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Abstract

Assessing the extinction risk of species based on the International Union for Conserva-
tion of Nature (IUCN) Red List (RL) is key to guiding conservation policies and reducing
biodiversity loss. This process is resource demanding, however, and requires continuous
updating, which becomes increasingly difficult as new species are added to the RL. Auto-
matic methods, such as comparative analyses used to predict species RL category, can
be an efficient alternative to keep assessments up to date. Using amphibians as a study
group, we predicted which species are more likely to change their RL category and thus
should be prioritized for reassessment. We used species biological traits, environmental
variables, and proxies of climate and land-use change as predictors of RL category. We
produced an ensemble prediction of IUCN RL category for each species by combining 4
different model algorithms: cumulative link models, phylogenetic generalized least squares,
random forests, and neural networks. By comparing RL categories with the ensemble pre-
diction and accounting for uncertainty among model algorithms, we identified species that
should be prioritized for future reassessment based on the mismatch between predicted
and observed values. The most important predicting variables across models were species’
range size and spatial configuration of the range, biological traits, climate change, and land-
use change. We compared our proposed prioritization index and the predicted RL changes
with independent IUCN RL reassessments and found high performance of both the prior-
itization and the predicted directionality of changes in RL categories. Ensemble modeling
of RL category is a promising tool for prioritizing species for reassessment while account-
ing for models’ uncertainty. This approach is broadly applicable to all taxa on the IUCN
RL and to regional and national assessments and may improve allocation of the limited
human and economic resources available to maintain an up-to-date IUCN RL.

KEYWORDS

amphibians, climate change, comparative analysis, ensemble model, extinction risk, IUCN, IUCN Red List,
prioritize

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2024 The Author(s). Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Conservation Biology. 2024;e14316. wileyonlinelibrary.com/journal/cobi 1 of 18

https://doi.org/10.1111/cobi.14316

https://orcid.org/0000-0003-4517-9748
https://orcid.org/0000-0002-8902-4193
https://orcid.org/0000-0003-0850-883X
https://orcid.org/0000-0001-5162-978X
https://orcid.org/0000-0003-1994-4346
https://orcid.org/0000-0003-3974-0172
https://orcid.org/0000-0002-0124-343X
https://orcid.org/0000-0001-9208-4253
https://orcid.org/0000-0002-5418-3688
mailto:plucas1@us.es
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/cobi
https://doi.org/10.1111/cobi.14316
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcobi.14316&domain=pdf&date_stamp=2024-07-01


2 of 18 Lucas ET AL.

INTRODUCTION

Understanding how global change is affecting the extinction
risk of species is key to guiding conservation planning and
action (Pereira et al., 2010; Urban et al., 2016). The International
Union for Conservation of Nature (IUCN) Red List of Threat-
ened Species (RL) is used to monitor the extinction risk of all
identified species. Currently, over 150,000 species have been
assessed globally (IUCN, 2023), with experts assigning each
species a category of extinction risk (RL category) based on a
set of quantitative criteria and thresholds (IUCN, 2012). The RL
assessments require regular updates, at least once every 10 years,
to ensure the information is sufficiently recent to inform and
catalyze conservation action (IUCN, 2012). However, resources
are insufficient to complete regular reassessments for most
species, and, as a result, their RL assessments can become out-
dated (Cazalis et al., 2022; Rondinini et al., 2014). The long-term
sustainability of the RL depends on cost-efficient reassessment
strategies (Rondinini et al., 2014), such as the identification of
priority species for reassessment based on modeled probability
of RL category.

Among terrestrial vertebrates, amphibians have the highest
proportion of threatened species and represent a particular chal-
lenge for extinction risk monitoring because the number of
newly described species grows considerably every year (Ceballos
et al., 2017; Luedtke et al., 2023; Tapley et al., 2018) and many
species are in rapid decline (Scheele et al., 2019; Sodhi et al.,
2008; Wake & Vredenburg, 2008). Climate change and habitat
loss are among the major drivers of drastic changes in amphib-
ian conservation status over relatively short periods (Luedtke
et al., 2023). Examples are the Atacama toad (Rhinella atacamen-

sis), which was listed as least concern in 2010 and vulnerable in
2015, and the southern leopard frog (Lithobates miadis), which
was classified as vulnerable in 2004 and critically endangered in
2020.

