
Statistical Modelling 2022; 22(1–2): 46–66

Random effect models for multivariate mixed data: A
Parafac-based finite mixture approach
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Abstract: We discuss a flexible regression model for multivariate mixed responses. Dependence
between outcomes is introduced via the joint distribution of discrete outcome- and individual-specific
random effects that represent potential unobserved heterogeneity in each outcome profile. A different
number of locations can be used for each margin, and the association structure is described by a tensor
that can be further simplified by using the Parafac model. A case study illustrates the proposal.
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1 Introduction

Multivariate discrete and mixed responses have raised great interest in the recent past.
In several empirical applications, from health econometrics, behavioural sciences,
psychometrics among others, we may be interested in modelling individual choices
as a function of observed covariates and a (possibly multidimensional) latent trait.
To give some relevant examples, we may focus on measures of access to (and
expenditures for) health care services to derive an indirect measure of individual
health status; we may look at counts and types of purchases to describe individual
consumer behaviours, or we may analyse responses to questionnaire items to get
a deeper knowledge on personal traits. In all these cases, the univariate measures
may be thought to depend on each other due to the presence of a (latent) common
construct. Obviously, the measures can be observed on different scales: continuous
for expenses, discrete for counts (of purchase or access), ordinal for items measuring
self-perceived health status, categorical for types of purchase. Since a multivariate
distribution with a proper and easily interpretable association structure is seldom
available in such a context, a multivariate model can be defined by joining several
conditional (univariate) models linked by a common latent construct. For this
purpose, random effect models have received much attention in this context.
Just to mention a few, the interested reader can give a look at the proposals
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by Chib and Winkelmann (2001), Alfò and Trovato (2004), Rabe-Hesketh et al.
(2005), Chipperfield and Steel (2012), Alfò and Rocchetti (2013), Jaffa et al. (2016),
Oskrochi et al. (2016) and Husson et al. (2019). Random effects provide a simple
way to account for unobserved, individual-specific, heterogeneity, and to introduce
a (simple) structure of dependence between outcomes. Parameter estimation is
based on integrating these effects out of the complete data log-likelihood, usually
adopting a parametric random effect distribution. McCulloch et al. (2008) give a
comprehensive review of approaches to estimation in Generalized Linear Models
with parametric random effects. Semi-parametric alternatives are also available. An
unspecified, possibly continuous, random effect distribution can be in fact estimated
by a discrete distribution, as noted, probably for the first time, by Hinde and Wood
(1987). This approach is based on theoretical developments by Laird (1978) and
Lindsay (1983a,b) on the so called non-parametric maximum likelihood (NPML)
estimation of a mixing distribution, see also Simar (1976) and Böhning (1982). The
papers by Aitkin (1996, 1999) have the important merit to complete the path: using
discrete random effects we may describe heterogeneity/overdispersion in univariate
and dependence in multivariate (longitudinal and clustered) outcomes, regardless
the true shape of the random effect distribution. The corresponding approach
could be labelled as semi-parametric, since we have a parametric specification for
the conditional (regression) model and a non-parametric random effect (mixing)
distribution. The corresponding observed data likelihood resembles that of a finite
mixture of regression models, see Quandt (1972) and Quandt and Ramsey (1978) for
early developments, and Dietz (1992) or Wedel and DeSarbo (1995) for extensions
to GLMs. Maximum likelihood (ML) estimation is often carried out by using an
EM-type algorithm. Among the several software implementations that have been
proposed, we refer to the one available in the R library npmlreg, see Einbeck et al.
(2018).

When we move to multivariate mixed data, however, the semi-parametric
approach has a significant drawback when compared to its parametric counterpart,
based on multivariate Gaussian random effects. With Gaussian assumptions,
unobserved heterogeneity is described by profile-specific variances, while dependence
between random effects in different outcome equations is described by the covariance
terms. That is, independence (null off-diagonal entries in the covariance matrix) does
not necessarily imply absence of heterogeneity (null diagonal entries). Indeed, as
discussed by Alfò and Rocchetti (2013), the semi-parametric approach is based on
a unidimensional, discrete, latent variable, with the same number of components in
each marginal profile. In this case, multivariate dependence is based on heterogeneity,
and both are present if and only if the number of components K is strictly greater
than 1. Since the latent variable can be either unidimensional or multidimensional,
depending on the nature of the problem and the impact it has on the manifest
(observed) responses, we propose to extend the bivariate approach by Alfò and
Rocchetti (2013) to the general multivariate one. We show how outcome-specific
heterogeneity can be separated from dependence, so that the dependence model
properly nests the independence one. The multivariate probability distribution for the
random effects is now represented by a tensor with as many dimensions as the number
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of analysed outcomes, and model parameters can be straightforwardly estimated via
ML. Since the dimension of the tensor grows with the number of outcomes, we may
soon lose interpretability of the structure of dependence between the random effects.
To solve this issue and make interpretation easier, we introduce a parsimonious
parametrization of this tensor; this is based on a two-level hierarchy. Observed
outcomes are independent conditional on (outcome-specific) random effects that are
independent conditional on a (higher level) latent class. This parametrization of the
joint probability tensor is based on the Parafac model introduced by Harshman
(1970) and Carroll and Chang (1970). In its standard form, the Parafac is a
generalization of factor analysis to tensors with more than two dimensions; the
example is usually the so-called three-way data, where the same variables are collected
on a sample of units at different occasions. In the present context, fitting the Parafac
to the joint probability tensor offers a much simpler reading of the joint probability
distribution in terms of a small number of latent classes that account for dependence
between outcomes.

