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Abstract

The integrated use and the re-use of data coming from different sources is a common practice
in official statistics and it is recognized by the international community as a key element
of modernization of the statistical system. Actually, data generated for purposes other than
statistical can often be easily acquired at a low cost, hence data integration reduces the
costs of data collection and limits the statistical burden on the respondents. In this research
project, we have developed three different aspects related to data integration activities in
official statistics.

In Chapter 1 we considered the use of data from administrative archives to support
survey data on a sensitive variable, income. This research was carried out in cooperation
with Prof. Li-Chun Zhang, from Statistics Norway, University of Southampton, and Olso
University, during his frequent visits to Rome, at the National Statistical Institute (Istat)
and Sapienza University. We assumed that a data linkage has been performed to combine
administrative data and survey data with the aim of identifying and bringing together records
from separate files, which correspond to the same entities. Usually, data linkage is not a
trivial procedure and linkage errors, false and missed links, might affect standard statistical
techniques, producing misleading inference. In this setting, we developed a regression
model on integrated data for secondary analysis, where the linked data has been prepared by
someone else, and neither the match-key variables nor the unlinked records are available
to the analyst. We developed also a diagnostic test for the assumption of non-informative
linkage errors, which is required for our proposal as well as for all existing secondary
analysis adjustment methods. Compared to other adjustment methods, our approach provides
important advantages: it relies on a realistic assumption that the probabilities of correct
linkage vary across the records but it does not assume that one is able to estimate the
probability of correct linkage for each individual record. Moreover, it accommodates in
a simple manner the general situation where the files are of different sizes and none of
them is a subset of another. The adjusted regression model and the proposed test have been
studied by simulation and also applied to real data. The research illustrated in Chapter 1
has published as original article by the Journal of the Royal Statistical Society: Series A
(Statistics in Society) Volume 184, Issue 2.

In Chapter 2, we dealt with a different data integration problem. We considered an
additional re–use of an administrative register on prosecuted crimes to estimate the size
of certain criminal populations, and in particular the size of those involved in criminal
activities but for some reasons unreported to the justice system. In the capture-recapture
framework of repeated count data, we focused on the identification and treatment of “one–
inflation”. This phenomenon occurs when the number of units captured exactly once clearly
exceeds the expectation under a baseline count distribution. It has received increasing
attention in capture–recapture literature in recent years, since ignoring one–inflation has
serious consequences for the estimation of the population size, which can be drastically
overestimated. Criminal data might be particularly prone to the one–inflation, since people
involved might develop an extreme form of the so–called “trap shy” behavioural model,
i.e. the will and ability to avoid subsequent captures. In Chapter 2, in a joint work with
supervisors Prof. Andrea Tancredi and Dr. Davide Di Cecco, we proposed a Bayesian
approach for Poisson, Geometric and Negative Binomial one–inflated count distributions.
Posterior inference for population size is obtained applying a Gibbs sampler approach.
We also provided a Bayesian approach to model selection. We illustrated the proposed
methodology with simulated and real data to estimate the number of people implicated in the
exploitation of prostitution in Italy. The research illustrated in Chapter 2 has been published
as research article by Biometrical Journal Volume 64, Issue 5, in March 2022.
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In Chapter 3 we extended the models presented in Chapter 2 in two directions. From
one side, we distinguished at least two possible causes for one–inflation, namely, the
erroneous inclusion of out–of–scope units, and the behavioral effect preventing subsequent
captures after the first one. Accordingly, we propose two families of one–inflated models
to estimate the number of uncaptured units. In addition, we proposed a Bayesian semi-
parametric approach by considering a Dirichlet process mixture model as a base model, and
extend this class to include one–inflation, in order to take into account also the unobserved
heterogeneity in the captures probabilities. We also compare the Dirichlet process mixture
models with sparse finite mixture (SFM) models which, to the best of our knowledge, even
if strictly related to DPMs, have not yet been applied in capture–recapture field. The mixture
models and the two one–inflated counterparts were compared on three datasets of criminal
proceedings. Chapter 3 is the result of a yet unpublished work by myself, and my supervisors
Prof. Andrea Tancredi and Dr. Davide Di Cecco.
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Chapter 1

Linkage-data linear regression
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Abstract

Data linkage is increasingly being used to combine data from different sources with the
aim of identifying and bringing together records from separate files, which correspond
to the same entities. Usually, data linkage is not a trivial procedure and linkage errors,
false and missed links, are unavoidable. In these cases, standard statistical techniques may
produce misleading inference. In this Chapter, we propose a method for secondary linear
regression analysis, where the linked data has to be prepared by someone else, and neither
the match-key variables nor the unlinked records are available to the analyst. We develop
also a diagnostic test for the assumption of non-informative linkage errors, which is required
for all existing secondary analysis adjustment methods. Our approach provides important
advantages: it relies on the realistic assumption that the probabilities of correct linkage
vary across the records but it does not assume that one is able to estimate the probability of
correct linkage for each individual record. Moreover, it accommodates in a simple manner
the general situation where the files are of different sizes and none of them is a subset of
another. The proposed methodology of adjustment and testing is studied by simulation and
applied to real data.

1.1 Introduction

Computerised record linkage is increasingly common for scientific investigation, policy
analysis and commercial development, where one aims to identify and bring together the
records (with associated observations) in separate data files, which correspond to the same
entities or individuals (Fellegi & Sunter (1969); Herzog et al. (2007); Christen (2012);
Harron et al. (2015)). Industrial-strength applications to large population-size datasets have
become relatively straightforward, e.g. when population census data files are linked over
time to create longitudinal population datasets (Zhang & Campbell (2012)), or population-
wide administrative registers are linked to create pseudo population spine in the absence of
a Central Population Register (Owen et al. (2015)). In epidemiology and medical studies,
record linkage is extensively used in many countries to enhance data on clinical performance
and patient health outcomes (e.g. Harron et al. (2016)). Record linkage is a necessary
step for estimating the size of hidden or hard-to-count populations, i.e. illegal drug users,
drinking drivers, illegal migrants, civil war victims, just to cite few examples of studies on
human population (Rosman (2001); van der Heijden et al. (2014); Seybolt et al. (2013));
studies on wild animal populations provide plenty of application (Creel et al. (2003); Link
et al. (2010); McClintock et al. (2014); Wright et al. (2009)). In our illustrative application
in Section 1.4, we consider linked income data from tax registers in two consecutive years,
and linear regression of year-on-year incomes for a simple analysis of the development at
local (municipality) level. Using administrative data here allows for disaggregated analysis
that otherwise cannot be supported by survey sampling, because of the limited sample size
and the fact that income may be considered “sensitive”, which causes non-response and/or
under-reporting errors in surveys.

When there does not exist a unique identifier that allows for exact matching, record
linkage is performed using soft identifiers, the so-called key variables, such as name, age,
address, etc. Let each pairing of records of the same entity be a match. Let each pairing
of records that results from record linkage be a link. Insofar as the key variables may be
affected by measurement errors, linkage errors are unavoidable, so that the links may not
be identical to the matches. There are two types of linkage error: either the linked records
do not actually refer to the same entity, or if one fails to link the records that refer to the
same entity. Figure 1.1 provides an illustration using fictive individuals and income data,
where there are three correct links (solid), two errors of false linkage (dashed) and one of
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Figure 1.1. Fictive income data 2014-2015. On the top: record linkage, the lines represent correct
links (), false links (), and missing match (); on the bottom: linear regression, () based on
unknown matches (o), and () based on observed links (+).

missing match (long-dashed). The plot shows the ordinary least squares fit (solid line) based
on the four unknown matches (circle) and that (dashed) based on the five observed links (“+”
for the two incorrect links). Clearly, treating the linked dataset as if it were true generally
causes bias of the resulting analysis. For a situation like the one in Figure 1.1, one needs to
deal with at least three problems.

• Different individuals (or entities) can have different probabilities for being incor-
rectly linked or missed (given a match exists), which we refer to as the problem of
heterogeneous linkage errors.

• There are unmatched individuals in both files that cannot possibly be correctly linked,
which we refer to as the problem of incomplete match space. In Figure 1.1 these are
Barkes, A. Cooper and Jones in file 1, and Brown and H. Cooper in file 2. Complete
match space would have been the case here had none of these unmatched individuals
existed, or if they had only existed in one of the two files, say, when file 1 is a sample
taken from file 2.

• Whether (Joshua Barnes, J. Barnes) are a match is a mutually exclusive event of
whether (Joseph Barkes, J. Barnes) are a match, as long as there are no duplicated
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records in each file, which we refer to as the problem of bi-partite linkage data
structure. Due to the bi-partite linkage data structure (Jaro (1989)), it would e.g. be
wrong to model (Joshua Barnes, J. Barnes)’s being a match as a Bernoulli event that
is statistically independent of (Joseph Barkes, J. Barnes)’s being a match.

1.1.1 Related works

The awareness of misleading inference from standard statistical techniques in the pres-
ence of linkage errors dates back to Neter et al. (1965). Linear regression is studied by
Scheuren & Winkler (1993), Scheuren & Winkler (1997), and Lahiri & Larsen (2005), where
the data analyst and the linker are essentially the same. Chambers (2009) and Chambers
& da Silva (2019) adopt the perspective of secondary analysts, who have no access to the
key variables and the separate data files, nor the detailed knowledge or tools to replicate the
actual linkage procedure (Zhang (2019)). Consequently, Chambers (2009) adopts a greatly
simplifying assumption, referred to as the exchangeable linkage error (ELE) model, where
there exists a constant false linkage probability and mismatching is completely random
in the case of false linkage. While the ELE assumption is practically appealing, it cannot
properly accommodate heterogeneous linkage errors. Moreover, as we shall explain in more
details in Section 1.2, the ELE model is only applicable if one treats any incomplete match
space as if it were complete. But the false linkage error of an unmatched individual (such
as Brown in Figure 1.1) always has probability one, so it cannot be the same as that of a
matched individual (such as Martinez) who can be linked correctly.

Nearly all the frequentist methods for the analysis of linked data are based on the linkage
model of the probability that a record in one dataset is linked to each of the records in
the other. The ELE model is the simplest linkage model. Techniques such as regression
analysis, estimation equation and analysis of contingency tables are studied by Scheuren &
Winkler (1993), Scheuren & Winkler (1997), Lahiri & Larsen (2005), Chambers (2009),
Chipperfield et al. (2011), Hof & Zwinderman (2012), Kim & Chambers (2012), Chipperfield
& Chambers (2015), Han & Lahiri (2018) and Enamorado et al. (2019). Again, as we shall
explain in Section 1.2, in reality the linkage model cannot cope with incomplete match
space, even when the ELE assumption is relaxed to accommodate heterogeneous linkage
errors. Yet incomplete match space is generally the case when data originate from different
sources, such as when linking hospital patient records to welfare payment records. It is
fundamentally different to the situation, where one set of individuals form a sample of the
other set (i.e., population), where there are no individuals in the sample who cannot possibly
be linked correctly.

Bayesian inference is based on the posterior distribution of the unknown set of matched
entities. Different modelling approaches are used for the linkage key variables that are
subjected to measurement errors, e.g. Tancredi & Liseo (2011) and Steorts et al. (2017)
extend the hit-miss model of Copas & Hilton (1990), whereas Sadinle (2014), Sadinle
(2017) models the comparison vector of key variables following the Fellegi & Sunter (1969)
tradition. See also Gutman et al. (2013) for a modelling approach, which includes both
variables subjected to measurement errors and others that do not. However, it is common
that the variables being modelled for linkage are inaccessible to the secondary analyst.
Handing out multiple posterior sets of matched entities may be impractical, together with the
associated variables needed for analysis, especially if the analysis requires a large number of
posterior draws. Although there are improvements in the direction of scalability (Marchant
et al. (2019)), there still does not exist any reported Bayesian linkage application to files of
the size of a population census.

Goldstein et al. (2012) and Gutman et al. (2015) apply multiple imputation techniques
to analysis of linkage data, which do not handle the problem of linkage data structure like
the other Bayesian methods above. Restrictions due to linkage data structure are not built
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into these imputation methods.

1.1.2 Outline of the chapter

In this Chapter we consider linkage-data linear regression, where one aims to estimate
the regression coefficients only based on the linked dataset. In particular, we adopt the
secondary analyst perspective, where the linked data have to be prepared by someone else;
neither the unlinked records nor the key variables in the separate files are available to the
analyst. We develop a novel frequentist method of Pseudo Ordinary Least Squares (OLS),
which deals with all the three problems exemplified above in Figure 1.1, i.e., heterogeneous
linkage errors, incomplete match space and linkage data structure. Like all the methods
referenced in this Introduction, the key assumption to our approach is that the linkage errors
are non-informative of the regression model parameters. The assumption will be defined and
discussed in Section 1.2. Moreover, for the first time we shall construct an accompanying
diagnostic test for the non-informative linkage-error assumption, which can provide helpful
guidance in practice. Application to real income data and simulation studies suggest that
the assumption can be met at least approximately in many situations, and the Pseudo-OLS
estimator is more efficient than the existing methods in the cases of incomplete match space
that are examined here.

The rest of the Chapter is organised as follows. In Section 1.2 we start by introducing the
basic notations and the set-up of linkage-data linear regression. In Section 1.2.1, we recall the
existing frequentist methods and explain carefully why they do not fully meet the challenges
of incomplete match space. Section 1.2.2 defines and discusses the non-informative linkage-
error assumption. Our proposed approach is then developed in Sections 1.2.3, 1.2.4 and
1.2.5, including the underlying assumptions and the consistency of the resulting regression
coefficient estimator. Section 1.2.6 analyses the bias of the existing methods, which arises
from treating the incomplete match space as if it were complete. In Section 1.3 we develop
a diagnostic test for the non-informative linkage error assumption. An application to linked
income data from tax registers is given in Section 1.4, which demonstrates considerable
efficiency gains by our method against the existing ones. We carry out a simulation study in
Section 1.5, which helps us to better appreciate the application results and to explore some
other aspects of the proposed methodology of adjustment and testing. We conclude with
some brief remarks in Section 1.6.

1.2 Methods

Let yi = x⊤
i β+ϵi be a linear regression model, where xi is the p×1 vector of covariates,

and β is the parameter of interest. Let datasetD1 contain the covariates xi for record i ∈ D1,
and let dataset D2 contain the dependent variable yj for j ∈ D2. We assume that duplicated
records have been successfully removed from both. Let N1 = |D1| and N2 = |D2| be the
sizes of D1 and D2. Let DM be the set of matched entities between D1 and D2, i.e. those
ones that can possibly be correctly linked, to which the linear regression model applies. Let

Ω = D1 ×D2 = M ∪ U,

whereM = {(i, i) : i ∈ DM} contains the matches, andU contains all the mismatched pairs
of records. Let NM = |M | be the size of M . In the ideal case, one would estimate β based
on the pairs of records in M . However, M is unknown. Suppose a record linkage procedure
yields the set of links, between records in D∗

1 from D1 and D∗
2 from D2, respectively,

denoted by
M∗ = {(i, j) : i ∈ D∗

1, j ∈ D∗
2},
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where N∗ = |D∗
1| = |D∗

2| = |M∗| ≤ min(N1, N2), and M∗ ̸= M whenever linkage errors
are present. In linkage-data linear regression one aims to estimate β only based on the linked
dataset, which can take on any of the following expressions in this Chapter:

(x, y)M∗ = {(xi, yj) : (i, j) ∈ M∗} = {(xi, y∗
i ) : y∗

i = yj , (i, j) ∈ M∗}.

Let D∗
1M = D∗

1 ∩ DM be the set of matched entities in D1 that are linked, and D∗
2M =

D∗
2 ∩DM those from D2. Let D∗

MM be the set of correctly linked entities, where {(i, i) :
i ∈ D∗

MM} = M∗ ∩M . Let N∗
MM = |D∗

MM | be its size. We have D∗
MM ⊆ D∗

1M ⊆ D∗
1

and D∗
MM ⊆ D∗

2M ⊆ D∗
2.

For an illustration using Figure 1.1, let file 1 contain D1 = {1, 2, 3, 4, 5, 6, 7} and let
file 2 contain D2 = {1, 2, 8, 9, 4, 6}, both in the running order from top to bottom, where
DM = {1, 2, 4, 6} are the matched individuals and {3, 5, 7, 8, 9} are the unmatched ones.
We have D∗

1 = {1, 3, 4, 5, 6} and D∗
1M = {1, 4, 6}, D∗

2 = {1, 2, 9, 4, 6} and D∗
2M =

{1, 2, 4, 6}. The set of links is M∗ = {(1, 1), (3, 2), (4, 4), (5, 9), (6, 6)}. The correctly
linked individuals can only come from DM , which are D∗

MM = {1, 4, 6}.

1.2.1 Two linkage-model estimators for complete match space

Consider the case of complete match space, where N ≡ N1 = N2 = NM . Suppose
each record in D1 is linked to one and only one record in D2, such that (N∗, D∗

1, D
∗
2) =

(N,D1, D2). The linked y-value for i ∈ D∗
1 is y∗

i =
∑
j∈D∗

2
aijyj , where aij = 1 if i ∈ D∗

1
is linked to j ∈ D∗

2 and aij = 0 otherwise. Notice that i and j refer to distinctive records
themselves, regardless how they appear or are arranged in the two files. False linkage of
i ∈ D∗

1 is the case if aij = 1 for j ∈ D∗
2 and j ̸= i. However, aij is unobserved, since the

true matches are unknown. What is observed is whether or not i ∈ D∗
1, i.e. record i ∈ D1 is

linked or not, denoted by ℓi = 1 or ℓi = 0. In the special setting here, we have ℓi = 1 for all
i ∈ D1. Denote the conditional expectation of aij given linkage by

pij = E(aij |ℓi = 1) = Pr(aij = 1|ℓi = 1).

Let PN×N = [pij ] be the matrix of pij’s. Let XN×p be the covariate matrix associated
with D1, and yN×1 the dependent vector of D2, in the matched ordering such that the
diagonal of P corresponds to M . Let y∗

N×1 be the vector of linked y-values, which is a
linear transformation of y via [aij ].

Provided the linkage indicators [aij ] are independent of (x, y)M , we have

E(y∗|X, y) = Py.

Given complete match space, the regression model applies to all the units in D2, so that
E(y|X) = Xβ. Thus, E(y∗|X) = Zβ for Z = PX . Lahiri & Larsen (2005) propose OLS
fit:

β̂LL = (Z⊤Z)−1Z⊤y∗.

Chambers (2009) notices in addition an unbiased adjusted least squares fit:

β̂A = (X⊤PX)−1X⊤y∗

The matrix P does not contain sensitive information and, in theory, could be supplied
by the data linker. In practice, however, there is currently a lack of consensus on how to
estimate the matrix P . See discussions of alternative approaches in Lahiri & Larsen (2005),
Han & Lahiri (2018), Chambers & Kim (2015), and Tuoto (2016). Moreover, these methods
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require access to the key variables, which is only possible for the data linker. Chambers
(2009) proposes the ELE model of P , where

pii = λ and pij = (1 − λ)/(N − 1). (1.1)

which ignores the problems of heterogeneous linkage errors. Even when the model (1.1) is
relaxed to accommodate heterogenous linkage errors with varying pij’s, the linkage-model
approach still cannot cope with the problem of incomplete match space. In this Chapter, we
propose to estimate linear regression parameters when the matrix P is not provided.

Again, take the example in Figure 1.1 and consider Adams (i = 1) and Barkes (i = 3).
The expectation of their linked y-value, respectively, are given as

E(y∗
1|X, y, ℓ1 = 1) = p11y1 + p12y2 + p18y8 + p19y9 + p14y4 + p16y6,

E(y∗
3|X, y, ℓ3 = 1) = p31y1 + p32y2 + p38y8 + p39y9 + p34y4 + p36y6,

provided non-informative linkage errors. Since Adams is a matched individual that can be
linked correctly, one can e.g. let p11 = λ1 and p1j = (1 − λ1)/4, for any other j ∈ D∗

2,
given that the secondary analyst only sees the five links that are provided. But this would
mean to assume that the unlinked individual Brown (i = 8) in D2 \D∗

2 has no chance of
being linked with Adams, i.e. treating the incomplete match space as if it were complete.
Next, since Barkes is an unmatched individual, it would be totally wrong to act similarly,
because there is no record at all in D2 for Barkes. One might consider setting p3j ≡ 1/5
as an assumption of random false linkage. However, without knowing the true matched or
unmatched status of Adams and Barkes, one would not know if p1j’s or p3j’s should be
assigned. This shows that the linkage-model approach cannot cope with incomplete match
space.

Thus, in reality, one can only apply the ELE model (1.1), by assuming that the linked
sets (D∗

1, D
∗
2) form complete match space in any case. Clearly, this is not satisfactory

conceptually: although one may assume y3 = x⊤
3 β + ϵ3 for Barkes in D∗

1, one would not
find y3 among y∗ = (y1, y2, y9, y4, y6)⊤. Similarly, although one may assume that there
exists x9 for Cooper in D∗

2, such that y9 = x⊤
9 β + ϵ9, one would not find x9 in XD∗

1
.

However, as we will discuss later in Section 1.2.6, doing so may still yield useful bias
reduction compared to the face-value OLS, given by

β̂∗ = (X⊤
D∗

1
XD∗

1
)−1X⊤

D∗
1
y∗.

For now we only notice some intuition why this may be the case. Provided the false linkage
rate is low, (1 − λ)/N∗ ≈ (1 − λ)/N2 ≈ 0 for large N∗, and the mis-specification of
pij , where i ̸= j, may not matter much for the records DM . Moreover, the proportion of
unmatched but linked entities is then also low, so that there are relatively few rows like that
for Barkes here. In short, the effects due to the misspecification of the P -matrix may be
limited given low false linkage rate, and the linkage-model estimators β̂LL and β̂A may still
remove most of the bias of the face-value estimator β̂∗.

1.2.2 Non-informative linkage error assumption

The linkage model essentially requires one to specify, for any given record i in D1, the
probability of aij = 1 for all the records j ∈ D2. To accommodate incomplete match space
and heterogeneous linkage errors, we specify the non-informative linkage error (NILE)
assumption as follows:

λi = Pr(aii = 1|ℓi = 1, X, y) =
{

Pr(aii = 1|ℓi = 1) for i ∈ DM

0 for i ̸∈ DM
(1.2)
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and, for i ∈ D1 (or D2), the probability of linkage is independent of (X, y), i.e.

ψi = Pr(ℓi = 1|X, y) = Pr(ℓi = 1). (1.3)

Heterogeneous linkage error is the case if λi varies over DM and ψi over D1 (or D2). The
assumption (1.2) accommodates incomplete match space, assigning zero chance of correct
link to any unmatched entities in D1 \DM or D2 \DM , without needing to specify pij for
i ∈ D1, j ∈ D2 and j ̸= i. It is possible to incorporate in ψi a sample inclusion probability,
as when D1 is a sample from population D2.

