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Abstract
In this paper, we present a framework for the solution of inverse scattering prob-
lems that integrates traditional imaging methods and deep learning. The goal
is to image piece-wise homogeneous targets and it is pursued in three steps.
First, raw-data are processed via orthogonality sampling method to obtain a
qualitative image of the targets. Then, such an image is fed into a U-Net. In
order to take advantage of the implicitly sparse nature of the information to be
retrieved, the network is trained to retrieve a map of the spatial gradient of the
unknown contrast. Finally, such an augmented shape is turned into a map of the
unknown permittivity by means of a simple post-processing. The framework is
computationally effective, since all processing steps are performed in real-time.
To provide an example of the achievable performance, Fresnel experimental
data have been used as a validation.
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1. Introduction

Microwave imaging (MWI) exploits the capability of electromagnetic (EM)waves to penetrate
material bodies to enable the non-invasive inspection of unknown scenarios that are otherwise
not directly accessible. As such, MWI is relevant to several applications fields as different as
biomedical imaging [1, 2], subsurface sensing [3], food security monitoring [4], or through-
wall imaging [5].

By measuring the scattered field arising from the interaction of a known EM incident field
with a target, it is possible to obtain an image depicting the EM properties (i.e. dielectric
permittivity and conductivity) of such target, as well as its morphology. From a mathematical
point of view, MWI corresponds to the solution of an inverse scattering problem (ISP), which
is a well-known non-linear and ill-posed inverse problem [6].

To cope with the difficulties of the ISP, many solution methods have been developed [7–9].
However, still no ‘universal’ method exists. For instance, quantitative methods [7, 8], which
aim at the complete solution of the ISP, are computationally demanding, prone to the occur-
rence of false solutions4, and often rely on available a-priori information on the targets to
perform a successful reconstruction. Conversely, qualitativemethods [9] cast the ISP in terms
of an auxiliary linear ill-posed problem, thus overcoming non-linearity and requiring an almost
negligible computational burden. However, besides still having to face an ill-posed problem,
they can only provide explicit information on the target’s morphology and not on its EM
properties.

Recently, a huge interest in the literature has been devoted to the possibility of addressing
the ISP non-linearity and ill-posedness resorting to computational methods based on the deep
learning (DL) paradigm [11, 12]. Different from traditional approaches, DL is data-driven:
common DL architectures run an optimization procedure (the training) from which a model is
built by analyzing a collection of examples.

Among the possible ways to exploit such data-driven approach in ISP solution [11], physics-
assisted techniques are worth to be considered. In these approaches, domain knowledge in the
specific problem at hand is incorporated in the internal structure of the DL architecture or
provided into its inputs by pre-processing the raw data. For MWI, this represents a particu-
larly convenient strategy, since MWI data are not ‘homogeneous’, as they can be collected
in different conditions (e.g. number and position of the probes or operating frequency). As
such, MWI data are usually not abundant enough to enable a direct learning approach which
solely relies on the scattering measurements. In fact, embedding domain knowledge allows the
training with less examples than a direct learning counterpart, as the model does not have to
‘learn’ the all the physics involved in the problem [11].

The most common domain knowledge incorporation is carried out by pre-processing the
MWI scattering measurements with traditional imaging algorithms. In doing so, convolutional
neural network (CNN) models, which are known to be excellent image processing frameworks
[13], could be employed. To this end, a crucial aspect that must be considered is the choice
of the MWI algorithm. First of all, since DL models work in real-time (once trained), com-
putationally intensive quantitative methods are not suitable if speed is a requirement, since
they would act as a bottleneck in the processing workflow. Also, it is worth recalling that the

4 A false solution is an estimate of the unknown that fits the data but is different from the ground truth. False solu-
tions are a consequence of both the non-linearity and ill-posedness of the ISP and arise when the ISP is solved via
local iterative optimization. Theoretically, global optimization methods could circumvent false solutions occurrence
and converge to a global optimum. In practice they cannot, due to the curse of dimensionality [10] arising from the
exponential growth of the computational cost with the number of unknowns.
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possible occurrence of false solutions is an issue, as the output of quantitative methods is to
some extent not predictable. Finally, in both qualitative and quantitative methods, the need of
tuning regularization parameters poses an issue on the possibility of full-automated operation,
which is another attractive feature of the DL paradigm.