The article is structured as follows. In Section 2, we introduce a benchmark
dataset which will be further analysed to discuss the aims and the features of the
proposed model specification. In Section 3, we review the standard finite mixture
approach to modelling multivariate responses. In Section 4, we propose a model
that allows for more general dependence structures when p responses are observed.
Section 5 describes how the Parafac model can be applied to reduce the number of
free parameters in the proposed approach. The application to benchmark data is
discussed in Section 6. Some concluding remarks are given in Section 7.

2 An illustrative example: NMES data

For illustration purposes, we discuss the re-analysis of data from a well-known
survey; to be more specific, we propose a multivariate regression model for two
measures of utilization of health care services, and a binary indicator for private
insurance coverage. The motivation comes from the need to describe individual
variability in the access to (and utilization of) health care services, as a function of
individual characteristics, including the choice for a private insurance scheme.

Cost and appropriate access to health care services are fundamental issues for any
modern health-care system, especially if we look at the elderly, a frail component of
the population that is expected to increase in relative size. To analyse health needs
and health services utilization by the elderly, Deb and Trivedi (1997), Munkin and
Trivedi (1999) and Deb et al. (2006) considered data on individuals aged 66 and over
(4 405 observations) from the National Medical Expenditure Survey (NMES), a study
conducted in 1987–1988 to describe the use and payment for health services by US
citizens. The NMES is based on a probability sample, representative of the whole US
non-institutionalized population. In addition to health care data, the NMES provides
information on (self-perceived) health status, employment, social, demographic and
economic features. All individuals are covered by Medicare, a public insurance
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programme that guarantees protection against health care costs. Most individuals
also make the choice for a supplementary private insurance scheme, shortly before
their 65th birthday, as the price for such a scheme rises sharply with age and coverage
is substantially lower. We re-analyse such data and consider two measures of health
services utilization: the number of visits to an emergency room (Emr) and the number
of hospital stays (Hosp).

Our aim is to explore the impact that individual features have on these measures
of utilization, taking into account the structure of dependence with the aim at
deriving information on common behavioural traits connected to health status.
Available individual features include self-perceived health status, objective frailty
status measured by chronic conditions and health-related problems that limit
everyday life, demographic and socio-economic status, private insurance coverage
(Privins). In Table 1, we report some exploratory statistics on the available sample.

Table 1 NMES data. Variable definitions and summary statistics. n = 4405

Variable Definition Mean SD Min Max

Emr Number of emergency rooms visits 0.26 0.70 0 12
Hosp Number of hospitalizations 0.30 0.75 0 8
ExcHealth 1 if self-perceived health is excellent, 0 else 0.08
PoorHealth 1 if self-perceived health is poor, 0 else 0.13
NumChrCond Number of chronic conditions 1.54 1.35 0 8
AdLim 1 if the personal condition limits daily life, 0 else 0.20
West 1 if the person lives in Western USA, 0 else 0.18
Age Age in years (divided by 10) 7.44 0.63 6.6 10.9
AfroAmer 1 if African American, 0 else 0.12
Male 1 if male, 0 else 0.40
Married 1 if married, 0 else 0.55
EdYears Number of years of education 10.3 3.74 0 18
Employed 1 if employed, 0 else 0.10
Privins 1 if covered by private health insurance, 0 else 0.78
Medicaid 1 if covered by Medicaid, 0 else 0.09

We must notice, however, that the effect of Privins on measures of utilization
may not be that simple to interpret. In fact, two different mechanisms, with different
implications from a health policy perspectives, may be at play. Individuals may
select themselves into a private insurance coverage as a function of their preferences,
socio-economic status, health status and expected future need for health care services.
Therefore, the observed differences in utilization between those who have chosen
a private insurance plan and those who have not may reflect, at least partially,
this selection effect. As per the second mechanism, we may observe an increased
utilization induced by lower (out-of-pocket) costs of care associated to private health
insurance coverage, according to so-called moral hazard.

To analyse these sources of variation in utilization rates, as suggested by Deb
et al. (2006), we need to model both the selection mechanism (i.e., the choice for
private insurance conditional on individual characteristics) and the utilization counts
conditional on the individual insurance status. Clearly, the (selection) process leading

Statistical Modelling 2022; 22(1–2): 46–66
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to the choice for private insurance is a function of both observed and unobserved
factors, and the latter may also affect the utilization counts. For this reason, we need
to define a multivariate model that accounts for dependence between the random
effects in the equations for (Emr, Hosp) and Privins, respectively; that is, a regression
model for the trivariate mixed response (Emr, Hosp, Privins). In the following
sections, we briefly discuss the standard approach based on discrete random effects
and, then, we introduce our proposal.

