very
good candidate for a theoretical explanation of swarming systems.

Moreover, the microscopic laws transform in a set of dynamical equations
with mode-coupling interactions at a field theory level, whose critical dynamics
is characterized by a crossover between two dynamical universality classes. The
quantity that rules this phenomenon is the effective friction of the spin field
that, if it is small, leads the system to show firstly a conservative dynamics with
z = 1.5, and then to drift asymptotically towards the z = 2 fixed point, where
mode-coupling interactions become negligible. Therefore, as long as systems are
of limited sizes, and inertial dynamical features are relevant, they can exhibit the
value of the conservative exponent even if they are microscopically damped.
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We believe this is the mechanism that can act on the natural system of swarms
of insects, being in part responsible for the low value of their exponent. However,
results of equilibrium theories cannot be directly compared to biological systems,
since out-of-equilibrium effects are certainly relevant in their context. For this
reason, we recently moved to the study of the active case, which totally seems to
confirm our intuitions. A brief preliminary summary of this work will be given in
the next conclusive chapter.

126



Chapter 8

In the crossfires of the two
crossovers

This chapter concludes the study on the critical dynamics of active matter mod-
els, here performed to explain experimental evidence of anomalous relaxation in
natural swarms of insects. First, we are going to summarize the results shown in
the previous chapters and then we will introduce novel and recent works that com-
pleted the investigations on the topic. From a DRG and a numerical perspective,
we focused our investigation on the two following models:

• Vicsek model with an incompressibility constraint: we started from
the corresponding hydrodynamic theory of Toner and Tu with negligible
density fluctuations, implemented by the constraint r·v = 0 [6]. This study
revealed that the model exhibits a novel critical dynamics, characterized by
the emergence of an off-equilibrium universality class with z = 1.7 in three
dimensions. However, our attention focused on the dynamical crossover in-
volving the stable fixed point characterized by this latter exponent, and the
unstable one representing an equilibrium universality class with z = 2 and
zero activity. We understood that a finite-size active system, depending on
its size and on the level of self-propulsion (i.e. the microscopic speed), can
experience the attraction of one or both the fixed points showing the respec-
tive critical dynamics. In the conditions of relevant activity or sufficiently
large size, the relaxation of the system is ruled by the off-equilibrium criti-
cal exponent, confirming that activity has the effect of lowering the value of
this exponent with respect to the equilibrium case. Additionally, through
numerical simulations, we proved that the incompressibility constraint that
allows the RG calculation is not essential to verify the crossover in the
original microscopic model. Activity rules the same phenomenon also for
compressible though homogeneous and limited size systems, and we appre-
ciated it in our simulations of the standard Vicsek model [7]. With this part
of the work, we unveiled the real role of the activity in the critical dynamics
of out-of-equilibrium systems belonging to the class of polar and dissipative
active models. On the other hand, we clarified that this theory is not suit-
able to explain the dynamical scaling properties of natural swarms. Besides
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the single numerical value of the exponent z, also the exponential decay of
the dynamical correlation functions, typical of this dissipative dynamics, is
not in agreement with experimental data that instead reflect a dynamics of
greater order.

• Inertial spin model under a fixed network approximation: we then
moved to the study of the Inertial Spin Model, different from the dissi-
pative dynamics of Vicsek since it implements a second-order dynamical
rule for the velocity. In the coarse-grained version, it produces a mode-
coupling field theory for the degrees of freedom of density, velocity, and
spin, namely the generator of internal rotations of the orientations. We
worked on this theory both numerically and analytically in a fixed network
approximation, thus neglecting density fluctuations and studying the sys-
tem at equilibrium. At this level, the resulting field theory is similar to
literature’s mode-coupling dynamics but with the original character of dis-
sipative friction in the equation of the spin. The dissipative spin dynamics
characterizes also the microscopic equations, in order to reproduce realistic
turning movements of biological agents. We, therefore, studied its critical
dynamics to understand the effects that this type of dissipation produces on
the critical exponent of a mode-coupling field theory. Also for this model,
we found a significant result: the interplay of effective friction and system
size determines a crossover between two different dynamical universality
classes. One is represented by the unstable fixed point, stable only in the
zero effective friction’s direction and indeed representing a fully conserva-
tive critical dynamics with z = 1.5 in three dimensions. On the other hand,
in case of relevant spin’s dissipation or enough large size, the flow reaches
the stable fixed point reproducing a fully dissipative dynamics with z = 2.
We confirmed this scenario with numerical simulations of the fixed-network
ISM, thus demonstrating that weakly damped and finite-size systems with
an inertial dynamics can show a lower value of the dynamical critical expo-
nent with respect to the dissipative case. We also verified that this model
is able to reproduce the same qualitative behavior of the inertial decay of
swarms’ correlation functions. However, the value of the smaller exponent
thus found, z = 1.5, is not yet consistent with experimental findings [9, 10].

8.1 How do the crossovers relate to natural swarms?

The main take-home message of the previous discussion is that both activity and
inertial dynamics independently have the effect of lowering the value of the dy-
namical critical exponent. At the same time, they are also both crucial ingredients
to reproduce the phenomenology of the biological system of interest. The exper-
imental value of the swarms’ exponent is actually smaller than the best estimate
obtained z = 1.5, thus suggesting that these two ingredients must merge together
at the theoretical level in order to explain experiments.
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z = 2.0

z = 1.7 z = 1.5

Equilibrium dissipative dynamics

+ activity + inertia

Figure 8.1: Sketch of the DRG results. The figure retraces all the results obtained
in this thesis. The reference model to study the critical behavior of a system is the
equilibrium dissipative dynamics of the order parameter, described by a critical exponent
z = 2.0. Adding activity to it, we studied the incompressible Vicsek model that has
z = 1.7. Considering zero activity but adding inertial coupling we got instead z = 1.5.
Activity and inertial dynamics have independently the effect of lowering the value of
the exponent.

The study carried out on the two crossovers can guide our intuition and provide
useful information when we try to translate it to the world of natural swarms. If
we want to relate the study of critical phenomena to the behavior of the biological
system, some considerations are in order: first, swarms are groups of finite size L

and this imposes a limitation to the application of the hydrodynamic limit to their
study; second, the same size L determines the degree of correlation in the system,
reproducing a quasi-critical behavior when ⇠ ⇠ L [2]. A fair interpretation of the
crossover phenomena in natural systems can assume, therefore, that the size L

is the key parameter to show some peculiar collective properties. Moreover, at
the theoretical level, we understood that the interplay between the correlation
length and the crossover length scales rules the critical dynamics of the system,
ultimately determined by bare values of activity and spin’s dissipation. Based on
these facts, we can therefore try to connect the main features of this biological
system to the dynamical mechanisms we just studied.

Natural swarms are composed by biological living entities, therefore they are
really active. To enforce this effect on the critical dynamics of a system, we learnt
from the first RG study that its correlation length must satisfy,

⇠ � ⇠c =

✓
✏

↵0

◆1/

⇤�1 (8.1)

where we remember that  = 31/51 in d = 3 [7]. The main physical parameter
is hidden in the activity coupling constant ↵0, which directly scales with the
microscopic speed ↵0 ⇠ v

2
0. With the aim of describing a biological system,

activity can be considered very large, thus providing a relation for the system’s
size ⇠ ⇠ L � ⇠c.

Natural swarms display also an inertial dynamics in the velocity correlation
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functions, therefore they are weakly damped. These are the conditions to as-
sume a relevant non-dissipative critical relaxation that, according to the second
calculation, is guaranteed when:

⇠ ⌧ ⇠c = (R0⇤)
4/d⇤�1 (8.2)

where the main physical meaning is embedded in the conservation length scale
R0 ⇠ ⌘

�1/2
0 , with ⌘0 the friction of the spin [9].

Merging together these limit conditions and considering the finite-size relation
⇠ ⇠ L, we obtain a speculative relation for the system’s size of the natural swarm,

↵

✓
1

v0

◆2/

⌧ L ⌧ �

✓
1

⌘0

◆2/d

(8.3)

where ↵, � are representative proportionality factors. This relation suggests that,
in order to enhance out-of-equilibrium and inertial effects, the size of a swarm
must be enclosed in a range determined by relevant activity and low dissipation.

Certainly, this is more speculation than a quantitative result, first of all, be-
cause we are comparing out-of-equilibrium features on one side and equilibrium
on the other side of the inequality. However, it conveys our idea to explain the
phenomenon of dynamical scaling in natural swarms. We, therefore, expect that
a theory that takes into account activity and inertial dynamics could provide the
right framework to demonstrate this conjecture.

8.2 Next: swarms in 3.99 dimensions

The previous arguments suggest that a combination of activity and inertia is
crucial to reproduce the critical dynamics of natural swarms, in particular the
value of the dynamical critical exponent zexp ' 1.2. Even if the best estimate we
gave for it is z = 1.5 from the equilibrium inertial case, we are convinced that
reinstating back the self-propulsion in the equilibrium ISM provides a further
lowering of the exponent.

We can gain an insight into this by pondering on the reasons why non-
dissipative equilibrium models are characterized by a value of the exponent that is
much smaller than the dissipative case z = 2. The lower value may be interpreted
as a remnant of the spin-wave behavior that the underdamped system exhibits at
very low temperatures. In this thermodynamic phase, linear propagating modes
emerge and are characterized by a real part of the dispersion relation ! = ck

where c is called the second sound speed. One could naively deduce from it that
the dynamical critical exponent is z = 1 at all the values of temperature, but
this guess would not be correct. Indeed, when moving to the critical region all
the corrections coming from the renormalization at criticality have to be taken
under consideration. At the critical point, the sound speed c changes its scal-
ing behavior and affects also the value of the exponent that grows to z = 1.5,
still remaining far from the dissipative one. A similar mechanism could work

130



Chapter 8 8.3. Incompressible ISM

when reinstating activity in the inertial dynamics: the primary effect of turning
on the self-propulsion is inducing a ballistic, hence linear, motion of the single
individuals. The critical exponent certainly does not describe the behavior of
the single particles, but rather it measures the collective behavior of the group’s
velocity fluctuations. Despite this, the idea that a remnant of the ballistic motion
influences its value, lowering the z = 1.5 like the spin-wave modes do for the
dissipative exponent z = 2, is interesting.

For these reasons, we decided to conclude our journey by studying the critical
dynamics of the full self-propelled Inertial Spin Model, embedding activity in the
mode-coupling dynamics. At a field theory level, this produces a hydrodynamic
theory for three coupled fields, namely the density, the velocity, and the spin, for
which an RG calculation appears quite challenging. A simplification comes from
the study we performed on the Toner and Tu theory in chapters 3,4 revealing
that suppressing density fluctuations with an incompressibility constraint on the
velocity field does not change the dynamical universality class of homogeneous
systems. Hence, we evaluated the applicability of this approximation also in the
full theory of the hydrodynamic ISM.