In [14], such difficulties have been addressed training a physics-assisted CNN to image
piece-wise homogeneous targets from input images obtained using two techniques or schemes,
back-propagation scheme (BPS) and dominant current scheme (DCS). The chosen CNN archi-
tecture is the U-Net [15], which is very popular as a tool to face computer vision tasks, as it can
be configured to handle an image in input and provide an output which is still an image [16].
Notably, the authors show that the U-Net trained either with BPS or DCS outperforms a direct
learning implementation with the raw scattering measurements. Although both BPS and DCS
do not slow down the processing workflow, and may be used in real-time, they still present
some drawbacks. More precisely, BPS is based on the linearized back-propagation algorithm
and therefore may lead to significantly inaccurate images when the assumptions underneath
the linearization are violated. Whereas, DCS do not require approximations, but are dependent
on the measurement configuration, so that the network has to be retrained every time the set-up
is changed. Also, both methods provide discretized images in which the discretization step is
dictated by the working wavelength, thus posing a constraint on the size of the images fed into
the network.

Motivated by the above considerations, the authors of this work have considered the use of
the orthogonality sampling method (OSM) [17] as the domain knowledge-embedding imaging
algorithm [18, 19]. The OSM is a qualitative method introduced by Roland Potthast, in which
an indicator function is computed to estimate the shape of the unknown targets. The OSM has
the remarkable feature of being based on an implicit regularization, thus not requiring any reg-
ularization parameter tuning and not being limited by underlying approximations. Moreover,
similar to other samplingmethods [9], the spatial discretization of the resulting image is arbit-
rary and thus not influenced in any way by the measurement configuration. Last but not least, it
has been shown in [20] that OSM images encode information on the spatial behavior of the EM
properties of the targets, owing to the relation between the OSM indicator and the radiating
component of the induced currents. Based on these considerations, it was shown that a U-Net
fed with OSM images could be trained to achieve an objective reconstruction of the targets’
shape [18] or an estimate of the targets shape and EM properties, provided they belonged to a
fixed and known set of values [19].

In this paper, we show how an OSM-informed U-Net can be trained to solve the more
general problem of imaging piece-wise homogeneous targets, i.e. retrieve their shape and EM
properties, without limiting the possible contrast to a finite set of values as in [19]. To face the
increased complexity of such a problem, the following strategies are put into action:

• Different from our previous works where U-Net task consisted in classification problems
(binary segmentation [18] or categorical segmentation [19]), the U-Net is herein trained
within a pixel-wise regression framework, to allow retrieving a continuous set of values;

• The a priori information on the piece-wise nature of the targets is encoded by representing
the spatial map of the EM properties distribution to be predicted by the network in terms
of the corresponding spatial gradient, which allows to explicitly enforce into the training
process the implicitly sparse nature of the information to be retrieved. We refer to this map
as the augmented shape, to recall that it conveys information on both the target’s internal
and external boundaries and the relative contrast variation with respect to the (known) back-
ground medium;

3



Inverse Problems 40 (2024) 045001 Á Yago Ruiz et al

• Finally, a simple post-processing procedure is developed to turn the network’s output (i.e. the
pixel-wise regression of the gradient’s values) into the map of the targets showing both their
shape and permittivity.

In the following, the proposed framework is employed to solve the canonical 2D scalar prob-
lem (TM polarized fields) in free space. After training the U-Net on simulated data, the res-
ulting model is tested on the Fresnel experimental scattering measurements [21], to provide a
performance assessment against this broadly adopted benchmark.