Amphibians’ traits, such as small geographic ranges, lim-
ited dispersal ability, dependence on water bodies, sensitivity to
evaporation, and limited thermoregulatory abilities, render them
more susceptible to adverse effects of global changes than other
vertebrates (Duellman & Trueb, 1994; Ficetola et al., 2015).
Although previous studies show the key role of biological traits,
such as body size, geographic range size, and brood size, in pre-
dicting amphibian RL category (Cardillo, 2021; Cooper et al.,
2008; Fontana et al., 2021; Pincheira-Donoso, Harvey, Cotter,
et al., 2021; Sodhi et al., 2008), the effects of climate change on
RL category are less known. Developing robust tools that sup-
port the identification of species most in need of reassessment is
highly valuable for informing global extinction risk monitoring
strategies (Cazalis et al., 2022).

Comparative extinction risk models that relate RL categories
to extrinsic or intrinsic drivers can be used to predict the status
of species in the categories not evaluated and Data Deficient
(e.g., Bland & Bohm 2015; Bland et al., 2017; Borgelt et al.,
2022; Gonzalez-del-Pliego et al, 2019; Pelletier et al., 2018).
They are also important tools in RL assessments with limited
resources (Cazalis et al., 2022, 2023) and can help maintain
updated IUCN RL assessments (Rondinini et al., 2014). In gen-

eral, comparative analyses of extinction risk have relied on single
model algorithms (Bland et al., 2015; Di Marco et al., 2014;
Wieringa, 2022; Zizka et al., 2021, 2022). When several models
are used, the best model is generally selected based on individ-
ual predictive performance (Bland et al., 2015). A single best
model may not result in the best predictions, however. Thus,
relying on several good performing models and determining
predictive uncertainty may be a better strategy (Araujo & New,
2007).

We used an ensemble of comparative extinction risk mod-
els to identify amphibian species that should be prioritized
for reassessment based on their potential RL category, with
the ultimate goal of keeping the RL up to date. Specifically,
we evaluated the effects of species’ biological traits, environ-
mental variables, and global changes (including climate and
land-use change) on species’ RL category. In contrast to previ-
ous research on amphibians in which similar models were used
to predict the status of Data-Deficient species (González-del-
Pliego et al., 2019), we used models to identify data-sufficient
species whose assessments may require updating. Moreover,
we departed from previous studies (e.g., Bland & Bohm 2015;
Bland et al., 2017; Borgelt et al., 2022; Gonzalez-del-Pliego et al.,
2019; Pelletier et al., 2018) by jointly considering the relative
predictive power and overall consistency of an ensemble of pre-
dictive models. By combining the mismatch between official
and predicted RL categories and uncertainty due to the incon-
sistency among model predictions, we suggest a prioritization
approach for RL reassessments.

METHODS

Biological trait data

We compiled biological trait data from existing data sets
(Table 1; Figure 1). In particular, we collected data on body
size (snout–vent length [SVL]), brood size, breeding strategy,
microhabitat, and habitat generalism. Body size is an impor-
tant predictor of RL category in amphibians (Cardillo, 2021)
and other vertebrate classes (Cardillo, 2003; Cardillo et al.,
2008). Brood size can be related to species’ recovery abil-
ity (Pincheira-Donoso, Harvey, Cotter, et al., 2021). Breeding
strategy determines different modes of life development (indi-
rect development, direct development, viviparity) and can be
used to determine species’ flexibility and adaptability to dif-
ferent environments and could be related to the vulnerability
of amphibians to global changes (Brooks & Kindsvater, 2022).
Finally, habitat generalism determines species adaptability to
land-use change (Carilo Filho et al., 2021).

Using the list of habitat types per species in the RL database
(IUCN, 2022), we placed species in 1 of 4 categories based
on the number of habitat types a species uses (1, specialist;
>1, generalist) and whether the species uses forest (Table 1).
We used microhabitat classification from Oliveira et al. (2017)
and classified amphibians as semiaquatic, generalist, or other.
The generalist and specialist characteristics were described at
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TABLE 1 Variables used for comparative analysis of species’ extinction risk.