8.3 Incompressible ISM

Finally, we faced the calculation of the full field theory of the Inertial Spin Model
under the incompressibility constraint [11]. This has been the last work of our
group, but the results are still preliminary. For this reason, I will not give here
details on the practical DRG calculation. I am going to introduce the equations
of motion studied and discuss the principal results. Even if I contributed deci-
sively to this work, all the diagrammatic calculations will be the main topic of
the future Ph.D. thesis of another student.

The dynamical field theory we studied combines the hydrodynamic approach
of the Toner and Tu equations and the reversible mode-coupling theory introduced
in the previous sections. We performed the calculation under incompressibility
conditions, thus neglecting density fluctuations and imposing a divergence-free
constraint on the velocity field. However, we soon realized that doing it in an
inertial field theory was not a piece of cake, therefore we firstly studied the prob-
lem at the equilibrium level [105]. Calling  (x, t) the order parameter, which
is linked to the velocity field via v(x, t) = v0 (x, t), we obtain the following
divergence-free equations of motion in a fixed-network approximation [105]:

@ ↵(k, t)

@t
= ��0P↵�(k)

�H
� �(�k)

+ g0P↵⇢(k)I⇢��⌫
Z

d
d
q  �(k � q)

�H
�s�⌫(�q)

+ ✓↵(k, t)

@s↵�(k, t)

@t
= �k

2⇤↵��⌫(k)
�H

�s�⌫(�k)
+ 2g0I↵��⌫

Z
d
d
q  �(k � q)P⌫⇢(q)

�H
� ⇢(�q)

+ ⇣↵�(k, t)

(8.4)
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with noises correlators,

h✓↵(k, t)✓�(k0
, t

0)i = 2(2⇡)d�0P↵�(k)�
d(k + k0)�(t � t

0)

h⇣↵�(k, t)⇣�⌫(k0
, t

0)i = 4(2⇡)d⇤↵��⌫(k)k
2
�
d(k + k0)�(t � t

0)
(8.5)

There are several differences with respect to the equilibrium version of the ISM
we already analyzed. First of all, we introduced new operators like the anti-
symmetric identity I↵��⌫ = 1/2(�↵���⌫ � �↵⌫���), the already met projection op-
erator P↵�(k) and its compositions; the equation of the order parameter is all
projected along the orthogonal direction to k, including the mode-coupling term,
and, what is remarkable, the transport spin coefficient appears modified in,

⇤↵��⌫(k) = �
?
0 P↵��⌫(k) + �

k
0(I↵��⌫ � P↵��⌫(k)) (8.6)

where P↵��⌫(k) = I↵��⌫�I↵��⌧P��(k)P⌧⌫(k). Equation (8.6) is a manifestation of
the solenoidal nature of the system: introducing a spatial anisotropy reflects in the
separation of longitudinal and transverse spin relaxation modes. This distinction
maintains the RG structure closed and it does not affect the equation of the order
parameter since  k = 0. Another important difference lies in the mode-coupling
element of the equation of the spin when �H/� ⇢ is explicitly computed: an
additional term and then an additional vertex appears, and it is of the form,

@ts↵�(k) ⇠ 2g0u0I↵��⌫
Z

d
d
q d

d
h d

d
p  �(k�q)P⌫⇢(q) ⇢(p) �(h) �(q�p�h) .

(8.7)
This new vertex mixes static and dynamical coupling constants and it is crucial
to provide consistency to all the calculation.

We finally added self-propulsion to this theory, enriching the dynamics with
new terms that stemmed from activity. The velocity becomes the transporting
field and, at the same time, maintains the role of polar order parameter. As a
consequence, all the fields are advected by the flow of the velocity and the partial
derivatives in time transform into,

@t ↵ ! Dt ↵ = @t ↵ + �vv⌫@⌫ ↵

@ts↵� ! Dts↵� = @ts↵� + �sv⌫@⌫s↵�

(8.8)

where �v and �s are the coefficients that break the Galilean invariance. The
equation for the velocity contains also a term of pressure �@↵P that enforces the
constraint on the density, and the kinetic coefficients, determining the amplitude
of the noises, are allowed to be generically different from the equilibrium coun-
terparts ( �0 6= �̃0, �0 6= �̃0) since activity violates the Fluctuation-Dissipation
Relations. Additionally, the equation of the spin’s dynamics gains more modifi-
cations: first, we add to the transport coefficient a term of dissipation in such a
way to reproduce the weak non-conservative dynamics of the microscopic model,

⇤↵��⌫ ! ⇤↵��⌫ + ⌘0I↵��⌫ , (8.9)

132



Chapter 8 8.3. Incompressible ISM

second, we need to include other additional terms in the advective and mode-
coupling vertices that go beyond the equilibrium theory introduced before. We
realized these elements were necessary to close the RG calculation since they
were directly produced by the diagrammatic expansion of the other quantities
[11]. A reasonable physical explanation of their presence is that the absence of
Galilean invariance allows all the possible combinations of gradients and fields
in the equations of motion, if these are forbidden in the equation of the order
parameter because of the projection onto the transverse direction, they become
permissible in the equation of the spin, and have to be taken under consideration
in the bare initial theory to produce a consistent calculation. The new spin’s
advective vertices are,

V
adv,1
↵�

= v0µ1�s@⌫(s↵⌫ � � s�⌫ ↵)

V
adv,2
↵�

= v0µ2�s[@↵( ⌫s⌫�) � @�( ⌫s⌫↵)] ,
(8.10)

while the new mode-coupling vertices read,

V
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V
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(8.11)

Each term is accompanied by the introduction of a new parameter, namely
µ1, µ2,�1 and �2. Combining all these ingredients we get the following complete
dynamical equations of the incompressible ISM,
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that we are writing in x-space to condensate notation.

We performed a DRG calculation on this dynamical active field theory pro-
ducing a closed set of 60 diagrams at one-loop, whose details could be found in a
future manuscript [11]. The rich scenario produced by the theory is pictured in
Fig. 8.2, where the RG flow is represented in the activity vs conservation plane.
These quantities are expressed by the following coupling constants:
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v0�v

�0

s
�̃0

�0
(8.14)

for the activity, and for the dissipation,
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This last parameter is zero for overdamped dynamics (⌘0 ! 1), and equal to
one for a perfect conservative dynamics with ⌘0 = 0.
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Figure 8.2: Sketch of the RG flow of the incompressible ISM. RG flow of
the full ISM’s field theory in the plane activity, cv, versus spin conservation q. When
cv = 0 we recover the equilibrium fixed points and the crossover from a overdamped
to underdamped dynamics (q = 0 ! q = 1), while in the axis of relevant activity we
have the stable fixed-point under dissipation’s renormalization with z = 1.7, and the
novel unstable fixed point with underdamped active dynamics and z = 1.3. The red
arrows indicate the different physical effects of activity and conservation on the value of
the dynamical critical exponent z, while the grey arrows show the flow in the activity-
conservation plane. Reprinted from [11].

The main novelty is the presence of a new underdamped off-equilibrium fixed
point, characterized by a value of the dynamical critical exponent equal to z = 1.3

in three dimensions. This is IR-unstable in the dissipation direction, but we
believe it is the exponent that better describes active homogeneous systems with
inertial dynamics, namely natural swarms. Additionally, in this plane, we recover
all the fixed points of the previously analyzed models and the two crossovers we
have already studied. The path we believe is decisive for natural systems is the
one obtained following the red dots of the figure: it starts far from equilibrium
(relevant activity) but close to the q = 1 axis, where damping is weak. The RG
flow carries thus the system to spend many iterations around the novel fixed-
point exhibiting a z = 1.3 critical dynamics, before eventually crossing over to
the overdamped off-equilibrium fixed point where dissipation takes over (z = 1.7).

This result confirms all our expectations. The effect of introducing activity in a
mode-coupling theory is to lower the critical exponent from z = 1.5 to z = 1.3, and
the mechanism to physically show this last value is again a dynamical crossover
involving the size of the system and the physical friction, like for the equilibrium
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inertial case. In this phenomenon, activity surprisingly seems to protect the
symmetry of conservation against dissipation. Moreover, new recent data, which
can be found in [11], enlarged the experimental window on this exponent to
0.88 < zexp < 1.48 within a two sigma interval of confidence, well including the
theoretical prediction z = 1.3 and giving robustness to the analytical calculation.

Concluding, this last work finally produced a value of the exponent in agree-
ment with experimental data. We, therefore, believe it represents one of the first
examples of perturbative Renormalization Group’s applications to the world of
biology, being directly confirmed by experimental data on living systems. This
result suggests that strongly correlated biological groups, as swarms of insects,
can be successfully described with statistical field theory’s methods that aim to
extend the concept of universality to living matter.
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Collateral projects

This final chapter collects several projects carried on during the doctoral course,
some partly concluded and others still ongoing. The topics could appear not in
a logical consequential order with respect to the previous research of this thesis,
indeed mostly they are not. They in fact come out from collaborations with other
members of the group in Rome and in Argentina, and directly from the curiosity
of the author, fueled by the lively activity of research of the group.

The common denominator that links the following sections is the attempt of
including in the active matter models already introduced along with the disser-
tation new ingredients that provide a more realistic representation of biological
systems displaying collective behavior. For instance, in the context of active mat-
ter, one usually refers to systems that dissipate energy at the local level in order
to produce work [106]. The motion of single particles is ruled by internal driv-
ing forces that can be modeled in different ways, but one of the most common
tools is assuming a constant speed of the single individuals, namely using the
fixed-parameter v0 [106, 107]. This constraint is what makes all the microscopic
models we analyzed in the previous sections really active, in the sense that the lo-
cally sustained motion clearly carries an arrow of time, breaking the time-reversal
symmetry for each active particle.

As we already saw, these descriptions are successful to capture essential traits
of natural systems. However, especially for macroscopic biological groups such as
flocks of birds and insects swarms, this kind of assumption can appear too distant
from the real dynamics of moving animals, lacking some details that could explain
additional important features of their groups. In the following, we try to cover
some of these issues: in the first two sections, we are going to relax the constraint
of constant speed on the Vicsek Model reinstating speed fluctuations, and thus
reproducing a more reasonable scenario for birds flocks and insects swarms. The
main purpose is to understand the mechanism that explains scale-free correlations
in the speed of birds while, in the swarming phase, how this scalar degree of
freedom can serve as a tracer to explore an FDT violation. Finally, restoring the
constraint on the speed, we move to the ISM and we try to insert in the second-
order dynamics of the velocity a confining potential on the positions. The aim is
to reproduce the landmark role in the swarming behavior, a type of interaction
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not included in the original model.