The remainder of the paper is organized as follows. In section 2, the problem is formulated.
The physics-assisted DL framework proposed to retrieve the contrast is presented in section 3,
wherein each processing step is described. In section 4, implementation details of the U-Net
and its training/validation on simulated data are given. Section 5 presents the validation of
the overall framework against Fresnel experimental data [21], conclusions follow. Throughout
the paper a time-harmonic behavior was supposed and the corresponding time factor ejωt was
assumed and dropped.

Note that preliminary results concerned with this work were presented in [22].

2. Formulation of the problem

LetΩ denote the imaging domain embedded in a homogeneous and lossless medium of relative
permittivity εb, which hosts the cross-section Σ of a collection of possibly overlapping targets
invariant along one direction (say the z-axis). The targets are piece-wise homogeneous. Hence
each of them is characterized by a relative dielectric permittivity ε(r) and an electric conduct-
ivity σ(r), with r= (x,y). All materials are supposed to be non-magnetic, i.e. the magnetic
permeability is everywhere that of vacuum, µ0.

The unknown targets are probed with TM-polarized incident fields Einc, transmitted by a
set of antennas located in rt ∈ Γ, with Γ being a closed curve located in the far-zone of Ω. For
each transmitter, the interaction between the incident field and the targets gives raise to the
scattered field Es. The superposition of these two fields becomes the total field E= Einc+Es
which is measured by a set of receivers that, without any loss of generality, is assumed to be
located on Γ as well, with the receiver position being rs.

For each frequency f belonging to the set of frequencies adopted for the imaging experi-
ment, the overall phenomenon is cast through a Fredholm type integral equation as:

Es (rs,rt) =
ˆ
Ω

G(rs,r ′)τ (r ′)E(r ′,rt)dr ′, (1)

whereG(rs,r ′) is the Green’s function of the assumed homogeneous background medium and
τ (r) = εeq(r)/εb− 1 is the contrast function encoding the properties of the targets. εeq(r) =
ε(r)− jσ(r)/ωε0 denotes the relative complex permittivity of the targets, with j being the
imaginary unit, ω = 2π f the pulsation and ε0 the dielectric permittivity of vacuum.

The total field E is defined through another Fredholm integral equation of the first kind as:

E(r,rt) = τ (r)Einc (r,rt)+
ˆ
Ω

G(r,r ′)W(r ′,rt)dr ′ (2)

where W(r ′,rt) = τ (r ′)E(r ′,rt) is the contrast source.
The retrieval of the contrast function τ from measurements of the fields they scatter is the

objective of the ISP. However, due to the smoothing kernel of (1) and the dependence of the
total field on τ , the problem turns out to be non-linear and ill-posed [6, 7].
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Figure 1. The proposed physics-assisted MWI-DL framework.

3. The proposed physics-assisted DL framework

Figure 1 shows the processing flow of the proposed MWI-DL framework, whose steps are
detailed in the following.

3.1. The OSM and the domain knowledge it supplies

In the first step of the proposed approach, themeasured scattered fields (raw data) are processed
with the OSM to obtain a set of images (one for each working frequency).

As most qualitativemethods [9], OSM provides an estimate of the targets shape through an
indicator function, which attains its higher values when evaluated in points belonging to the
targets and lower values elsewhere [17]. However, the OSM indicator function is not achieved
through the solution of an auxiliary linear ill-posed problem. This entails that unlike other
qualitative methods, in OSM there is no need of determining any regularization parameter.
This is not a negligible advantage since the estimation of the proper regularizer is a tedious
optimization problem [23].

This remarkable OSM property descends from the fact the indicator is built exploiting
the reduced scattered field Ered, which, for each frequency and for each scattered field, is
computed as:

Ered
(
rp,rt

)
=< Es (rs,rt) ,G(rs,rp

)>Γ (3)

where <,> denotes the scalar product on Γ and rp a point of an arbitrary grid sampling the
imaging domain Ω. As discussed in [20, 24], the reduced field is related to the adjoint solution
of an inverse source problem, as such, it is implicitly regularized.