3 The standard finite mixture approach

Let us assume that we have observed response values yij on i = 1, . . . ,n, units
for j = 1, . . . ,p, outcomes (p = 3 in the application to the NMES data), together
with outcome-specific covariates sets xij, where xij1 = 1, ∀j = 1, . . . ,p. Since a proper
multivariate model is not available for mixed type responses (here, two counts and
a binary indicator), we model dependence between outcomes assuming they share
some common, unobservable, features. In the case of health services utilization,
these may refer to unobserved health status, individual propensity to use a specific
health service, and so on. Let uij, i = 1, . . . ,n, j = 1, . . . ,p, denote the unit- and
outcome-specific random effects that account for heterogeneity in the univariate
profiles and dependence between the profiles. We assume that the responses Yij are
independent conditional on the observed covariates and the random effects, with
(conditional) density in the exponential family

Yij ∣ uij,xij ∼ EF(θij),

with canonical parameter θij. To account for observed heterogeneity, we define a set
of regression models for the conditional means:

E (Yij ∣ xij,uij) = ψ (x′ijβj + uij) , i = 1, . . .n, j = 1, . . . ,p, (3.1)

where ψ(⋅) represents the so called response function. Depending on the specific
member of the exponential family, a regression model could be defined for mean
and variance, as in the case of Beta regression, see, for example, Grün et al. (2012).
Here, βj is an outcome-specific vector of regression parameters that are constant
across units; the model specification is completed by assuming that the random
effect vector ui = (ui1, . . . ,uip) has multivariate density g(⋅ ∣ 8), where 8 denotes a
set of parameters, and E(ui) = 0, to ensure identifiability. Based on the conditional
independence assumption, the likelihood function is:

L (β,8) =
n

∏
i=1

⎧⎪⎪⎨⎪⎪⎩
∫
U

⎡⎢⎢⎢⎢⎣

p

∏
j=1

f (yij ∣ xij,uij,βj)
⎤⎥⎥⎥⎥⎦

g(ui ∣ 8)dui

⎫⎪⎪⎬⎪⎪⎭
, (3.2)
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where β = {β1, . . . ,βp}. As it can be noticed, the likelihood in equation (3.2) refers
to a two-level hierarchy, where outcomes are nested within units. We also need
to consider potential correlation between uij and xij, see, for example, Bates et al.
(2014) for a recent review on possible solutions. For Gaussian random effects, the
marginal likelihood cannot be written in a closed form; to obtain ML estimates,
we may use numerical integration techniques based on Gaussian quadrature, see
Rabe-Hesketh et al. (2005), or on Monte Carlo/simulation techniques, see Chib and
Winkelmann (2001) and Munkin and Trivedi (1999). Parametric approaches are
often computationally intensive; for example, complexity of marginal maximization
using Gaussian quadrature schemes grows exponentially with the number of
outcomes.

A potential alternative approach is to provide a NPML estimate for g(⋅), which
can be proved to be a discrete distribution on K ≤ n support points, see Laird
(1978), Lindsay (1983a,b), Simar (1976) and Böhning (1982). We assume that this
distribution puts masses πk on locations (support points) ζk = (ζ1k, . . . , ζpk), where ζjk

represents the kth location for the jth profile, k = 1, . . . ,K, j = 1, . . . ,p. The resulting
likelihood function is:

L (β, ζ) =
n

∏
i=1

⎧⎪⎪⎨⎪⎪⎩

K

∑
k=1
πk

⎡⎢⎢⎢⎢⎣

p

∏
j=1

f (yij ∣ xij, ζjk)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
, (3.3)

where ζ = {ζ1, . . . , ζK} and πk = Pr(ui = ζk), k = 1, . . . ,K. Let us define the component
indicator zi = (zi1, . . . , ziK), i = 1, . . . ,n, with zik = 1 if the ith unit comes from the kth
component, characterized by ui = ζk. We assume that the component indicator zi,
i = 1, . . . ,n, has a multinomial distribution, with probabilities πk, k = 1, . . . ,K. The
complete data likelihood is:

Lc (β, ζ) =
n

∏
i=1

K

∏
k=1

[fikπk]zik , (3.4)

where fik =∏p
j=1 fijk =∏p

j=1 f(yij ∣ xij, ζjk), i = 1, . . . ,n, k = 1, . . . ,K. Since the
component indicators are unobserved, the EM algorithm arises quite naturally. In
its basic form, the algorithm is run for a fixed number of components K which
is chosen a posteriori using some external criteria. Usually, these are based on
penalized likelihood, even if this is somewhat in contrast with the spirit of NPML
estimation, see Böhning (2000). Following Karlis and Meligkotsidou (2007), we
used AIC to choose the numbers of components as it provides, in our opinion, a
more refined estimate of the mixing distribution when compared to BIC (Schwarz,
1978), CAIC (Bozdogan, 1987) or ICL (Biernacki et al., 2000). Large-sample
asymptotic normality for mixture models may fail to hold, and the result is, usually,
that AIC tends to select too many components. This is usually not an issue in
random intercept models, and it can be controlled by looking at the behaviour of
model parameter estimates as K is increased.
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At the tth step (t = 1,2, . . . ) of the algorithm, we calculate the expectation of the
complete data log-likelihood `c(⋅) conditional on the observed data y and the current
ML parameter estimates 9̂(t−1):

Q (9 ∣ 9̂(t−1)) = E9̂(t−1) [`c(⋅) ∣ y] =
n

∑
i=1

K

∑
k=1

w(t)ik log(fik) +
n

∑
i=1

K

∑
k=1

w(t)ik log(πk), (3.5)

where

w(t)ik =
f (t−1)
ik π

(t−1)
k

∑K
l=1 f (t−1)

il π
(t−1)
l

.