9.1 A new model to explain anomalous correla-

tions in bird flocks

As long as the speed of the particles is kept constant to v0 the truly non-trivial
behavior of active systems comes directly from the process of mutual imitation
of orientations among the individuals. However, when dealing with biological
entities, such as flocks of birds, speed fluctuations are concrete and evident, thus
need to be taken into account for a complete formal description. It is indeed
reasonable to think that an effective natural process of imitation not only favors
orientational order, but it also spontaneously carries the elements to adjust their
speed to those of the neighbors. We want to model this mechanism, and to
reach this goal we need to modify the standard active matter models relaxing
the constraint on v0 and inserting a speed control potential that acts on the
single individual. Moreover, we need a description where speed fluctuations are
limited around a reference biological value in order to prevent birds to move at
an unreasonable value of average velocity.

Finally, we want that the new theoretical formulation matches some evidence
coming from experimental data of starling flocks. In [43], the experimental anal-
ysis revealed that velocities’ vectors exhibit a scale-free behavior ensuring strong
correlation on large spatial scales and producing global and collective net motion,
whatever the size of the group is. We introduced this feature in chapter 1, showing
the vectorial correlation length behavior growing with the linear size of the sys-
tem (Fig. 1.3). From the same figure, it is evident that also the speed correlation
length shows the same scale-free behavior. We already mentioned that the first
evidence finds a quite natural explanation in the spontaneous symmetry breaking
picture of O(n)-systems provided by the Goldstone theorem [52], while the be-
havior showed by the scalar degree of freedom of the speed still lacks a physical
modeling interpretation. Here we are going to focus on this latter evidence, which
seems to require the introduction of new tools to find an explanation.

The principal mechanism responsible for scale-free behavior of correlation in
large interacting systems, apart from the soft Goldstone modes, is the proximity
to a critical point in the parameters space. Therefore, we present two models
that are characterized by critical points in the degree of freedom of the speed
and, at the same time, provide high polarization to the system thus reproducing
a realistic thermodynamic phase of flocking. We investigate their positive and
negative aspects when compared with experimental data of birds flocks, however
we are not going to report the analytical calculations performed on them in the
following, since they are reserved to other students thesis and can be found in [54]
and [55]. In fact, what we want to highlight here is how powerful self-propelled
numerical simulations of these models are to reproduce starlings’ experimental
data.
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Before analyzing them, let’s introduce the general dynamics which we are
interested in. It recalls the Vicsek-like update rule in its continuous time version,
namely:

dvi

dt
= �@H

@vi

+ ⌘
i

(9.1)

dri

dt
= vi (9.2)

where ⌘
i
is the classic white noise with variance h⌘

i
(t) · ⌘

j
(t0)i = 2dT �ij�(t � t
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and H is the effective Hamiltonian that generates the social force acting on the
velocity’s dynamics. We write it in the form,

H =
J

2

NX

i,j

nij(t)(vi � vj)
2 +

NX

i

V (vi) (9.3)

recognizing the familiar term of inter-particle interaction with coupling strength
J and connectivity matrix nij. Written in this form, this element describes not
only an alignment interaction but also an imitation in the speed’s behavior. The
original element is the potential of speed control V (vi), whose role is to maintain
the speed of the single particles confined around a reference value v0. Different
forms of this potential can be chosen, but we are going to analyze the two simplest
formulations compatible with the rotational symmetry of the system.

9.1.1 Linear speed control

The basic proposal that fulfills our requirements to confine the speed around v0

is of the type,
V (vi) = g(vi � v0)

2 (9.4)

where vi = |vi|. When computing the derivative in the equation of motion,
it produces a linear restoring force that pushes the speed to fluctuate the less
around v0 the stronger is the stiffness g. This model has been already studied in
[53], where a spin-wave expansion around the deep ordered state, determined a
correlation length for the speed equal to,

⇠sp = r1

✓
Jnc

g

◆1/2

(9.5)

where r1 is the mean inter-particle distance and nc the average number of inter-
acting neighbors. From eq (9.5) it is visible that g = 0 corresponds to a critical
point, namely when the correlation length meets its singularity. Therefore, when
considering strong correlated finite size systems, for which ⇠sp ⇠ L, the condition
g < 1/L2 of small enough stiffness ensures an appreciable scale-free behavior of
the speed in the deep polarized phase.

This result appears satisfying to reproduce the phenomenology of the speed
correlation length found in flocks, however, some troubles emerge when looking
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at the behavior of the mean speed of the system. A deeper analysis of the same
model that can be found in [55], shows indeed that, when considering the mean
speed of the group,

s =
1

N

X

i

vi , (9.6)

always in the deep polarized phase, its most probable value is given by

stypical =
1

2
v0

 
1 +

s

1 +
4T

Ngv
2
0

!
. (9.7)

In the thermodynamic limit N ! 1, stypical is well-behaved and it tends to
the reference value v0 regardless of the values of the other parameters, however
some finest considerations are in order when dealing with smaller system sizes.
Following (9.5), to achieve the scale-free behavior of the correlation length, we
want to tune the model to low values of the stiffness g. This tuning, however, has
the effect to increase the second term under the square root of (9.7), producing
a growth of stypical which is even more accentuated when the size N is small
(because of the requirement g < 1/L2). In this scenario, therefore, the typical
speed value can significantly drift apart from v0.

These considerations open a dilemma: when the flock is composed by a limited
number of agents, to confine its speed’s fluctuations around a reference value, a
large stiffness g is necessary, but, at the same time, it makes losing the scale
free-behavior of the speed. On the other hand, if one wants to preserve the trend
⇠sp ⇠ L, it has to deal with an undefined growth of the average speed of the flock
that is not realistic. This reasoning suggests that the speed control potential
of (9.4) is not properly correct to represent our system and, consistently, also
experimental data of flocks confirm this hypothesis. In Fig. 9.1, the black points
stand for correlation length and average speed of real flocks in a range of sizes
going from N = 10 to N = 2500: ⇠sp always grows with L but the average speed
slightly fluctuates around the reference value of 12 m/s, without showing any
relevant increase for a small number of individuals.

Numerical simulations

To confirm the above predictions, we perform out-of-equilibrium numerical sim-
ulations of the linear model. A simple scheme of Euler integration translates eq
(9.1) into,

vi(t+�t) = vi(t) +�tF i + �⌘
i

(9.8)
ri(t+�t) = ri(t) +�tvi(t) (9.9)

where the force F i gets two contributions F i = F int + F sc, one from the inter-
particles interaction F int = �J

P
nij(vi � vj) and the other from the potential
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of speed control,

F sc = �@V (vi)

@vi

= 2g
vi

|vi|
(v0 � |vi|) . (9.10)

The amplitude of the noise is regulated by the temperature with �
2
⌘
= 2dT�t;

the density of the system is fixed to ⇢0 = 1 and the interaction is implemented
according to metrical rules. Even though natural flocks are known to display
topological interactions with a fixed number of neighbors, when simulating the
low-temperature phase of (9.8) it can be shown that density fluctuations are very
small, and the mean number of interacting particles is almost preserved also in
a metric system. This fact allows using numerical tricks for the computation
of the connectivity matrix such that it has been possible to run simulations up
to N = 3 ⇥ 105 particles. In any case, preliminary tests on the validity of this
statement have been performed: the initial condition sees elements on a cubic
lattice of size L that interact at time t = 0 with nc = 6 particles; the range of
interaction is posed at rc = 1.05 and �t chosen as the maximum value which
guarantees a robust numerical integration in terms of errors and stationarity of
the system’s energy. We compute the distribution of the nearest neighbors along
with many time evolutions and we verify that they are always sharply peaked
around nc = 6, thus supporting our thesis.

We run simulations for many different parameters, choosing values for J and
T to obtain a global polarization of � ' 0.9 and changing g for various N .
To provide an estimate of the correlation length, we first compute the spatial
correlation function of the speed, namely,

C(r) =

P
ij
h�vi�vji�(r � rij)P

ij
�(r � rij)

(9.11)

with a definition that recalls that of the velocity [42], also similarly evaluating
the speed fluctuations �vi = vi � 1/N

P
vk. We then extrapolate the correlation

length as the quantity,

⇠sp =

R
r0

0 dr r C(r)R
r0

0 dr C(r)
(9.12)

indicating with r0 the first point when C(r) = 0 [42]. This definition appears quite
useful when the behavior of the correlation function is not known a priori. If the
system is not scale-free, there exists a characteristic length scale, that we call ⇠̂,
which dominates the exponential relaxation of the function, namely C(r) ⇠ e

�r/⇠̂.
In this case it is possible to extend the integrals of (9.12) over L, thus obtaining a
good estimate of the correlation length via the result ⇠sp ⇠ ⇠̂. On the other hand,
when the decay follows the power-law typical of critical regimes, we directly get
⇠sp ⇠ r0, recognizing the procedure for experimental data explained in chapter
1. Finally, correlation length and mean speed (9.6) are then averaged over the
stationary states of the numerical simulations.

These quantities are reported in panels a and b of Fig 9.1 in superposition with
experimental data. In panel b the average speed is plotted against the number of

141



9.1. A new model to explain anomalous correlations in bird flocks Chapter 9

a group N and it is computed for a set of sizes similar to the experimental one
N = 8 ÷ 2744 and for different stiffness values, namely g = 1, 0.1, 0.03, 0.001. In
the same range of the control parameter g also the simulations of panel a are run,
but to reproduce a linear size L comparable with that of realistic systems Lexp we
decide to perform another set of simulations. The reason for this choice is that
flocks do not move in a cubic shape, their aspect ratio continuously changes in
time and they are almost flat in the gravity direction, therefore their linear size is
always much larger than L = N

1/3. Since for the determination of the correlation
length what really matters is only the linear extension of a system, we compare
the same experimental data with the results of cubic lattice simulations in the
range N = 125 ÷ 343 ⇥ 105 obtaining what is shown in Fig 9.1 1.

Looking at it, evident conclusions can be drawn: for low values of g the scale-
free behavior of ⇠sp is well reproduced following the black dots, however, the
average speed widely grows for small N departing from the reference value; on
the other hand, increasing g makes consistent its typical value, but suppresses
the divergence of the correlation length. Concluding, numerical simulations fully
confirm the unsuitability of the linear speed control to explain flocks experimental
evidence; we need therefore to find another theoretical solution and we do it by
introducing the marginal speed control.

9.1.2 Marginal speed control

To build up a new speed control potential, we remember that in classical statis-
tical physics the correlation length is always linked to the inverse of the second
curvature of the free energy calculated at its minimum. A vanishing second-order
derivative implies a divergent correlation length that usually happens when the
system is at criticality. The simplest potential that can answer these require-
ments, being also rotationally symmetric in the complete velocity vector, is of the
form,

V (vi) =
1

v
6
0

�(vi · vi � v
2
0)

4 (9.13)

where the normalization factor v
6
0 is there to provide the same dimension to all

the parameters appearing in the effective Hamiltonian. The crucial feature of
(9.13) is that its second derivative in v0 is always zero irrespective of the value of
�, thus seemingly fulfilling the condition we are looking for.