The OSM indicator function is calculated as:

I
(
rp
)
= ||Ered

(
rp,rt

)
||2Γ, (4)

with || || denoting the L2 norm computed on Γ. It is worth noting that the computational burden
required to evaluate I is negligible, as it is only a scalar product in each sampling point (which
is in addition an intrinsically parallelizable process) has to be computed. As such, OSM image
formation can be performed in real-time.

In addition to this, as shown in [20], the reduced field is related to the radiating compon-
ent of the contrast source. Accordingly, the indicator I will not only provide an estimation
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of the targets support, but it will also bear information on the behavior of their EM proper-
ties. In particular, higher permittivity values will correspond to higher intensity values of I.
However, the relationship between the I values and the corresponding ones of the contrast is
not straightforward.

3.2. The DL architecture

In the second step, the OSM images are fed into the network, which is in charge of estimating
theaugmented shape.

From the perspective of DL, the process of solving the ISP is driven by data [11]. In particu-
lar, assuming a supervised learning procedure, the adopted DL architecture, say Fθ, is special-
ized for the problem at hand through a process called training. This is an iterative optimization
procedure in which a set of N training pairs (xn,yn) is exploited to optimize the parameters θ
that characterize the network against some loss functionM, i.e.:

θ̂ = argminθ

N∑
n=1

M{Fθ (yn) ,xn} (5)

where Fθ(yn) is the prediction made by the architecture corresponding to the ground truth
value xn.

To exploit the above general scheme for the specific problem at hand, the architecture Fθ,
the loss functionM, and the training pairs (xn,yn), have to be defined:

• The network’s input yn is a stack of one or more OSM images, depending on the number of
frequencies

• As far as the ground truth xn is concerned, the most straightforward choice would be to define
it as an image in which each pixel is associated with the local value of the contrast. However,
for piece-wise homogeneous targets, a more efficient way to encode τ is to express it through
its spatial gradient. Different from the original image, in which all pixels belonging to the
target will be different from zero, the gradient only assumes nonzero values at boundaries. As
well known, this naturally provides a sparse representation of the unknown, which encodes
all the required information with a minimal number of non-zero coefficients. Accordingly,
the network’s output x̂n,i is the predicted augmented shape, i.e. a map of the spatial gradient
of the EM properties of the targets. More in detail, the image gradient is computed using the
intermediate difference gradient method as:

∂τ

∂x
= τ (x+ 1)− τ (x) (6)

∂τ

∂y
= τ (y+ 1)− τ (y) (7)

and the augmented shape fed into the network (as ground truth during training) is obtained

as ∥∇τ∥=
√
(∂τ∂x )

2 +(∂τ∂y )
2. Note the gradient can be computed using different gradient

operators, like Sobel or Prewitt [25], but they involve the convolution of the image with a
3× 3 filter, thus resulting in a less sparse version of the gradient, and therefore less effective
for our purposes.

6
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Figure 2. U-Net architecture diagram. The network of consists of several layers inwhich
the operations depicted with arrows are performed. The size of the matrices is detailed
for each layer, the specific values being reported in the text. In our implementation of
U-Net , K= 32.

• The task to be performed by the network is to transform the input OSM image into an image
depicting the estimated augmented shape. Such a task can be cast in terms of a pixel value
regression, i.e. transform each pixel of the input image into an estimated contrast gradient
∇τ value. To this end, a U-Net architecture [15, 26] is considered, whose specific structure
and different processing steps are detailed in figure 2. The U-Net training for the (non-linear)
regression task at hand is assessed taking as loss function M the mean squared error MSE
defined as [13]:

MSE=
1

NB ·NP

NB∑
n=1

NP∑
i=1

(xn,i− x̂n,i)
2 (8)

where NB is the batch size [13] and NP is the total number of pixels per image. Additionally,
it is worth noting that U-Net is not necessarily limited to single input images. Hence, when
multi-frequency data are available, OSM images for each single frequency data can be sup-
plied stacked together using the U-Net channel dimension [13].