Taking derivatives of Q (9 ∣ 9̂(t−1)), we obtain score equations that are weighted
versions of standard score equations for homogeneous GLMs, with weights wik,
i = 1, . . . ,n, k = 1, . . . ,K, computed by using the joint p-dimensional distribution.
For the prior probabilities, we obtain the usual (finite mixture) solution:

π̂
(t)
k =

n

∑
i=1

w(t)ik

n
.

Therefore, for units in the kth component of the finite mixture (with weight πk)
k = 1, . . . ,K, we have that the following model holds for the jth outcome, j = 1, . . . ,p:

E (Yij ∣ xij, zik = 1) = ψ (x′ijβj + ζjk) , i = 1, . . .n, j = 1, . . . ,p. (3.6)

In the following we will refer to this as the standard finite mixture approach.

4 A flexible approach

While the standard finite mixture approach is computationally efficient when
compared to its parametric counterpart, it is based on the hypothesis that a
unidimensional latent variable is enough to describe unobserved heterogeneity within
outcomes and dependence between outcomes. This may lead to problems when
several outcomes are considered and the task is to describe their association structure
and/or to test for dependence. First, the univariate distributions cannot be derived
by marginalizing the multivariate one; and they could be described by univariate
random effect models with a possibly different number of components. Second,
when considering mixed outcomes, we should bear in mind that the log-likelihood
function is not a relative quantity; therefore, a different weight is associated to each
outcome when building up the global log-likelihood; and the weight depends on
the corresponding range of variation. That is, the number of components in the
finite mixture model for multivariate outcomes may be driven only by a subset
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of the analysed outcomes. For all these reasons, following Alfò and Rocchetti
(2013), we propose a different parametrization for the prior distribution: it allows
a different number of components to be used for each outcome, and it leads
to a multivariate model which properly nests the univariate ones. We denote by
{ζjgj, πjgj}, gj = 1, . . . ,Kj, the locations and masses associated to the jth profile, j =
1, . . . ,p, where πjgj = Pr(uij = ζjgj). When looking at the multivariate outcome, a joint
mass πg1,...,gp = Pr(ui1 = ζ1g1, . . . ,uip = ζpgp) is associated to the p-tuple of locations,
gj = 1, . . . ,Kj, j = 1, . . . ,p. Under this model specification, marginals control for
unobserved heterogeneity in the univariate profiles, while the joint probability
distribution describes the association between the (locations in the) p profiles. This
approach can be considered as a standard finite mixture model with K =∏p

j=1 Kj

components, where each component describes a specific p-tuple (ζ1g1, . . . , ζpgp).
Clearly, when p = 1, the proposed model reduces to a standard univariate finite
mixture model. The following equation describes profile-specific (marginal) masses:

πjgj = ∑
g1,...,gj−1,gj+1,...,gp

πg1,...,gp, j = 1, . . . ,p, gj = 1, . . . ,Kj,

under the constraint

Kj

∑
gj=1

πjgj = ∑
g1,...,gp

πg1,...,gp = 1.

Thus, ∏j Kj − 1 free parameters have to be estimated, and, from a computational
point of view, this approach is as complex as those based on Gaussian quadrature
techniques. However, we should stress, at least, two differences. First, the number
of locations is outcome-specific; that is, we may consider a low number of locations
for profiles with low heterogeneity. Second, the locations and prior probabilities are
not constrained to represent the discretization of a standard Gaussian distribution.
Therefore, for a given level of heterogeneity, the number of locations may be lower
than the number of Gaussian quadrature abscissas. The log-likelihood function is

` (⋅) =
n

∑
i=1

log
⎧⎪⎪⎨⎪⎪⎩
∑

g1,...,gp

πg1,...,gp∏
j
[f (yij ∣ xij, ζjgj)]

⎫⎪⎪⎬⎪⎪⎭
= (4.1)

=
n

∑
i=1

log
⎧⎪⎪⎨⎪⎪⎩
∑

g1,...,gp

πg1,...,gpf (yi ∣ xi1, . . . ,xip, ζ1g1, . . . , ζpgp)
⎫⎪⎪⎬⎪⎪⎭
=

=
n

∑
i=1

log
⎛
⎝ ∑g1,...,gp

πg1,...,gpfi,g1,...,gp

⎞
⎠
.
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In this case, the standard EM algorithm for parameter estimation should be
modified. Section 1 of the Supplementary Material describes its structure. The
approach is simple to implement, and ML estimates simple to be derived (with
issues typical of finite mixture models). We may, however, observe that the structure
of dependence between outcomes, summarized by the joint probability distribution
πg1,...,gp , gj = 1, . . . ,Kj, j = 1, . . . ,p, can be quite difficult to interpret. If we denote by
p the number of dimensions of the joint probability tensor 5, we may observe that,
as p grows, visualizing and interpreting the dependence structure becomes more and
more difficult. Thus, it is important to find a simplification that may help describe
the dependence between outcomes in a simple, but still effective, way. This is exactly
the purpose of our proposal.