We introduce also a slightly weaker NILE assumption as follows, which we use for
the consistency results later on. Let zi be a well-defined function of xi and yi, such as
xiyi for i ∈ DM or zi = xix

⊤
i for i ∈ D1, where Dz is the corresponding entity set

of zi, which is of the size Nz. Let ψ̄ =
∑
i∈Dz

ψi/Nz , z̄ =
∑
i∈Dz

zi/Nz, and Sψz =∑
i∈Dz

(ψi − ψ̄)(zi − z̄)/Nz . Asymptotic NILE over Dz is the case, as Nz = |Dz| → ∞,
provided (1.2) and

Sψz → 0 , (1.4)

i.e. ψi and zi are empirically uncorrelated over the set Dz . Notice that (X, y) can be treated
as constants in (1.4), to be incorporated in a design-based approach to sample survey data,
where record linkage is needed. The assumption (1.4) is weaker than (1.3), since (1.3)
implies (1.4), but not vice versa.

Since regression analysis is conditional on X , other authors using the linkage-model
approach assume non-informative linkage error is the case if aij’s are independent of y
conditional on X (Lahiri & Larsen (2005); Chambers (2009)). While the formulation is
parsimonious, in reality it is not weaker than the definition here, as we discuss below. Let ci
be the linkage key variables, and c(1)

i the observed value of ci in D1 and c(2)
i that in D2. In

many applications, ci is not involved in the regression, such as when ci consists of Name,
Date of Birth and Address. It seems reasonable to assume that the potential measurement
errors affecting (c(1)

i , c
(2)
i ) are independent of (xi, yi) given ci. Let C,C(1), C(2) be the

matrix notation for ci, c
(1)
i , c

(2)
i , we would then have

Pr(aii = 1, ℓi = 1|X, y,C,C(1), C(2)) = Pr(aii = 1, ℓi = 1|C,C(1), C(2)),

so that (λi, ψi) neither depend on y nor X , either conditional on (C,C(1), C(2)) or after
integrating out (C,C(1), C(2)) with respect to whichever distribution they have.

It is still possible sometimes that a key variable, which necessarily is present in both
datasets, may be related to the x-variables, but not the y-variable. For example, Age or
Country of Birth may form part of xi, possibly after some regrouping. Let xic contain these
common variables between ci and xi. Let xRi be the remaining x-variables, and cRi the
remaining key variables. The NILE assumption is satisfied provided xic is used as blocking
variables in record linkage, such that only records within the same block can possibly be
linked to each other, because the blocking variables are considered to be free of measurement
errors. This is typically the case with the variables Age and Country of Birth.

However, it is conceivable that the overlapping xic is not used as a blocking variable.
It is currently an open question how to deal with informative linkage errors. The problem
is complicated not least when the observed values (x(1)

ic , x
(2)
ic ) may differ from the true xic

and, depending on the method of record linkage, x(1)
ic may or may not be equal to x(2)

ic
given ℓi = 1. Thus, the value of xic to be used in the linkage-data linear regression may
be subjected to measurement error, whether or not record i is correctly linked. In this
Chapter we shall assume that the potential linkage error due to such key-variable covariates
is negligible compared to the rest key variables cRi , so that the NILE assumption remains
acceptable. The same is needed when non-informativeness is defined conditionally given X .
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1.2.3 OLS based on Gold linkage

For the first estimator of β to be considered, we assume the linked set is such that
missing match is possible but not false links, to be referred to as a Gold linkage procedure.
Denote by D∗

G = D∗
1 = D∗

2 the Gold linkage set, which involves a further selection from
all the links that otherwise might have been considered acceptable. Linkage procedures
that allow false links are referred to as sub-Gold linkage. The terms Gold and sub-Gold are
only used as shorthands of the two record linkage settings, and no emotive connotation is
intended. We have λi = Pr(aii = 1|ℓi = 1) = 1 by Gold linkage. Denote by β̃ the ideal
OLS based on (x, y)M , and by β̂G the OLS based on (x, y)D∗

G
, which are, respectively,

β̃ = (
∑
i∈DM

xix
⊤
i )−1(

∑
i∈DM

xiyi),

β̂G = (
∑
i∈D∗

G

xix
⊤
i )−1(

∑
i∈D∗

G

xiy
∗
i ) = (

∑
i∈D∗

G

xix
⊤
i )−1(

∑
i∈D∗

G

xiyi). (1.5)

Proposition 1 Asymptotically, as NM = |M | → ∞, we have β̂G − β̃
P→ 0, provided

(g1) NILE assumption (1.2), with λi ≡ 1, and (1.4) over DM ,

(g2) E(N∗
G/NM ) → ψ > 0, where N∗

G = |DG∗ |.

Under the regression model, the variance of β̂G conditional on XD∗
G

is given by

V (β̂∗
G) = (X⊤

D∗
G
XD∗

G
)−1(X⊤

D∗
G
V (yD∗

G
)XD∗

G

)
(X⊤

D∗
G
XD∗

G
)−1.

The convergence can be established directly under (g1) and (g2), where the x- and y-values
are treated as constants. For any zi = z(xi, yi) for i ∈ DM , we have

E
( ∑
i∈D∗

G

zi|X, y
)

= E
( ∑
i∈DM

ℓizi|X, y
)

=
∑
i∈DM

E(ℓi|X, y)zi =
∑
i∈DM

ψizi

Thus, ℓi being an unbiased estimator of ψi, we have
∑
D∗

G
zi/NM − ψ̄z̄

P→ 0, provided (g1).

Provided (g2), so that ψ̄ → ψ, we have
∑
D∗

G
zi/N

∗
G − ψ̄z̄

P→ 0. The result β̂G − β̃
P→ 0

follows from replacing zi with xix⊤
i and xiyi in both the estimators.

We notice that the consistency of β̂G given by (1.5) holds when record linkage fol-
lows sampling from D1 or D2 or both, provided sampling is non-informative of the x-
and y-values in DM . Finally, in the case of V (yDM

) = σ2INM ×NM
, V (β̂∗

G) reduces to
(X⊤

D∗
G
XD∗

G
)−1σ2. The relative efficiency to the ideal β̃ converges to 1/ψ, as NM → ∞

asymptotically.

1.2.4 Covariance of (xi, y∗
i )

To estimate β based on sub-Gold linkage, we shall make use of the covariance between
xi and its linked y-value. The result below holds for any analysis of interest, not just linear
regression. For any i ∈ D1, we observe xi. At most one link is allowed for each record. For
any linked record i ∈ D∗

1, its linked y-value is given by y∗
i =

∑
j∈D2 aijyj . Provided NILE
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(1.2), for any i ∈ DM , we have

Cov(xi, y∗
i |ℓi = 1) = Cov(xi, aiiyi|ℓi = 1) +

∑
j ̸=i

Cov(xi, aijyj |ℓi = 1)

= E(aii|ℓi = 1)Cov(xi, yi) +
∑
j ̸=i

E(aij |ℓi = 1)Cov(xi, yj).

As long as xi and yj are uncorrelated for i ̸= j, we have Cov(xi, y∗
i |ℓi = 1, aii = 1) =

Cov(xi, yi) given correct linkage, and Cov(xi, y∗
i |ℓi = 1, aii = 0) = 0 given false link of

any matched entity i ∈ DM , or linkage of an unmatched unit i ∈ D1 \DM . It follows that,
for any i ∈ D1,

Cov(xi, y∗
i |ℓi = 1) = λiCov(xi, yi),

where λi is given by (1.2). That is, false links on average move the observed covariance
among the linked pairs of records towards zero. Moreover, to account for the effective
matched sample size of the empirical covariance between xi and y∗

i over the linked set D∗
1,

one only needs to know the total number of correct matches in D∗
1, but not necessarily the

individual λi’s. The idea is developed below.

1.2.5 Pseudo-OLS based on sub-Gold linkage

Given any sub-Gold linkage procedure, let the Pseudo-OLS fit of β be given by

β̂P =
( 1
N∗X

⊤
D∗

1
XD∗

1

)−1(x̄ȳ∗ + λ̂−1Sxy∗) (1.6)

= λ̂−1β̂∗ − (λ̂−1 − 1)
( 1
N∗X

⊤
D∗

1
XD∗

1

)−1
x̄ȳ∗, (1.7)

where x̄ =
∑
i∈D∗

1
xi/N

∗, and ȳ∗ =
∑
i∈D∗

1
y∗
i /N

∗, and Sxy∗ =
∑
i∈D∗

1
(xi − x̄)(y∗

i −
ȳ∗)/N∗, and λ̂ is an estimate of the number of correct matches among the actual links.
Notice that λ̂ can be obtained for the realised D∗

1. The expression (1.6) reveals that the
Pseudo-OLS is based on a linkage-error adjustment of the observed covariance between xi
and y∗

i in the linked dataset, whilst the expression (1.7) shows it as a linear adjustment of
the naïve face-value OLS β̂∗ =

(
X⊤
D∗

1
XD∗

1

)−1
X⊤
D∗

1
y∗.

Example For simple linear regression yi = α+ βxi + ϵi, the Pseudo-OLS is given by

[
α̂P
β̂P

]
=
[

1 x̄
x̄ 1

N∗
∑
i∈D∗

1
x2
i

]−1 [
ȳ∗

x̄ȳ∗ + λ̂−1Sxy∗

]

⇒ β̂P = λ̂−1Sxy∗

S2
x

= λ̂−1
∑
i∈D∗

1
(xi − x̄)(y∗

i − ȳ∗)∑
i∈D∗

1
(xi − x̄)2 and α̂P = ȳ∗ − x̄β̂P ,

where β̂P is a multiplicative adjustment of the face-value OLS of the slope away from 0,
for λ̂ < 1. This is intuitive because, given a false link is made for i ∈ D∗

1, the face-value
covariance (xi − x̄)(y∗

i − ȳ∗) = (xi − x̄)(yj − ȳ∗) has approximately expectation zero,
as long as xi and yj are uncorrelated for j ̸= i. So the face-value estimate of the slope is
biased towards 0. To adjust for the bias, notice that the effective sample size underlying the
linked sample covariance Sxy∗ is just the number of true matches among the links, which is
estimated by λ̂N∗. This is the basic idea underlying the Pseudo-OLS (1.6).
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Consistency conditions for Pseudo-OLS

Given sub-Gold linkage, we have E(N∗
MM |D∗

1M ) =
∑
i∈D∗

1M
λi =

∑
i∈D∗

1
λi =

E(N∗
MM |D∗

1), because λi = 0 for the unmatched entities inD∗
1\D∗

1M . We have β̂P−β̃ P→ 0,
if the difference between each term in (1.6) and its counterpart in β̃ converges to zero
in probability. In addition to the NILE assumption and the consistency of λ̂, regularity
conditions are needed regarding the values of (x, y) associated with the matched entities
in DM and x (or y) of the unmatched entities in D1 (or D2). All the conditions are given
below in Proposition 2, the proof of which is given in Appendix 1.6.

Proposition 2 Asymptotically, as NM = |M | → ∞, we have β̂P − β̃
P→ 0, provided

(p0.1) Cov(xi, yj) = 0 for j ̸= i, i ∈ D1 and j ∈ D2,

(p0.2)
∑
i∈DM

xi/NM −
∑
i∈D1 xi/N1 → 0,

(p0.3)
∑
j∈DM

yj/NM −
∑
j∈D2 yj/N2 → 0,

(p1) NILE assumption (1.2) and (1.4), where (1.4) holds over D1 as well as D2,

(p2) E(N∗) → ∞, and E(N∗
MM/N

∗) → λ > 0, and λ̂ P→ λ.

Variance estimation

It is impractical to allow heterogeneous variance of ϵi, because we do not know the
x-values in the case of a false link. We shall therefore assume V (yi) = σ2 for all i ∈ D2.
Provided NILE, it is natural to condition on the realised N∗. Given false link of i ∈ D∗

1, we
have y∗

i = yj , for some j ∈ D2 and j ̸= i, where the record j may or may not belong toDM .
In the case of j ̸∈ DM , we shall assume that there nevertheless exists a vector xj under the
regression model, even though j ̸∈ D1. Thus, we shall condition on (XD1 , XD2\DM

, N∗)
throughout the following. We have

V (β̂P ) = ( 1
N∗X

⊤
D∗

1
XD∗

1
)−1V (x̄ȳ∗ + λ̂−1Sxy∗)( 1

N∗X
⊤
D∗

1
XD∗

1
)−1.

Now, given the linkage matrix A = [aij ], where at most one link is allowed for a record,
y∗
i = yj is conditionally independent of y∗

k = yl for i ̸= k, since j ̸= l regardless if (i, j)
and (k, l) are true matches or not. Thus, we have

V (x̄ȳ∗ + λ̂−1Sxy∗) = V (x̄ȳ∗) + V (λ̂−1Sxy∗),

since Cov(ȳ∗, y∗
i − ȳ∗|A) = 0, hence Cov(ȳ∗, λ̂−1Sxy∗ |A) = 0 and Cov(ȳ∗, λ̂−1Sxy∗) =

0. By working out V (x̄ȳ∗) and V (λ̂−1Sxy∗) – see Appendix 1.6 for details, we obtain

V (β̂P ) ≈ (X⊤
D∗

1
XD∗

1
)−1σ2 + ( 1

N∗X
⊤
D∗

1
XD∗

1
)−1∆( 1

N∗X
⊤
D∗

1
XD∗

1
)−1, (1.8)

where

Sxx = 1
N∗

∑
i∈D∗

1

(xi − x̄)(xi − x̄)⊤ and ∆ =
( 1
λ2 − 1

) σ2

N∗Sxx + V (λ̂)Sxxββ⊤S⊤
xx.
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Clearly, linkage errors cause a loss of efficiency, since the first term on the right-hand
side of (1.8) would have been the variance had all the links been true matches and adjustment
not needed. The extra variance depends on ∆, which has two contributing terms: one due
to the smaller effective sample size N∗

MM compared to the face-value sample size N∗, the
other due to the estimation uncertainty of the adjustment factor λ̂. Compared to β̂G by Gold
linkage, the first term of (1.8) is smaller than V (β̂G), since D∗

G ⊂ D∗
1. However, the extra

uncertainty in (1.8) due to ∆ may still possibly cause loss of efficiency of sub-Gold linkage
compared to Gold linkage. The matter is explored empirically in Section 1.5.

For plug-in variance estimation, we need an estimate of σ2, in addition to β̂P and λ̂.
Applying the standard formula of OLS variance estimator to the linkage data, we obtain

S∗
ee = 1

N∗ − p

∑
i∈D∗

1

(y∗
i − β̂⊤

P xi)2 = 1
N∗ − p

∑
i∈D∗

1

[(yji − β̂⊤
P xji) − β̂⊤

P (xi − xji)]2,

E(S∗
ee)

P→ σ2 + 2(1 − λ)β⊤E(Sxx)β,

as NM → ∞, where ji ∈ D2 is linked to i ∈ D1, and (xi − xji) = 0 with probability
λi. The face-value estimator of σ2 has therefore an upwards bias asymptotically, which is
bounded by the overall false linkage rate 1 − λ, and can be adjusted accordingly.

1.2.6 Asymptotic bias when using the ELE-model

The ELE-model treats incomplete match space as if it were complete. To examine the
resulting bias, consider β̂A =

(
X⊤
D∗

1
P (λ)XD∗

1

)−1
X⊤
D∗

1
y∗, where

P (λ) = λIN∗×N∗ + λN∗(11⊤ − I)N∗×N∗ , λN∗ = 1 − λ

N∗ − 1 ,

X⊤
D∗

1
P (λ)XD∗

1
= G+H, G = λX⊤

D∗
1
XD∗

1
, H = λN∗N∗(N∗x̄x̄⊤ − 1

N∗X
⊤
D∗

1
XD∗

1
).

An estimate of the overall true match rate among the links is used as λ̂. By a Lemma due to
Miller (1981): (G+H)−1 = G−1 + (1 + g)−1G−1HG−1, where g = tr(HG−1), we can
write

β̂A(λ) = 1
λ
β̂∗ − λN∗N

λ2(1 + g)(X⊤
D∗

1
XD∗

1
)−1(N∗x̄x̄⊤ − 1

N∗X
⊤
D∗

1
XD∗

1
)β̂∗.

Let x̄⊤( 1
NX

⊤
D∗

1
XD∗

1
)−1x̄

P→ κx, as N∗ → ∞, we have

g = tr
(λN∗N∗

λ
(N∗x̄x̄⊤ − 1

N∗X
⊤
D∗

1
XD∗

1
)(X⊤

D∗
1
XD∗

1
)−1)

= λN∗N∗

λ

(
x̄⊤( 1

N∗X
⊤
D∗

1
XD∗

1
)−1x̄− p

N∗
) P→ 1 − λ

λ
κx.

Let ( 1
N∗X⊤

D∗
1
XD∗

1
)−1x̄x̄⊤ → ζ, as N∗ → ∞. Provided consistent Pseudo-OLS, we have

β̂A − β̂P
P→ 1 − λ

λ
ζβ − 1 − λ

λ
(
κx + (1 − κx)λ

)ζ(β + E(β̂∗ − β)
)
,

which is the asymptotic bias of β̂A. In cases κx ≈ 1 and λ ≈ 1, the asymptotic bias is of
the magnitude (1 − λ)ζE(β̂∗ − β), which is bounded by the false linkage rate 1 − λ. Then,
direct application of the ELE-model estimator can nevertheless remove almost all the bias
of the face-value OLS.
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Example Consider yi = α+βxi+ ϵi. Let
∑
i∈D∗

1
x∗
i /N

∗ P→ µx and
∑
i∈D∗

1
(x∗
i )2/N∗ P→

τx. We have

κx = [1 µx]
[

1 µx
µx τx

]−1 [ 1
µx

]
= τx − µ2

x

τx − µ2
x

= 1.

It follows that the asymptotic bias of β̂A based on the ELE-model is given by

E(β̂A − β) = −1 − λ

λ
ζE(β̂∗ − β) = −1 − λ

λ

[
[1 µx]E(β̂∗ − β)

0

]
,

ζ =
[

1 µx
µx τx

]−1 [ 1 µx
µx µ2

x

]
=
[

1 µx
0 0

]
.

In other words, the slope estimator is unbiased asymptotically, as N∗ → ∞; the bias of the
intercept estimator is negligible as well, e.g. it is about 2% of the bias of the face-value
OLS if the overall false linkage rate is 2%, despite heterogeneous linkage errors. This is
thus a favourable setting, under which the estimator can be robust against departures from
ELE-model assumptions.

1.3 A diagnostic test for NILE

In one form or another, assumptions of non-informative linkage errors are required in all
the existing least-squares methods. For β̂G and β̂P developed above, it is natural to ask if
one can test whether the NILE assumption is acceptable in a given application. Provided
both the estimators are consistent, we have β̂G − β̂P

P→ 0, as N∗
G → ∞, which suggests the

following diagnostic test statistic

t = (β̂G − β̂P )⊤V (β̂G − β̂P )−1(β̂G − β̂P ) ∼ χ2
p (1.9)

for H0 : NILE (g1) and (p1) vs. H1 : not both (g1) and (p1). Provided asymptotic normal
distribution of β̂G − β̂P , as NM = |M | → ∞, t follows the χ2

p-distribution. The test
(1.9) bears some resemblance to that of Hausman (1978). However, neither β̂G nor β̂P is
consistent under H1, and neither of them is fully efficient under H0. In addition, β̂P also
involves the estimate of the parameter λ in the denominator, thus, the power of the test
can be limited compared to that of Hausman (1978), and we need to derive the variance
V (β̂G − β̂P ) directly.

Let D∗
G and D∗

P be the set of linked entities from D1 under Gold and sub-Gold linkage,
respectively. The variance V (β̂P ) is given by (1.8) on replacing D∗

1 with D∗
P , whereas

V (β̂G) = (X⊤
D∗

G
XD∗

G
)−1σ2. As shown in Appendix 1.6, the covariance Cov(β̂G, β̂P ) can

be given by

Cov(β̂G, β̂P ) ≈ σ2

λN∗
P

HG(x̄Gx̄⊤
G + S2

G)HP + (1 − 1
λ

) σ
2

N∗
P

HGx̄Gx̄
⊤
PHP

= σ2

λN∗
P

HP − ( 1
λ

− 1) σ
2

N∗
P

HGx̄Gx̄
⊤
PHP , (1.10)

whereHG = ( 1
N∗

G

∑
i∈D∗

G
xix

⊤
i )−1 and x̄G = 1

N∗
G

∑
i∈D∗

G
xi, andHP = ( 1

N∗
P

∑
i∈D∗

P
xix

⊤
i )−1

and x̄P = 1
N∗

P

∑
i∈D∗

P
xi. Notice that, in case λ ≈ 1, the covariance is dominated by the first

term, and the difference between the first terms of (1.10) and (1.8) is positive definite since
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1/λ > 1. Moreover, λN∗
P is the asymptotic expectation of the number of true matches by

sub-Gold linkage, which can easily be larger than N∗
G unless all the additional links are false.

One may therefore expect positive definite V (β̂G) − Cov(β̂G, β̂P ), since HP −HG
P→ 0

provided the consistency conditions for β̂G and β̂P .

1.4 An application to income data

The data of this application refers to administrative tax registers of income declarations
in 2014 and 2015. The linkage procedure aims to connect incomes in the two years related
to the same individuals. The linkage key variables are generally of good quality, though in
some cases they can be missing or affected by errors. The linkage is carried out at the Italian
National Institute of Statistics, and the false linkage rate is assessed to be between 1.18%
and 3.76%. No information about the linkage errors at the individual level are available to
us. We consider a simple linear regression model, where the income in 2014 is treated as x
and that in 2015 as y. The analysis here is concerned with the data from a small locality,
where there are 791 individuals in the tax register in 2014 and 771 in 2015. The linked set
contains 711 individuals. A scatter plot of the associated (x, y)M∗ is given in Figure 1.2.
The application illustrates an advantage of using administrative data, which allows one to
carry out analysis at a detailed level that cannot be supported by sample surveys otherwise.
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Figure 1.2. Scatter plot of linked income data in the application.

For this linkage dataset, we calculate the face-value OLS β̂∗, the estimators β̂LL and
β̂A under the ELE-model, as well as the Pseudo-OLS β̂P that allows for heterogeneous
linkage errors and incomplete match space. Without information about the false linkage
probabilities of the individual links, we cannot further select a Gold linkage set D∗

G, or
implement the diagnostic test (1.9). The Gold-linkage OLS β̂G and the diagnostic test (1.9)
will be investigated in a simulation study in Section 1.5.