This potential has been introduced for the first time in [54], where a mean-field
analysis revealed that a zero temperature critical point emerges, and the speed
correlation length diverges when approaching it:

⇠sp ⇠ 1

T 1/2
, (9.14)

1
We can actually demonstrate that using boxes with different aspect ratios, such that to

simultaneously reproduce the behavior of ⇠ and s, is completely equivalent to use cubic lattices.

We went for the latter to use standard and identical procedures of calculations for all the

simulations.
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Figure 9.1: Linear vs Marginal speed control for birds flocks. Black dots
represent experimental data on starling flocks in the size range N = 10÷2500. In panels
a and c, speed correlation lengths are reported in comparison with those extrapolated
from SPP numerical simulations of the linear and marginal speed control, respectively.
The scale-free behavior ⇠ ⇠ L is reached by the linear control only for the very small
value g = 0.001, while it is lost when increasing its amplitude (panel a). For the same
control parameters g, the mean speed of flocks of numerical simulations with the same
number of particles N is calculated and shown in panel b plotted against the system’s
size. Large values of g reproduce the constant trend of the mean speed of flocks, while for
those granting the scale-free behavior of the correlation length the mean speed rapidly
grows at small N , deviating from experimental data. In panels c and d, the same
quantities are reported for real data and SPP numerical simulations of marginal speed
control. Since the zero-temperature critical point is not dependent on the value of �,
one single set of simulations is enough to reproduce both the scale-free behavior of the
correlation (c) and the trend of the mean speed with the size. The inset of panel d
zooms in the y scale of the same data to appreciate the agreement between theory and
experiments. Continuous lines are the theoretical predictions. Reprinted from [55].
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a feature interestingly not dependent on the parameter �, but just naturally
generated in the low-temperature phase. This result appeared quite promising
since it suggests that low noise conditions and large polarization are sufficient
ingredients to reproduce a full scale-free behavior of the system. What is more,
carrying out the same analytical analysis contained in [55], it has been possible
to derive the probability distribution of the average speed in the low-temperature
phase, determining its typical value:

stypical '

8
<

:
v0 for N � T

�v
2
0

v0

⇣
T

4N�v20

⌘1/8
for N ⌧ T

�v
2
0

(9.15)

From this last relation we learn that, again in the thermodynamic limit N ! 1
the stypical converges to v0, while it can assume larger values for N ⌧ (T/�v20).
Nevertheless, the size of transition appears effectively quite small since � ⇠ O(1)

and the temperature is set to have strong polarization, thus shielding the regime
where this increase is appreciable.

In the same spirit of the previous sections, numerical simulations are per-
formed using this marginal speed potential that implements the force,

F sc =
8�

v
6
0

(v20 � v2
i
)3 . (9.16)

Average speed and its correlation length are computed obtaining panels c and
d of Fig 9.1: the scale free-behavior is well reproduced and the average speed is
correctly confined around the reference biological value, without any need to tune
the amplitude of the potential. Hence, the marginal model seems to provide a
way far better speed control mechanism with respect to the linear one.

Certainly, other formal solutions or different models able to properly provide
the same level of explanation cannot be excluded a priori, however, the absence
of any tuning of parameters and the stunning compatibility with experimental
data make this model really sound from a biological point of view, very fit for
starling flocks and probably suitable to more extended applications. Concluding,
this successful study seems to put a full stop to the open question about the
nature of flocks’ speed long-range correlation arising in chapter 1 and provides an
elegant way to interpret individual fluctuations in a flying flock of starlings [55].

9.2 Violation of Fluctuation-Dissipation Relations

in soft-speed active matter models

The study performed in the previous section can be considered as an implemen-
tation of the classical active matter Vicsek model plus a relaxation of the speed’s
constraint, which, as we have just seen, leads to a more realistic representation of
a natural phenomenon, like the flocking of birds. Reinserting speed fluctuations
carried indeed to the explanation of another important trait of collective behav-
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ior in the system, namely scale-free correlations in this scalar degree of freedom.
Stimulated by this successful result, we decided to study more in-depth the other
thermodynamic phases of this model to see how much it can be extended to our
principle system of interest, namely, swarms of insects.

A clarification is in order. Basically, all the work we explained in the previous
chapters pointed in a precise direction: swarms are well described by a second-
order dynamics in the velocity, for instance by models like the ISM. Additionally,
when introducing the latter, we said that also flocks belong to the same category
of non-instantaneous interaction. At this point, the situation can appear quite
foolish to the reader, which is now probably wondering why we went back to
speak about Vicsek’s dynamics when still referring to these animals groups. The
objection is logical and legitimate. Our answer is twofold: first, the order of the
dynamics is paramount when looking at dynamical properties as relaxation or
information propagation, while all the static quantities like the correlation length
are independent of this trait; second, in this last approach, we are trying to insert
completely new ingredients in the mathematical models that are not completely
under control. The strategy is therefore to start the investigation on these new
tools, applying them to simple and already well-known dynamics, to study all
their possible effects, and finally to include them on the proper inertial dynamics
obtaining a more complete description of the original biological systems.

With this in mind, we propose to turn our attention to the concept of response

in a biological system. When in chapter 1 we introduced the experimental evi-
dence on natural swarms, we referred to their quasi-critical nature saying that, in
the degree of freedom of velocity, the system shows long-range correlations that
help it to maintain cohesion and to efficiently respond to external stimuli [2]. In
the last years, it has been clarified that this seems a property common to many
different biological systems across several lengths scales [58]. A critical state, in
the sense of a functional useful balance between stability and instability, or more
properly, between order and disorder, makes the system robust to external pertur-
bation, and, even more, rapidly adaptable to changes of the external environment
[59].

Biological examples are the auditory and the sensory systems, the neural ac-
tivity of the human brain, or the variability of living cells [59]. However, for
macroscopic biological systems like groups of animals, a discussion in these terms
has not yet been thorough. If on the one hand, dynamical perturbations to the
boundaries of flocking events have been already studied in [108], thus providing a
description for the movements of birds in response to external predators attacks,
on the other, the situation is quite more mysterious for swarms of insects, for
which it is still unclear to what they should react, in which terms and what is
the quantitative path to approach the issue. Inspired by novel and preliminary
data on perturbation-response experiments on this latter system, we try to face
the topic through an FDT study.
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Figure 9.2: Sketch of an adaptive response. The input X represents the external
signal which perturbs the system via a step function mechanism. An internal variable
Z changes its stationary state to the maximum value Zp(X +�X) and then descending
to a new stationary state Zs(X + �X)determined by the adaptation error. Reprinted
from [109].

9.2.1 Biological motivations: perturbation-response study
in swarms of insects

In order to explore and understand the quasi-critical nature of midges swarms,
the team CoBBS recently performed perturbation experiments on them. One of
these concerns the application of acoustic perturbations to the system formed
above a landmark in its natural environment. Sound impulses are emitted from
an external source, and the outcome trajectories are tracked and analyzed with
the same technology previously used for flocks and swarms [46, 47] 2.

After processing the data, only a quantity seemed to register the event of
perturbation with a significant change, namely the average speed of the group.
Experimental data are preliminary, but we can already state that no changes of
polarization in the direction of the source, or of the linear size of the swarm have
been observed; the net effect of applying a sound disturbance is to slow down the
system to smaller speeds 3. In more detail, the appreciated reaction is a sudden
decrease of the average system’s speed as soon as the perturbation is turned on,
and then a following slower ascent to the original stationary state, even before
the sound stops.

This phenomenology appears very interesting since it seems to describe a
process with adaptability happening in a collective biological system. With this
word we mean the ability of a living system to change its internal state in response
to environmental changes, in order to maintain proper features to ensure survival
and biological functions [109]. The preliminary evidence thus obtained suggests

2
More details on the experimental setup will be given in future publications.

3
Experimental data will not be shown in this thesis to protect the originality and the

preliminary nature of the results.
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that performing response experiments like the usual physical ones is doable also
for these systems, and it may pave the way for highlighting and quantifying this
crucial property that distinguishes alive from not-alive systems.

Fig 9.2 sketches a simple example of a perturbation event when a biological
system experiences adaptability [109]. The external signal is represented by the
input X that, at a certain time, increases to X +�X like a step function. The
system reacts changing the state of an internal variable Z, from an original sta-
tionary state Zs(X) to a maximum value depending on the intensity of the signal
Zp(X +�X,X). Finally, the system adapts itself to the new background signal
and reaches a new stationary state at Zs(X+�X), which can be generally differ-
ent from the unperturbed state. In equilibrium physical systems what happens
is that Zs(X + �X) = Zp(X + �X,X) since there is no adaptability, while we
can say that the adaptation is perfect when, despite the disturbance, the system
manages to return to the starting state and Zs(X +�X) = Zs(X).

We can therefore give a quantitative measure of this phenomenon, defining
the adaptation error [109],

" =
|Zs(X +�X) � Zs(X)|

|Zp(X +�X,X) � Zs(X)| (9.17)

which is " = 1 for equilibrium system, while it is " = 0 for perfect adaptability.
By multiplying and deviding (9.17) for |�X|, we can express " in terms of two
response functions, namely:

" =
Ra(X,�X)

Rp(X,�X)
(9.18)

where we introduced the adapted response,

Ra(X,�X) =
|Zs(X +�X) � Zs(X)|

|�X| (9.19)

and the physical response,

Rp(X,�X) =
|Zp(X +�X,X) � Zs(X)|

|�X| (9.20)

If now we postulate that the adaptation error is an inner structural property of
a biological system and that it can be measured directly from the experimental
data, then all the information on the adaptation process comes from,

Ra(X,�X) = "Rp(X,�X) , (9.21)

and then from the out-of-equilibrium physical response function of the system.
Motivated by these considerations, we decided to start an investigation on

response functions in active matter models that can help in reproducing the
swarming scenario. The final aim is to arrive at a good quantitative measure
of out-of-equilibrium effects in this kind of active system and then to go back
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to compare the acquired knowledge with experimental data. Since this topic for
polar active matter models is quite an open ground, we are proceeding by sim-
ple steps: first (what is discussed here), we study the out-of-equilibrium speed
response in the modified Vicsek-like model of the previous sections; second, we
will repeat the study reinstating the second-order dynamics using the ISM and
finally, we will study the adaptive dynamics of the natural system. We here start
our investigation by studying response and FDT in equilibrium conditions to test
procedures and protocols, and, to conclude, we show some preliminary results on
the out-of-equilibrium case.