5 The Parafac parametrization

Let us consider πg1,...,gp , the generic element of the joint (multidimensional) probability
tensor 5, gj = 1, . . . ,Kj, j = 1, . . . ,p. According to Dunson and Xing (2009), such
elements can be exactly decomposed as

πg1,...,gp =
m

∑
h=1
τh

p

∏
j=1
πjgj∣h (5.1)

for an appropriate choice of m. This parametrization could be interpreted in terms
of a latent class model, where h indexes a higher level discrete latent variable, see
Haberman (1979); or we may consider it as a specific version, with non-negative
terms, of the Parafac model, proposed by Harshman (1970) and Carroll and Chang
(1970), see Kroonenberg (2008) for an overview. The value m can be associated with
the rank of the tensor (Kruskal, 1977), and its role can be explained by noticing that,
for m = 1, we get

πg1,...,gp =
p

∏
j=1
πjgj, (5.2)

that is, we obtain the independence model. While the value of m controls for
dependence between the random effects in the p outcome equations, m = 1 does
not necessarily imply Kj = 1, ∀j = 1, . . . ,p, or to be more explicit, outcome-specific
unobserved heterogeneity and dependence between outcomes are kept separate.
Just to give an example, for the NMES data this would mean that unobserved
heterogeneity in the Emr equation may need a different number of components than
that used in the equations for Hosp and Privins. Further, one or few components
in the Emr profile may be associated with specific components in Hosp and Privins,
and this may help characterize specific individual behaviours of interest. In this
sense, the real merit of the Parafac representation is to make the joint random effect
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distribution more easy to interpret, by just looking at the values of m and πjgj∣h,
j = 1, . . . ,p, gj = 1, . . . ,Kj, h = 1, . . . ,m, associated to the different profile-specific
components. These components may be interpreted by looking at the estimates for
the corresponding intercepts.

In a sense, the Parafac representation defines a regression model for the elements
of the joint distribution πg1,...,gp , gj = 1, . . . ,Kj, j = 1, . . . ,p. According to Vermunt
(2010), it is often preferable not to estimate the parameters of such secondary models
within the EM algorithm. Rather, so-called two- or three-step approaches should be
used for this purpose; in a first step, model parameters are estimated using the EM
algorithm; in a second step, units are proportionally allocated to components with
weights given by posterior probabilities of component membership. In the third step,
a multinomial logit is fitted to estimate the effects that observed covariates have on
class membership. This is a good approach and, when the number of components is
not large, it performs well in both real and simulated data. In the present context,
the number of components is equal to ∏p

j=1 Kj and the resulting data matrix would

be of order (n ×∏p
j=1 Kj) with several null entries (those associated to components

that are unlikely for that unit). Therefore, we decided to take a different route, while
retaining the idea of two-step approaches. First, we note that, differently from the
rank of a matrix, the rank of a tensor can be higher than the dimensions of the tensor
itself, that is we may have m > min(K1, . . . ,Kp). The idea here is to approximate the
joint distribution by using a limited number (q ≤ m) of latent components that are
optimal in the least-squares sense:

πg1,...,gp ≃
q

∑
h=1
τh

p

∏
j=1
πjgj∣h. (5.3)

By using the Parafac representation, for every profile j = 1, . . . ,p, and higher-level
class h = 1, . . . ,q, (Kj − 1) elements πjgj∣h are free to vary in the interval [0,1], whilst
the latter one is constrained due to the unit-sum. The number of parameters is
(∑p

j=1 Kj − p)q; using the same reasoning, (q − 1) values τh are free to vary. It follows
that the total number of free parameters in the Parafac parametrization for 5 is
(∑p

j=1 Kj − p)q + (q − 1), which can be much lower than the number of free elements

of the tensor, ∏p
j=1 Kj − 1.

This approach, referred to in the following as Parafac-based, is also motivated
by the fact that, unlike the case of observed individual-level covariates, the models
in equations (5.1) and (5.3) include only margin-specific intercepts. We propose
to use the estimates of πg1,...,gp , gj = 1, . . . ,Kj, j = 1, . . . ,p, obtained within the EM
algorithm, to fit the Parafac model with q (higher-level) classes, and obtain a more
parsimonious and easy to interpret parametrization. This process, where the Parafac
step is embedded within the EM algorithm, is repeated until convergence. The
technical details of the additional steps in the EM algorithm that we use to estimate
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the parameters in the Parafac parameterization are described in Section 2 of the
Supplementary Material. Here, we briefly sketch the structure of the algorithm for
fixed q and Kj, j = 1, . . . ,p.

Step 0 Set ε > 0 (e.g., ε = 10−6), at step t = 1,2, . . .

Step 1 Calculate joint posterior probabilities w(t)g1,...,gp .

Step 2 Conditional on weights w(t)i,g1,...,gp
, and based on conditional independence,

fit a GLM to each response yj using covariates in the design matrix Xj,
through a Newton-Raphson algorithm with profile-specific weights w(t)i,gj

=
∑g1,...,gj−1,gj+1,...,gp

w(t)i,g1,...,gp
.

Step 3 Estimate priors π(t)g1,...,gp averaging weights over units.

Step 4 Initialize π̂(0,t)jgj∣h and τ̂(0,t), j = 1, . . . ,p, gj = 1, . . . ,Kj, h = 1, . . . ,q (this can be
done either randomly or by modifying the unconstrained least squares solution
in such a way that the constraints are fulfilled, and normalizing them so that
their columnwise sum is equal to 1). Compute the loss function value, say
f (0). At step r = 1,2, . . .