Table 1.1 shows the estimated regression coefficients and their associated confidence
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Table 1.1. Estimates of year-on-year income intercept and slope, with associated confidence intervals

False linkage rate fixed at 1.18%
Estimator Intercept Confidence Interval Slope Confidence Interval
β̂∗ 90.644 [-114.217 , 295.505] 0.983 [0.968 , 0.998]
β̂LL 7.191 [-242.640 , 257.023] 0.994 [0.961 , 1.028]
β̂A 52.242 [-139.454 , 243.938] 0.983 [0.964 , 1.002]
β̂P 7.310 [-129.794 , 144.414] 0.994 [0.984 , 1.005]

False linkage rate fixed at 3.76%
Estimator Intercept Confidence Interval Slope Confidence Interval
β̂∗ 90.644 [-114.217 , 295.505] 0.983 [0.968 , 0.998]
β̂LL -182.411 [-598.275 , 233.451] 1.021 [0.960 , 1.082]
β̂A -125.782 [-407.104 , 155.541] 1.007 [0.976 , 1.037]
β̂P -182.012 [-330.779 , -33.246] 1.021 [1.001 , 1.032]

intervals. The face-value OLS suggests that the regression model can explain most of the
variation in the dependent variable (R2 = 0.958). In particular, the relative standard error of
the slope estimator is only 0.007, which is of the same magnitude as the aforementioned
false linkage rates. It follows that the bias due to the false links is not a negligible source of
error, compared to the variance of the slope estimator, so that appropriate adjustment of the
linkage errors is important in this case.

Fixing the overall false linkage rate 1 − λ either at 1.18% or 3.76%, the other estimates
and their associated confidence intervals are given in Table 1.1. It can be seen that β̂A
deviates least from the face-value OLS, for both values of λ; whereas β̂LL and β̂P are close
to each other. However, the Pseudo OLS β̂P is apparently much more efficient compared to
the ELE-model estimators. For example, at 1 − λ = 1.18%, the width of the confidence
interval is 0.067 for the slope estimator by β̂LL, whereas it is 0.021 by β̂P , according to
which the variance ratio between the two is only about 10%. The efficiency gain is somewhat
greater at 1 − λ = 3.76%.

A reason that the Pseudo-OLS can be more efficient than the ELE-model estimators is
that the linkage-error adjustment affects only the linked sample covariance Sxy∗ , but not the
marginal sample quantities such as the means of x and y or the matrix X⊤

D∗
1
XD∗

1
. Of course,

there is the possibility that the comparison here may be affected by the quality of variance
estimation, so that the relative efficiency is not accurately assessed. We shall examine this
point in the simulation study in Section 1.5.

The variance formula (1.8) allows one to incorporate the estimation uncertainty in λ̂,
which is not available to the existing ELE-model estimators in closed-form expression.
Since we are not provided an estimate of V (λ̂), we proceed in a practical manner as
follows. Treating the reported range of false linkage rate as if it were a 95% normality-based
confidence interval for 1 − λ, we obtain the centre point 1 − λ̂ = 2.47% as an estimate of
1−λ, and we use the quarter length 0.645% as an estimate of SE(λ̂). Applying β̂P with this
λ̂ and its associated estimate of V (λ̂), we obtain the regression coefficient estimates -86.099
and 1.008 for the intercept and slope, respectively, with associated confidence interval
[-258.478 , 86.279] for the intercept and [0.991, 1.024] for the slope. As can be expected,
the point estimates are between the corresponding ones reported in Table 1.1. The width
of the confidence interval for the slope is now 0.033, compared to 0.031 when 1 − λ is
fixed at 3.76% and 0.021 when 1 − λ is fixed at 1.18%. Thus, it would be misleading if
the inference does not take into account the uncertainty due to the estimation of λ. This is
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another advantage of the Pseudo-OLS method.
In this application, an interesting development is the linkage adjustment of two-part

models for semi–continuous data, which may be appropriate to deal with concentration of
zeros in income values.

1.5 A simulation study

We have four main objectives for this simulation study. First, we would like to be
reassured that the apparent efficiency gains of the proposed Pseudo-OLS is not misleading.
Second, a related question is the quality of associated variance estimation. Third, since one
does not know to what extent the assumption of exchangeable linkage errors is violated in the
application, confirmation can be obtained by simulation that the Pseudo-OLS estimator does
hold in the presence of heterogeneous linkage errors. Four, we would like to investigate the
performance of the diagnostic test for the NILE assumption. To the end of these objectives,
we devise three scenarios below in Section 1.5.1.

1.5.1 Set-up

Scenario I: Real-life linkage and regression data. This scenario addresses all the four
objectives.

The ESSnet-DI is a Eurostat project on data integration from 2009 to 2011. We use the
data disseminated by ESSnet-DI (Heasman & (2011)), which are freely available online.
The dataset comprises over 26000 individuals. It contains synthetic linkage key variables
(names, dates of birth, addresses) for each individual. The key variables are distorted by
missing values and typos in several different ways, which imitate real-life errors in these
variables that can cause potential linkage errors. One can observe the true linkage errors by
comparing the links with the true matches that are known.

For real-life regression data, we attach anonymised income data to each individual in the
ESSnet-DI population, which are drawn randomly and with replacement from the linked tax
data, but without being limited to the locality (in Section 1.4) with only 711 linked records.
A scatter plot of the synthetic population income data is given in Figure 1.3. It can be seen
that a simple linear regression model remains plausible for the simulated population values.
However, there are now clearly outliers to the regression model, drawn from outside the data
in the application (Figure 1.2). We do not remove the outliers, since it would be interesting
to explore how they might affect the results.

To simulate repeated linkage and regression analysis, each time we draw first a sample
of 1000 individuals from this fixed synthetic population. We then break up the sample
into two separate sets D1 and D2, where D1 is selected from the 1000 individuals by
Bernoulli sampling with probability π1 = 0.93, and D2 by separate Bernoulli sampling with
probability π2 = 0.92. This creates an incomplete match space, where the expected number
of matched individuals between D1 and D2 is 1000π1π2 ≈ 856.

Using a chosen set of key variables, probabilistic linkage by the approach of Fellegi &
Sunter (1969) is implemented using the software Relais (2015). Over 100 simulations, the
average match rate N∗

MM/NM is 83.3% and the false linkage rate 1 −N∗
MM/N

∗ is 2.016%,
i.e., the sub-Gold linkage setting. For Gold linkage, we use a different set of key variables
with fewer errors. Over 100 simulations, the average match rate is reduced to about 50%,
while the false linkage is reduced to 0.046%. The linkage errors are heterogeneous across
the different individuals.

We apply β̂G by (1.5) to each Gold linkage set. For each sub-Gold linkage set, we obtain
β̂P by (1.6), as well as the ELE-model estimators β̂LL and β̂A. For these adjustments we
use the true overall false linkage rate λ in each linked set. We do not simulate additional
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Figure 1.3. Scatter plot of synthetic income data in the ESSnet-DI population.

estimation of λ, as it is not in the focus of this Chapter and it would affect all the adjustment
methods equally. Finally, we apply the diagnostic test (1.9) based on β̂G and β̂P .

Scenario II: Real-life linkage data, artificial regression data. We expect Scenario-I
can help us to better understand the application results in Section 1.4. Insofar as the fixed
synthetic population of income data may have certain peculiar features that complicate the
interpretation, we generate additional artificial regression data, reusing the simple linear
regression setting of Chambers (2009), where

yi = 1 + 5xi + ϵi, xi ∼ Uniform(0, 1) and ϵi ∼ N(0, 1).

Since the linear regression model holds, while the linkage errors remain uncontrolled and
realistic, in Scenario-II we are able to isolate the effects of linkage errors on the estimators.
The simulation of repeated linkage and regression analysis is the same as under Scenario-I,
except that for each sample of 1000 individuals, we now simulate (xi, yi), for i = 1, ..., 1000,
independently according to the specific regression model above. Regression analysis is then
based on these (x, y)-values instead of the real-life income data.

Scenario III: Artificial linkage and regression data. To confirm that β̂G and β̂P can
deal with heterogeneous linkage errors under the NILE assumption, we simulate artificial
linkage data by reusing the setting of Chambers (2009). For each sample of 1000 individuals,
we first simulate artificial (x, y)-values as in Scenario-II. Next, the 1000 individuals are
randomly divided into three blocks. The first block contains 75% of the individuals, where
λi ≡ 1, so that these can be linked perfectly. The second block contains 15% individuals,
where λi ≡ 0.95, so that the linkage results would be fairly good for them. The third block
contains the remaining 10% individuals, where λi ≡ 0.75, and the linkage results would be
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Table 1.2. Results for variance estimation over 100 simulations

Intercept
Scenario True Naïve β̂LL β̂A β̂P β̂G
I Standard Error 386.1 457.1 1222.7 575.8 388.9 545.1

SE Estimator 2431.7 2604.5 2645.2 1256.1 2645.2 3233.6
II Standard Error 0.069 0.077 0.079 0.079 0.075 0.098

SE Estimator 0.078 0.086 0.086 0.087 0.086 0.098
III Standard Error 0.043 0.042 0.043 0.044 0.043 0.051

SE Estimator 0.045 0.048 0.048 0.047 0.046 0.052
Slope

Scenario True Naïve β̂LL β̂A β̂P β̂G
I Standard Error 0.012 0.015 0.052 0.022 0.013 0.018

SE Estimator 0.113 0.118 0.120 0.057 0.120 0.149
II Standard Error 0.119 0.134 0.138 0.138 0.131 0.171

SE Estimator 0.131 0.149 0.150 0.151 0.150 0.160
III Standard Error 0.075 0.074 0.075 0.074 0.077 0.081

SE Estimator 0.078 0.083 0.084 0.083 0.080 0.089

rather poor for them. Moreover, we do not simulate subsampling of D1 and D2, so that we
have complete match space by construction. The linked set can now be simulated directly,
without actually implementing any linkage procedure. Had we broken up the sample into
D1 and D2, dividing the 1000 records in three blocks, and linked every record in D1 to one
in D2 from the same block, the linkage errors would have been on expectation the same as
we have just specified.

This yields an overall false linkage rate that equals to 0.9675, which is quite close
to that in Scenario-I (and II). Given each simulated linkage set, we calculate β̂P using a
single adjustment factor λ = 0.9675, and the ELE-model estimators given block-diagonal
P -matrix with known λ-values. We can see how well β̂P handles heterogenous linkage
errors by comparing it to the benchmark ELE-model estimators. Finally, we simply calculate
β̂G based on the first-block of links.

1.5.2 Results of regression coefficient estimators

Figure 1.4 shows the Percentage Relative Errors (PREs) of the different regression
coefficient estimates. For each linked set, the ‘error’ of an estimate is calculated as its
difference to the corresponding true OLS estimate β̃, based on the matched individuals
DM as when linkage is unnecessary. Over the top margin of each box-plot, we report the
actual coverage rates of the nominal 95% confidence intervals using the associated variance
estimators. Table 1.2 provides the empirical standard error (SE) of each estimator over the
100 simulations, and the corresponding average of the 100 SE estimates.

Consider the results under Scenario-I, which are immediately relevant to those in Section
1.4. First, as expected, the presence of false links weakens the observed correlation between
xi and y∗

i . Hence, the face-value estimate of the slope is negatively biased when the true
slope is positive, and the intercept estimate is biased in the opposite direction. It can be seen
in Figure 1.4 that all the adjusted estimators are less biased than the face-value OLS, where
β̂LL and β̂P have the most similar expectations, which is compatible with the application
results in Table 1.1, where these two estimators are closest to each other. Moreover, it
illustrates that in case of heterogeneous but low false linkage probabilities, the ELE-model
estimators can nevertheless remove most of the bias, as discussed in Section 1.2.6.
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Next, according to the SEs in Table 1.2, the Pseudo-OLS is the most efficient of all
the linkage-data estimators, including the face-value OLS. The relative efficiency to the
ELE-model estimators is comparable to that estimated in Table 1.1. This suggests that the
gains are genuine in the application. Since β̂P is calculated using λ instead of its estimate
here, the efficiency gains against β̂G are somewhat over-stated. Nevertheless, generally one
may expect β̂P to be more efficient than β̂G, as long as the effective sample size N∗

MM is
much larger based on sub-Gold linkage (e.g. with about 2% false linkage rate here) than
based on Gold linkage (e.g. with about 50% missing match rate here).

Meanwhile, the means of the SE estimators (Table 1.2) over the 100 simulations show
that all the variances are over-estimated considerably, including the true OLS, and the
coverage of the 95% confidence intervals are very erratic. This is mainly caused by the
regression model outliers in this case, as noticed earlier for Figure 1.3. Thus, these results
serve well as a reminder that, in linkage-data regression, one must not forget about the
problems that can also cause troubles in the absence of linkage errors. Notice that variance
over-estimation is not a problem for the application results in Table 1.1, where critical
outliers are absent from the linked dataset (Figure 1.2).

When it comes to Scenario-II, we can see in Figure 1.4 that all the adjusted estimators
are nearly unbiased, as can be expected given the results under Scenario-I. The Pseudo-OLS
remains the most efficient linkage-data method. The results of variance estimation appear
acceptable for all the estimators, now that outlier-contaminated income data are replaced by
true regression data. While there still exists some slight over-estimation of the variance, it is
not related to the adjustment methods, because the amount of over-estimation for them is
comparable to that for the true OLS. The coverage of the confidence interval derived from
the face-value OLS is improved compared to that in Scenario-I, because its bias is relatively
small here. Nevertheless, bias adjustment is preferable.

The ELE-model assumptions of β̂LL and β̂A are fully satisfied in Scenario-III. Likewise
for β̂G under the NILE assumption. Despite β̂P uses only an overall false linkage rate,
Figure 1.4 shows clearly that it is as effective as the benchmark estimators at reducing
the bias due to the linkage errors. This confirms that the Pseudo-OLS can accommodate
heterogeneous linkage errors in a simple manner, provided the NILE assumption is satisfied.
The Pseudo-OLS is no longer the most efficient method here, which is not surprising given
that the assumptions of the other estimators are exactly satisfied. The principal advantages
of the Pseudo-OLS lies in real-life situations, where the match space is incomplete and the
secondary analyst has no detailed knowledge of the record linkage procedure, such as the
three blocks of linkage errors in this case. The results of variance estimation are acceptable
for all the estimators. Due to increased bias relative to its variance, the face-value OLS again
leads to low coverage here. The coverages rates derived from (β̂LL, β̂A, β̂P , β̂G) deviate
from the nominal 95% level by one or two percentage points in Figure 1.4. It is reassuring
to notice that this is simply due to the Monte Carlo error of the 100 simulations, because all
the coverage rates converge to 95% as we increase the number of simulations to 1000, now
that the assumptions of the benchmark estimators are satisfied here.

1.5.3 Results of diagnostic test

The results of the diagnostic test for the NILE assumption are given in Figure 1.5. Under
each scenario, the histogram of the test statistic values over 100 simulations are compared to
the χ2 density function with 2 degrees of freedom, which is the distribution under the null
hypothesis. At the 5% significance level, the rejection rate over the 100 simulations is 0.63
under Scenario-I, 0.06 under Scenario-II and 0.02 under Scenario-III.

Take first Scenario-III, where the set-up satisfies both the NILE assumptions and the
regression model, the histogram of the test statistic values agrees reasonably well with its
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Figure 1.5. Diagnostic test for NILE assumption under Scenario-I to III: χ2
2 density function (solid)

with 95th percentile (vertical dashed), histogram of observed test values over 100 simulations.
Additional Scenario-II∗ with rejection ratio 0.04 over 100 simulations.

theoretical null distribution. Provided the relevant NILE assumptions, the higher missing-
match rate of Gold linkage and the heterogenous linkage errors of sub-Gold linkage on
expectation do not lead to unbalanced selection of the linked entities under either. Over
the 100 simulations, the rejection rate of the diagnostic test at the 5%-level is 0.02, which
appears to agree with the actual performance of β̂P and β̂G.

Next, the set-up of Scenario-II satisfies the regression model assumptions, but it does
not necessarily fulfil the NILE assumption a priori, since the errors of the key variables had
been generated in ways which imitate real-life idiosyncrasies that are beyond our control.
However, over the 100 simulations, the empirical SE of β̂G − β̂P are 0.069 and 0.130 for
the difference of intercept and slope, respectively, whereas the average of the corresponding
SE estimates are 0.066 and 0.116. The histogram of the test statistic values agrees fairly
well with its theoretical null distribution. The rejection rate of the 5%-level test is 0.06,
which again seems reasonable in light of the actual performance of β̂P and β̂G in Figure
1.4. These are evidences suggesting that the relevant NILE assumptions can be met at least
approximately in many practical situations.

Meanwhile, the test performance deteriorates under Scenario-I with real-life data for
regression. For instance, the histogram of the test statistic values does not agree at all with
the theoretical null distribution. The rejection rate of the 5%-level test is 0.63, which is
unnecessarily high in light of the bias reduction that can be achieved by β̂P and β̂G here. The
imbalance of regression outliers between the two linkage sets causes severe under-estimation
of V (β̂G − β̂P ). For example, the empirical SE is 2452.5 for the difference in intercept
estimates and 0.113 for the slope difference, but the average of the corresponding SE
estimates is only 446.7 and 0.015, respectively. The severely under-estimated denominator
of the test statistic (1.9) leads then to the high rejection rate over the simulations.

For confirmation we carried out additional simulations, where we simulated the 3-block
ELE linkage errors, while retaining the real-life income data for regression. The results are
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shown in Figure 1.5, designated as Scenario-II∗, which are similar to those under Scenario-II
and III. The empirical SE is 1380.8 for the intercept difference and 0.061 for the slope,
while the average of SE estimates is 1721.1 and 0.072, respectively, despite the presence of
regression outliers. The rejection rate of the 5%-level test is now 0.04, which would be more
helpful in practice. The cause of these results lies in the different set-ups of Scenario-I and
II∗. Although regression outliers are present in both cases, the linkage errors are randomly
‘assigned’ to the sample units under Scenario-II∗, such that they may affect ‘evenly’ β̂P and
β̂G over repeated simulations. Under Scenario-I, however, the linkage key variables are fixed
for each individual, such that e.g. regression outliers affect only β̂P but not β̂G, provided the
outliers in the population happen to be associated only with sub-Gold linkage individuals but
none of the Gold linkage individuals. Such peculiarities in the fixed population of regression
and key variables can affect the simulation results unexpectedly.

Finally, taking altogether the test results from the simulation study here, it would seem
reasonable that one should not interpret the p-value of the diagnostic test too stringently in
practice, e.g. despite the p-value is only 0.05 or even slightly lower in a given situation, the
estimators assuming non-informative linkage errors are still likely be very helpful.

1.6 Concluding remarks

Heterogenous linkage errors and incomplete match space are likely to prevail in most
applications of record linkage. We propose a practical approach to linkage-data regression
for secondary analysis, which can accommodate both in a simple manner, provided suitable
NILE assumptions of the linkage errors. Application and simulation suggest that the relevant
assumptions can be met at least approximately in many situations. In the simulation studies
where the match space is incomplete, the proposed Pseudo-OLS method is more efficient
than the existing adjustment methods that operate under the approximate assumption of
complete match space. Moreover, we construct for the first time an accompanying diagnostic
test for the NILE assumptions, which can provide helpful guidance in practice. Regarding
future development, we believe additional research is needed for robust variance estimation,
which can better cope with heterogeneous regression errors and potential outliers. As
another current research topic we are developing an extension of our approach to categorical
linkage-data analysis.

Appendix

Proof of Proposition 2

Provided (p1), i.e. (1.4) over D1, we have
∑
i∈D∗

1
xix

⊤
i /N

∗ −
∑
i∈D1 xix

⊤
i /N1

P→ 0,
by the same argument as in Section 1.2.3, where zi = xix

⊤
i for i ∈ D1. Provided (p0.2) in

addition, we have
∑
i∈D∗

1
xix

⊤
i /N

∗ −
∑
i∈DM

xix
⊤
i /NM

P→ 0. Likewise,
∑
i∈D∗

1
xi/N

∗ −∑
i∈DM

xi/NM
P→ 0, and

∑
i∈D∗

1
y∗
i /N

∗ −
∑
i∈DM

yi/NM
P→ 0 by (p1), i.e. (1.4) over

D2, and (p0.3). Notice that the conditions (p0.2) and (p0.3) are needed to ensure that false
links of the unmatched records do not cause asymptotic bias to the ‘marginal’ statistics, i.e.∑
i∈D∗

1
xix

⊤
i /N

∗ and
∑
i∈D∗

1
xi/N

∗ based on D1 and
∑
i∈D∗

1
y∗
i /N

∗ based on D2. Finally,



1.6 Concluding remarks 23

provided (p1), i.e. (1.2) over D∗
1, and (p0.1), we have, as discussed in Section 1.2.4,∑

i∈D∗
1

Cov(xi, y∗
i |ℓi = 1) =

∑
i∈D∗

MM

Cov(xi, yi) +
∑

i∈D∗
1M \D∗

MM

0 +
∑

i∈D∗
1\D∗

1M

0

=
∑
i∈DM

(ℓiaii)Cov(xi, yi).

Let zi = Cov(xi, yi) for i ∈ DM , which is an unknown constant associated with i ∈ DM .
Now that the inclusion probability of i ∈ D∗

MM from DM is λiψi, (p1) entails asymptotic

NILE for ℓiaii over DM , such that
∑
i∈D∗

MM
zi/N

∗
MM −

∑
i∈DM

zi/NM
P→ 0. Notice that

each term of Sxy∗ from D∗
MM is an asymptotically unbiased estimate of the corresponding

Cov(xi, yi), and each term outside of D∗
MM has asymptotic expectation zero, so that

λ−1Sxy∗ − Sxy(M) P→ 0 given (p2), where Sxy(M) is the empirical covariance of (xi, yi)
over DM . The consistency of λ̂ implies then β̂P − β̃

P→ 0.

Approximate variance V (x̄ȳ∗ + λ̂−1Sxy∗)

We have V (x̄ȳ∗|A) = x̄x̄⊤σ2/N∗ andE(x̄ȳ∗|A) = x̄x̄∗⊤β, where x̄∗ =
∑
j∈D∗

2

xj/N
∗ ̸=

x̄ =
∑
i∈D∗

1

xi/N
∗. Conditional on all the x’s, we obtain

V (x̄ȳ∗) = E[V (x̄ȳ∗|A)] + V [E(x̄ȳ∗|A)] = x̄x̄⊤σ2/N∗.