3.3. Contrast estimate

The last step of the processing flow is to determine the contrast map from the augmented shape
predicted by the network.

For a homogeneous target in free space, such a task is straightforward, as ∥ ∇τ ∥= τ . Hence,
the contrast map in this case could be readily retrieved by assigning to each pixel belonging to

7
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the identified contour the contrast value obtained by averaging the values of ∥ ∇τ ∥ estimated
by the network.

In the more general case of targets embedded in a homogeneousmedium of known or estim-
ate permittivity, the above also applies5. Hence, it is possible to extend the above straightfor-
ward approach also to nested targets through the following post-processing procedure:

(i) for each contour, create a separate image having the same size as the original image;
(ii) for each image, assign a contrast value to the pixel internal to each contour, by averaging

the estimated gradient on the contour;
(iii) sum all the partial images to obtain the final result.

Note that, by means of the above procedure, the superposition of the targets having over-
lapping supports allows to restore the contrast with respect to the host medium which embeds
the targets.

4. Network implementation and optimization

To cope with the 2D canonical ISP in free space at hand, the implementation of the U-Net is
carried out optimizing its parameters θ with a training set of simulated data similar to the one
used in [26]. In particular, the training set consisted of cylinders placed in groups of two with
variable size, location and permittivity. However, as opposed to [26], single targets were not
considered in the simulations. Also, no profile was allowed to be partially outside of the ima-
ging domain, while target overlapping was permitted. Details of the measurement conditions
are listed in table 1.

For the training and assessment, a total set of N= 7000 scattering experiments was simu-
lated. Among them, 85% were used as the training set and 15% as validation set. In particular,
for each simulated target, NF = 8 OSM indicator functions were built using equation (4). The
data have been numerically computed using a proprietary forward solver based on Richmond’s
implementation of the method of moments [27]. The code has been validated against the
reference paper for consistency [27]. For reproducibility, the training dataset is publicly
available [28].

Accordingly, the input of our U-Net is a stack of NF matrices each encoding the 64× 64
image of the OSM indicator I at each frequency. A normalization to [0,1] was carried out for
each indicator [29].

The optimization of the loss function in equation (8) was carried out using Adam optimizer
[30], with a learning rate of 10−4 and a batch size of 16. An optimal solution is found after
several passes through all samples in the training set. A complete pass of the whole training
set is known as epoch. A 200 epoch-long training was performed.

The result of the training process is depicted in figure 3, which reports the behavior of the
MSE for both the training and validation set along the epochs. As can be seen no overfitting
occurs.

5 Apart for an ambiguity on the signumof the contrast, which can be solved exploiting the different qualitative behavior
of the OSM indicator for negative and positive contrasts [20].
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Table 1. Simulations for training data generation.

Dataset size N 7000
Training/Validation Split 85/15
Target count 2
Size of imaging domain 25× 25 cm2

Image size in pixel, Nx×Ny 64× 64
Pixel size x 0.39 cm
Pixel size y 0.39 cm
Background medium Air
Number of illuminating antennas NT 8
Angular spacing between emitters 45◦

Number of receiving antennas NR 241
Angular spacing between receivers 3/2◦

Distance of the source from the center of Ω 167 cm
Distance of the receiver from the center of Ω 167 cm
Number of frequencies NF 8
Frequency range [2,9]GHz
Frequency step 1GHz
Target radius range [1.2,5] cm
Target relative permittivity range [1.3,3.5]

Figure 3. Training procedure of the proposed physics-assisted DL. MSE of the training
and validation split with MSE axis in logarithmic scale.
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4.1. Performance evaluation metrics