Step 5 Update estimates π̂(r,t)jgj∣h , keeping all the remaining parameters fixed, fitting

the model in equation (5.3) to the tensor with entries π(t)g1,...,gp , j = 1, . . . ,p,
h = 1, . . . ,q, by least squares following the details in Section 2 of the
Supplementary Material.

Step 6 Update estimates τ̂
(r,t)
h , keeping all the remaining parameters fixed, h =

1, . . . ,q, fitting the model in equation (5.3) to the tensor with entries π(t)g1,...,gp ,
j = 1, . . . ,p, h = 1, . . . ,q, by least squares following the details in Section 2 of
the Supplementary Material.

Step 7 Compute the new loss function value, say f (r). If f (r−1) − f (r) > εf (r−1), go to
Step 5; else retain π̂(t)jgj∣h = π̂

(r,t)
jgj∣h and τ̂(t)h = τ̂(r,t)h and go to step 8.

Step 8 Compute the new log-likelihood value, say `(t), based on updated estimates

β̂
(t)
j , π̂(t)jgj∣h, τ̂(t)h . If `(t) − `(t−1) > ε`(t−1), go to step 1, else the algorithm has

converged.

Taking inspiration from Vermunt (2010), an alternative, two-step, sequential strategy
can also be considered: the EM algorithm is run first, and Steps 4–7 are performed,
at convergence, outside the EM algorithm, by fitting the model in equation (5.3)
to final estimates π̂g1,...,gp . The sequential strategy is a computationally efficient
approximation to the embedded one; our preliminary findings suggest that the two
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strategies usually lead to very similar solutions. For this reason, we suggest to use
the embedded strategy for estimating model parameters and the sequential one for
deriving confidence intervals (CIs) based on non-parametric bootstrap.

Obviously, if we do not use the Parafac parameterization, Steps 4–7 are simply
skipped, and we obtain the algorithm for the general solution, characterized by the
choice q = m.

6 Analysis of the NMES data

As a starting point, we fitted univariate regression models for Emr and Hosp; these
are based on (conditional) Poisson distribution, log link function and discrete,
individual-specific, random effects. We used the npmlreg library (Einbeck et al.,
2018) to obtain estimates, and selected, using AIC, (K1,K2) = (2,3) components
(locations) for Emr and Hosp, respectively. As expected, private insurance coverage
is (barely) significant only in the equation for Hosp. Parameter estimates are reported
in Section 3 of the Supplementary Material.

As a second step, we considered a further model for the private insurance choice.
This is based on a (conditional) Bernoulli distribution, logit link function, and discrete
individual-specific random effects. Also in this case, we used the npmlreg library,
and selected K = 2 components by using AIC. By joining these model estimates with
those for Emr and Hosp reported in Section 3 of the Supplementary Material, we
observe that the optimal choice of the number of components, according to AIC, is
(K1,K2,K3) = (2,3,2) for the three outcomes, Emr, Hosp and Privins, respectively.

We used such a choice to fit the proposed multivariate model, where we set q = 2
looking for simplicity and checking for accuracy of the resulting approximation.
We may also notice that such a choice is optimal (according to AIC) conditional
on setting (K1,K2,K3) = (2,3,2). Clearly, a different choice could be obtained by
simultaneously searching for the best (K1,K2,K3,q) values; we have preferred the
proposed procedure to have a direct comparison with the results obtained by fitting
univariate models for each outcome. A further motivation is that the number of
components in each margin is essentially due to unobserved heterogeneity and,
therefore, we cannot see any reason to change it when moving from the univariate
to the multivariate model. The joint distribution accounts for dependence between
outcomes and, in this view, the number of classes q is of interest, as it controls for
dependence and quality of approximation to the true 5.

We have also used different sets of observed covariates for the three outcome
equations, considering for the utilization counts only those directly referring to
perceived, objective health status and ageing, and leaving for the private insurance
equation all individual-specific socio-economic and demographic features. This has
been done to have an efficient model structure, according to a specific graph of
dependence and, therefore, to a specific set of excluding restrictions, see Kiviet (2020)
for an interesting discussion on this and related issues in model identification.

The results can be easily compared with those derived from the univariate
regression models, as heterogeneity and dependence are now kept separated. We also
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fitted a standard finite mixture model, which is built by assuming that the estimated
locations in the three equations are trivariate realizations of a single (unidimensional)
random effect. In this case, the number of components in each profile, set according
to AIC, is constant, that is, K1 = K2 = K3 = K = 4, and the dependence cannot be kept
separated from unobserved heterogeneity. In Table 2, we report the estimates for
the trivariate regression model, obtained by considering the standard finite mixture,
and the proposed approach via the embedded strategy. The CIs have been obtained
by non-parametric bootstrap using B = 1 000 resamples and the sequential strategy,
where components are ordered by the location estimates (as in Table 2) for handling
potential label switching.

Looking at Table 2, we can derive some general implications of the proposed
modelling approach. First, the estimates for the regression parameters in the standard
finite mixture and in the proposed approach are quite similar. This is not unexpected,
as the two parameterizations differ only in the specification of the random effect
distribution: both the regression models consider only individual-specific random
intercepts which, due to the cross-sectional nature of the available data, are
considered to be (at least linearly) independent of the observed covariates. When we
move from the standard finite mixture to the proposed approach, the structure of the
random effects (joint) distribution changes. Therefore, as a second general implication
of the proposed approach, we expect some changes in the variance-covariance
(correlation) estimates for the random effect distribution, as well as in the point
and interval estimates for the endogenous covariate, if any (in this case Privins).