Variable group Description Source Justification

Variable

Land use and land-use change

Urbanization Percentage of urban areas in the species range C3S CDS, 2019 McKinney, 2002; Newbold
et al., 2015

Agriculture Percentage of agriculture areas in the species range C3S CDS, 2019 Newbold et al., 2015

Urbanization change Change in urban in 10 years (urban t0 − urban t1) C3S CDS, 2019 Newbold et al., 2015

Agriculture change Change in agriculture in 10 years (agriculture
t0 − agriculture t1)

C3S CDS, 2019 Newbold et al., 2015

Human density Human population density (humans/km2) NASA, 2018 Newbold et al., 2015

Accessibility Travel time to cities (higher values correspond to
more inaccessible areas)

Weiss et al., 2018 Benítez-López et al., 2019

Climate

Annual temperature Annual mean air temperature, BIO1 Karger et al., 2017, 2018 Hof et al., 2011; Silvano &
Segalla, 2005; Sonn et al., 2019;
Thuiller et al, 2019

Temperature seasonality Temperature seasonality, BIO4 Karger et al., 2017, 2018 Hof et al., 2011; Silvano &
Segalla, 2005; Sonn et al., 2019;
Thuiller et al., 2019

Annual precipitation Annual precipitation, BIO12 Karger et al., 2017, 2018 Hof et al., 2011; Silvano &
Segalla, 2005; Sonn et al., 2019;
Thuiller et al., 2019

Precipitation seasonality Precipitation seasonality, BIO15 Karger et al., 2017, 2018 Hof et al., 2011; Silvano &
Segalla, 2005; Sonn et al., 2019;
Thuiller et al., 2019

Climate change

Change annual temperature Change in annual mean air temperature, BIO1 Karger et al., 2017, 2018 Hof et al., 2011; Silvano &
Segalla, 2005; Urban, 2015;
Urban et al., 2016

Change temperature
seasonality

Change in temperature seasonality, BIO4 Karger et al., 2017, 2018 Hof et al., 2011; Silvano &
Segalla, 2005; Urban, 2015;
Urban et al., 2016

Change annual precipitation Change in annual precipitation, BIO12 Karger et al., 2017, 2018 Hof et al., 2011; Silvano &
Segalla, 2005; Urban, 2015;
Urban et al., 2016

Change precipitation
seasonality

Change in precipitation seasonality, BIO15 Karger et al., 2017, 2018 Hof et al., 2011; Silvano &
Segalla, 2005; Urban, 2015;
Urban et al., 2016

Context

Realm Most representative realm where the species lives,
with a numerical code ranging from 1 to 8
representing Australasian, Antarctica, Afrotropical,
Indomalayan, Neartic, Neotropical, Oceanian, and
Paleartic, respectively

Olson et al., 2001 Sonn et al., 2019; Yackulic et al,
2011

Range and spatial
configuration

Range area km2 of the species range log transformed and then
truncated

IUCN, 2021 Lucas et al., 2019

Range fragments Number of fragments in which the species range is
divided

IUCN, 2021 Lucas et al., 2019

Range circularity Shape ratio: PH/PO, where PH is total perimeter
of idealized fragments with the same area as the
observed fragments but with circular shape and
PO is actual total perimeter of the fragments; ratio
ranges from 0 (most irregular shapes) to 1
(completely circular shapes)

IUCN, 2021 Lucas et al., 2016, 2019

(Continues)
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TABLE 1 (Continued)

Variable group Description Source Justification

Range heterogeneity Proportion of the total range area represented by
the largest fragment; range from close to 0 (similar
fragment size) to close to 1 (very different
fragment size)

IUCN, 2021 Lucas et al., 2019

Phylogeny

Phylogeny 1 First principal component from phylogeny Jetz and Pyron 2018 González-del-Pliego et al., 2019

Phylogeny 2 Second principal component from phylogeny Jetz and Pyron 2018 González-del-Pliego et al., 2019

Biological traits

Body size For anurans and salamanders, maximum
snout–vent length (SVL) as measure of body size,
given that this is the most widely used proxy for
body size in these orders; for caecilians, maximum
total body length is traditional measure of size
(Pincheira-Donoso et al., 2019) and thus the proxy
used; all were log transformed

Amado et al., 2021;
Pincheira-Donoso, Harvey,
Cotter, et al., 2021;
Pincheira-Donoso, Harvey,
Grattarola, et al., 2021

Amado et al., 2021; Cardillo,
2021; Cardillo et al., 2008

Brood size Brood size of species log transformed Oliveira et al., 2017;
Pincheira-Donoso, Harvey,
Cotter, et al., 2021;
Pincheira-Donoso, Harvey,
Grattarola, et al., 2021