Next, let ν1 = V
(∑

i∈D∗
1
(xi − x̄)(y∗

i − ȳ∗)
)
, where

ν1 =
∑
i∈D∗

1

(xi − x̄)(xi − x̄)⊤V (y∗
i − ȳ∗) +

∑
i∈D∗

1

∑
k ̸=i

(xi − x̄)(xk − x̄)⊤Cov(y∗
i − ȳ∗, y∗

k − ȳ∗)

=
∑
i∈D∗

1

(xi − x̄)(xi − x̄)⊤(1 − 1
n

)σ2 −
∑
i∈D∗

1

∑
k ̸=i

(xi − x̄)(xk − x̄)⊤ 1
n
σ2

=
∑
i∈D∗

1

(xi − x̄)(xi − x̄)⊤σ2 − σ2

n

∑
i∈D∗

1

(xi − x̄)
∑
k∈D∗

1

(xk − x̄)⊤

= N∗Sxxσ
2, for Sxx = 1

N∗

∑
i∈D∗

1

(xi − x̄)(xi − x̄)⊤,

since
∑
k∈D∗

1
(xk − x̄) = 0, such that V (λ̂−1Sxy∗ |A) = Sxxσ

2/(λ̂2N∗). Moreover,

E(λ̂−1Sxy∗ |A) = λ̂−1 1
N∗

∑
i∈D∗

1

(xi − x̄)E(y∗
i − ȳ∗|A) = λ̂−1Sxx∗β ≈ λ̂−1λSxxβ,

where Sxx∗ =
∑
i∈D∗

1
(xi − x̄)(xji − x̄∗)⊤/N∗, and xji is the x-vector for yj that is linked

to the record i in D1, which is uncorrelated to xi unless ji = i. Therefore, asymptotically as
|M | → ∞, we have Sxx∗ ≈ SxxN

∗
MM/N

∗ ≈ λSxx. We obtain

V (λ̂−1Sxy∗) = E
( σ2

λ̂2N∗
Sxx

)
+ V

(
λ̂−1ψSxxβ

)
≈ σ2

λ2N∗Sxx + V (λ̂)Sxxββ⊤S⊤
xx.
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Putting together V (x̄ȳ∗) and V (λ̂−1Sxy∗) from above, we have

V (x̄ȳ∗ + λ̂−1Sxy∗) ≈
(
x̄x̄⊤ + Sxx

) σ2

N∗ + ∆ = ( 1
N∗X

⊤
D∗

1
XD∗

1
) σ

2

N∗ + ∆,

∆ =
( 1
λ2 − 1

) σ2

N∗Sxx + V (λ̂)Sxxββ⊤S⊤
xx,

V (β̂P ) = (X⊤
D∗

1
XD∗

1
)−1σ2 + ( 1

N∗X
⊤
D∗

1
XD∗

1
)−1∆( 1

N∗X
⊤
D∗

1
XD∗

1
)−1.

Covariance of β̂G and β̂P

The estimator β̂G given by (1.5) can be rewritten as

β̂G = HG(x̄GȳG + 1
N∗
G

τG) x̄G = 1
N∗
G

∑
i∈D∗

G

xi ȳG = 1
N∗
G

∑
i∈D∗

G

yi

HG = ( 1
N∗
G

∑
i∈D∗

G

xix
⊤
i )−1 τG =

∑
i∈D∗

G

(xi − x̄G)(yi − ȳG) =
∑
i∈D∗

G

(xi − x̄G)yi

By definition we have D∗
G ⊂ D∗

P and N∗
G < N∗

P . Let D∗
A = D∗

P \ D∗
G consist of the

remaining entities. Let w = N∗
G/N

∗
P , and 1 − w = N∗

A/N
∗
P . We have

β̂P = HP (x̄P ȳP + 1
λ̂N∗

P

τP ) x̄P = 1
N∗
P

∑
i∈D∗

P

xi HP = ( 1
N∗
P

∑
i∈D∗

P

xix
⊤
i )−1

ȳP = 1
N∗
P

∑
i∈D∗

P

y∗
i = wȳG + (1 − w)ȳ∗

A ȳ∗
A = 1

N∗
A

∑
i∈D∗

A

y∗
i

τP =
∑
i∈D∗

P

(xi − x̄P )(y∗
i − ȳ∗

P ) =
∑
i∈D∗

P

(xi − x̄P )y∗
i = τ ′

G + τA

τ ′
G =

∑
i∈D∗

G

(xi − x̄P )yi τA =
∑
i∈D∗

A

(xi − x̄P )y∗
i

Notice that τG ̸= τ ′
G because τG involves x̄G whereas τ ′

G involves x̄P . Now, to obtain the
covariance, we only need to take the cross terms one by one. We have

Cov(HGx̄GȳG, HP x̄P ȳP ) = wHGx̄GV (ȳG)x̄⊤
PH

⊤
P = σ2

N∗
P

HGx̄Gx̄
⊤
PHP

because Cov(ȳG, ȳ∗
A) = 0 and HP = H⊤

P . Similarly, Cov(ȳG, τA) = 0, such that

Cov(HGx̄GȳG,
1

λ̂N∗
P

HP τP ) = E
( 1
λ̂N∗

P

)
Cov(HGx̄GȳG, HP τ

′
G)

≈ σ2

λN∗
P

HGx̄G(x̄G − x̄P )⊤H⊤
P = σ2

λN∗
P

HGx̄Gx̄
⊤
GHP − σ2

λN∗
P

HGx̄Gx̄
⊤
PHP

Cov(HP x̄P ȳP ,
1
N∗
G

HGτG) = wσ2

N∗
G

HP x̄P (x̄G − x̄G)⊤H⊤
G = 0
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Finally, let S2
G =

∑
i∈D∗

G
(xi − x̄G)(xi − x̄G)⊤/N∗

G, such that

Cov(τG, τ ′
G) = σ2 ∑

i∈D∗
G

(xi − x̄G)(xi − x̄P )⊤ = σ2N∗
GS

2
G

Cov( 1
N∗
G

HGτG,
1

λ̂N∗
P

HP τP ) = E
( 1
λ̂N∗

PN
∗
G

)
HGCov(τG, τ ′

G)H⊤
P ≈ σ2

λN∗
P

HGS
2
GHP

Summarising the four terms above, and noting HG = x̄Gx̄
⊤
G + S2

G, we obtain

Cov(β̂G, β̂P ) ≈ σ2

λN∗
P

HG(x̄Gx̄⊤
G + S2

G)HP + (1 − 1
λ

) σ
2

N∗
P

HGx̄Gx̄
⊤
PHP

= σ2

λN∗
P

HP − ( 1
λ

− 1) σ
2

N∗
P

HGx̄Gx̄
⊤
PHP
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Chapter 2

Bayesian analysis of one–inflated
models for elusive population size
estimation
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Abstract

The identification and treatment of “one–inflation” in estimating the size of an elusive
population has received increasing attention in capture–recapture literature in recent years.
The phenomenon occurs when the number of units captured exactly once clearly exceeds
the expectation under a baseline count distribution. Ignoring one–inflation has serious
consequences for estimation of the population size, which can be drastically overestimated.
In this Chapter we propose a Bayesian approach for Poisson, Geometric and Negative
Binomial one–inflated count distributions. Posterior inference for population size will be
obtained applying a Gibbs sampler approach. We also provide a Bayesian approach to model
selection. We illustrate the proposed methodology with simulated and real data and propose
a new application in official statistics to estimate the number of people implicated in the
exploitation of prostitution in Italy.

2.1 Introduction

A popular methodology to estimate the size of an elusive population is the capture-
recapture method, originally used to estimate animal abundance. When the captures are
continuously collected over a fixed interval of time, and time is considered uninfluential,
the total number of captures for each unit is the sufficient statistic. Here we focus on this
setting, usually called “repeated counting data” Böhning & Schön (2005). To estimate the
population size, the observation/capturing counting process must first be modelled.

In Farcomeni & Scacciatelli (2013), “one–inflation” is explicitly mentioned for criminal
populations as a (simple) particular case in a broader class of behavioural effects. In more
recent years, a series of papers (see, e.g., Godwin & Böhning (2017), Godwin (2017), God-
win (2019), Böhning et al. (2018), Böhning & Friedl (2021)), has been devoted specifically
to the phenomenon in repeated counting data.

One–inflation consists in an excess of “ones” in the observed data, i.e., more units than
expected are captured exactly once. The excess of “ones” is usually evaluated with respect
to a chosen family of counting distributions: Godwin & Böhning (2017) considered one–
inflation with respect to a “base” Poisson model, while Böhning & Friedl (2021) analyzed
the inflation in the Geometric case. One–inflated Negative Binomial was introduced in
Godwin (2017), and the finite mixture of one–inflated Poissons in Godwin (2019).

One–inflation can occur for different reasons; for instance, when some units of the popu-
lation can no longer be captured after the first capture. Such may be the case of some wild
animal populations. In fact, animals experiencing a capture may find it so unpleasant that
some develop the will and ability to avoid subsequent captures. Much the same mechanism
may also occur in human populations, particularly when the first capture is a matter of
law enforcement, involves imprisonment or reveals an undesirable characteristic/behaviour.
See Godwin & Böhning (2017) for ample discussion of the justifications and conditions
for one–inflation in capture–recapture, also including an interpretation of one–inflation as
limiting case of the so–called “trap shy” behavioural model (see, e.g., pg. 37 of McCrea
& Morgan (2014) or pg. 119 of Borchers et al. (2002)). One–inflation deserves specific
attention due to its effect on population size estimators. In fact, when not taken into account,
one–inflation causes overestimation of the total population size. This also applies to the
well–known lower–bound Chao estimator, as discussed in Chiu & Chao (2016) and Böhning
et al. (2018).

In this Chapter we propose a Bayesian approach for counting data models with one–
inflation. The properties of our models are analyzed with both simulation studies and real
data applications. In particular, we apply our models to real data to estimate the size of some
illegal populations active in Italy in 2014 and some real data available from the literature on
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capture-recapture, where the issue of one–inflation has been recognised.
The Chapter is organized as follows: in Section 2.2 we introduce the notation for

repeated counting data and broadly illustrate Bayesian inference for population size with
this kind of data. We describe the general model for one–inflated count data under an
unspecified counting distribution and outline a Gibbs sampler algorithm to handle the one–
inflated models. We also introduce a formal Bayesian procedure for model comparison in
the presence of one–inflated models. Section 2.3 specifies the results under the Poisson and
Geometric assumptions, corroborating our proposal with a simulation study. In Section 2.4
we introduce the Negative Binomial distribution and its one–inflated counterpart discussing
the boundary problem via a simulation study. In Section 2.5 we illustrate some applications
to real cases: first we show the results of our inference on data on prostitution exploitation in
Italy in 2014; moreover, we apply our models to some popular datasets in capture–recapture
literature. Section 2.6 concludes the Chapter with some remarks and discussion of open
issues for further investigation.

2.2 Bayesian inference for population size

According to the standard formulation, consider a closed population (no births, deaths
or migration) of size N . For each unit in the population, let Y be a random variable taking
value j = 0, 1, 2, . . . if the individual is observed/captured j times. We only observe the n
individuals, n ≤ N , which are captured at least once. Let y = (y1, . . . , yn) be the vector of
the individual number of captures. Note that y will denote the result of the capture-recapture
experiment which comprises both the number n of captured individuals and the number of
captures for each observed individual.

Let nj denote the number of individuals observed j times, that is, nj is the frequency
of count j in sample y. Our interest is to estimate the number of uncaptured units n0, and,
consequently, the total population size N = n + n0, on the basis of some model for the
observed nj .

Bayesian inference for the population size N can be obtained with standard Markov
Chain Monte Carlo (MCMC) algorithms. In fact, let f(y|θ) = P (Y = y|θ) for y = 0, 1 . . . ,
be the probability distribution function for Y . The generic expression for the likelihood
f(y|θ,N) is

f(y|θ,N) =
(
N

n

)
f(0|θ)N−n

n∏
i=1

f(yi|θ). (2.1)

Assuming independent priors for θ and N , i.e., p(θ,N) = p(θ)p(N), the posterior distribu-
tion p(θ,N |y) can easily be drawn by, for example, updating the conditional distributions

p(θ|N,y) ∝ f(0|θ)N−n
n∏
i=1

f(yi|θ) p(θ)

and

p(N |θ,y) ∝
(
N

n

)
f(0|θ)N−n p(N).

We can generate from those posteriors via Gibbs or Metropolis-Hastings steps, according to
the parametric family for Y and the prior for N .

In the Bayesian literature, common choices for the (default or non–informative) prior
over N are:

• p(N) ∝ N l for l ∈ {−2,−1,−1/2, 0} possibly truncating the prior to an opportune
upper bound; l = −1 corresponds to the Jeffreys’ prior which is improper;
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• Rissanen’s prior (Rissanen (1983)) which is always proper and is given by p(N) ∝
2− log∗(N), where log∗(N) is the sum of the positive terms in the sequence
{log2(N), log2(log2(N)), . . .}.

See Tardella (2002), Wang et al. (2007) and Xu et al. (2014) for extensive simulation studies.
Note that

i) by assuming p(N) ∝ 1/N , the full conditional distribution of n0 = N − n is Negative
Binomial with size parameter n and probability f(0|θ) whatever the model for Y may
be;

ii) the full conditional of θ corresponds to its posterior distribution when the zero counts
are also known.

For example, when Y is Poisson(λ) and a priori we take the conjugate prior for λ which
is Gamma(αλ, βλ) the latter step consists solely in the generation of a Gamma distribution
with parameters given by αλ + s and βλ + n + n0, where s is the sum of the observed
captures. Similarly, when Y is Geometric(p) and a priori we take the conjugate prior for
p which is Beta(αp, βp) this step consists in the generation of a Beta distribution with
parameters αp + n+ n0 and βp + s.

2.2.1 One–inflated models

We assume that in our population a specific behavioural mechanism is at work, by
virtue of which an individual that would otherwise face multiple captures now has a positive
probability ω of being captured just once.

Let Y denote the observed number of captures for a unit, and Y ∗ the latent value we
would observe without the behavioural mechanism. The two variables are linked by means
of the following infinite transition matrix:

1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 ω 1 − ω 0 0 · · ·
0 ω 0 1 − ω 0 · · ·

0 ω 0 0 . . .
...

...
...

...


,

where the (k, j)–th element represents the conditional probability P (Y = j − 1 | ω, Y ∗ =
k − 1). When k > 1 these conditional probabilities can be written as

P (Y = j | ω, Y ∗ = k) = ω(1−δk(j))(1 − ω)δk(j) j = 1, k.

where δk(j) is Kronecker delta.
Let f(k|θ) = P (Y ∗ = k | θ) be the probability distribution, depending on a given

parameter, θ, of the number of captures without the behavioural effect, and let F (θ) denote
the associated c.d.f. Then, the resulting distribution for Y is the one–inflated model defined
as follows:

P (Y = j | θ, ω) =


f(0|θ) if j = 0;

(1 − ω)f(1|θ) + ω(1 − f(0|θ)) if j = 1;
(1 − ω)f(j|θ) if j > 1.
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The conditional distribution of Y ∗ when Y = j is concentrated on j when j ̸= 1, while,
when j = 1, we have:

P (Y ∗ = k | Y = 1, θ, ω) =


0 if k = 0;

f(1|θ)
f(1|θ) + ω(1 − F (1|θ)) if k = 1;

ωf(k|θ)
f(1|θ) + ω(1 − F (1|θ)) if k > 1.

(2.2)

2.2.2 Gibbs sampler for one–inflated models

Bayesian inference for one–inflated models can be obtained by simulating the posterior
distribution of θ, ω,N, y∗

1, . . . , y
∗
n given the observed data y, where y∗

1, . . . , y
∗
n indicate

the unknown captures that the n observed units would have faced without the behavioural
mechanism. Let us assume that the parameters θ, ω and N are a priori independent and let
p(θ, ω,N) = p(ω)p(θ)p(N) denote the prior distribution. The general expression for the
posterior distribution of one–inflated models augmented with the vector y∗ = (y∗

1, . . . , y
∗
n)

is

p(θ, ω,N,y∗|y) ∝ p(y|θ, ω,N,y∗)p(y∗, θ, ω,N)

∝
n∏
i=1

P (Yi = yi|y∗
i , ω)p(y∗|N, θ)p(θ)p(ω)p(N)

∝
(
N

n

)
f(0|θ)N−n

n∏
i=1

P (Yi = yi|y∗
i , ω)f(y∗

i |θ)p(θ)p(ω)p(N).

To describe our approach to simulate the posterior distribution of one–inflated models,
we introduce an additional latent binary variable Zi indicating the presence/absence of the
behavioural mechanism which causes the one–inflation in unit i, i.e., Zi is the indicator
function of the event {Yi ̸= Y ∗

i }. We then have that:

P (Zi = 1 | Yi ̸= 1) = 0,

and, from (3.5), we have

P (Zi = 1 | Yi = 1) = ω(1 − F (1|θ))
f(1|θ) + ω(1 − F (1|θ)) .

Then, since Zi = 1 implies Y ∗
i > 1, we have

P (Y ∗
i = k | Zi = 1) =


f(k | θ)

1 − F (1 | θ) if k > 1;
0 otherwise.

(2.3)

We can now outline a Gibbs sampler looping over the full conditionals of Y ∗ and ω,
N and θ. The updating of θ will depend on the model assumption for Y ∗ and may require
a Metropolis–within–Gibbs step, whereas the updating of Y ∗, ω and N can always be
performed with the following exact Gibbs steps:

i) The simulation of the full conditional of Y ∗
1 , . . . , Y

∗
n can be obtained in two steps, by

first updating Z1, . . . , Zn. In fact, let nz =
∑n
i=1 Zi be the number of units affected
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by one–inflation; then, conditional on the current value of ω and θ, we can generate a
value for nz from

Binom

(
n1 ,

ω(1 − F (1|θ))
f(1|θ) + ω(1 − F (1|θ))

)
.

Then, for each of the nz units, we can generate a value of Y ∗ by simply simulating a
number of captures from the truncated count distribution (3.7).

ii) Consider the prior
ω ∼ Beta(αω, βω),

and let nz,k be the number of units among the nz for which Y ∗ = k, such that∑
k nz,k = nz . We can then write the full conditional of ω, p(ω | −) as:

p(ω | −) ∝ ωαω−1(1 − ω)βω−1 ∏
k>1

[
ωf(k | θ)

]nz,k ·
[
(1 − ω)f(k | θ)

]nk .

That is, we can directly draw ω from

Beta

αω + nz , βω +
∑
k>1

nk

 .
iii) The full conditional distribution of N is given by

p(N | −) ∝
(
N

n

)
f(0|θ)N−np(N)

and, by assuming the improper prior p(N) ∝ 1/N we can directly draw n0 from the
following Negative Binomial(

N − 1
n− 1

)
f(0|θ)N−n(1 − f(0|θ))n.

If we adopt a different prior over N , we have to implement a Metropolis step.

Finally, as we have seen, the updating of θ will depend on the model assumption for Y ∗.
The general expression for the full conditional of θ is:

p(θ | −) ∝ f(0|θ)N−n
n∏
i=1

f(Y ∗
i |θ)p(θ).

2.2.3 Model selection

To test the one–inflation assumption with respect to a specific base count distribution
we can adopt a fully Bayesian approach. Let M1 be the non–inflated model and M2 the
one–inflated counterpart, (indicated by the OI suffix, hereafter). Model comparison can be
performed by calculating the posterior model probabilities

P (Mi | y) = p(Mi)p(y|Mi)
p(M1)p(y|M1) + p(M2)p(y|M2)
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where p(y|Mi) is the marginal likelihood that, for the models considered in this Chapter,
can be generally written as

p(y|Mi) =
∫ ∞∑

N=n
f(y | θi, N,Mi)p(θi, N |Mi) dθi,

with θ1 and θ2 denoting respectively the parameters of the baseline and the OI counterpart
models. For instance, for Poisson model we have θ1 = λ and θ2 = (λ, ω), for the Geometric
case we have θ1 = p and θ2 = (p, ω). In the case of two models we can directly use the
Bayes factor (BF) in favour of the OI

BF = P (M2 | y)
P (M1 | y) = P (M2)

P (M1)
p(y|M2)
p(y|M1) .

Note that we can also extend the comparison setting by simultaneously considering more than
two models. For example, in the next Section we compare the Poisson and the Geometric
model together with the corresponding OI counterparts for a total of 4 models. Assuming
equal prior probabilities P (Mi) for i = 1, . . . , k, the posterior model probabilities are
proportional to the marginal likelihoods, that is P (Mi | y) ∝ p(y|Mi) for i = 1, . . . , k.
Note. moreover, that assuming the non–informative prior p(N) = c/N would produce
marginal likelihoods depending on the constant c. However, in our case, the parameter N
has the same meaning across all the models under comparison, hence the use of the same
improper prior p(N) = c/N is justified and the constant c cancels out in the evaluation of
the posterior model probabilities, (see Kass & Raftery (1995)).

Analytical evaluation of the marginal likelihoods p(y|Mi) is not possible. However, we
have that (see Appendix)

p(y|Mi) = c

∫ ∞∑
N=n

f(y|θi, N,Mi)
1
N
p(θi) dθi = c

n

∫ n∏
i=1

f(yi|θi)
1 − f(0|θi)

p(θi)dθi. (2.4)

Hence, the posterior model probabilities will depend solely on fitting the truncated distribu-
tion of Y to the observed captures.

To evaluate the marginal likelihood of each model numerically, we use the Chib’s
approximation introduced in Chib (1995) which can easily be obtained as a by-product
of the general Gibbs algorithm illustrated in the previous Section. The details of the
Chib approximation for all the models considered throughout this Chapter are given in the
Appendix.

Finally, it is worth noting that, in the context of capture–recapture, model averaging
appears to be a suitable alternative to model selection. In fact, the quantity of interest N
has the same meaning across different models and we can easily obtain an estimate N of N
averaged over the eligible alternatives via the following formula:

N = E
[
N | y

]
=
∑
i

N̂Mi P (Mi | y),

where N̂Mi is the posterior mean of N obtained under model Mi. However, since the
estimates of N under the base model and under its one–inflated counterpart may show very
considerable differences, definite choice between the two could be a sensible approach in
this case.
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2.3 One–inflated Poisson and Geometric distributions

If we assume that our count data Y ∗ follows a Poisson distribution, i.e., f(θ) represents
a Poisson density with parameter λ, the model proposed for the observed Y in previous
section 2.2.1 is a one–inflated Poisson (OIP) and corresponds to the model presented in
Godwin & Böhning (2017).