As per results specific to the analysed data, the estimates for the
covariance/correlation matrix of the random effects are reported in Table 3. The
variance estimates for the three random effects are quite different depending on
whether we look at the standard or the proposed approach: while we cannot
comment on which one is producing the best estimates (true values are unknown),
we notice that the proposed approach produces random effect variance estimates
in the equations for (Emr,Hosp) that are very similar to those obtained by fitting
the univariate regression models. Further, while both approaches produce a low
variance estimate for the random effects in the Privins equation, what substantially
changes is the estimate for the correlation between the random effects in the Privins
and those in the (Emr,Hosp) equations. As we can see from the right-hand side
of Table 3, the estimates obtained by the standard finite mixture approach are
surprisingly high. On the contrary, we get nearly null estimates for these terms
by the proposed approach; according to this last result, the choice for the private
insurance in this sample can be considered as exogenous. As stated in Deb and
Trivedi (1997), this result is coherent with the empirical evidence that ‘(...) private
insurance typically covers physical therapy, check-ups, etc., with small deductibles
and coinsurance rates’. We also observe some changes in the estimates of the effect
of the binary treatment variable Privins. The associated regression coefficients in the
equations for (Emr,Hosp) stay, however, non-significant regardless of the structure
we adopt for the joint distribution. In the standard finite mixture approach, the
estimated locations for the Privins equation are strongly connected to those of
the utilization counts, and this may induce some (unnecessary) higher variability
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Table 3 Estimates of the covariance matrix of the random effects in the three regression models.
Standard finite mixture and Parafac-based approach

Covariance matrix Correlation matrix

Standard finite Parafac-based Standard finite Parafac-based
mixture approach approach mixture approach approach

Var. Emr Hosp Privins Emr Hosp Privins Emr Hosp Privins Emr Hosp Privins

Emr 5.25 4.43 0.58 1.05 1.03 −0.00002 1 0.99 0.76 1 0.91 −0.002
Hosp 3.75 0.51 1.23 −0.00002 1 0. 73 1 −0.002
Privins 0.13 0.00013 1 1

in the parameter estimate for Privins in the utilization count equations, due to some
overlapping between the private insurance indicator and a specific component. The
confidence intervals for Privins in both utilization equations in the standard finite
mixture approach are substantially wider than the one obtained with the proposed
approach. This result is specific to the analysed example and it is probably due to the
binary measurement scale of this response.

We now turn to discuss results associated to the proposed parameterization of the
joint distribution for the specific application. As far as the choice for q is entailed,
Table 4 reports the estimates of the elements of the joint probability tensor 5 we
obtain by the EM algorithm, without any specific parameterization. This is the best
approximation possible to 5 we may obtain by using a Parafac representation, as
it is obtained without any dimensionality reduction. Therefore, we may consider
it as obtained by the choice q = m (in this case, m = 3). We report in Table 5 the
estimate obtained by setting q = 2. We used a 1 − α = 0.9 confidence level to avoid
issues related to poor mixing (that is nearly equal mass estimates) we observed (even
if rarely) in the bootstrap solutions.

Table 4 Estimate for555 and 90% bootstrap CIs (within parentheses)

Privins

Comp.1 Comp.2
Hosp Hosp

Comp.1 Comp.2 Comp.3 Comp.1 Comp.2 Comp.3

Emr Comp.1 0.206 0.186 0.000 0.206 0.181 0.000
(0.19, 0.29) (0.08, 0.20) (0.000, 0.001) (0.18, 0.29) (0.08, 0.20) (0.000, 0.001)

Comp.2 0.000 0.000 0.111 0.000 0.000 0.109
(0.000, 0.001) (0.00, 0.01) (0.08, 0.14) (0.000, 0.001) (0.00, 0.01) (0.08, 0.14)

For purpose of estimation, we used the embedded strategy and a maximum of
50 iterations. Our preliminary analyses show that increasing this value implies a
noticeable increase in the computational complexity without any substantial gain in
terms of fitting. As noticed above, to save computation time, the algorithm for fitting
the Parafac to5 (Steps 4–7) can be run once convergence is attained. Such a two-step
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Table 5 Parafac approximation (using q = 2) for555

Privins

Comp.1 Comp.2
Hosp Hosp

Comp.1 Comp.2 Comp.3 Comp.1 Comp.2 Comp.3

Emr Comp.1 0.207 0.185 0.000 0.205 0.183 0.000
Comp.2 0.000 0.000 0.111 0.000 0.000 0.109

Table 6 Parafac parameter estimates (using q = 2), and 90% bootstrap CI’s (within parentheses).