To quantitatively assess the performances of the optimizedmodels, twometrics were used. The
first considered metric is the mean absolute percentage error (MAPE) [31], which is defined
as:

MAPE=
100%
NP

NP∑
i=1

∣∣∣∣xi− x̂i
xi

∣∣∣∣ . (9)

Although MAPE provides an estimation of the performance, it can suffer from weighting
down the reported performance as a consequence of the high number of pixels with zero values.
For this reason, a modified version where the MAPE is only computed over the pixels with
positive values in the ground truth was calculated as well:

MAPE>0 =
100%
NP̃

NP̃∑
i=1

∣∣∣∣xi− x̂i
xi

∣∣∣∣ ∀i,xi > 0. (10)

While MAPE can be interpreted as a performance metric of the qualitative error, i.e. how
well the framework retrieves the shapes of the targets,MAPE>0 reports the performance con-
cerning the retrieval of the actual values of ∥ ∇τ ∥.

For each sample of the validation set (1050 samples), the metrics were calculated and aver-
aged over the whole validation set. The resulting MAPE is 0.94%, which confirms that the
trained network is capable of performing satisfactory estimations. On the other hand, when
restring the error on the non-zero pixels the error grows, being MAPE>0 of 13.64%. This is
related to the fact the MSE appraises the image as a whole so that the loss value is biased by
the background pixels whose number largely exceeds the non-zero pixels.

Four randomly selected samples of the validation set are shown in figure 4, along with
the OSM indicator images at the considered frequencies. As can be seen the OSM images
visually suggest several properties of the target, but their contour and permittivity are not at
all evident. The U-Net predictions are shown in figure 5. These results are consistent with the
aforementioned performance metrics: U-Net not only does successfully find the boundaries
between the targets and the background but also the ones between the two targets. When it
comes to the quantitative gradient values, the accuracy is lower.

5. Assessment of the proposed physics-assisted framework against Fresnel
experimental data

To show the capability of the proposed framework to retrieve the contrast map of piece-wise
homogeneous targets, the widely adopted benchmark data provided by the Institut Fresnel [21]
have been considered.

The Fresnel targets and the OSM indicator maps for each frequency are depicted in the first
column of figure 6. While the results of the analysis are reported in figure 7. In particular, the
first row reports the expected augmented shape, the second row the augmented shape retrieved
by the U-Net, the third row the ground truth permittivity assuming the average values given in
the database, while the last row shows the permittivitymap estimated using the post-processing
procedure.

10
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Figure 4. Four randomly selected samples from the validation dataset. The first row
depicts the target’s contrast map while the other rows report the OSM indicator at each
frequency and for each target.

11



Inverse Problems 40 (2024) 045001 Á Yago Ruiz et al

Figure 5. Augmented shapes predicted by the network for the four validation samples.
One sample per row, with the first column representing the ground truth and the second
presenting the prediction made by U-Net.

As a first comment, it is worth to remark that this validation has been carried out using the
optimized U-Net resulting from the training process described in the previous section, without
retraining. This a noticeable aspect, since the Fresnel experimental data and targets are to some
extent different from those considered in training the U-Net. In particular:

• the measurement configuration is different, since the Fresnel data are collected within an
aspect-limited configuration, whereas the configuration used in section 4 is full aspect;

• in one of the Fresnel datasets, three targets are present, while only up to two targets where
considered in the training;

• only dielectric targets were considered in the training, while one of the Fresnel targets
includes a metallic object;

• the dielectric materials employed to build the Fresnel targets are not exactly lossless, oppos-
ite to the targets considered in the training.

As can be seen, the developed framework, while not optimized for the considered experi-
mental data, successfully resolves the targets and provides quite accurate reconstructions of
their augmented shapes.