The estimating procedure is based on the Gibbs sampler described in Section 2.2.1,
where, in order to complete the analysis framework, we assume a Gamma(αλ,βλ) prior for
λ, αλ and βλ being shape and rate parameters. Let n∗

k be the total number of units captured
k times after updating n0, nz and Y ∗, that is,

n∗
k =


n0 for k = 0;

n1 − nz for k = 1;
nk + nz,k if k > 1;

and let {n∗} denote the set of all values n∗
k for k = 0, 1, ...We can then generate the updated

value for λ from its full conditional

Gamma

αλ +
∑
k>0

k n∗
k , βλ +N

 .
If we adopt a Geometric distribution for Y ∗, parameterized as

P (Y ∗ = k | p) = (1 − p)kp,

the resulting model for Y is called one–inflated Geometric (OIG). To finalize the Bayesian
analysis, we adopt a Beta(αp, βp) conjugate prior for p, and its posterior conditional on the
current values of n0, nz and Y ∗ would be equal to:

Beta

αp +N , βp +
∑
k>0

k n∗
k

 .
2.3.1 A simulation study

In this section we present a two–fold simulation study; on one hand, we aim to validate
our proposal for inference on the population size in the presence of one-inflation, while
on the other hand the results of the simulation study illustrate the model selection among
the four models presented in the previous section, namely, Poisson (which we refer to as
model Poi), Geometric (Geo), One–inflated Poisson (OIP), and One–inflated Geometric
(OIG). Specifically, we set up three main scenarios: in the first we generate from the base
distributions without one–inflation; in the second scenario, we generate from one–inflated
distributions with a low/moderate inflation rate (ω = 0.2), while in the third we consider a
substantial inflation rate (ω = 0.5). We repeat each scenario with 2 different values of the
parameter (λ or p) and with 2 different values of N (500 and 1000). We set the parameters
using values similar to those from the real cases analysed in Section 2.5. The scenarios and
the values of the different parameters are summarised in Table 2.1.

For each combination of parameters in each scenario we simulate 100 datasets ofN units
from the respective generating model and remove the 0–counts from the sample. To simulate
from the one–inflated models in Scenarios II and III, we generate from the corresponding
base model and then change each generated value greater than 1 to a 1 with probability ω.
All the experiments were conducted in R and the code is available as Supporting Information
on the journal’s web page.
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Table 2.1. Simulation scenarios with data generating models, parameter values, and expected sample
size E[n] (The expected values of n are common to all three scenarios)

Scenario I Scenario II Scenario III Distribution
No infla-
tion

Low inflation,
ω = 0.2

Substantial infla-
tion, ω = 0.5

N Parameter E[n]

Poi OIP OIP

500 λ = 1 316
λ = 2 432

1000 λ = 1 632
λ = 2 865

Geo OIG OIG

500 p = 0.4 300
p = 0.6 200

1000 p = 0.4 600
p = 0.6 400

First, we set out to evaluate the sensitiveness of the estimates of the unobserved popula-
tion size n0 under mispecification of the model. For each simulated dataset, we consider the
estimates of n0, given by the posterior mean, under all four models, and compute relative
bias calculated as the relative difference between the true value and the posterior mean
of the parameter. As priors, we adopt quite non–informative choices: we set a uniform
ω ∼ Beta(1, 1) in all one–inflated models. We set p ∼ Beta(1, 1) in the Geometric and
OIG models, and λ ∼ Gamma(0.01, 0.01) in the Poisson and OIP. Different values for the
Gamma prior were also tested, obtaining very similar results. In fact, we use the same priors
in all the scenarios, regardless the data generating models. Clearly this simulation setting
does not exhaust the investigation of the priors’ role on the results of the model selection,
however, since we do not use the values from which we generated the data in any priors in
any scenario, we believe that the simulation results are a good assessment of the proposed
model selection criterion.

Table 2.2 shows the average percentage relative bias over the 100 replicates.

Table 2.2. Relative bias (%) of the unobserved units estimates, n0

Generating Model N = 500 N = 1000
Model Parameter Inflation Poi Geo OIP OIG Poi Geo OIP OIG
Poi 1 None 1.67 198 -12 189 0.37 196 -9 190
Poi 2 None 1.28 391 -5.49 389 0.88 390 -4.12 388
Geo 0.4 None -82 -0.80 -91 -5.48 -82 -1.13 -91 -4.33
Geo 0.6 None -68 0.27 -80 -9.34 -68 0.73 -82 -6.84
OIP 1 0.2 52 514 3.41 501 52 514 2.32 507
OIP 2 0.2 37 273 0.71 246 37 272 0.38 254
OIP 1 0.5 147 497 14 339 146 496 6.04 146
OIP 2 0.5 218 883 5.38 619 219 886 3.54 614
OIG 0.4 0.2 -72 25 -91 0.92 -73 23 -91 -0.03
OIG 0.6 0.2 -55 26 -79 1.50 -56 26 -81 1.21
OIG 0.4 0.5 -39 100 -91 1.72 -39 100 -91 2.07
OIG 0.6 0.5 -16 108 -76 15 -18 104 -79 7.74

The results set out in Table 2.2 confirm that the estimates of n0 we obtain with a one–
inflated model are always lower than those obtained with the corresponding base model. In
fact, ignoring one–inflation when present leads to severe and systematic overestimate of n0.
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On the other hand, admitting one–inflation when it is not present is not such a serious error
and, on average, we moderately underestimate n0. Choosing the wrong model (Poisson
instead of Geometric, inflated or not) can have disastrous consequences. In particular, if
data come from Poi or OIP models, a Geo or OIG models would drastically overestimate
n0. If data are generated from a Geo or OIG model, choosing a Poi or OIP model implies
an equivalent underestimate of n0. Note that, the two cases having the highest relative bias
under the correct models can be justified by the observed number of captures. In particular,
when the generating model is OIP with λ = 1 and ω = 0.5, the expected number of
captured units is low (E[n] = 316 when N = 500), and most of them are captured exactly
once (E[n1] = 250). The same happens in the case of OIG with p = 0.6 and ω = 0.5
where E[n] = 200 and E[n1] = 160. However, even in these worst cases, the relative bias
decreases, as expected, when the sample size increases.

Here we will not present the results concerning the relative root mean squared error and
the relative mean absolute error, which in any case, confirm the results presented on the
relative bias.

These results are also confirmed on analysing the coverage of the posterior credible
intervals, not reported here for brevity but computed by the R code available in the Supporting
Information on the journal’s web page. The posterior credible intervals of the one–inflated
model almost always contain the true values when we generate from the corresponding
baseline distribution. On the other hand, when we generate from a one–inflated model, the
credible intervals of the baseline model barely cover the true values. The credible intervals
deriving from the Poisson models (regardless of one–inflation) seldom cover the true value
generated by the Geometric distribution, and vice-versa. The only exception is the case in
which we generate from OIG (p = 0.6, ω = 0.5) and estimate with a Poisson distribution
(see the bottom row in Table 2.2), in which case the baseline Poisson credible intervals cover
the true value nearly 50% of the times.

Next, to assess the model selection criterion detailed in the previous section, Figures
2.1 and 2.2 show the posterior probabilities of our four competing models calculated with
Chib’s approximation. Figure 2.1 summarizes the results in all the scenarios when N = 500,
while Figure 2.2 refers to the case N = 1000.

It is evident that, as the number of observed units n increases, the effectiveness of the
posterior model probabilities in identifying the correct generating model is reinforced. Note
that n depends both on N and on the parameters λ and p. It is also evident that a higher
inflation rate will be more easily identified correctly. In fact, when N = 1000, we would
select the true data generating model in almost all simulations in Scenarios I and III, and in
most cases in Scenario II. For the sake of brevity, here we do not present the results when
N = 2000 or higher, since in all scenarios and parameter combinations the posterior model
probability of the generating model is close to one.

When N = 500, we would still identify the correct generating model in the majority
of cases, but we can observe some critical situations. In particular, when the generating
model is OIP with λ = 1 and ω = 0.2, and when we generate from the OIG with p = 0.6
and ω = 0.2, the correct model and its base counterpart are almost equally preferable. In
the former case we have n = 316 and n1 = 183 on average, i.e., most of the units are
captured once. Consequently, the posteriors probabilities are very similar due to such a
slight alteration in singleton counts from the basic Poisson distribution. Much the same
happens in the latter case, with an even lower number of observations (on average n = 200).

For a simulation study using frequentist criteria for model selection, (AIC and BIC) see
Böhning & Ogden (2021).

In conclusion, as expected, the one–inflation models encompass the baseline models and,
when one–inflation is not present, the slight underestimation of N decreases as n increases.
Clearly, the choice of the distribution is a crucial aspect, and the Bayesian approach gives us
a powerful tool to deal with model selection.
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Figure 2.1. Box-plot of posterior model probabilities when N = 500; the data generating model is
indicated above each panel
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Figure 2.2. Box-plot of posterior model probabilities when N = 1000; the data generating model is
indicated above each panel
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2.4 One–inflated Negative Binomial

In this Section we describe how to perform Bayesian estimation of the population size in
the presence of one-inflation when the base distribution is the Negative Binomial model. We
also underline the inferential drawbacks related to this distribution which limit its general
use and how the Bayesian approach mitigates these problems.

The Negative Binomial distribution (NB) is often adopted as a two-parameter general-
ization of Poisson that can take into account over-dispersed count data. It also constitutes
a generalization of the Geometric distribution, with respect to which it allows for both
overdispersion and underdispersion. Its use is well known in capture–recapture, and has also
been investigated in the presence of one–inflation in Godwin (2017).

Here we assume that the unobserved count Y ∗ follows an NB model with the following
parameterization in terms of r and p:

P (Y ∗ = k | r, p) = Γ(k + r)
Γ(r)k! p

r(1 − p)k, (2.5)

and we will call the resulting model for Y One–inflated Negative Binomial (OINB). In our
Bayesian approach, we set two independent priors on the parameters p and r. For p we take
a Beta(αp, βp) prior, while for r we compare Gamma and Inverse Gamma priors in order
to evaluate the different tail behaviour of these distributions on the posterior summaries.

The Gibbs sampler we developed follows the same passages presented in Section 2.2.1,
where f(θ) takes the form (2.5). Recall that n∗

k represents the number of units captured k
times after updating n0, Z and Y ∗. Then, generating from the full conditional of p presents
no difficulties, as it turns out to be:

[p | −] ∼ Beta

αp +Nr , βp +
∑
k>0

k n∗
k

 .
To update r, we compare two different approaches: a Gaussian random-walk Metropolis-
Hastings step, and the two-stage Gibbs sampler proposed by Zhou & Carin (2015). Note
also that the presence of a Metropolis step does not preclude calculation of the marginal
likelihood p(y|Mi) with Chib’s approximation for the Negative Binomial model and for
the corresponding OI counterpart, as illustrated in Chib & Jeliazkov (2001). The Appendix
provides details of the marginal likelihood approximation for these models.

2.4.1 Metropolis Hastings

The full conditional of r results in:

P (r | −) ∝ pNr
∏

k=0,1,...

(Γ(k + r)
Γ(r)k!

)n∗
k rαr−1

erβr
.

If we consider a Gaussian random walk Metropolis-Hastings, we accept a proposed value r′

with probability equal to the minimum between 1 and

exp
{∑

k

n∗
k

[
log Γ(r′ + k) − log Γ(r′) − log Γ(r + k) + log Γ(r)

]
+N(r′−r) log(p)+Ψ

}
,

where

Ψ =
{

(αr − 1) log(r′/r) + βr(r − r′) if r ∼ Gamma(αr, βr);
(αr − 1) log(r/r′) + βr(1/r − 1/r′) if r ∼ InvGamma(αr, βr).



2.4 One–inflated Negative Binomial 39

2.4.2 Two-stage Gibbs sampler

Zhou & Carin (2015) exploit the representation of the Negative Binomial as a compound
Poisson distribution, introduced by Quenouille (1949):

Y ∗
i ∼ NB(r, p) ⇐⇒ Y ∗

i =
li∑
j=1

ui,j

where

li ∼ Poisson(−r log(p)) and ui,j
iid∼ Logarithmic(1 − p).

They found the explicit distribution of the full conditional of li to be the Chinese Restaurant
Table (CRT) distribution with concentration parameter r. The two Gibbs steps are then:

i) We sample the latent counts, li, associated with each observed count y∗
i , which can be

generated as:

li =
y∗

i∑
j=1

vj , vj ∼ Bernoulli

(
r

r + j − 1

)
.

ii) We sample r from its full conditional which, given the conjugacy between the Gamma
prior for r and the Poisson distribution, results in

[r | −] ∼ Gamma

(
αr +

n∑
i=1

li , βr −N log(p)
)
. (2.6)

Note that, since the total number of captures is often in the order of thousands, and
in (2.6) we are only interested in generating the sum of the li, we can simply adopt a
Gaussian approximation in the first step. That is,

∑
i

li ∼ N

(∑
i

E[li],
∑
i

V ar[li]
)
.

2.4.3 Boundary problem

The use of the NB in capture–recapture is limited by the so called “boundary problem”
(see, e.g., Böhning (2015)). That is, when the estimate of r approaches zero, the Horvitz–
Thompson estimation of the population size diverges. More generally, when in the observed
(truncated) data the mean number of captures is close to one (which is typically the case
in the presence of one–inflation), the NB model severely overestimates N , sometimes by
several orders of magnitudes, even in simulated data generated by the NB itself. As pointed
out in Godwin (2017), taking into account one–inflation alleviates this phenomenon, but
does not completely avoid it.

We can confirm that, even in our Bayesian approach to the OINB model, we come up
against the boundary problem. In general, we noted a great sensitivity of estimates of N to
small differences in the value of parameter r, particularly when r < 1, and, accordingly, a
great sensitivity of the estimates to specification of the prior distribution over r.

We see this phenomenon as an opportunity to investigate the usefulness of the Bayesian
approach in further alleviating the boundary problem under the OINB. To this end, we
conduct a simulation study to assess the effect of different prior specifications on the
parameter r. We generate 100 replications of random values drawn from an OINB with
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Table 2.3. Boundary cases for r̂ and N̂ , %bias and %MSE of N̂ for some prior specifications of r.
Results from MLE in the bottom row, for comparison

N=5000
Prior distribution of r % Boundary cases % Boundary cases % bias of N̂ % MSE of N̂

for r for N
Gamma(0.1,0.1) 33 30 218.59 1618.82
Gamma(1,1) 11 11 97.64 859.51
InvGamma(0.1,0.1) 0 0 -10.52 6.71
InvGamma(0.5,0.5) 0 0 -15.58 5.13
InvGamma(1,1) 0 0 -19.06 5.27
InvGamma(1,2) 0 0 -26.70 7.91
MLE 16 3 91.75 2217.32
N=500
Prior distribution of r % Boundary cases % Boundary cases % bias of N̂ % MSE of N̂

for r for N
Gamma(0.1,0.1) 25 73 5043 1673356
Gamma(1,1) 0 8 249 7122
InvGamma(0.1,0.1) 0 0 -48 24
InvGamma(0.5,0.5) 0 0 -47 23
InvGamma(1,1) 0 0 -44 20
InvGamma(1,2) 0 0 -48 23
MLE 27 20 2422 584890

parameters p = 0.35, r = 0.5, and ω = 0.5, and we go on to test two values for N , 5000
and 500. The observed sample size n varies at each replication; its expected value over
the 100 replications is 2040, and 204 when N = 5000 and N = 500, respectively. The
values of these parameters are comparable to the values studied in Godwin (2017), in the
frequentist setting, and they allow us to mimic some real cases analysed in Section 2.5. All
the experiments were conducted in R; the code is available as Supporting Information on
the journal’s web page.

We test some prior specifications on the r parameter, considering both the Gamma
and the Inverse Gamma distributions. For estimation of r, we apply both the Metropolis-
Hasting step and the two-stage Gibbs sampler proposed by Zhou & Carin (2015), observing
negligible differences in the results. The outcomes presented in this Section are obtained
using the Metropolis-Hasting approach. Finally, we compare the results with the maximum
likelihood estimates for the OINB.

Table 2.3 shows the percentage relative bias and the percentage mean squared error
(MSE) of the population size estimates, considering the difference between the true value
and the mean of the posterior distribution obtained by the MCMC simulations. Table 2.3
also gives the number of cases, in percentage, where we encountered the boundary problem.
In fact, we can define the boundary problem on both r̂ and N̂ . We adopt the following
convention: on r̂, we set the boundary problem if r̂ < 0.25, while on N̂ , this is the case
if N̂ > 5N . Finally, Table 2.3 presents the results of the maximum likelihood approach
(MLE), obtained using the model proposed by Godwin (2017) and the R code provided by
him as Supporting Information.

The Bayesian procedure implements the algorithm described in Section 2.4.1, setting the
number of replications of the MCMC algorithm to 2·106. We set, a priori, p(N) ∝ 1/N , and
Beta(1, 1) for both ω and p. From Table 2.3, it can be seen that a weakly informative prior
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specification for r, like Gamma(1, 1) can already help reduce the boundary problem, when
compared to the MLE approach. The boundary problem can be yet further limited using the
Inverse Gamma as prior distribution for r. In the simulation, the Inverse Gamma prior has
the double advantage of reducing both the boundary problem and the MSE of the estimates,
at the cost of introducing a negative bias (underestimation) of the population size N , which
is more severe for small Ns. Note that we used the convention of defining the occurrence of
the boundary problem when r̂ < 0.25, while in Godwin (2017) the boundary problem is
fixed at r̂ < 0.05. We believe that r̂ < 0.25 already suffices to indicate the presence of this
phenomenon since, as clearly emerges from Table 2.3, it corresponds approximately to an
estimate of N 5 times larger than its true value.

To further illustrate the performance of the NB and the OINB, with and without the
boundary problem, we compare them with the models considered in Section 2.3 via a
simulation study. In particular, we generate values from the NB with parameters N = 5000,
p = 0.35, and from the OINB with parameters N = 5000, p = 0.35, and ω = 0.5, under
different scenarios for the size parameter r. For each scenario we generate 100 datasets and
calculate the estimates of N given by the posterior mean, under the six models: Poisson,
Geometric, Negative Binomial and their one–inflated counterparts. Table 2.4 shows the
average percentage relative bias and relative mean squared error over the 100 replicates. As
we have said, the value of the parameter r appears to be crucial in identifying the boundary
problem for the NB model, and, under the OINB model, ω, too, has a clear role. As a
consequence, the critical values for r differ under the two models. In our data generated
from the NB, with the aforementioned values for p and N , we start to observe a substantial
instability in the estimates when r = 0.25, and the sheer overestimation of N from the NB
itself appears clearly in all simulations when r = 0.1 (not showed in the Table). When we
generate from the OINB, estimates derived from the OINB itself start to show the same
problem when r = 0.5.

We can see in Table 2.4 that, in the absence of the boundary problem, (r = 1.5 in both
cases), the results confirm that the two models can be safely utilized if their respective model
assumptions hold; in fact, they perform better than all other competing models. As already
observed in Section 2.3, admitting one–inflation when it is not present leads to moderate
underestimation, while ignoring one-inflation when present causes severe overestimation of
N . In fact, in all cases, the NB overestimates N by several orders of magnitude with data
generated from the OINB.

A counter-intuitive case is given by the data generated from the OINB with r = 0.5, in
which case the OINB itself results as the second best model, the best being the non inflated
Geometric. The explanation we gave to this result is the following: the Geometric model
ignores one–inflation, and this fact should lead to an overestimation of N , but at the same
time, it fixes the parameter r to 1, which is higher than the actual parameter of the generating
model (r = 0.5), and this fact should imply an underestimation of N . Apparently, in our
simulation, these two factors balance each other, giving the Geometric a better performance
than the OIG and the OINB itself. In conclusion, when the model hypothesis are met, and
the boundary problem is absent or not too serious, for values of r greater than 0.25 under the
NB, and greater than 0.5 under the OINB, the use of an Inverse Gamma prior may alleviate
the phenomenon. However, when the problem is evident, we advise against the use of the
two models.

2.5 Results on estimating illegal populations

Illegal activities are by their very nature difficult to measure because the people involved
have obvious reasons to hide them. In this Section, we apply our models to estimate
the number of people implicated in the exploitation of prostitution, in Italy in 2014. In
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Table 2.4. Results on %bias and %MSE of N̂ .

Generating model: OINB with p = 0.35 and ω = 0.5
r = 0.5 (E[n] = 2040) r = 1.5 (E[n] = 3695)

% bias of N̂ % MSE of N̂ % bias of N̂ % MSE of N̂
Poi -38.11 14.55 -7.25 0.54
Geo 5.19 0.38 42.31 17.94
NB (Gamma) 4 · 1013 9 · 1026 4 · 1011 2 · 1023

NB (Inv. Gamma) 2518 2 · 105 2 · 105 2 · 1010

OIP -56.38 31.80 -19.32 3.74
OIG -29.75 8.89 12.78 1.65
OINB (Gamma) 246 2898 1.81 0.25
OINB (Inv. Gamma) -11.73 5.68 0.49 0.19

Generating model: NB with p = 0.35
r = 0.25 (E[n] = 1154) r = 1.5 (E[n] = 3965)

% bias of N̂ % MSE of N̂ % bias of N̂ % MSE of N̂
Poi -71.04 50.48 -17.81 3.17
Geo -53.99 29.17 10.98 1.21
NB (Gamma) 162.37 2044.18 0.19 0.03
NB (Inv. Gamma) -9.64 5.06 0.02 0.03
OIP -74.70 55.80 -19.16 3.67
OIG -57.52 33.11 10.91 1.20
OINB (Gamma) 5.71 64.03 -1.58 0.05
OINB (Inv. Gamma) -43.97 20.43 -1.86 0.06
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addition, in Section 2.5.1 we illustrate the results obtained on some well-known data-sets in
capture-recapture literature.

In Italy, prostitution is neither prosecuted nor regulated, but trafficking, exploitation, and
aiding and abetting of prostitution is a crime subject to legal sanctions. These activities are
mostly under the control of organised crime. In this study we exploit administrative records
from the Ministry of Justice which report complaints, of victims or witnesses, for which the
judicial authority has collected sufficient evidence to initiate a criminal proceeding.

On the basis of soft identifiers (date, country of birth and gender), the perpetrators can be
identified and followed over a given time span, which is one year in this application. In this
way, the administrative source can be viewed as listing potential exploiters of prostitution
and we can observe the number of times an individual is charged. Obviously, we cannot
observe the units not captured by the Justice system. We aim to estimate the hidden part of
the population, i.e., the size of those unreported to the Public Prosecutor’s offices. Capture-
recapture models have already been used to investigate prostitution and sex workers; see, for
instance, Rossmo & Routledge (1990), which estimates the number of street prostitutes in
1986/1987 in Vancouver, and Roberts Jr & Brewer (2006), which estimates the number of
their clients. In this Chapter, we aim to estimate the size of prostitution exploiters, rather
than the number of prostitutes or their clients. Our data on prostitution exploiters refer
to perpetrators of adult sexual exploitation, according to the international classification
ICCS (UNODC (2015)); these crimes include recruiting, enticing or procuring a person
into prostitution; pimping; keeping, managing or knowingly financing a brothel; knowingly
letting or renting a building or other place for the purpose of the prostitution of others.