T̂ 5̂1 (Emr)

Class 1 Class 2 RE Class 1 Class 2

0.78 (0.72,0.83) 0.22 (0.17, 0.28) Comp.1 1.00 (0.997, 1.000) 0.00 (0.000, 0.002)
Comp.2 0.00 (0.000, 0.004) 1.00 (0.997, 1.000)

5̂2 (Hosp) 5̂3 (Privins)

RE Class 1 Class 2 RE Class 1 Class 2

Comp.1 0.53 (0.50, 0.75) 0.00 (0.000, 0.005) Comp.1 0.50 (0.49, 0.51) 0.50 (0.49, 0.51)
Comp.2 0.47 (0.24, 0.49) 0.00 (0.00, 0.11) Comp.2 0.50 (0.49, 0.51) 0.50 (0.49, 0.51)
Comp.3 0.00 (0.000, 0.001) 1.00 (0.88, 1.00)

strategy leads to virtually the same values for the log-likelihood function. As it is easy
to observe, the estimates for q = m and q = 2 are virtually identical, and this suggests
that the choice q = 2 is a good one. The quality of approximation dramatically
decreases when moving to q = 1, see Section 4 of the Supplementary Material. The
estimate of 5 in Table 5 is obtained by using the Parafac parameterization which,
especially in those cases where the number of outcomes p is high, is much simpler to
interpret, as it inherently refers to univariate components, see estimates in Table 6.

A further argument is the characterization of the estimated latent structure.
In the following, to make the discussion of results simpler, we will refer to
categories h = 1,2, of the higher level latent variable as classes, and to categories
gj = 1, . . . ,Kj, j = 1, . . . ,p, of the lower level latent variables (random effects) as
components. Figure 1 reports the observed (marginal) distribution of (Emr,Hosp)
by estimated components, where individual membership has been obtained by using
a (profile-specific) maximum a posteriori (MAP) rule.

From the left-hand side in Figure 1, we can see that the two components
identify units with, respectively, a lower and a higher propensity to access an EMR
conditional on observed individual characteristics, where the observed distribution
for component 2 is noticeably more dispersed than that for component 1. From
the right-hand side in Figure 1, we observe an increasing number of hospital stays,
conditional on other observed individual characteristics, when moving from the
first to the third component. Hence, estimated locations and associated components
distinguish units with extreme, higher, values of Emr or Hosp from the bulk of units
with small values, always conditional on observed covariates. However, these results
do not account for the structure of dependence between the random effects in the
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Figure 1 Boxplots of Emr and Hosp by components. Allocation of individuals is based on a
(profile-specific) MAP rule

two equations, which can be explained by looking at the higher level classes. The
probability of latent class 1 is much higher than that of latent class 2; what does this
mean from a practical perspective? To answer, we need to look at the distribution we
estimate conditional on these latent classes. With respect to Emr, the first component
(with an intercept estimate ζ̂11 = −3.78) is associated only with latent class 1, while
the second component (with an intercept estimate ζ̂12 = −1.32) refers only to latent
class 2. Therefore, if we look at these estimates, we may characterize class 2 as being
composed of individuals that have, conditional on observed covariates, a higher
propensity to access an emergency room. A similar behaviour is derived by looking at
the components for Hosp, where the third component (with an estimate ζ̂23 = −1.90)
is associated with latent class 2 only, while the other two, with lower estimates
for the component-specific intercepts (̂ζ21 = −4.83 and ζ̂22 = −3.81) are associated
with latent class 1 only. Therefore, when we look at utilization measures, we may
characterize latent class 1 as composed of people with a lower (conditional on
individual covariates) utilization of the analysed health services, while latent class
2 is characterized by a higher propensity to use such services.

When we move to the parameter estimates for Privins, we may observe that the
two latent classes essentially overlap, as the outcome-specific components are equally
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split into the two classes. As discussed before, from a modelling point of view, this
may suggest that exogeneity of the private insurance choice cannot be ruled out.

Thus, the approximated solution obtained by the Parafac representation of the
joint probability distribution helps to obtain a simpler description of the components
associated to univariate outcome-specific random effects, while providing a more
refined picture of the association between the random effects in the different equations
and, through this, between the different outcomes.

7 Final remarks

In this article, we propose a flexible regression model for multivariate mixed
responses. The model structure is based on considering several (conditionally
independent) univariate regression models with outcome-specific random effects,
that account for outcome-specific unobserved heterogeneity and dependence
between outcomes through their joint distribution. The proposed representation of
this joint distribution relaxes the unidimensionality assumption which is standard
in (multivariate) finite mixture models, and it opens to more general structures of
dependence between the random effects in the different outcome equations. While it
is more general than standard finite mixture models, it is also more computationally
demanding, as the complexity grows exponentially with the number of analysed
outcomes. To tune the complexity of such a representation, we propose to use a
parametrization which can be linked either to a polytomous latent class model or
to a Parafac model for the tensor describing the joint probability distribution. The
proposed representation is simple to estimate, by using an extended EM algorithm,
and it gives an appropriate picture of unobserved heterogeneity and dependence. In
particular, we may guess that the proposed approach gives more accurate estimates
of outcome-specific random effect variances, as well as of covariances between the
random effects in different outcome equations. This may be useful when the interest
is on testing for dependence, especially in those cases where p ≫ 3, which will
be the focus for future research, especially from the perspective of computational
complexity. The representation of the joint probability tensor 5 we propose in
this article can also be used within a stochastic EM, see, e.g., McLachlan and
Krishnam (1997), algorithm, where component membership can be drawn from the
5 estimate, and a polytomous latent class model is estimated on the basis of the
simulated component labels.

The proposed model has been applied to benchmark real life data, which helped us
to discuss, from an empirical perspective, the implications of the proposed approach.

Supplementary materials

The supplementary materials, which also include the relevant R code and the
NMES data, can be found through the link: http://www.statmod.org/smij/
archive.html
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