9.2.2 The model: speed perturbations

As we said before, to study speed’s response properties we have to allow fluctua-
tions of this degree of freedom and control them with a suitable potential as we
did for the flocking case. For simplicity, we start here with the simplest Gaussian
form of speed control (9.4), since we are not interested in the study of scale-free
correlations of the polarized phase. We are instead mainly interested in the near-
critical phase of the model and in mild speed fluctuations, features ensured for
large values of the stiffness g.

The starting point is therefore assuming a microscopic effective Hamiltonian
with Gaussian speed control:

H =
J

2

X

ij

nij(vi � vj)
2 + g

X

i

(|vi| � v0)
2 (9.22)

where J is the usual parameter that controls the interaction, and g sets the
amplitude of the speed’s potential, exactly as presented in (9.4). The implemented
dynamics also follows equations (9.1).

The novelty appears in the introduction of the perturbation, which we model
as an additional term in the Hamiltonian, namely:

H ! H � h(t)
X

i

|vi| . (9.23)

We are calling h(t) the source of the disturbance, equal for all the individuals,
in analogy with the magnetic field of classical Heisenberg dynamics. However,
contrary to this case, in (9.23) the scalar field is coupled to the total speed of
the system and not to the directional degree of freedom. We study two different
time-dependent fields, namely

h(t, t0) = h0✓(t � t0) and h(t, t0) = h0✓(t � t0)✓(t0 + �t � t) (9.24)

a step function and a square wave of amplitude �t, respectively (panels a and b
of Fig 9.3); the t0 is the switch-on time of the field and h0 sets its amplitude. It is
useful to immediately look at the effect this perturbation produces on the average
speed of the system: when considering negatives amplitudes (h0 < 0) the reaction

148



Chapter 9
9.2. Violation of Fluctuation-Dissipation Relations

in soft-speed active matter models

is naively similar to that of natural swarms, namely s, the mean system’s speed
(9.6), decreases proportionally to the magnitude of h0 following the step function
(panel c of Fig 9.3), or going back to the original stationary state according to
the square wave (panel d of Fig 9.3). Therefore we believe that, especially in the
impulsive case, this theoretical scheme can reproduce, at least qualitatively, the
picture of the natural system. However, in experimental data, an overshooting of
reaction is not visible, and this is probably due to second-order dynamics that we
are going to implement later. Moreover, the model does not include adaptability
that will be also studied in the future.

Adding the speed’s perturbation, the final equations of motion become,

dvi

dt
= �J

X

j

nij(t)(vi � vj) � 2g(|vi| � v0)
vi

|vi|
+ h(t)

vi

|vi|
+ ⇠

i

dri

dt
= vi

(9.25)

from which it is visible that adding this field term is equivalent to shift the
center of the Gaussian control speed potential, from v0 to v0(1 + h(t)/2gv0). As
a consequence, considering fields that vary locally, namely hi(t), could lead to a
model where the individual center of the potential v0 is not fixed but fluctuates.
This is also another interesting feature that can go closer to a realistic description
of natural systems, but for the moment we will leave it to upcoming research.

9.2.3 Response function and equilibrium study

Our purpose is to study the response function of the speed when subject to
external perturbations. To do this, we are going to explore the validity of the
linear response theory and of the Fluctuation Dissipation Relations (FDR) [68]
for this active system following a Vicsek-like dynamics.

We certainly know that a polar active system is out-of-equilibrium since the
time-dependence of the connectivity matrix breaks the detailed balance condition.
The consequence of adding self-propulsion to the particles reflects in a space-time
dependence of the nij(t), whose variation is responsible for out-of-equilibrium
effects. In two limiting cases, we expect to observe equilibrium and therefore the
validity of the FDR relations: i) in the non-interacting case J = 0 since the system
is composed by N particles in a potential V (vi); ii) in the equilibrium on lattice
case, when we consider dri/dt = 0 and the effective Hamiltonian contributes to
the usual Boltzmann weight P ⇠ e

��H.
In both these cases, we expect to observe the validity of the FDR [68]. For

clarity, let’s briefly recall the main concepts for a Langevin equilibrium dynamics
of a scalar quantity A(t) [110]:

dA(t)

dt
= �� @H[A(t)]

@A(t)
+
p

2�T⌘(t) (9.26)

where ⌘ is a white noise, namely with zero mean and variance h⌘(t)⌘(t0)i = �(t�t
0),
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Figure 9.3: Types of speed perturbations. Panels a and b represent fields with
different amplitudes h0, which follow a step function and a square wave mechanism,
respectively. Panels c and d, temporal series of mean speed s = (1/N)

P
vi in the

reaction of the corresponding perturbation. All these numerical simulations are run
with J = 5, T = 20, g = 10, v0 = 1, rc = 1.05. The duration of the impulse on the left
is �t = 50 time steps.
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� is the friction coefficient and H is a generic functional of A. A perturbation
coupled to the same degree of freedom can be added to the cost function obtaining:

Hh[A] = H[A] � h(t)A(t) . (9.27)

The response is then computed by evaluating the change of the average value of
the observable with the field, leading to the definition of the two times response
function,

R(t, t0) =
�hA(t)i
�h(t0)

(9.28)

where we are considering t > t
0. The Fluctuation Dissipation Theorem (FDT)

connects this quantity to the correlation function of the same observable in ab-
sence of perturbation, namely C(t, t0) = hA(t)A(t0)i, through the formula [110],

R(t, t0) =
1

�T
✓(t � t

0)
@C(t, t0)

@t0
. (9.29)

The connection is deeper if we evaluate the integrated response. In the case of a
field turned on with a step function at time t = 0 of the type h(t) = h0✓(t), and
with a small amplitude h0, we can say that from (9.28) it follows,

hA(t)i � hA(0)i = h0

Z
t

0

dt
0
R(t, t0) (9.30)

thus obtaining the dynamical susceptibility as,

�(t) =

Z
t

0

dt
0
R(t, t0) . (9.31)

Finally using (9.29), we appreciate the connection between susceptibility and
correlation function given by,

�(t) =
1

�T
[C(0) � C(t)] (9.32)

where the proportionality factor that links correlation and response is given by
the amplitude of the noise term, namely the temperature. This statement is
known as the Fluctuation Dissipation Theorem [68, 110] and it lies at the core
of the equilibrium physics. We, therefore, expect that, if we consider the model
(9.25), under one of the two equilibrium conditions, we should be able to verify
it for any observable A({vi}), as for instance the average speed s of the system.

The FDT relation (9.32) has to be fulfilled in the equilibrium case that can be
recovered in the two situations we explained above. Therefore, as a preliminary
step towards a future study of the off-equilibrium case, we decide to numerically
verify the theorem simulating the dynamics (9.25) stopping particles on a cubic
lattice, and implementing both the sources of disturbance. In this case, the
terms of speed and velocity lose their kinematic meaning, they just represent the
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modulus and the direction of spin vectors on a site, but, for the sake of upcoming
consistency, we are going to preserve the same names of the off-equilibrium case.

However, since the speed is a scalar degree of freedom that has never been
considered yet for these active models, before starting the simulations, we give a
brief theoretical insight of what we should expect looking at the non-interacting
case. The purpose is to understand how the stochastic equation for the speed
looks like and what is the effective noise regulating its dynamics. For simplicity,
we refer to the case d = 2, but everything can be generalized in d = 3.

When J = 0, the N coupled equations of the velocities (9.25) separate in N

dynamics for single particles, hence we get:

dri

dt
= vi (9.33)

dvi

dt
= �2g(|vi| � v0)

vi

|vi|
+

p
2T⇠

i
(9.34)

where we are considering the white noise h⇠
i
(t)i = 0 and h⇠

i
(t)·⇠

i
(t0)i = 2d�(t�t

0).
We can now transform these equations using polar coordinates, namely identifying
vi(t) = si(t)(cos�i(t), sin�i(t)), where si(t) is speed and �i(t) is the phase of the
velocity vector. Using the Stratonovich convention [31] of standard derivatives,
the resulting equations read,

dri

dt
= si(t)ei(t) (9.35)

d�i(t)

dt
=

1

si(t)

p
2T ⇠�

i
(t) (9.36)

dsi(t)

dt
= �2g(si(t) � v0) +

p
2T ⇠s

i
(t) (9.37)

where the two new noises just introduced are multiplicative in the form,

⇠
�

i
(t) = cos�i(t)⇠

y

i
(t) � sin�i(t)⇠

x

i
(t) (9.38)

⇠
s

i
(t) = cos�i(t)⇠

x

i
(t) + sin�i(t)⇠

y

i
(t) . (9.39)

The Stratonovich calculus implies that the average values of the above expressions
are different from zero, making difficult to compute the stochastic differential
equation for the global degree of freedom. It is, indeed, simpler if we pass to the
Ito ’s scheme [31], remembering that,

dsi(t)

dt
=

1

2si

d(s2
i
)

dt
� T

si
(9.40)

and
d(s2

i
)

dt
= 2vx

dv
x

dt
+ 2vy

dv
y

dt
+ 4T (9.41)

where the temperature terms are the additional elements of the derivatives [31].
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The equation for the speed modifies into,

dsi(t)

dt
= �2g(si(t) � v0) + (d � 1)

T

si
+

p
2T ⇠s

i
(t) (9.42)

with a generalization to d dimensions. The advantage is that now, the same noise
term of the previous equation has zero mean, and it is easier to compute

ds(t)

dt
=

d

dt

 
1

N

X

i

si

!

which follows,

ds(t)

dt
= �2g(s(t) � v0) + (d � 1)T (1/s) +

r
2T

N
⌘(t) (9.43)

where with (1/s) we mean 1/N
P

i
(1/si) and ⌘ = (1/N)

P
i
⇠
s

i
(t). As we expected,

the effective temperature that rules the equilibrium dynamics of s is T/N .

This result can be generalized to the case J 6= 0, which we decide to numeri-
cally implement by means of lattice simulations. To test the validity of the FDT,
we thus have to compute correlation and response function. For the former we
define,

C(t) =
1

Tmax � t

Tmax�tX

t0=1

1

N

X

ij

�si(t0)�sj(t0 + t) (9.44)

which, expressed in terms of the global degree of freedom, reads

C(t) =
N

Tmax � t

Tmax�tX

t0=1

�s(t0)�s(t0 + t) , (9.45)

Tmax is the length of the simulation, and the fluctuations are calculated with
respect to a phase average, namely:

�si(t) = si(t) � hsiit ; �s(t) = s(t) � hsit . (9.46)

The factor N in (9.45) ensures that the proportionality factor with the response
will be given only by the temperature T.