Pincheira-Donoso, Harvey,
Cotter, et al., 2021;
Pincheira-Donoso, Harvey,
Grattarola, et al., 2021

Breeding strategy Factor variable indicating whether the species
reproduces via direct, larval development or is
viviparous means

Oliveira et al., 2017

Habitat generalist forest Factorial variable with 4 levels indicating whether
the species is a generalist (lives in more than 1
habitat) forest species or nonforest species:
generalist forest, generalist nonforest, specialist
forest, specialist nonforest

IUCN, 2021 Carilo Filho et al., 2021

Microhabitat Factorial variable with 3 levels indicating whether
the species is generalist, semiaquatic, or others at
the microhabitat scale

Oliveira et al., 2017 Carilo Filho et al., 2021

microhabitat level, which may influence the species RL category
(Appendix S1).

Due to the continuous and extensive changes in amphibian
taxonomy at the species level, different data sets use differ-
ent taxonomic nomenclature. To correct for this discrepancy,
we used the listed synonyms in the IUCN RL and Amphi-
Nom package (Liedtke, 2019) to combine the different data
sets. We obtained all listed synonyms per species from Amphib-
ian Species of the World (i.e., the taxonomic authority for
amphibians on the RL) (Frost, 2021).

The compiled data set of biological traits had substan-
tial missing information across different variables (Appendix
S2). Because nonrandom missing information can result in
biases (Nakagawa & Freckleton, 2008, 2011), we filled data
gaps by applying a data imputation procedure (Mancini et al.,
2023; Penone et al., 2014; Stewart et al., 2023) in which there
was a wider set of variables than used for the modeling.
Detailed descriptions of the imputation and the data used are
in Appendices S3–S6.

Phylogenetic data

We retrieved the consensus phylogenetic tree from Jetz and
Pyron (2018) and used the PVR R package (Santos, 2018) to
decompose it into a set of orthogonal eigenvectors. Then, we
extracted the first 2 eigenvectors, which explained 87% of the
total variance (Appendix S7). For species not included in the
phylogeny from Jetz and Pyron (2018), we applied a procedure
previously used to fill phylogenetic data gaps (Bland et al., 2015;
Diniz-Filho et al., 1998). First, we checked the coefficient of
variation (CV = SD/mean) in genus and family of eigenvectors.
After confirming the high similarity of those values (CVgenus
and CVfamily for eigenvectors 1 and 2 <0.05 [Appendix S8]; CV
< 0.05 considered very similar [Dormann, 2013]) for species not
included in Jetz and Pyron’s (2018) phylogeny, we assigned the
mean value of the eigenvector from the genus. In cases where
there were no data for the genus, we assigned the mean value of
the family.

 15231739, 0, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.14316 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [01/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CONSERVATION BIOLOGY 5 of 18

FIGURE 1 Method used to calculate the species prioritization index (SPI) (IUCN, International Union for Conservation of Nature; RL, IUCN Red List; VIF,
variance inflation factor; CLM, cumulative link model; PGLS, phylogenetic generalized least squares; RF, random forest; NN, neural network; DE, different in
extinction risk; SSD, scaled standard deviation; SPI, species prioritization index; SPIO, species prioritization index overpredicted; SPIU, species prioritization index
underpredicted).

RL data

We downloaded RL categories from the IUCN RL database
in September 2021 (IUCN, 2021). This data set included most
assessments from the second Global Amphibian Assessment
(Luedtke et al., 2023) (n = 5647) and a minority of assessments
from the first Global Amphibian Assessment (Stuart et al.,
2004) (n= 1568) for which the reassessment was not yet publicly
available.