As far as the estimation of the permittivity values is concerned, from figure 7. it appears that
the retrieved values are quite close to the actual values for the low-permittivity foam targets,
while they are quite different for the plastic targets. More in detail, as reported in table 2, where
also the MAPE computed for each material is reported, the retrieved values are always close to
the lower expected actual value for each material and in general appear to be underestimated.
This is due to the fact the estimated augmented shape is a blurred version of the ground truth,
so that the estimated gradient value is averaged on a larger number of pixels than the ground
truth.

12
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Figure 6. The Fresnel targets considered for the validation of the proposed framework.
The first row depicts the target’s contrast map while the other rows report the OSM
indicator at each frequency and for each target.

13
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Figure 7. The results of the experimental validation. For each target, the first row depicts
the augmented shape ground truth. The second row represents the prediction made by U-
Net. The third row represents the ground truth assuming the average values of the targets
permittivity given in the database. The last row shows the permittivity map retrieved by
the framework after the post-processing.

Table 2. Estimated permittivity values.

Foam (1.45± 0.15) MAPEFoam Plastic (3± 0.3) MAPEPlast

FoamDielInt 1.3 10% 2.14 29%
FoamDielExt 1.31 10% 2.41 20%
FoamTwinDiel 1.26 13% 2.56; 2.38 15%; 21%
FoamMetExt 1.27 12% 3 —

6. Conclusion

This work presents a MWI framework for real-time and user-independent imaging of piece-
wise homogeneous targets. Besides the methodological interest, this class of targets is relevant
in most applications, wherein EM properties of the targets of interest are indeed piece-wise

14
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(like in non-destructive testing) or can be well approximated by average values (like in bio-
medical imaging).

The core of the proposed framework is the efficient encoding of the a priori information
on the piece-wise target’s nature by means of their augmented shape, i.e., the amplitude of
the spatil gradient of the contrast. Accordingly, the approach is implemented by training a U-
Net CNN to retrieve this quantity, which embeds the information on both the shape and the
EM properties of the targets. Then, the predicted augmented shape is processed by means of
a simple deterministic procedure to turn it into a map of the targets’ permittivity.

The network is trained by exploiting a physics-assisted approach in which domain know-
ledge is supplied in the form of OSM images at multiple frequencies. Such a qualitative ima-
ging technique is a convenient way to pre-process the raw data, thanks to its capability to form
the image in real-time and without any supervision. Moreover, these images result from the
back-projection of the data from the measurement domain onto the imaging domain, using the
adjoint operator. As such, they directly represent the information embedded into the data in
the imaging domain, and they are not the outcome of an inversion process prone to the choice
of a regularization parameter. For this reason, considering multiple frequencies allows us to
include all the information embedded in the measured data in the learning process. In par-
ticular, including high-frequency images in the network’s learning process is useful, even if
they appear poor in terms of targets’ reconstructions, since high-frequency data may contain
pieces of information that are not present in the low-frequency data (e.g. in terms of details at
a finer spatial resolution). Finally, the adopted physics-assisted approach allows the U-Net to
manipulate images and transform them into the predicted augmented shape, taking advantage
of its demonstrated capability to effectively deal with this kind of inputs.

The framework has been validated with the experimental data from the Fresnel Institut
concerned with inhomogeneous targets [21]. The results achieved with this widely adopted
benchmark showed the overall capability of the proposed framework to perform the task and
operate in cases different from the specific conditions for which the U-Net was trained. In
particular, while the network was trained with purely lossless dielectric targets, the overall
framework also works successfully when dealing with slightly lossy dielectric targets and
metallic targets. On the other hand, it can be expected that dealing with dielectric targets with
larger losses would require including those cases in the training to preserve comparable per-
formances. Similarly, while in this work only circular cylinders were considered as targets, the
approach is fully general and can be applied to targets having other shapes, provided a suitable
training set is implemented to consider those different profiles.

Finally, despite the positive results, there is still room for improvement, especially regarding
the quantitative estimation of the permittivity values is concerned. Future research will address
this issue as well as the application of the framework to more complex scenarios.
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