Figure 2.3 depicts our data. The total number of observed prostitution exploiters is
n = 2740, the “one” counts are n1 = 2269. Counts greater than 5 are relatively few; 12 is
the maximum number of observed captures.
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Figure 2.3. Relative frequencies of observed counts for prostitution exploitation data in Italy in 2014

We compared all 3 basic models analysed in this Chapter and their one–inflated coun-
terparts on this data. In all one–inflated models we set a uniform ω ∼ Beta(1, 1). We
set p ∼ Beta(1, 1) in the Geometric and OIG models, and λ ∼ Gamma(0.01, 0.01) in
the Poisson and OIP. Different values for the Gamma prior were also tested, obtaining
very similar results. As for the Negative Binomial, the boundary problem emerged clearly,
as, when adopting a Gamma(0.1, 0.1) prior for r, we obtained a posterior mean for N
twenty times greater than any other model (498000). For this reason, we opted for an
InvGamma(0.1, 0.1), both on the NB and the OINB models. In all cases, the number of
replications of the MCMC algorithm is set to 106 with a thinning of 20 observations. As
priors overN , we tried both Rissanen’s and the improper p(N) ∝ 1/N . The two alternatives
gave almost identical results. Standard diagnostic tools confirmed the convergence of the
algorithms.

The results are summarized in Table 2.5 and in Figure 2.4. Figure 2.4 shows the
estimated posterior distributions of n0 and of the parameters of the one–inflated models.
The regular shape of the posterior distributions is evident from Figure 2.4, so the differences
in adopting the posterior mode, median or mean are quite negligible. Regularity of the
posterior distributions was consistently observed in all the applications and simulations
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Table 2.5. The posterior mode and credible intervals for the population size N , posterior mean for ω
and model parameters for prostitution exploitation data

Estimator/Model N̂ 95%CI.N̂ λ̂ p r
Ignoring one–inflation
Poi 7210 6780 - 7689 0.476
Geo 13332 12415 - 14394 0.795
NB 89140 35162 - 188368 0.665 0.088
Chao 9851 8961 - 10868
Zelterman 10030 9033 - 11027 0.319
Modeling one–inflation ω̂
OIP 3895 3656 - 4156 1.213 0.645
OIG 8182 7406 - 9233 0.669 0.478
OINB 19566 6174 - 71710 0.580 0.213 0.363
Mod.Chao.OIP 6493 4163 - 8823
Mod.Chao.OIG 19628 9143 - 30112

presented in this Chapter. Regularity of the posterior distributions does not hold for the n0
and the r of the OINB model, due to the boundary problem.

In the upper part of Table 2.5 we give the estimates deriving from the Poisson, Geometric
and Negative Binomial that ignore one–inflation and compare them to the well-known Chao
and Zelterman estimators (see Chao (2014) for a detailed description). In the lower part of
the Table, we give the results from the one–inflated counterparts of the 3 models and compare
them to the modified Chao estimators, as suggested in Böhning et al. (2018). This estimator
depends on the baseline distribution; we evaluate it assuming both Poisson and Geometric
distribution with one–inflation (Mod.Chao.OIP and Mod.Chao.OIG, respectively), as in
Böhning & Ogden (2021).

In Figure 2.3, the presence of one–inflation seems likely, and is, in fact, largely confirmed
by the test introduced in Section 2.2.3. Both the OIP and the OIG have posterior probabilities
several orders of magnitudes greater than the Poisson and the Geometric. The log marginal
likelihoods are: −1863.39 (Poi), −1756.23 (Geo), −1718.21 (OIG), −1761.95 (OIP). The
OINB model was found to have by far the highest log marginal likelihood, namely −1712.25.
However, we believe that caution should be used in adopting the estimates from the OINB.
In fact, the boundary problem seems evident (r̂ = 0.2), and the uncertainty contained in the
estimate of n0 is excessive (the width of the interval estimates is about 25 times greater than
the total number of observed units).

As expected, if we ignore one–inflation, we risk severely overestimating the population
size. Geometric and Negative Binomial distributions account for heterogeneity and produce
much larger estimates than the Poisson distribution.

2.5.1 Results from some popular case-studies

In this Section, we apply the Bayesian model to a selection of well-known cases popular
in the capture–recapture literature. We consider the following real cases:

1 street prostitutes in Vancouver: the data show the count of prostitution arrests made
by the Vancouver Police Department Vice Squad for engaging in prostitution in
1986/1987, initially presented and analysed by Rossmo & Routledge (1990);

2 opiate users in Rotterdam: the data show the number of applications for a methadone
treatment program made by opiate users in Rotterdam in 1994, first reported and
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Figure 2.4. Posterior distributions of n0 and of the parameters of all one–inflated models for
prostitution exploitation data. Vertical lines show the posterior medians.
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Table 2.6. Observed count distribution for three real cases

Real Cases Counts
1. Prostitutes n1 n2 n3 n4 n5 n6 n

541 169 95 37 21 23 886
2. Opiate users n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n

1206 474 198 95 29 19 5 2 0 1 2029
3. Heroin users n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

2176 1600 1278 976 748 570 455 368 281 254 188
n12 n13 n14 n15 n16 n17 n18 n19 n20 n21 n
138 99 67 44 34 17 3 3 2 1 9302

analysed by Cruyff & van der Heijden (2008);

3 heroin users in Bangkok: the data provide the counts of treatment episodes by heroin
users in Bangkok in 2002, available in Viwatwongkasem et al. (2008) and previously
analysed by Böhning et al. (2004).

The observed count distribution of the three real cases are shown in Table 2.6. In the
Vancouver prostitutes dataset, we observe n = 886 individuals and the number of units
captured once is n1 = 541. The Rotterdam opiate–user dataset contains n = 2029 units
and n1 = 1206. The Bangkok heroin–user dataset provides n = 9302 observations with
n1 = 2176.

These data sets have been widely examined in capture–recapture literature, also under
the one–inflation hypothesis (see Godwin & Böhning (2017) and Godwin (2017)).

We apply our models to the three case–studies, with the following prior settings: For
the Poisson and OIP models we set, a priori, ω ∼ Beta(1, 1) and λ ∼ Gamma(0.1, 0.1).
In the OINB model we set r ∼ InvGamma(0.1, 0.1) and p ∼ Beta(1, 1). In all our
applications, the number of replications of the MCMC algorithm is 106 with a thinning of
20 observations. Standard diagnostic tools confirmed the convergence of the algorithm. The
results for all three datasets are summarized in Table 2.7, which shows the posterior modes
and credible intervals of N , and the posterior means of the model parameters.

The presence of one–inflation in these datasets is less severe than in the prostitution
exploitation data analysed in the previous Section. However, as expected, estimates from
the base distributions are consistently greater than the corresponding one–inflated estimates,
confirming that we might be overestimating the population size if we ignore one–inflation.

For the Vancouver prostitute data, our model selection strategy strongly suggests the
OINB distribution, its posterior probability being several orders of magnitudes greater than
the competing models. The inflation rate ω is estimated around 0.40. The base Negative
Binomial encounters the boundary problem, as is clear from the r estimate and even more
from the credible intervals for N . OINB and OIP models produce similar estimates for N ,
with the credible intervals mostly overlapping (the 95%HPD under OINB is slightly greater
than under OIP), whilst the OIG’s credible interval barely overlaps the others.

As for the Rotterdam opiate–user data, Bayesian model selection largely favours the
Geometric distribution, with a posterior probability of 0.89, against 0.104 and 0.006 for OIG
and OINB, respectively; the Poisson models posterior probabilities being negligible, both
the baseline and the one–inflated. In this case, the one–inflation does not seem to affect the
data.

The posterior model probabilities for Bangkok heroin–user data favor the OINB model,
even though the estimated inflation rate is quite low, a mere 0.056. The boundary problem is
not an issue with this dataset, since the estimate of r is rather greater than 1.
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Table 2.7. The posterior mode and credible intervals for the population size N , posterior mean for ω
and model parameters, for real cases

1. Prostitutes in Vancouver N̂ 95%HPD(N̂) ω̂ λ̂ r̂ p̂
Model Poi 1240 1177 – 1300 1.254

Geo 2045 1906 – 2217 0.570
NB 3340 1977 – 167925 0.145 0.395
OIP 1017 982 – 1058 0.438 2.037
OIG 1820 1669 – 2003 0.192 0.517
OINB 1040 991 – 1238 0.399 19.104 0.862
Mod.Chao.OIP 1005 933 – 1077
Mod.Chao.OIG 1421 1097 – 1745

2. Opiate users in Rotterdam N̂ 95%HPD(N̂) ω̂ λ̂ r̂ p̂
Model Poi 2934 2832 – 3038 1.174

Geo 4913 4676 – 5188 0.588
NB 4960 4244 – 6818 0.869 0.566
OIP 2500 2418 – 2587 0.336 1.663
OIG 4796 4491 – 5085 0.047 0.577
OINB 3213 2616 – 4665 0.157 2.861 0.692
Mod.Chao.OIP 2633 2398 – 2867
Mod.Chao.OIG 4745 3691 – 5799

3. Heroin users in Bangkok N̂ 95%HPD(N̂) ω̂ λ̂ r̂ p̂
Model Poi 9452 9427 – 9477 4.134

Geo 12206 12064 – 12341 0.238
NB 11572 11357 – 11817 1.232 0.267
OIP 9364 9349 – 9380 0.207 5.004
OIG 12195 12056 – 12334 0.003 0.237
OINB 10826 10606 – 11098 0.056 1.627 0.302
Mod.Chao.OIP 9859 9757 – 9961
Mod.Chao.OIG 11810 11350 – 12270
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In all cases, the OINB model produces estimates for N higher than the OIP and lower
than OIG. Also the one–inflation rate estimates under the OINB model prove always lower
than the estimates obtained from the OIP model and higher than those from the OIG. It
appears that by using the OINB, part of the one-inflation component identified by the OIP
is instead explained through the two parameters of the Negative Binomial. The credible
intervals of the OIP are consistently smaller than those of the competing models, and barely
overlap, with the exception of Vancouver prostitute data, where actually the OINB model
tends to the OIP one (note the high estimates for the parameter r).

The results in Table 2.7 can be compared with non Bayesian results reported in Godwin
& Böhning (2017) and Godwin (2017), for the one–inflated Poisson and Negative Binomial
models. We note that the use of weakly informative priors leads to results that are close to
the frequentist approach. Moreover, the results from our Bayesian model selection strategy
are also confirmed by likelihood ratio tests proposed in Godwin (2017), even if likelihood
ratio tests provide less strong evidence than our results.

2.6 Concluding remarks and future works

In this Chapter we have dealt with the issue of one–inflation on repeated count data in
population size estimation, adopting a fully Bayesian approach. We discussed our model for
one–inflation under an unspecified count distribution, describing a general Gibbs sampler.
Specifically, we derived the conditional distributions of the model parameters under the
Poisson and Geometric assumption; moreover, to deal with data that show over–dispersion,
we also illustrated the Bayesian analysis for the Negative Binomial model. We considered
the boundary problem of the Negative Binomial distribution; in the Bayesian setting the
prior parameter specification might help alleviate it. A fully Bayesian model selection
approach, which includes testing for the one–inflation assumption, was developed for all the
distributions considered in the Chapter.

Alongside the usual advantages of a Bayesian approach, namely the possibility of
incorporating any prior knowledge in the analysis and ease in producing interval estimates
of any quantity as a by-product of the estimation procedure, we recognize a less obvious
point in favour. In fact, although, admittedly, it is not common to have prior information
on the quantities at hand, even weakly informative priors can have a positive impact on the
analysis. As we saw in Section 2.4.3, the use of a weakly informative prior when using a
Negative Binomial model or its one–inflated counterpart can help stabilize the estimation
procedure and avoid the “boundary problem” in case of moderate severity. On the other
hand, the choice of the prior distribution for the size parameter of the Negative Binomial
may affect model selection procedures which require additional investigation in order to
allow a more general use of such distribution in capture recapture models.

We are currently working on extensions of the current model to cope with observed and
unobserved heterogeneity in the presence of one-inflation, exploiting individual covariates,
and introducing more complex hierarchical structures and mixing models.

Moreover, we are considering the possibility of taking model uncertainty into account
with a model averaging technique in a single procedure by exploiting the reversible jump
algorithm (see Green (1995)).

In addition, when dealing with sensible data, like the prostitution exploitation data which
do not share a unique identifier, we may encounter record linkage problems. In this case,
it would be important also to take into account the record linkage process uncertainty in
population size estimation; see Tancredi & Liseo (2011). Note also that linkage errors can
themselves produce one-inflation. In fact, when matching information does not suffice to
recognise multiple captures of the same individual, the resulting missing links erroneously
increase the number of singletons. However, it is worth nothing that, unlike the case with the
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framework considered in this Chapter, linkage errors also affect the observed sample size n.
Finally, we are investigating more general behavioural mechanisms producing different

forms of inflation. For example, we could assume that when the latent count y∗ is equal to k,
instead of necessarily having an observation y equal to 1 or to the true value k, we have that
y follows a mixture of two distributions. In particular we may have a mixture component
with weight 1 − ω concentrated on the latent value y∗ = k. The other component with
weight ω may have support on the set {1, . . . , k} and can, for example, be a Binomial(k, ψ)
truncated on 0. Thus, when ψ = 0 we have exactly the form of inflation discussed in this
Chapter while when ψ > 0 the model also allows us to inflate counts greater than one,
generalizing the effects of the behavioural mechanism.

Appendix (Marginal likelihood calculations)

Expression (2.4) for the marginal likelihood is obtained by observing that

p(y|Mi) =
∫ ∞∑

N=n
f(y|θi, N,Mi)p(N)p(θi)dθi

=
∫ ∞∑

N=n

(
N

n

)
f(0|θi)N−n

n∏
i=1

f(yi|θi)
c

N
p(θi) dθi

= c

∫ ∞∑
n0=0

(n+ n0)!
n!n0!

1
n+ n0

f(0|θ)n0(1 − f(0|θi))n
n∏
i=1

f(yi|θi)
1 − f(0|θi)

p(θi)dθi

= c

n

∫ ∞∑
n0=0

(
n+ n0 − 1
n− 1

)
f(0|θ)n0(1 − f(0|θi))n

n∏
i=1

f(yi|θi)
1 − f(0|θi)

p(θi)dθi

= c

n

∫ n∏
i=1

f(yi|θi)
1 − f(0|θi)

p(θi)dθi.

Chib’s approximation is based on the identity

p(y|Mi) = f(y|θi, N)p(θi)p(N)
p(θi, N |y,Mi)

valid for each point (θi, N). To approximate the marginal likelihood we may select a point
(θ̃i, Ñ ) given, for example, by the posterior means obtained with a first run of the Gibbs
sampler and then estimate the value of the posterior p(θ̃i, Ñ |y,Mi) via a second run by
using the following strategies.

For the Poisson model Mi, where θi = λ, suppressing the model dependence in the
notation hereafter, we have p(θ̃, Ñ |y) = p(λ̃, Ñ |y) = p(Ñ |λ̃,y)p(λ̃|y) and the only
quantity that need to be estimated is p(λ̃|y). Anyway

p(λ̃|y) =
∑
N

p(λ̃, N |y) =
∑
N

p(λ̃|y, N)p(N |y)

and by exploiting the T realizations N(1) . . . , N(T ) of p(N |y) from a second run of the
Gibbs sampler we can estimate p(λ̃|y) by

p(λ̃|y) ≈ 1
T

T∑
t=1

p(λ̃|y, N(t))
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where p(λ̃|y, N(t)) is the density of a Gamma(αλ + s, βλ +N(t)).
Similarly, for the Geometric model, where θ = p, we have p(θ̃i, Ñ |y) = p(p̃, Ñ |y) =

p(Ñ |p̃,y)p(p̃|y) and the only quantity that need to be estimated is p(p̃|y). Anyway

p(p̃|y) =
∑
N

p(p̃, N |y) =
∑
N

p(p̃|y, N)p(N |y)

and by exploiting the T realizations N(1) . . . , N(T ) of p(N |y) from a second run of the
Gibbs sampler we can estimate p(p̃|y) by

p(p̃|y) ≈ 1
T

T∑
t=1

p(p̃|y, N(t))

where p(p̃|y, N(t))is the density of a Beta (αp +N(t), βp + s).
For the OIP model where θ = (λ, ω) we have p(θ̃, Ñ |y) = p(λ̃, ω̃, Ñ |y) =

p(Ñ |λ̃, ω̃,y)p(λ̃, ω̃|y). In this case we need to estimate p(λ̃, ω̃|y) where

p(λ̃, ω̃|y) =
∑
N

∑
y∗
p(λ̃, ω̃, N,y∗|y) =

∑
N

∑
y∗
p(λ̃, ω̃|y, N,y∗)p(N,y∗|y).

Then, by exploiting the T realizations y∗
(1), N(1), . . . ,y∗

(T ), N(T ) of p(y∗, N |y) from the
the first Gibbs sampler run, we can estimate p(λ̃, ω̃|y) by

p(λ̃, ω̃|y) ≈ 1
T

T∑
t=1

p(λ̃, ω̃|y,y∗
(t), N(t)).

Note that λ and ω are conditionally independent given y,y∗ and N . Moreover the con-
ditional distribution λ|y,y∗, N is Gamma(αl +

∑
k>0 kn

∗
k, βl +N) while the conditional

distribution ω|y,y∗, N is Beta(αω + nz, βω +
∑
k>1 nk).

Similarly, for the OIG model where θ = (p, ω) we can follow exactly the same strategy
by factorizing the posterior distribution as p(θ̃, Ñ |y) = p(p̃, ω̃, Ñ |y) = p(Ñ |p̃, ω̃,y)p(p̃, ω̃|y)
and estimating p(p̃, ω̃|y) by

p(p̃, ω̃|y) ≈ 1
T

T∑
t=1

p(p̃, ω̃|y,y∗
(t), N(t)).

where y∗
(1), N(1), . . . ,y∗

(T ), N(T ) are T realizations from p(y∗, N |y) obtained from the first
Gibbs sampler run. Also in this case p̃ and ω̃ are conditionally independent given y,y∗, N .
The conditional distribution p|y,y∗, N is Beta(αp+N, βp+

∑
k>0 n

∗
k) while and ω|y,y∗, N

is Beta(αω + nz, βω +
∑
k>1 nk).

For the Negative Binomial model we have θ = (p, r) and the posterior can be factorized
as

p(θ̃, Ñ |y) = p(p̃, r̃, Ñ |y) = p(Ñ |p̃, r̃,y)p(p̃|r̃,y)p(r̃|y).

where, as in the previous models, the conditional density p(Ñ |p̃, r̃,y) is known. The
conditional density p(p̃|r̃,y) can be obtained by an extra run of the Gibbs sampler with r
fixed to r̃. In fact

p(p̃|r̃,y) =
∑
N

p(p̃, N |r̃,y) =
∑
N

p(p̃|N, r̃,y)p(N |r̃,y)
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and the conditional distribution p|N, r̃,y is Beta with parameters αp +Nr, βp + s. Instead
the calculation of the marginal posterior p(r̃|y) can be obtained following the approach
proposed by Chib & Jeliazkov (2001).

For the OI Negative Binomial we have θ = (p, r, ω) and the posterior can be factorized
as

p(θ̃, Ñ |y) = p(p̃, ω̃, r̃, Ñ |y) = p(Ñ |p̃, r̃, ω̃,y)p(ω̃, p̃|r̃,y)p(r̃|y).

Also in this case the conditional density p(Ñ |ω̃, p̃, r̃,y) is known and p(ω̃, p̃|r̃,y) can be
obtained by an extra run of the Gibbs sampler with r fixed to r̃ by

p(p̃, ω̃|r̃,y) ≈ 1
T

T∑
t=1

p(p̃, ω̃|r̃,y,y∗
(t), N(t)).

Note that the parameters p and ω are conditionally independent given r,y,y∗ and N with
p|r,y,y∗ and N which is Beta(αp +Nr, βp +

∑
k>0 kn

∗
k) and ω|y,y∗, N which is, as in

the previous inflated models, Beta(αω +nz, βω +
∑
k>1 nk). Finally, as for the non–inflated

Negative Binomial counterpart, the calculation of the marginal posterior p(r̃|y) can be
obtained following the approach proposed by Chib & Jeliazkov (2001).
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Chapter 3

Semi-parametric Bayesian approach
for estimating the size of criminal
populations modeling the excess of
singletons
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Abstract

In this Chapter we aim at estimating the size of certain criminal populations on the basis
of administrative data on judicial proceedings by exploiting capture–recapture models
for repeated count data. The data at our disposal exhibit an abundance of units that are
captured exactly once, which suggests the necessity of explicitly modeling this deviation.
We distinguish two possible causes for this phenomenon, namely, the erroneous inclusion
of out–of–scope units, and a particular behavioral effect preventing subsequent captures
after the first one. Accordingly, we propose two families of one–inflated models to estimate
the number of uncaptured units. We propose a Bayesian semi-parametric approach by
considering a Dirichlet process mixture model as a base model, and extend this class to
include one–inflation. The proposed model and the two one–inflated counterparts are
compared on three datasets of Italian criminal proceedings.

3.1 Introduction

The need to estimate the number of people involved in a certain illegal activity is driven
by several factors, including social, judicial and economic ones. Such an estimate, in fact,
would allows us to better understand the size of the illegal phenomenon itself, and to assess
the threat it poses to society; it serves to better size the police forces to counter it and to
evaluate the effectiveness of prevention and counteraction policies. In addition to social and
criminology purposes, some illegal activities have also a great economic interest. Indeed,
the European Parliament and Council have identified the smuggling of goods, prostitution
exploitation and drug trafficking as the main sources of illegal economic transactions to
report in the national accounts aggregates and in the GDPs of the member states (Regulation
EU No 549/2013 of the European Parliament and of the Council (ESA 2010)1, based on
the international recommendation on System of National Accounts (SNA) 2008). In this
Chapter we aim to estimate the number of people involved in these three illegal activities in
Italy during 2014.

In Italy, smuggling activities mainly regards cigarettes. The internal tobacco market
is regulated, and smuggling is related to three product types: (1) original cigarettes manu-
factured by legitimate business enterprises imported beyond the limit or through an illegal
supply chain; (2) the so called “cheap white”, i.e. cigarettes manufactured by legitimate
business enterprises with a large share of the production being sold without all applicable
duties paid, usually outside the jurisdiction where they are produced since there is not
enough internal demand in those countries; (3) counterfeit cigarettes, which bear brands
without the owner’s permission and which are often produced in countries characterized
by low labor costs and by the presence of strong economies of scale in tobacco processing.
Contraband cigarettes arrive in Italy especially from Eastern European countries, China and
the United Arab Emirates. The internal production is considered negligible, as well as the
exportation.