To compute the susceptibility we then realize the following protocol [111], for
each simulation and set of parameters explored:

1. we run a simulation without field and we compute the correlation function
over it;

2. we run a simulation with the same seed of point 1., but switching on the
field at time t0;

3. we evaluate the difference between the trajectories generated by the two
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Figure 9.4: Equilibrium FDT test for step-function field. Left: correlation
function and integrated response function in time of cubic lattice numerical simulations
performed with N = 216, J = 1.5, T = 3, g = 40, v0 = 1, rc = 1.05, h0 = 0.1. The two
curves are used to realize the parametric plot of the right panel: the slope of the line
gives an estimate of the temperature compared to the real value T = 3.

previous points divided by the intensity of the field for t > t0;

4. we average over 400 realization of the starting time t0.

5. we obtain the integrated response as,

�(t) = h 1
N

|
P

N

i
si(t)h �

P
N

i
si(t)|

|h0|
it0 (9.47)

for t > t0. We are indicating with si(t)h the copy of the system which
evolves with the field, and with si(t) the copy with h0 = 0;

6. we finally average over a sample of independent simulations.

To test the validity of (9.32), we realize the parametric plot �(t) vs C(t) whose
slope can be identified as the inverse of the temperature of eq (9.25).

In the left panel of Fig 9.4, we report the correlation function in red and
the integrated response in blue of a simulation of N = 216 particles with a step
function field of amplitude h0 = 0.1. On the right panel, we show the parametric
plot realized with the same curves: we observe a straight line, whose fitted slope
provides a measured temperature equal to T = 3.15, very consistent with the
theoretical prediction T = 3. In the range of errors, statistics, and a small
number of particles, we can state that we appreciate the validity of FDT in this
case.

We repeat the same experiment for a square wave perturbation and the results
are shown in Fig 9.5. In the left panel, we show the response and the correlation for
a simulation of N = 216 particles, when the duration of the wave lasts �t = 0.05,
a representative value to enhance the procedure.
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Figure 9.5: Equilibrium FDT test for square wave field. Left: correlation
function and integrated response function in time of cubic lattice numerical simulations
performed with N = 216, J = 1.5, T = 3, g = 40, v0 = 1, rc = 1.05, h0 = 3.0, and
�t = 50 time steps. The two curves are used to realize the parametric plot of the right
panel: the slope of the lines give an estimate of the temperature compared to the real
value T = 3. The right line corresponds to times t < �t, while the left line to t > �t.

The right panel shows two lines in the parametric plot of � vs C. This is due
to the fact that we need to distinguish the cases,

(
t < �t ! �(t) = �(C(0) � C(t)) right line
t > �t ! �(t) = �(C(t � �t) � C(t)) left line

Both the slopes of Fig 9.5 give a good estimate of the equilibrium temperature
T = 3.

9.2.4 Out-of-equilibrium preliminary results

After testing the protocols to compute the correlation and response of the model,
we decide to move the study to the out-of-equilibrium case. In the vision of a
possible application to the metric biological system of natural swarms, we use
as control parameter the density and we keep fixed the temperature T in all the
thermodynamic phases.

The first thing we analyze is the comparison between the on lattice and the
off-lattice case when a step function field is applied, choosing v0 = 1 and keeping
the same set of the other parameters (N = 216). In the left panel of Fig 9.6,
we present the curve of polarization when the density moves a continuous phase
transition, certainly due to the small system’s size. A quick interpolation suggests
that the critical point is located around ⇢c ' 1, where we expect that the ma-
jor manifestations of the out-of-equilibrium nature of the system appear. What
indeed carries this active model to the violation of equilibrium is the reshuffling
of the interaction network, especially its variation in time ṅij(t). The more the
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Figure 9.6: Off-equilibrium FDT for small activity. Left: polarization vs density,
the control parameter, whose critical point is located around ⇢c ' 1. Right: parametric
plot response vs correlation for densities close to the critical point. Out-of-equilibrium
effects are not visible and the estimate temperature is always very close to the equilib-
rium value. The parameters used for the numerical simulations are N = 216, J = 1.5,
T = 3, g = 40, v0 = 1, rc = 1.05, h0 = 0.1, and the field taken as a step function.

particles exchange their neighbors, the more we should observe out-of-equilibrium
effects. In the two limiting phases, of a deeply polarized and completely disor-
dered system, we expect to observe effective equilibrium situations, since, in the
high-density case the particles form a coherent flock thus almost preserving the
same neighbors, while in the strongly sparse case the level of the interaction is
poor and an effective equilibrium dominates.

Therefore, it seems reasonable to assume that the near-critical region is a good
candidate to make manifest effects of FDT violation. In the right panel of Fig 9.6
we take three densities around polarization 0.3�0.4 and we analyzed the paramet-
ric plot of integrated response vs correlation. However, for this set of parameters,
we still observe a good validity of the theorem, since the relation between the two
quantities is perfectly linear and the slopes provide values very close to the real
temperature of the system. We would have expected a discrepancy in the linear
trend or in the fitted value of T .

The study of chapter 4 teaches us that this is not really surprising, but that
can exist regions in the parameters space where the system is characterized by
effective equilibrium dynamics even if microscopically active. This could be even
more evident when the system’s size is small, together with the effective activity.
Hence, we decide to pump both the effects exploring a larger size (N = 512) and
multiplying the speed by a factor of 4. We repeat the study explained above, but,
before going on and showing the results, we would like to clarify that these are
just preliminary and that for sure need more investigation.

We fix a set of parameters that produces the curve of polarization, like the
one shown in Fig 9.6, but locating the critical point around ⇢ ⇠ 0.25. For den-
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Figure 9.7: Off-equilibrium correlation and response function for large ac-

tivity. Left: speed normalized correlation functions of SPP simulations spanning the
control parameter in ⇢ 2 [0.05, 1.00]. Right: for the same density values, integrated
response functions. The numerical simulations are run with N = 512, J = 1.5, T = 10,
g = 2, v0 = 4, rc = 1.05, h0 = 0.1 in a step-function scheme.

sities spanning the range ⇢ 2 [0.05, 1.00] we compute correlation functions and
integrated responses on a sample of 10 independent runs lasting Tmax = 3 ⇥ 104

time steps each. These curves are pictured in Fig 9.7 where the smooth behaviors
in time can be appreciated. However, when we realize the parametric plots we
finally notice some differences with the equilibrium case.

In Fig 9.8 some of them are reported. We can see that most of these curves
are linear for small times, namely starting from the right corner, but then they
develop a curvature towards what seems another linear regime. This trend is more
evident in the example case of the left panel of Fig 9.9 where we are able to fit
two different slopes of the curve: what we call T1, for small times and T2 for larger
times. Applying this operation to the data of different densities, we get the right
panel of Fig 9.9: the estimate values of T1 seem to reproduce the temperature of
the thermal bath applied, thus still reflecting an effective equilibrium dynamics for
small time scales; on the other hand, the values of T2 appear always greater than
the former, especially around the critical point where we can observe a maximum.

Even though the interpretation of these results still needs more work to be
found, the second slope seems to suggest a violation of the FDT happening
through a definition of an effective temperature, which measures these out-of-
equilibrium effects enhanced at the critical point. Moreover, the fact of observing
a violation only for very large temporal scales seems to be in agreement with the
crossover in the Vicsek dynamics of [7], a field theory that should also be valid
for this microscopic model. However, we are still lacking a complete analytical
calculation that confirms this intuition and a good exploration of the model’s
parameters space and system’s size. We hope that an intense future work will
clarify if this is a good way to quantify out of equilibrium effects in the speed of
swarming systems.
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Figure 9.8: Off-equilibrium FDT for large activity. Parametric plot integrated
response vs correlation of speed for different values of density, going from the disordered
phase ⇢ = 0.10 to the ordered phase ⇢ = 1.0. The behavior of the lines manifests
differences with the equilibrium or the small speed regimes. The trend is linear for
small times (right bottom corner), and then curves towards another linear regime (top
left corner). The point of curvature is more accentuated for densities close to the critical
point. The numerical simulations are run with N = 512, J = 1.5, T = 10, g = 2, v0 = 4,
rc = 1.05, h0 = 0.1 in a step-function scheme.

9.3 How to spatially confine ISM swarms

We finally introduce the last topic of this dissertation which, as the previous
one, belongs to the set of ongoing and still open projects. It also goes in the
direction of adding more realistic ingredients to the active matter models we use
to reproduce the behavior of swarming systems. The purpose of this section is
indeed to understand how to model an inertial dynamics in the velocity including
a force acting on the particles’ positions.

With the study we carried out in the previous chapters, we understood the
relevance of a second-order dynamics in the velocity to reproduce the critical
behavior of natural swarms, starting from the shape of the dynamical correlation
functions to the value of the dynamical critical exponent. We found out that the
ISM is a good candidate to achieve this goal, and that it could be taken as a
good reference point to explain the dynamics of the system. However, if from one
hand it takes into account the main features of a velocity inertial dynamics, of an
alignment force between the individuals and of their self-propulsion, on the other,
it neglects one of the most evident interactions present at the swarming phase of
these animals: the attraction to a landmark.

It has indeed been found that midges form collective movements in the prox-
imity of some visual markers, like natural water pools or street lamps with the
reproductive purpose of attracting females [56]. Experiments on these systems
are therefore realized placing in proper natural environments artificial landmarks,
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Figure 9.9: Effective temperatures for off-equilibrium FDT. Left: parametric
plot for ⇢ = 0.2, the curve is fitted by two linear laws with different slopes that can
reflect different measures of effective temperatures. The red line says that the tempera-
ture ruling the system for small time-scales is that of the standard thermal bath, while
the blue line fits a bigger temperature for large temporal scales. The same procedure is
repeated for all the values of density studied and the extrapolation of the two tempera-
tures is reported on the right panel. The T2 shows a trend in control parameter and it is
peaked around the transition point. The numerical simulations are run with N = 512,
J = 1.5, T = 10, g = 2, v0 = 4, rc = 1.05, h0 = 0.1 in a step-function scheme.

able to induce spontaneous aggregations above them, and then starting the stereo
video acquisitions [1, 2]. Here we want to model this scenario, representing the
landmark’s attraction as a confining potential on the midges positions in an iner-
tial model for the velocities. A possible future perturbation-response experiment
could be that of moving the landmark and try to understand how the dynamics
of the swarm changes when changing the reference position. This model could
serve as a solid ground to validate the experimental results.