Prostitution is neither prosecuted nor regulated in Italy, while the trafficking, exploitation,
and aiding and abetting of prostitution is a crime, regulated by law and prosecuted. This
activity is mostly under the control of organized crime. For the estimate of national account
aggregates, prostitution is considered as a service to the households and the number of
prostitutes are estimated without considering if they are in a condition of “exploitation”. On
the other side, prostitution exploitation is also related to human trafficking, since the sexual
exploitation and forced labor are the main forms of exploitation for trafficking in persons.
To this regard, the United Nations Protocol to Prevent, Suppress and Punish Trafficking

1https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32013R0549
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in Persons, the so-called Palermo Protocol, which provides the basis for much national
legislation, stipulates that the fight against human trafficking must be equally focused on the
arrest and punishment of offenders and providing protection and assistance to victims, with
full respect for their human rights. Hence, the need of a more comprehensive estimation of
the true volume of presumed prostitution exploiters, so more targeted policy interventions
can be implemented to improve the detection of – and prevention to – the most hidden
populations.

Italy is considered as a key transit area for global drug trafficking routes, both for
the central position in the Mediterranean Sea and in Europe, for the presence of criminal
organizations, and for the relevant consumer markets. The drug market mainly concerns
importation and exportation, rather than production. Cocaine, cannabis, and amphetamine-
type stimulants are the main substances in transit, managed by national and international
organized criminal networks. For this reason, the fight against drug trafficking coincides, in
most cases, with the fight against mafia-type organizations. For these criminal associations,
drug trafficking remains the “main multiplier of wealth”, since its profits are by far the
most significant of those generated by any other human activity, both lawful and illegal.
Therefore, the estimates of drug traffickers remains decisive, both because it is essential to
contain the spread of drugs, which affects health and public order, and because it is essential
to reduce the strength and the wealth of criminal organizations and of the whole complex
chain that revolves around them.

People involved in illegal activities have obvious reasons to hide their businesses to
the public, the administrative system, the police and of course they also escape traditional
statistical surveys. In this work we exploit administrative registers coming from the Ministry
of Justice, which report alleged crimes for which the judicial authority has collected enough
evidences to decide to start a criminal proceeding. These data are usually utilized by National
Statistical Offices to produce official crime statistics. National Statistical Offices usually
warn users that these statistics refer only to crimes recorded by the authorities, based on
reports to the police from victims and witnesses. In this Chapter, we propose an additional
re–use of these sources to estimate the hidden part of the population, those involved in
criminal activities but for some reasons unreported to the justice system.

Crimes records in the registers of the Public Prosecutor’s offices, contain soft identifiers
of the denounced subjects, namely date and place of birth and gender. On the basis of this
information, crime authors can be recognized within the register and followed in a specific
time span. In this way, it is possible to count the number of times each unit appears in the
Prosecutor’s offices registers. Obviously, we do not observe units not caught by the Justice
system. Hence, the registers can be considered as incomplete lists of potential criminals,
since only denounced crimes and suspected criminals are reported. We aim to estimate the
total criminal population size (reported or not) via capture–recapture methodologies.

The data at our disposal are not provided with information on the exact date of each report.
Luckily, the assumption of homogeneous capture probabilities for each unit throughout
the reference year (i.e., time–homogeneity) seems reasonable. Under time–homogeneity,
in absence of individual covariates, the data can be simply summarized as counts of units
captured j times, j = 1, 2, ..., commonly called “repeated count data” in the context of
capture–recapture literature. The common parametric approach to analyze this data is to
define a counting distribution for the number of captures in the population. In absence of any
additional individual information, it is crucial to model the unobserved heterogeneity in the
captures probabilities. A common approach to this end is represented by the use of mixtures
of counting distributions which is well established in capture–recapture, see, e.g., Norris
& Pollock (1996), Pledger et al. (2003), Böhning et al. (2005). In this work we propose a
Bayesian approach based on mixtures of Poisson distributions.

The choice of the number of components in a finite mixture model is a long–debated
problem in model selection. We address this aspect in a fully Bayesian approach by resorting
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to a semi–parametric modeling to avoid a definite choice over that number, by considering
a Dirichlet process mixture (DPM) model. There are precedents for the use of DPMs in
capture–recapture literature: a DPM of Poisson distributions was proposed in Guindani
et al. (2014) for modeling gene expression sequence abundance, and, in the context of
multiple systems estimation, a DPM approach to latent class models was proposed in
Manrique-Vallier (2016) to estimate civilian casualties in war.

We also compare the DPM models with sparse finite mixture (SFM) models which, to
the best of our knowledge, even if strictly related to DPMs, have not yet been applied in this
field. For a completely different semi–parametric Bayesian approach to mixture of Poisson
distribution in capture–recapture see Fegatelli & Tardella (2018).

The data at our disposal (presented in the next Section) exhibit an elevated number of
individuals captured exactly once (sometimes referred to as “singletons”). The excess of
singletons has been studied in several works in the recent literature in capture–recapture,
where it is known as “one–inflation” (see, e.g., Godwin & Böhning (2017), Godwin (2017),
Bunge et al. (2014), 2). The idea is that there exists a mechanism which increases the
number of observed singletons with respect to a baseline counting distribution. Ignoring an
existing mechanism of one–inflation can lead to a severe overestimation of the population
size, so we included in our analysis the one–inflated counterpart of a DPM of Poissons (our
baseline distribution). We identified three possible sources of one–inflation and derived a
one–inflated model for two of them.

The three possible one–inflation mechanisms are presented and commented with respect
to the criminal data in Section 3.2. The DPM of Poisson models are presented in Section
3.3 together with a Gibbs–based MCMC for the estimation of the posterior distribution of
the population size. Two one–inflated mixtures of Poisson models based on two different
one–inflation mechanisms are presented in Section 3.4, together with the relative Bayesian
estimation algorithms. In Section 3.6 we present the results of all our models for estimating
the three criminal populations. Some remarks conclude the Chapter in Section 3.7. In the
Supplementary material we present the SFM models showing a comparison with the DPM
approach.

3.2 Data on criminal activities and one–inflation

Figure 3.1 depicts the relative frequencies of observed number of captures for the
individuals involved in the three criminal activities mentioned in the introduction in Italy
during 2014. The total number of distinct individuals charged with smuggling is 3349. The
top panel of Figure 3.1 shows the relative distribution by number of captures per person,
which presents a maximum of 27 captures. The total number of distinct individuals facing
charges of prostitution exploiting (middle panel) is 2740. Individuals with more than 5
proceedings are relatively few, and 12 is the maximum number of observed captures. The
total number of distinct individuals charged with drugs trafficking is 34964. The relative
distribution (bottom panel) presents a rather long right tail which is rarely observed in social
applications of capture–recapture: a few units are captured even more than 70 times in the
reference year.

A clear common characteristic of the three observed distributions is the high number of
individuals captured once. In particular, we have that about 78% of the observed distinct
individuals in the smugglers data are captured once. That percentage is about 82% in the
prostitution exploiters data, and 77% in the drug traffickers data. Explicitly modeling a
process generating an excess of singletons, that is, a mechanism of one–inflation, is of
particular importance in capture–recapture, as it typically implies a substantial difference in
the population size estimates. In particular, a one–inflated model always implies a lower
estimate of the population size with respect to its baseline counterpart.
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Figure 3.1. Relative frequency distribution of the counts of proceedings per person for smuggling
(top), prostitution exploiting (mid), and drug trafficking (bottom) in Italy in 2014

One–inflation can be motivated by different factors, and we have identified the following
list of possible generating mechanisms:

1. a specific behavior of the units, which learn how to avoid subsequent captures after
the first one;

2. the presence of spurious units which do not belong to the reference population;

3. errors in re-identifying the units (linkage errors), due to the lack of unique identifiers
and error-prone soft identifiers.

In our data we cannot exclude any of the previous factors having an impact on the
observed excess of singletons. Clearly, people involved in illegal activities avoid any capture
as much as possible. The behavior mechanism generating one–inflation in this case can
be viewed as an extreme form of “trap shy” behavior. In animal abundance analysis, the
term “trap shy” is often utilized to indicate a behavior where an animal, once captured,
tends to stay away from traps, so that its probability of being captured is reduced at each
additional capture. In our case, we can suppose that, after the first capture, a portion of
persons involved in illegal activities acquires the necessary knowledge/ability to avoid any
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subsequent capture. This hypothesis has been explored in depths in several recent papers
(see, e.g., Godwin & Böhning (2017), Godwin (2017), Godwin (2019), Böhning & Friedl
(2021), Tajuddin et al. (2021), 2).

We cannot even rule out the second listed source of one–inflation, as our data might
include spurious cases. Indeed, we analyze records from the reported offences for which the
judicial authority started a proceeding, that is, according to the Italian law, after the reports
of victims and witnesses, the investigative activities of the police authorities have collected
sufficient evidence for the judicial authorities to take legal action. However, we actually do
not have information on the outcome of the prosecutions, i.e., whether the person reported
was sentenced in court or acquitted (and should not be included in our target population). A
second possible source of spurious cases, peculiar for criminal records, has been mentioned
in Tajuddin et al. (2021). It comes from the missclassification of the criminal offense,
that is, individuals that are accidentally (or intentionally) charged with the wrong offense
(see Nolan et al. (2011)). Clearly, limiting the spurious cases to the units captured once
is a simplifying hypothesis, but it is undeniably reasonable. Then, we can hypothesize
that a portion of the units captured once are out–of–scope, and should be discarded from
the analysis. The presence of out–of–scope or spurious captures has been considered in
the context of multiple systems estimation (MSE) by several authors (e.g., Overstall et al.
(2014), Fegatelli et al. (2017), Di Cecco et al. (2018), Di Cecco (2019), Farcomeni (2020)).
In MSE, data assume the form of a contingency table, and, in the above contributions, (a
portion of) the cells are supposed to include units that should be discarded from the analysis,
so that the observed counts represent an upper bound for the real values to be considered
under the hypothesized models. In the context of repeated counts data, the hypothesis has
been explored, with a different approach, for example in Bunge et al. (2014), Böhning et al.
(2018) and Böhning & van der Heijden (2019) (more details will be given in subsequent
sections). Finally, due to privacy issue, our data are not provided with a unique identifier,
hence, we cannot exclude the possibility of one–inflation deriving from linkage errors. In
fact, when matching information does not suffice to recognize multiple captures of the same
individual, the resulting missing links erroneously increase the number of singletons. An
accurate analysis of this hypothesis would require knowledge on the linkage procedure
utilized as well as the availability of unique identifiers which we do not have access to. For
this reason, we will focus on the first two sources of one–inflation and consequently provide
two families of one–inflated models in Section 3.4. The interested reader can find additional
information on linkage errors in MSE framework in Tancredi & Liseo (2011), Di Consiglio
& Tuoto (2018), and Di Consiglio et al. (2019).

3.3 Dirichlet process mixtures

We assume that the population of criminals in a given year is closed of unknown size
N . Let Y be the integer–valued random variable representing the number of times a given
unit has been captured. We only observe the n individuals, n ≤ N , which are captured at
least once. Let nj denote the number of units captured j times, such that

∑
j>0 nj = n.

We want to estimate the number of uncaptured units n0, or, equivalently, the total number
of units in the population N = n+ n0. To take into account the heterogeneity of capture
probabilities in the population, we assume that the number of times Y an individual appears
in the Prosecutor’s offices registers is a finite mixture of Poisson distributions. Denote as
k the number of components of our mixture, as f(j|λi) the probability λjie

−λi/j! of being
captured j times in the i–th Poisson component defined by the parameter λi. Let π1, . . . , πk
be the mixing weights, such that

∑k
i=1 πi = 1, and denote as θ the set of all parameters
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defining the model:
{
πi
}
i=1,...,k and

{
λi
}
i=1,...,k. Our model is then defined as:

P (Y = j) = f(j|θ) =
k∑
i=1

πi f(j|λi). (3.1)

In order to avoid to specify in advance an unknown and fixed quantity for the number of
mixture components, we adopt a semi-parametric approach by choosing a Dirichlet process
mixture (DPM) prior. In particular, we assume the truncated version of the DPM, (see
Ishwaran & James (2001)), where the weights π1, . . . , πk of the components follow a finite
stick–breaking process. In our DPM model, we fix an arbitrarily large value for k, and we
set the following priors:

• a truncated stick–breaking process of parameter ϕ over the mixture weights, with a
Gamma prior over ϕ:

(π1, ..., πk) ∼ SB(ϕ), ϕ ∼ Gamma(αϕ, βϕ);

• a conjugate Gamma prior for each parameter λi

λi ∼ Gamma(αλ, βλ), i = 1, ..., k,
where βλ can eventually have a hyper-prior Gamma distribution to permit a hierarchi-
cal prior modeling approach;

• an improper prior with distribution proportional to 1/N over the parameter N . Other
weakly informative options for the total population size N are available in literature,
(see, e.g., Wang et al. (2007) and Xu et al. (2014)). However, we found no significant
difference in using them in our applications. In addition, assuming P (N) ∝ 1/N
leads to a computational advantage, as it is well-known that in this case, we can
directly sample from the full conditional distribution of n0 = N − n which is
Negative Binomial.

Throughout the Chapter all Gamma distributions are to be intended as parameterized in
terms of shape and rate parameters.

3.3.1 MCMC algorithm

Here we detail the Gibbs–based MCMC algorithm to sample from the posterior distribu-
tion of (N , θ). Let nij be the (latent) number of units in the i–th component that have been
captured j times. Let ni be the total number of population units (captured or uncaptured) in
component i: ni =

∑
j≥0 n

i
j . Then, at each iteration we have the following steps:

1. Update all parameters λi by sampling from their respective full conditionals:

λi ∼ Gamma

αλi
+
∑
j≥0

j · nij , βλi
+ ni

 , i = 1, . . . , k.

2. In order to update all mixing weights πi, sample

Vi ∼ Beta

1 + ni, ϕ+
k∑

h=i+1
nh

 , i = 1, . . . , k − 1,

then set Vk = 1 and

πi = Vi
∏
h,h<i

(1 − Vh), i = 1, . . . , k.
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3. Sample ϕ from Gamma(αϕ − 1 + k , βϕ − log πk).

4. Sample n0 from its full conditional, that, given the improper prior P (N) ∝ 1/N , is

n0 ∼ NegBin (n, 1 − f(0|θ)) ,

where the probability f(0|θ) of not being captured is calculated according to (3.1).

5. Update the number of units captured j times associated to each mixture component
(n1
j , ..., n

k
j ) by sampling from

Mult
(
nj , (ρ1|j , ..., ρk|j)

)
, for j ≥ 0,

where ρi|j denotes the probability of belonging to the i–th component conditionally
on the number of captures j and the current values of θ, and is calculated as:

ρi|j = πi f(j|λi)∑k
h=1 πh f(j|λh)

.

3.4 One–inflated models

We consider two classes of one–inflated families defined by the first two listed sources of
inflation mentioned in Section 3.2: the behavioral effect and the presence of spurious cases.
Under the hypothesis of one–inflation caused by a specific behavioral effect, an individual
that, without that effect, would face multiple captures, now has a positive probability ω of
being captured just once. The hypothesis can be modeled as follows: let B be the latent
indicator variable identifying the units having this behavior. Each individual has a marginal
probability ω of belonging to this subpopulation for which P (Y > 1|B = 1) = 0. Denote
as Y ∗ the latent number of captures of a given unit that we would observe in absence of the
behavioral mechanism. Let f∗(j|θ) = P (Y ∗ = j | θ) be the relative probability distribution,
depending on a set of parameters θ. Then we have

P (Y = j|B = 0) = f∗(j|θ) for all j, and P (Y = j|B = 1) =
{

f∗(0|θ) if j = 0;
1 − f∗(0|θ) if j = 1.

The resulting distribution for Y is the one–inflated model defined as:

P (Y = j | θ, ω) = f(j|θ, ω) =


f∗(0|θ) if j = 0;

(1 − ω)f∗(1|θ) + ω(1 − f∗(0|θ)) if j = 1;
(1 − ω)f∗(j|θ) if j > 1.

(3.2)

We will refer to f∗ as the “baseline” distribution and to (3.2) as its one–inflated counterpart.

Under the hypothesis of one–inflation caused by the erroneous inclusion of out–of–scope
units, we assume a constant probability of each unit captured exactly once of being spurious.
Formally, if we denote as S the latent indicator variable identifying the spurious units, each
unit has a marginal probability ψ of belonging to this subpopulation for which

P (Y = j |S = 1) =
{

1 if j = 1;
0 otherwise.
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If we denote again as f∗(j|θ) = P (Y ∗ = j | θ) the baseline probability distribution of
the number of captures without one–inflation, the resulting distribution of Y is a mixture of
f∗ and a Dirac’s measure over the value one:

P (Y = j | θ, ψ) = f(j|θ, ψ) =


(1 − ψ)f∗(0|θ) if j = 0;
(1 − ψ)f∗(1|θ) + ψ if j = 1;
(1 − ψ)f∗(j|θ) if j > 1.

(3.3)

Models (3.2) and (3.3) represent two distinct hypotheses on the source of one–inflation,
and lead to different estimates of n0. Note however that, in our analysis, data are truncated
in zero, so that they assume respectively the form:

P (Y = j | θ, ω, Y > 0) =


(1 − ω)f∗(1|θ) + ω(1 − f∗(0|θ))

1 − f∗(0|θ) if j = 1;
(1 − ω)f∗(j|θ)

1 − f∗(0|θ) if j > 1.

and

P (Y = j | θ, ψ, Y > 0) =


(1 − ψ)f∗(1|θ) + ψ

1 − (1 − ψ)f∗(0|θ) if j = 1;
(1 − ψ)f∗(j|θ)

1 − (1 − ψ)f∗(0|θ) if j > 1.

Then, it can be showed with simple algebra that the two zero-truncated one–inflated
families are equivalent for fixed θ, according to the following reparameterization:

ψ = 1 − 1 − ω

1 − ωf∗(0|θ) . (3.4)

This implies that the two possible sources of one–inflation cannot be distinguished on the
basis of the likelihood in case of capture–recapture data. That is, even under identifiability
within each one–inflated class of distributions, we do not have identifiability between
those two classes (on this subject see, e.g., Link (2003) and Link (2006)). Note that
nonidentifiability holds for the truncated distributions, and the two options would lead
to different estimates of n0 (in particular, ceteris paribus, the estimate of n0 under (3.3)
would always be smaller than that deriving from (3.2)). This fact does not represent a
problem in those situations where we can opt for a definite choice between the two forms of
one–inflation (for example, whenever the capturing mechanism cannot be affected by units
behavioral effects). As we have said before, in our analysis we are bounded to consider both
options and appreciate the difference in the estimates under the two different assumptions. A
formal approach in a Bayesian analysis would be that of considering model averaging, that is,
the posterior ofN averaged over the two models. In fact, even if the likelihoods are identical,
the use of informative priors would lead us to different posterior probabilities for the two
models. In particular, an informative prior on n0 could permit to recover identifiability
between the two classes. Unfortunately, in our analysis we do not have any prior information,
and non informative priors would lead us to identical weights for the two options.

3.4.1 MCMC for the behavioral effect

One–inflated models (3.2) associated to the behavioral effect can be formalized in terms
of right-censored data. In fact, for all units captured once affected by the behavioral effect,
we observed a lower bound of the potential number of captures. As such, we have several
possibilities of estimation in a Bayesian context. We propose a Gibbs sampler exploiting the
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latent variables Y ∗. The conditional distribution of Y when Y ∗ = j is concentrated on j
when j ≤ 1, while, for j > 1, we have:

Y =
{

1 with probability ω;
j with probability 1 − ω.

In our Bayesian approach we evaluate the posterior distribution of the number of units whose
latent number of captures Y ∗ is affected by the behavioral mechanism, (which is a portion of
the observed number of units captured once), and their latent number of captures (a passage
we will call “imputation” of Y ∗). To do that, we consider the conditional distribution of Y ∗

when Y = 1:

P (Y ∗ = j | Y = 1, θ, ω) =


0 if j = 0;

f∗(1|θ)
f∗(1|θ) + ω(1 − F ∗(1|θ)) if j = 1;

ωf∗(j|θ)
f∗(1|θ) + ω(1 − F ∗(1|θ)) if j > 1;

(3.5)

where F ∗ denotes the cumulative distribution function associated to f∗. Then, the probability
of a unit captured once of being affected by the behavioral effect and contributing to the
one–inflation is equal to

P (Y ∗ > 1|Y = 1) = ω(1 − F ∗(1|θ))
f∗(1|θ) + ω(1 − F ∗(1|θ)) . (3.6)

As a consequence, the distribution of Y ∗ for those units is truncated in 0 and 1:

P (Y ∗ = j|Y = 1, B = 1) = f∗(j | θ)
1 − F ∗(1 | θ) for j ≥ 2. (3.7)

Denote as n̂ the number of units for which Y ∗ > Y , and as n̂j the number of such units
having j imputed captures, so that

∑
j>1 n̂j = n̂. Denote as n∗

j the total number of units in
the population captured j times after the imputation step, that is,

n∗
j =


n0 for j = 0;

n1 − n̂ for j = 1;
nj + n̂j for j > 1.

Denote as n∗i
j the analogous number of units in the i–th component of the mixture. Then,

the algorithm for a one–inflated DPM of Poissons comprises five steps formally identical to
the steps of Section 3.3.1 with f∗, n∗i

j , n∗
j and n∗i substituting f , nij , nj and ni, and the

following additional steps:

6. Update the number n̂ of units affected by the behavior effect, which, conditional on
the current value of θ, by (3.6), can be generated as

n̂ ∼ Binom

(
n1 ,

ω(1 − F ∗(1|θ))
f∗(1|θ) + ω(1 − F ∗(1|θ))

)
. (3.8)

7. Generate a number Y ∗ of latent captures for each of the n̂ units from the truncated
distribution (3.7), and update accordingly the values {n∗

j}j=2,3,....

8. Since we assume a Beta(αω, βω) prior over ω, update ω from

Beta
(
αω + n̂ , βω + n2+

)
,

where n2+ denotes the number of observed units captured more than once, n2+ =∑
j>1 nj , a quantity which remains fixed throughout the procedure.
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3.4.2 MCMC for spurious cases: Trimming

Under model (3.3) we assume that a part of the units captured once are spurious, and
the observed value n1 has to be considered as an upper bound of the actual number of
singletons, n∗

1, to be estimated according to the baseline distribution. Bayesian estimation of
this one–inflated model is simply obtained by updating in the MCMC a value for ψ and one
for n∗

1. We will call this procedure “trimming”. If we assume a Beta(αψ, βψ) prior over ψ,
the full conditionals assume the following forms:

n∗
1 ∼ Binom

(
n1 ,

(1 − ψ)f∗(1|θ)
ψ + (1 − ψ)f∗(1|θ)

)
,

ψ ∼ Beta
(
αψ + n1 − n∗

1 , βψ + n2+ + n∗
0 + n∗

1

)
.

Then, we follow the steps of Section 3.3.1, where n1 is to be replaced with n∗
1, in step 4 we

update n0 from NegBin(n, 1 − (1 − ψ)f∗(0|θ)), and in step 5 f is to be replaced with f∗.

3.4.3 MCMC for spurious cases: Discounting

In the presence of possibly erroneous data, some authors suggest the possibility to
conduct the analysis solely on the basis of a part of the records, that is, to simply discard
the units which are possibly affected by some errors, and derive the estimate of N solely
from the remaining, error-free units. The possibility is hinted in Richardson (2015) in the
context of spurious units in MSE, is adopted by Bunge et al. (2014) and Willis (2016) in
the context of microbial species abundance estimate, and by Böhning & van der Heijden
(2019) in the case of one–inflated repeated count data. In practice, in our case, we should
discard the observed number of singletons and re-estimate it, alongside with n0, on the basis
of the values nj , j > 1, non affected by inflation. We will call this process “discounting”,
in accordance with Bunge et al. (2014). We deem useful to highlight two points on this
approach: 1) discounting appears to be useful only when the source of one–inflation are
spurious cases; 2) discounting implies a certain loss of information with respect to trimming,
but it allows to test the one–inflation hypothesis.

As for the first point, note that, if (3.3) holds, and we discard the observed value n1,
we cannot estimate ψ, as we ignore any potential spurious unit. However, the discounted
estimate of n0 would be an estimate of the unobserved units in the subpopulation for which
S = 0, i.e., an estimate n∗

0 under the baseline distribution of (3.3), which coincides with
the number of unobserved units under (3.3). On the converse, discounting would not allow
an estimate of n0 under model (3.2). In fact, if (3.2) holds and we ignore n1, we cannot
estimate ω in (3.2), and the discounted estimate of n0 would be limited to the subpopulation
for which B = 0, which is just a portion of n0 under (3.2).

As for the second point, if we do not question the hypothesis behind (3.3), discounting
implies a loss of information with respect to trimming, as the observed value of n1 is no
longer held as an upper bound for the number of units captured once. In the cases we are
considering, quite often n1 represents an important portion of the total amount of observed
units, so the estimate of the posterior of n0 can change considerably with respect to the
trimming approach. On the other hand, discounting can be used for assessing robustness of
the estimate of N to the one–inflation hypothesis. In fact, with this procedure, we admit the
possibility of values of the number of singletons higher than the observed n1, that is, the
possibility of the opposite phenomenon to one–inflation. At the same time, if discounting
leads to an estimate of n0 close to that resulting from trimming, it can be considered as a
validation of the associated hypothesis of one–inflation.
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In our Bayesian approach the joint estimation of n∗
0 and n∗

1 does not present particular
difficulties. In fact, at each iteration of the MCMC, we simply have to generate a value for
the couple (n∗

0, n
∗
1) from the following distribution:

P ((n∗
0, n

∗
1)|θ, n2+) ∝ P (N) N !

n2+!n∗
0!n∗

1! (1 − f∗(0|θ) − f∗(1|θ))n2+ f∗(0|θ)n∗
0f∗(1|θ)n∗

1 .

(3.9)
That is, if we adopt the improper prior P (N) ∝ 1/N over N , we simply have to generate
from a Negative Multinomial distribution. Then, the Gibbs sampler can proceed according
to steps 1., 2., 3. and 5. of Section 3.3.1 where f is replaced by f∗.

3.5 Sparse finite mixtures

An alternative to the Dirichlet process mixtures is represented by the sparse finite
mixtures (SFMs), (see Malsiner-Walli et al. (2016) and Malsiner-Walli et al. (2017)).
SFMs specify a prior Dirichlet distribution on the weights of a finite mixture distribution:
(π1, . . . , πk) ∼ Dir(e1, . . . , ek). The Dirichlet is assumed to be symmetric: i.e., ei = e,
for i = 1, . . . , k, and such that it favors sparse distributions, i.e., the value e is chosen to
be smaller than 1. We also choose the finite mixture to be overfitting, i.e., the number of
components k is assumed larger than what we can reasonably assume the actual number of
components in the population may be. In this way, the actual number of components in the
data is not fixed a priori, but rather, as for DPM, it is random by construction and can be
estimated using MCMC methods. As shown by Green & Richardson (2001), DPM can be
seen as the limiting case of a SFM.

In our context, a favorable property of SFMs consists in their behavior when the number
of observations n increases. Let us call “cluster” the set of all units allocated to a certain
component. Unlike DPM, a SFM avoids to create new clusters as k increases, even if n goes
to infinity. In fact, Müller & Mitra (2013) demonstrated that a DPM tends to increase the
number of clusters with n, that is, it is very likely that one big cluster is found, the sizes
of further clusters geometrically decay, and many clusters consisting of a single unit are
estimated. Also Miller & Harrison (2013) discusses the properties of DPM with respect to
the number of components, highlighting the risk of overestimating the number of clusters.

We exploit a result from Frühwirth-Schnatter & Malsiner-Walli (2019), which shows that
a careful choice of the prior of the precision parameters ϕ of the DPM and the parameter e of
the SFM allows to achieve sparse clustering in both models. That is, we avoid overfitting the
number of clusters, which remains stable for increasing value of k. In this way, the clustering
performance of DPM and SFM become comparable and provide very similar results. In
particular, the values suggested by Frühwirth-Schnatter & Malsiner-Walli (2019) to obtain
the same level of sparsity are: e = 1/(20 · k) for the SFM, and ϕ ∼ Gamma(1, 20) for the
precision parameter of the DPM.

The MCMC algorithms for SFM models are identical to the those introduced in the
Chapter for the DPMs, where the steps for generating the mixing weights are replaced by
sampling (π1, . . . , πk) from Dir(n1 + e, . . . , nk + e).

3.6 Application to criminal populations

In this Section, we apply our models to estimate the number of people implicated in
smuggling, prostitution exploiting, and drug trafficking. In all our models we utilized
the improper prior P (N) ∝ 1/N over N . All DPM models utilized the sparsity prior
suggested in Frühwirth-Schnatter & Malsiner-Walli (2019) for the precision parameter,
i.e., ϕ ∼ Gamma(1, 20), and a number of component equal to 10 (larger values for k
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have been tested without observing changes in the results, as we show in the Supplemental
material). We set a Gamma prior for all parameters λi with a common Gamma hyper prior
for the component-specific rate parameter chosen as suggested in Frühwirth-Schnatter &
Malsiner-Walli (2019), to provide substantial probability to large values:

λi|βλ ∼ Gamma(0.1, βλ), for i = 1, . . . , k,
βλ ∼ Gamma(0.5, 5 ȳ),

with ȳ being the mean number of captures in the observed data. In addition, for the one–
inflated models, we set a uniform (Beta(1, 1)) prior over the inflation parameter ω or ψ. In
all the applications, the number of iterations of the MCMC algorithm is one million with
a thinning of 20 observations. Standard diagnostic tools confirmed the convergence of the
algorithm in all cases.

We present separately the results deriving from ignoring one–inflation, and from the two
one–inflation hypotheses.

3.6.1 Population estimates when ignoring one–inflation

Table 3.1 summarizes the results for the three datasets when we ignore one–inflation. It
shows the posterior modes and credible intervals of N under the DPM model, the Poisson
and the Negative Binomial (NB) (for a Bayesian approach to the latter two see 2). For
the sake of comparison with non–Bayesian approaches, we also report in Table 3.1 the
results from the well-known Chao and Zelterman estimators (see Chao (2014) for a detailed
description), and from the maximum likelihood non–parametric Poisson mixture model
proposed by Norris & Pollock (1996) and Norris & Pollock (1998) (NPML, in the Table).
We utilized the R package SPECIES (Wang (2011)) to estimate the NPML model and its
confidence interval for N (via bootstrap) and to derive the confidence intervals of Chao
estimator.

Table 3.1. Posterior modes and credible intervals of N for smuggling, prostitution exploitation, and
drug trafficking data when ignoring one–inflation

Smugglers Prostitution exploiters Drug traffickers
n=3349 n=2740 n=34963

Model N̂ 95% CI N̂ 95% CI N̂ 95% CI
DPM 12093 (10692 – 13592) 10073 (9049 – 11110) 117678 (112996 – 124051)
Poisson 5583 (5392 – 5774) 7223 (6783 – 7693) 54447 (53927 – 54975)
NB 153466 (110478 – 529338) 89140 (35162 – 188368) 1857809 (1003669 – 2191696)
NPML 12018 (9789 – 13233) 10012 (9345 – 11286) 154392 -
Chao 11387 (10451 – 12447) 9851 (8961 – 10868) 106042 (103441 – 108741)
Zelterman 12052 (10952 – 13152) 10030 (9033 – 11027) 111395 (108471 – 114319)

Even if the Negative Binomial might appear as an optimal choice as it represents a
simple two-parameters generalization of the Poisson allowing for heterogeneity in the
capture probabilities, it has been proved to be hard to use in capture–recapture. In fact, it
suffers from the so–called “boundary problem”. That is, when in the observed data the
mean number of captures is close to one (which is typically the case in the presence of
one–inflation), the model severely overestimate the number of uncaptured units, sometimes
by several orders of magnitudes. Looking at the results, it seems safe to assert that we
incurred in the boundary problem in all three datasets. On the other hand, DPM models do
not have this problem, and provide much greater flexibility to model heterogeneity in the
data. In the first two datasets the DPM models produce results very similar to those produced
by the NPML procedure. This is not surprising, since we used non-informative priors. In
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the drug traffickers data, we can see a noticeable difference in the estimates for N that is to
be ascribed to the different number of components identified by the two methods. Indeed,
the DPM identifies 6 non-empty components (see Table 3.4), while the NPML identifies
5 components. In addition, the bootstrap procedure utilized for the NPML is not able to
provide a confidence interval in a reasonable time-span. Surprisingly, the DPM models
produce results quite close to those deriving from the Zelterman estimator, confirming and
motivating its popularity due to its simplicity and its robustness against mis-specification of
the Poisson model.

3.6.2 Population estimates when modeling the behavioral effect

Table 3.2 shows the estimates produced by models that take into account one–inflation
caused by the behavioral effect. We considered three Bayesian model of the kind (3.2):
the one–inflated DPM model of Section 3.4.1 (labeled as DPM in Table 3.2), the one–
inflated Poisson and the one-inflated Negative Binomial models proposed in 2 (OIP and
OINB respectively in Table 3.2). For the sake of comparison, we considered the frequentist
one–inflated Poisson finite mixture models proposed by Godwin (2019), (Inflmix in Table
3.2 - we name it as the R function provided by the author as supplementary material).
Unfortunately, the code provided in Godwin (2019) does not provide a confidence interval
estimate, and a bootstrap procedure seems to be too cumbersome.

Table 3.2. Posterior modes and credible intervals of N for smuggling, prostitution exploitation, and
drug trafficking data when modeling the behavioral effect

Smugglers Prostitution exploiters Drug traffickers
n=3349 n=2740 n=34963

Model N̂ 95% CI N̂ 95% CI N̂ 95% CI
DPM 5830 (4959 – 8028) 6613 (5284 – 9870) 111708 (91854 – 120860)
OIP 3570 (3523 – 3614) 3885 (3655 – 4153) 36754 (36638 – 36877)
OINB 40256 (26970 – 71858) 19566 (6174 – 71710) 765406 (320886 – 868786)
Inflmix 7078 10671 -

As expected, when we take into consideration one–inflation by explicitly modeling the
behavioral effect, we obtain lower estimates of N than those obtained under the correspond-
ing baseline distributions. Similarly to the previous analysis, the estimates derived by OIP
models are by far the lowest in all three datasets. This suggests the presence of unobserved
heterogeneity in the capture probabilities which remains after taking into account one–
inflation. The formulation of a one–inflated counterpart of the Negative Binomial should
also serve, in the intention of the authors, to mitigate the consequences of the boundary
problem. Unfortunately, the problem seems to remain in all three datasets. So, the OINB
distribution does not help for taking into account the heterogeneity in these applications,
and the DPM again appears as a safer choice.

The estimates of N resulting from our one–inflated DPM are always lower than those
obtained by the frequentist model proposed by Godwin (2019). This difference is due to
the different number of components identified by the frequentist procedure (by means of
the Akaike information criterion), which is always one more than these recognized by our
model, in both smugglers and prostitution exploiters data. If we fix in the Inflmix procedure
the same number of components we found with the DPM, we obtain quite similar estimates
of N . We were not able to obtain an estimate for the drug traffickers data with Inflmix, not
even by fixing the number of components. These results in our opinion indicate a certain
computational advantage of our approach that avoids estimating a different model for each
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number of components, and easily produces interval estimates for any quantity of interest.

3.6.3 Population estimates when modeling the spurious cases

We presented two estimation procedures for distributions of type (3.3) which model one–
inflation caused by spurious cases. Table 3.3 shows the estimates produced by trimming and
discounting algorithms, as detailed in Sections 3.4.2 and 3.4.3. We also show the results from
the modified Chao’s estimator for one–inflated data (mod.Chao in Table 3.3), proposed in
Böhning et al. (2018). This modification of Chao’s estimator follows a discounting approach,
and provides a lower-bound for the population size estimate in case of one–inflated data
under a baseline mixture of Poissons distribution.

Table 3.3. Posterior modes and credible intervals of N for smuggling, prostitution exploitation, and
drug trafficking data when modeling spurious cases

Smugglers Prostitution exploiters Drug traffickers
n=3349 n=2740 n=34963

Model N̂ 95% CI N̂ 95% CI N̂ 95% CI
DPM trimming 4526 (3983 – 6303) 4915 (3775 – 8602) 111087 (78562 – 119188)
DPM discounting 4657 (3980 – 6314) 4675 (3634 – 13771) 94539 (76506 – 118737)
mod.Chao 4431 (3943 – 4919) 6493 (4163 – 8823) 54302 (51601 – 57004)

As expected, when we take into consideration one–inflation caused by spurious cases, we
obtain population size estimates which are lower than those obtained under the corresponding
distributions modeling the behavioral effect.

It is worthwhile noting that in Table 3.3 the estimates of N are obtained by using the
observed n1, so that the variability depends only on the posterior distribution of n0. In this
way, we have a fair comparison with Tables 3.1 and 3.2 as we can appreciate the differences
that the three hypotheses lead to the estimates of n0. That being said, if one is confident that
the source of one–inflation is actually the presence of spurious cases, their count should be
detracted by the total population size estimates. That is, we should consider the posterior
distribution of the quantity n∗

0 + n∗
1 +

∑
j>1 nj . This operation does not present particular

difficulties in our approach, since both the trimming and the discounting algorithms provide
estimates for the posterior distribution of n∗

1.
As anticipated in Section 3.4.3, the comparison between trimming and discounting

results can help us in assessing the hypothesis of spurious cases one–inflation. To this
purpose, it is illustrative the comparison between the posterior distribution of the non-
spurious singleton counts n∗

1 provided by the two algorithms in Figure 3.2. The solid vertical
line corresponds to the observed n1.

For data on smuggling (top panel of Figure 3.2), the posterior distributions resulting
from the two algorithms are quite close to each others, as confirmed by the estimates in
Table 3.3, and considerably far from the observed value n1, which is not included in the
credible intervals. This result firmly corroborates the assumption of one-inflation. The
results for data on prostitution exploitation (central panel of Figure 3.2), are slightly less
conclusive: the two distributions have similar modes, but that coming from discounting
has more mass on the right tail. As already noted, n1 is an upper bound for the value n∗

1
estimated by trimming, while the estimates from discounting can exceed it, suggesting in
this case a small evidence of one–deflation. This is confirmed by the upper bound of the
credible interval for N , which is much far to the right than that of the trimming. An opposite
result is found on the data on drug trafficking, on the bottom of Figure 3.2. The posterior
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Figure 3.2. Posterior distributions of non–spurious singleton counts n∗
1 under DPM for spurious

cases with trimming (solid line), and discounting (dashed line). Vertical lines indicate the
observed value n1.

mode of n∗
1 under trimming is close to n1, suggesting a small amount of one–inflation,

which is confirmed by the value ψ̂ in Table 3.4. However, the posterior distribution of n∗
1

under discounting presents much larger variability with a rather long right tail, and seems to
favour a one–deflation hypothesis. This result seems to indicate that the small amount of
one–inflation found with trimming could be non significant and, more generally, indicate a
larger uncertainty in the model results. In Figure 3.3 we show the posterior distributions
of N under the DPM model without one inflation (solid line), one–inflated DPM modeling
behavioral effect (dotted line), and one–inflated DPM modeling spurious cases (dashed
line), using trimming algorithm. The regular shape of the posterior distributions in case of
non inflated models is evident from Figure 3.3 for all the data sets, so the differences in
adopting the posterior mode, median or mean are quite negligible. Regularity of the posterior
distributions is also observed for the one–inflated models in the case of smuggling data, top
panel in Figure 3.3, while it does not hold for drug trafficking data, bottom panel in Figure
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Figure 3.3. Posterior distributions of N under DPM without one inflation (solid line), with one–
inflation due to behavioral effect (dotted line), and by spurious cases (dashed line)
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Table 3.4. Posterior means of λs and πs for each non empty component of DPM models

Parameter Comp1 Comp2 Comp3 Comp4 Comp5 Comp6
Smugglers

w/o one–inflation λi 0.297 3.523 13.055
πi 0.970 0.026 0.003

behavioral effect λi 0.715 4.657 14.212
ω̂=0.43 πi 0.937 0.054 0.009
spurious cases λi 0.709 4.702 14.378
ψ̂=0.28 πi 0.938 0.053 0.009

Prostitution Exploiters
w/o one–inflation λi 0.310 3.945

πi 0.991 0.009
behavioral Effect λi 0.471 4.574
ω̂=0.26 πi 0.988 0.012
spurious cases λi 0.508 4.727
ψ̂=0.16 πi 0.987 0.013

Drug traffickers
w/o one–inflation λi 0.316 2.648 7.060 14.950 29.113 49.742

πi 0.962 0.030 0.006 0.002 0.001 0.0002
behavioral Effect λi 0.353 2.750 7.147 15.020 29.309 49.888
ω̂= 0.06 πi 0.958 0.033 0.006 0.002 0.001 0.0002
spurious cases λi 0.360 2.777 7.229 15.092 29.250 49.742
ψ̂=0.03 πi 0.957 0.034 0.006 0.002 0.001 0.0002

3.3. As expected, if we ignore one–inflation, we risk severely overestimating the population
size and one–inflation due to spurious cases produces lower estimates than one–inflation
due to the behavioral effect. Unfortunately, due to the lack of additional information, we
are not able to conclude a definite answer about the population size estimates, however, we
believe that the proposed models and the performed analysis shed some lights on the need
of considering a wider range of estimated values in the presence of one–inflation.

3.6.4 Number of components and sparsity

As introduced in Section 3.5, the use of a sparsity prior for the precision parameter ϕ
allows us to avoid overfitting the number of clusters for DPM. In addition, in this way we
ensure that DPM models produce fully comparable results with SFM models. We firstly
verified that different values of k do not affect the number of components we detect, and
actually with prior on ϕ favoring sparse mixtures we always identified the same number
of components and the parameters estimates are not affected by the choice of k. These
results allow us to safely choose a relatively small value for the truncated number of
components k, with the two-fold advantage of reducing the computational complexity
of the DPM algorithm and of avoiding model selection with respect to the number of
components as in traditional mixture models. In Figure 3.4 we show, by way of example
for the drug trafficking data, box–plots of posterior estimates N̂ by different choices of k
in the DPM, with and without considering one–inflation. The Figure clearly shows that
the population size estimates become stable once we select k ≥ 6, since the number of
non-empty components is consistently estimated at six, even when k increases. Similar
graphics are observed with the smuggling and the prostitution exploitation data, where the
number of non-empty components are estimated at three and two, respectively. We also
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Figure 3.4. Box–plots of the generated posterior distributions of N under DPM by different values
of k for drug traffickers data. Top, without one–inflation; middle, modeling the behavioral effect;
bottom, modeling spurious cases

verified that the components detected by the DPM and the corresponding resulting estimates
are the same as obtained with the SFM, and, as a matter of fact, the posteriors of N are
almost identical in all cases.

In Figure 3.5 we show, by way of example for the drug trafficking data, the comparison
between the posterior distributions for the population size produced by DPM and SFM,
with and without considering one–inflation. The Figure confirms the equivalence between
the two models, once the precision parameter of the DPM is chosen appropriately. Similar
results are obtained with the smugglers and the prostitution exploiters data.

3.7 Concluding remarks

In this work we have proposed a Bayesian capture–recapture approach to estimate
the number of individuals involved in three types of criminal activities in Italy. We have
identified three possible sources of one–inflation for the data at our disposal, namely, a
behavioral effect, the presence of spurious cases, and linkage errors in recognizing the
units, and we have modeled, compared and discussed the first two. To handle population
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heterogeneity, we have considered a semi-parametric approach based on Dirichlet process
mixture to automatically take into account the uncertainty over the number of components
necessary to fit the data. The resulting models consist in one-inflated semi-parametric
mixtures, which are new in the capture–recapture literature.

We suspect that our data may be affected by both one–inflation mechanisms, and we
have seen that it is not possible to distinguish between the two on the basis of the likelihood
of the two models. Our Bayesian approach allows the inclusion of prior information that
could direct us towards one of the two options, but, unfortunately, in our applications we
had to resort to uninformative priors. As a consequence, we have to compare the results of
both one–inflated models and consider a larger range of possibilities for the population size
estimates. It is worth mentioning that there are capture-recapture applications for which
the origin of the one–inflation can be certainly recognized, e.g., in species abundance for
microbial ecology, where a behavioral effect is excluded, and our models for spurious cases
can certainly be employed.

Even if we do not have any prior information on the population at hand, our Bayesian
approach seems to have some computational advantage over non–Bayesian alternatives. We
saw in Table 3.1 and 3.2 that the MCMC allows us to reliably estimate up to 6 components
providing at the same time the interval estimates for all the parameters.

We are currently working on extensions of these models to cope with the linkage and
deduplications errors. A Bayesian approach for record linkage and deduplication problems
is provided by Steorts et al. (2016). In our context, missing links, i.e., false non matches,
induce one-inflation reducing the frequency of multiple captures, while false matches operate
in the opposite direction inducing one-deflation and a larger frequency of multiple captures.
Note that both errors introduce additional uncertainty on the total number of distinct units in
the sample, which, as a consequence, should be considered as a random quantity. Ideally, it
would be important to have access to the raw data. In this way, we could take into account
the whole record linkage process uncertainty in population size estimation, for instance via
a hierarchical structure, as in Tancredi & Liseo (2011), Sadinle (2018), and Tancredi et al.
(2020), in order to propagate the uncertainty between the parameter estimation step and the
matching procedure.
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