On a first order Vicsek-like dynamics, it is very easy and natural to implement
the presence of a Landmark: we can represent it as a harmonic force F (ri) =

��ri(t) acting of the velocity update equation,

dvi

dt
= J

X

j

nijvj � �ri + �vi + ⇣i (9.48)

where ⇣
i

is the usual source of white noise, � is the Lagrange multiplier imple-
menting the constant speed v0 constraint, and finally � is the stiffness of the
force which attracts each particle ideally towards the origin of the landmark. In
the discrete time version, this model has already been studied in [1, 2], where it
is shown that it preserves the same collective properties of the classical Vicsek
model. Moreover the positional dependent force has a direct kinematic meaning:
in absence of alignment interaction J = 0, eq (9.48) reads as a standard Newton
equation with a harmonic force acting on a particle of mass m = 1.
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Things get more complicated when we try to extend it to a second-order dy-
namics in the velocity since we want to include a non-standard Hamiltonian degree
of freedom which generates the spin angular momentum. The first approach we
try starts from the ISM derivation we carried out in section 5.4, namely passing
through a Lagrangian formulation in terms of conjugated variables {vi,⇡i}, such
that, in absence of external forces and noise, we get the dynamical equations:

ṙi = vi

v̇i =
1

m
(⇡i � 2�vi)

⇡̇i = 2�v̇i

si = vi ⇥ ⇡i

(9.49)

where � still implements |vi| = v0. In the same mechanistic view of the Vicsek
formulation, we add the positional force on the first equation of the real particle
acceleration, namely:

v̇i =
1

m
(⇡i � 2�vi + F (ri)) (9.50)

from which the Lagrange multiplier can be solved,

� =
(vi · ⇡i) + (vi · F (ri))

2v20
. (9.51)

Repeating then the same passages of section 5.4 we arrive to the equations of
motion for the velocity and for the spin, which appear

ṙi = vi

v̇i =
si ⇥ vi

�
+

vi

�
⇥
⇣
F (ri) ⇥ vi

⌘

ṡi = F (ri) ⇥ v̇i .

(9.52)

From this, it is clear that the positional force seems to enter in a non-trivial way
in the dynamics of the spin and of the velocity itself, due to the implementation of
the speed constraint. However, a numerical solution of these differential equations
for several initial conditions shows that this mechanism does not work, since the
dynamics of the single-particle happens not to be confined.

To understand why this naive choice does not fulfill our expectations, let’s
briefly look at the situation where no confining force is implemented, i.e. F = 0.
The trajectory of the single-particle strongly depends on the initial conditions
ri(t = 0), vi(t = 0) and si(t = 0). We can have three different outcomes which
are illustrated in Fig 9.10, where the result of numerical integration of the above
differential equations is shown using projections on the xy-plan of the single par-
ticle’s trajectory. In the first panel a, the system starts with null initial spin
si(t = 0) = 0, and consequently, the particle does a simple linear motion; in b the
initial spin is not zero, but its value is preserved along with the dynamical evolu-
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tion, moreover since vi(0) · si(0) = 0 the resulting motion is circular with radius
fixed by the modulus of the spin; finally the last case happens when vi(0)·si(0) 6= 0

producing a helical trajectory that we can call "corkscrew" solution (panel c).
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Figure 9.10: Numerical integration of single particle with F (ri) = 0. Depend-
ing on the initial conditions the 3d particle trajectory can be of three different types
which are reported in a projection on the plane (rx, ry). Panel a: si(t = 0) = 0, the
particle performs a simple linear motion; panel b: si(t = 0) 6= 0 and vi(0) · si(0) = 0,
these conditions produce a circular motion on the plane orthogonal to the spin; panel
c: si(t = 0) 6= 0 and vi(0) · si(0) 6= 0, the particle’s trajectory is helical and we call it
"corkscrew solution".

Now that this scenario is clear, we can reintroduce the confining force and
reformulate eq (9.52) as,

v̇i =
1

�

⇣
si � (F (ri) ⇥ vi)

⌘
⇥ vi . (9.53)

If we introduce the pseudo spin,

T i = si � (F (ri) ⇥ vi) , (9.54)

the equations of motion can then be expressed,

ṙi = vi

v̇i =
T i ⇥ vi

�

Ṫ i =
vi ⇥ Ḟ (ri)

�

(9.55)

identifying T i as the new torque of the velocity. It is clear that, when considering
only harmonic confining forces, namely F (ri) = ��ri, the implemented dynamics
is of the type,

ṙi = vi

v̇i =
T i ⇥ vi

�

Ṫ i = 0

(9.56)

which looks very similar to the deterministic evolution with conserved angular
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momentum of Fig 9.10. Indeed, the analogy is complete and it is represented by
the trajectories of Fig 9.11, which come from a numerical integration of eq (9.55)
with the explicit version of the pseudo-spin. Also in presence of a harmonic
force on the particle’s position, the effect is only to contribute to the value of the
angular momentum which is fixed by the initial conditions reproducing the effects
of the not-confined case. In Fig 9.11, we show in a the case where T i(0) = 0, in
b when T i(0) · vi(0) = 0 and finally in c when T i(0) · vi(0) 6= 0. We used also
different initial conditions from Fig 9.10 to test the generality and the accuracy
of the equations.

Concluding, we can say that this way of implementing a confining quadratic
force in ISM is not correct and we need to find a new method that goes beyond
the classical mechanistic approach.
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Figure 9.11: Numerical integration of single particle with F (ri) in the veloc-

ity’s update. Implementing the confining force in the equation of the velocity update
produces the same non-confined scenario of Fig 9.10. Initial conditions are given with
respect to the pseudo-spin T i = si � (F (ri) ⇥ vi) and the trajectories are projected on
the (rx, ry) plane. Panel a: linear motion when T i(0) = 0; panel b: circular motion
for T i(0) 6= 0 and T i(0) · vi(0) = 0; panel c: corkscrew motion for T i(0) 6= 0 and
T i(0) · vi(0) 6= 0.

9.3.1 Force on the angular momentum

The idea we present follows the intuition of assuming the spin as the mediator of
all the forces acting on the single particle, therefore also including those involving
positional degrees of freedom. This mean we insert the F (ri) on the equation of
the generalized conjugated momentum, namely starting with equations,

ṙi = vi

v̇i =
1

m
(⇡i � 2�vi)

⇡̇i = 2�v̇i + F (ri)

si = vi ⇥ ⇡i

(9.57)
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thus leading to,

ṙi = vi

v̇i =
si ⇥ vi

�

ṡi = vi ⇥ F (ri) .

(9.58)
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Figure 9.12: Numerical integration of single particle with F (ri) in the spin’s

update. The trajectory produced by this way of imposing the confining force is always
of the corkscrew type, since the spin is never perpendicular to the velocity. Panel a:
projection on the (rx, ry) of the trajectory for one set of initial conditions, panel b:
projection of the (vx, vy) plane of the velocity’s trajectory; panel c: trend in time of z
component of the spin.

The numerical implementation of these equations of motion is reproduced in
Fig 9.12, where we show the case for only one initial condition. Indeed, whatever
starting values are chosen, the resulting trajectory is always of the corkscrew
type, because, due to the positional force, the spin cannot align orthogonally to
the velocity and it produces the characteristic helicoidal movement. Therefore,
also in this case, it seems we do not find the right solution for confinement.

However, in the standard case of zero forces, we already know a way to dom-
inate this type of trajectories, and to restore the particle to move in a circular
motion: the spin dissipation [8]. It has been actually demonstrated that inserting
a dissipation drives the solutions with vi(0) · si(0) 6= 0 for long time to the well-
behaved trajectories of the case vi(0) · si(0) = 0 [94]. We, therefore, enrich the
model with the usual thermal couple, noise plus dissipation, in the generalized
momentum’s equation:

⇡̇i = 2�v̇i + F (ri) � ⌘

�
⇡i +

1

v0
⇠
i

(9.59)

finally arriving to the dynamics,

ṙi = vi

v̇i =
si ⇥ vi

�

ṡi = vi ⇥
⇣
F (ri) +

1

v0
⇠
i

⌘
� ⌘

�
si

(9.60)
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Figure 9.13: Numerical integration of single particle with F (ri) and dissipa-

tion in the spin’s update. When we add dissipation to the evolution of the spin,
the spatial trajectory of one ISM particle is correctly confined around the origin of the
space, panels a and b are sections in the (rx, ry) and (rx, rz) planes. Panel c: projection
of the (vx, vy) plane of the velocity’s trajectory; panel d: trend in time of the z compo-
nent of the spin.

where ⌘ is the friction coefficient, and ⇠
i
is the white noise source.

This scenario seems to have the right features to reach our final objective,
because if now we compute the second order differential equation for the velocity,
we get,

�v̈i + ⌘v̇i +
�

v
2
0

vi(v̇i)
2 =

⇣
v
2
0F (ri) + v0⇠i

⌘?
(9.61)

where with the expression w? we mean w? = w � (vi(w · vi)/v20). From this
equation, it is possible to easily perform the overdamped limit considering time
scales t � �/⌘ or vanishing inertia, thus obtaining,

⌘v̇i =
⇣
v
2
0F (ri) + v0⇠i

⌘?
(9.62)

which, when we add also a social alignment force, reads correctly as the above
Vicsek model simulated in [2]. This fact suggests that we are building up a good
underdamped theory.

We finally numerically integrate eq (9.60) with zero noise, and we confirm that
now the positional force acts properly to confine the particle around the origin of
the space for all the initial conditions. Results for one set of starting coordinates
are shown in Fig 9.13, where we look at two sectional planes of positions, at a
projection of the velocity’s space and at the time series of a component of the
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spin. This result confirms that dissipation is crucial to reproduce the correct
movement of turning and confined particles.

Certainly, deeper studies have to be carried out on this topic, above all re-
instating stochasticity and alignment forces, thus testing if this scheme is main-
tained by the inter-particle interaction. Additionally, more investigations on the
Hamiltonian nature of the degrees of freedom are necessary, since this dynamics
seems to mix in a non-trivial way the different levels of positions and velocity,
with that of velocity and spin. New physical interpretations of the spin could
indeed be still hidden by these formulations. Nevertheless, this preliminary study
seems to build an interesting way to go.
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Conclusions

We started from experimental evidence of dynamical scaling in natural swarms
of insects, with a dynamical critical exponent zexp = 1.2 not predicted by any
statistical theory. Data also revealed that the shape of swarms’ dynamical corre-
lation functions follows an underdamped dynamics not compatible with a dissi-
pative exponential relaxation [3]. Our purpose was to find a physical model able
to describe these experimental findings, reproducing a consistent value of the
dynamical critical exponent and the typical decay of the swarms’ temporal cor-
relation functions. Since this biological system satisfies scaling laws and reflects
a near-critical behavior, we decided to use a field theory approach to describe
its properties. Therefore, we combined Dynamical Renormalization Group cal-
culations with extensive numerical simulations to study the critical relaxation of
active matter models.

We went through several stages. The first step was to study the critical dy-
namics of the Vicsek model. To begin with, we tackled the problem from an
analytical point of view, retracing the calculation of the incompressible hydrody-
namic theory of Chen et al [6]. From this study, we learned that dissipative polar
active systems belong to a dynamical universality class described by the exponent
z = 1.7 in three dimensions. The theory produces also an equilibrium unstable
fixed point characterized by zero activity and relevant ferromagnetic interaction
with z = 2. Investigating the crossover between these two dynamical universality
classes, we unveiled how the interplay between the system’s size and the activ-
ity level determines the dynamical relaxation of active systems. In the limit of
small sizes and activity, the system only shows an effective equilibrium critical
dynamics, while for large sizes or large activity levels the out-of-equilibrium crit-
ical dynamics emerges with the exponent z = 1.7. The crossover is regulated by
a crossover length scale Rc = (1/↵0)⇤�1 with  = 31/51 in d = 3, above which
the non-equilibrium dynamics takes over. Moreover, we performed numerical
simulations of the original Vicsek model in three dimensions and in the param-
agnetic near-critical regime without imposing any incompressibility constraint.
We verified the same crossover phenomenon tuning the speed of the particles v0,
demonstrating that the active fixed point is not an artifact of incompressibility
but an authentic characteristic of polar active systems. Finally, we confirmed
that activity has the effect to lower the dynamical critical exponent from z = 2

to z = 1.7. Unfortunately, even though closer to it, this latter value is not com-
patible with the experimental one. The exponential dynamical relaxation is also
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not in agreement with the dynamics of natural swarms [7].
These reasons prompted us to study the critical behavior of the Inertial Spin

Model, an active matter model with inertial dynamics in the velocity coupled
to the conjugated momentum [8]. We studied it under a fixed-network approxi-
mation to focus on the role of inertia and dissipation in determining the critical
dynamics of a system. A one-loop DRG calculation showed that the violation of
momentum conservation generates a crossover between an unstable fixed point,
characterized by a dynamic critical exponent z = 1.5 for d = 3, and a stable
fixed point with z = 2. The fixed point with the lower exponent describes a
conservative dynamics that finite-size and weakly damped systems can experi-
ence at a macroscopic level. The phenomenon is regulated by a crossover length
scale Rc = R4/d

0 , which importantly depends on R0. This latter represents an
additional characteristic length scale of the system that describes the interplay
between the conservative and the dissipative relaxation. Numerically we verified
this crossover at equilibrium varying the microscopic momentum’s dissipation in
a three-dimensional system of fixed size. Moreover, simulations confirmed that
the second-order of the ISM’s dynamics is fundamental to reproducing the un-
derdamped relaxation of natural swarms. Even if the on-lattice approximation
did not reproduce the out-of-equilibrium phenomenology of the swarming system,
this study confirmed that a theory with inertial couplings goes in the right di-
rection for lowering the value of the critical exponent with respect to the fully
dissipative case [9, 10].

Finally, we performed a DRG calculation on the out-of-equilibrium incom-
pressible hydrodynamic theory of the ISM. Results are preliminary and we post-
poned a detailed discussion to a colleague’s future thesis. However, we antici-
pated the main outcome, which concludes the investigation on natural swarms
of insects: a novel fixed-point with z = 1.3 emerges, and it expresses a conser-
vative out-of-equilibrium critical dynamics. We believe this point describes the
critical dynamics of the system of our interest. This study confirmed that, in
a non-equilibrium mode-coupling theory, activity levels and inertia cooperate to
lower the value of the dynamical critical exponent. The obtained value agrees
with experimental measurements on natural swarms. The crossovers described
in this thesis are recovered in this calculation, and they represented important
stepping stones to arrive at the final result [11].

Future studies are necessary to have a full comprehension of this theory: more
work is needed to clarify the physical role of all the terms of the hydrodynamic
equations. Out-of-equilibrium simulations of the near-critical ISM are also neces-
sary to validate the analytical results at microscopic scales. Moreover, the models
and the approximations we used are definitely not the only methods to provide
possible explanations to the phenomenon under consideration. Different micro-
scopic formulations of the models we analyzed could involve additional interaction
terms or non-trivial sources of noise, arriving at more realistic descriptions of the
swarming system. A possible future study concerns the role of density fluctua-
tions, which, for this kind of active model at the edge of the phase transition,
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surely deserves more attention. Additionally, the application of the same calcu-
lations to the case of ordered polarized systems as bird flocks is an interesting
project to carry out. New experimental techniques will soon allow deeper studies
of the flocks’ dynamics, providing data on which to test the dynamical scaling
hypothesis. A DRG computation in the deeply ordered phase of the ISM could
confirm if this model is able to quantitatively reproduce this possible evidence. If
this was the case, we would have a single minimal model describing the collective
behavior of very different biological systems. This could confirm that the search
for universality in this field is achievable, thus stimulating additional experiments
on new living and collective systems.

In the last chapter, we introduced some side projects dedicated to modifica-
tions of standard active matter models. We firstly explored speed fluctuations in
Vicsek-like dynamics relaxing the fixed speed constraint. We analyzed the low-
temperature phase of two different speed control potentials and we verified with
extensive numerical simulations that the marginal model reproduces experimental
features of bird flocks [55]. We then used the linear potential to explore the near-
critical regime of an active system and we developed a model to study external
perturbation in speed fluctuations in swarms. Preliminary results showed that for
large activity levels, we observe a violation of the Fluctuation-Dissipation rela-
tions in speed’s dynamics, with an effective temperature maximum at the critical
point. More in-depth studies have to be performed on the same topic, especially
to understand which are the main factors that increase the out-of-equilibrium na-
ture of the system and to what extent they can be measured. Finally, we studied
how to reproduce the presence of an external attracting landmark on the ISM
with a rigid speed constraint. The non-trivial solution opens many questions
about the mechanistic nature of the dynamical variables of the model, but it al-
lows to perform additional studies of landmark perturbations that could find also
experimental confirmation.

Concluding, the approach taken in this thesis combined a statistical descrip-
tion of collective behavior with experimental evidence from field studies. We are
convinced that bridging theory and experiment is fundamental to increasing our
knowledge of living systems. We hope that this work not only contributes to
the corpus of research in the active matter but also lays down fruitful scientific
directions for future studies.
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Appendix A

Angular averages

In this section we present the angular averages used for the calculation of the in-
compressible and near-critical hydrodynamic equation of the Vicsek model, which
can also be found in [6]. In generic d dimensions, we begin with the identity,

hk↵k�
k2

ik̂ =
1

d
�mn (A.1)

where h ik̂ indicates the average over the directions k̂ around the wave-vector k.
This identity is proved by symmetry: it has to be null when ↵ 6= � because the
average becomes odd, while it has to be identical to 1 when evaluating the same
component. The dimension factor in the denominator comes from the evaluation
of the trace: hk↵k↵

k2
ik̂ = 1. From this result the average of a projector directly

follows,
hP↵�(k)ik̂ = h�↵� � k↵k�

k2
ik̂ =

⇣
1 � 1

d

⌘
�↵� . (A.2)

The last useful formula to report concerns the average of the product of two
projectors hP↵�(k)P�⌫(k)ik̂, which can be rewritten as,

hP↵�(k)P�⌫(k)ik̂ = �↵���⌫ � �↵�h
k�k⌫

k2
ik̂ � ��⌫h

k↵k�

k2
ik̂ + hk↵k�k�k⌫

k4
ik̂ . (A.3)

The first three terms can be evaluated with the tools already introduced, while
the last term needs more attention. This is different from zero only if the indices
are equal in pair, otherwise the average is performed over odd quantities and then
it is null. Taking into consideration the case of all 4 identical labels, and the other
possible mixed combinations, it can be proved that [6],

hk↵k�k�k⌫
k4

ik̂ =
1

d(d+ 2)
(�↵���⌫ + ����↵⌫ + �↵���⌫) (A.4)

Using this last and the first formula in (A.3), we finally get:

hP↵�(k)P�⌫(k)ik̂ =
⇣

d
2 � 3

d(d+ 2)

⌘
�↵���⌫ +

1

d(d+ 2)
(����↵⌫ + �↵���⌫) . (A.5)
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Appendix B

Numerical implementation of ISM
algorithm

If for the Vicsek model, in its original derivation, the numerical implementation
is almost straightforward, for the ISM the discretized equations are more com-
plicated, due also to the presence of the constraint on v0. The algorithm used
is a RATTLE [112], and the original simulation code has been written by Prof.
Tomas Grigera. We resume here the numerical scheme.

The starting point is the second order differential equation for the velocity,
that can be derived in the same spirit of eq (9.61) namely,

d
2vi

dt2
=

v
2
0

�
[F i

s
+ F i

v
+ f i

c
] (B.1)

where, the first term on the r.h.s. is the social force, and the second is the thermal
bath force:

F i

s
=

J

v
2
0

X

j

nij(t)vj (B.2)

F i

v
= � ⌘

v
2
0

dvi

dt
+
⇠
i

v0
. (B.3)

The last term is instead the force implementing the constraint which is enforced
with Lagrange multipliers according to the RATTLE scheme. To discretize it, we
define ai = dvi/dt and bi = dai/dt which allow to arrive to [93],

ri(t+�t) = ri(t) +�tvi(t) (B.4)
vi(t+�t) = vi(t) +�tc1ai(t) + (�t)2c2bi(t) + (�t)2c2�i(t) +⌅v(t) (B.5)

ai(t+�t) = c0ai(t) + (c1 � c2)�t[bi(t) + �ivi(t)]+

+ c2�t[bi(t+�t) + µivi(t+�t)] +⌅a(t)

bi(t+�t) =
v
2
0

�
F i

s
({rj(t+�t),vj(t+�t)})

(B.6)

where �i and µi are related to the constraint and their expression will be given
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in a moment. The other constant result from the time integration and they are
given by,

c0 = e
�⌘v20�t/� (B.7)

c1 =
�

v
2
0⌘�t

(1 � c0) (B.8)

c2 =
�

v
2
0⌘�t

(1 � c1) , (B.9)

while we are indicating with ⌅v and ⌅a the random variables with variance,
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Finally the implementation of the N independent constraints on the velocities’
moduli allows to derive analytically the Lagrange multipliers, just imposing v

2
i
(t+

�t)2 = v
2
0 and vi(t+�t) · ai(t+�t) = 0. They read,

�i =
w+ � 1

(�t)2c2
(B.13)

µi = �vi(t+�t) · a0
i
(t+�t)

c2v
2
0�t

(B.14)

where w+ is the positive solution of,

v
2
0w

2 + 2vi(t) · �vi(t)w +�v
2
i
= v

2
0 (B.15)

with �vi(t) indicating the �t dependent part of vi(t +�t), and a0
i
(t +�t) the

expression of a0
i
(t+�t) without the µ part. Finally, the dynamical implementation

follows the velocity Verlet scheme [113].
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