Spatial data

Using species’ geographic range, we quantified a series of
environmental conditions in the distribution of each species

(Figure 1). We retrieved geographic range polygons for amphib-
ian species from the RL data set, where available (IUCN, 2021).
We considered range polygons classified as native or reintro-
duced in origin and with extant or probably extant presence
(IUCN, 2018). We projected the selected polygons with the
Lambert cylindrical equal area projection to avoid bias in the cal-
culation of range size and spatial variables when using nonequal
area projections (Budic et al., 2016) and then calculated 19
spatial variables in each species’ distribution. We quantified 4
climate variables and recent changes in species’ ranges with
CHELSA data sets (Karger et al., 2017, 2018). We selected 4
variables representing climatic parameters relevant during key
life-history stages of amphibian species (Cohen et al., 2019;
Green, 2017; Lertzman-Lepofsky et al., 2020; Miller et al.,
2018; Thuiller et al., 2019): annual mean temperature (BIO1),
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temperature seasonality (BIO4), annual precipitation (BIO12),
and precipitation seasonality (BIO15). We preferred to select
only a limited number of climatic variables to reduce the over-
all complexity of the models. To estimate recent change in the
4 climatic variables, we calculated the difference between a ref-
erence climate calculated for a 30-year period (1965–1994) and
the current climate (the closest possible to the time in which the
IUCN RL assessment that we used was done [IUCN, 2021]),
that is, 2005–2014. We also estimated 2 land-use change vari-
ables, urbanization and agriculture, and their recent change in
the range of each species (C3S CDS, 2019). Change in these vari-
ables was estimated for the 10 years previous to each species’
assessment. We calculated human density (NASA, 2018) and
accessibility (Weiss et al., 2018) in each species’ range because
these factors are directly related to overexploitation, habitat loss,
and fragmentation (Cardillo et al., 2004; Chen et al., 2019; Sodhi
et al., 2008).

We also classified species into different biogeographic realms
(Olson et al., 2001) because realm can carry latent information
on species exposure to different conditions and threats. Finally,
we estimated geographic range attributes, including area, circu-
larity, number of range fragments, and the proportion of area in
the largest fragment. The spatial configuration of a species’ geo-
graphic range is a relevant predictor of extinction risk and RL
category (Lucas et al., 2016, 2019). A complete list of variables
and their sources is in Table 1. Even though emerging infec-
tious diseases are considered one of the most pressing threats
to amphibians worldwide (Luedtke et al., 2023), predicting dis-
ease risk remains challenging and is plagued with uncertainty,
so we did not consider this threat. However, recent methods
have been proposed and could be incorporated in the future
(Akçakaya et al., 2023).

We excluded species without published RL range maps.
Because our purpose was to prioritize species for reassessment
and because we needed the IUCN RL category of the species for
our priority index (see “Ensemble prediction and species priori-
tization” below), we excluded all data deficient species. Thus, we
had 5684 species of amphibians in our database.

Data transformation and collinearity

We organized the data into one data set per taxonomic
order (5004 Anura, 592 Caudata, 88 Gymnophiona). To meet
homoscedasticity and normality assumptions, we transformed
the variables with a cumulative link model (CLM) and phyloge-
netic generalized least squares (PGLS) as reported in Table 1.
Predictor variable distribution does not affect random forest
(RF) and neural network (NN) models. Finally, we filtered out
highly collinear variables with variance inflation factor (VIF) >4
(Figure 1; Appendix S11).

Fitting the models

We generated separate models for anurans, caudates, and caecil-
ians (Figure 1). Differences in ecological and life-history traits of

these 3 orders can make them differentially sensitive to distinct
threats (González-del-Pliego et al., 2019; Pincheira-Donoso,
Harvey, Cotter, et al., 2021), which in turn leads to different
relationships between intrinsic and extrinsic drivers and extinc-
tion risk. Not all variables are comparable across these orders,
which can lead to different expected relationships (e.g., SVL dif-
fers among orders due to different body plans) (Santini et al.,
2018).

Following Cazalis et al. (2022), who reviewed recent efforts
in comparative extinction risk models, we applied 4 commonly
used algorithms: CLM, PGLS, RF, and NN. Each of these
model algorithms have different requirements regarding 3 key
elements: type of predictor variables, type of response vari-
ables, and procedures for variable selection (Christensen, 2020;
LeDell et al., 2022; Liaw & Wiener, 2002; Pinheiro et al., 2021).
Thus, we applied different transformations to the predictor and
response variables and variable selection procedures in line with
previous comparative analyses of extinction risk in which these
modeling techniques were used (González-Suárez et al., 2012;
Lucas et al., 2019; Zizka et al., 2021).

We used the RL categories as response variable: least concern
(LC), near threatened (NT), vulnerable (VU), endangered (EN),
critically endangered (CR). Although RL categories inherently
possess an ordinal nature, only CLM allows the use of ordi-
nal factor variables (Henry et al., 2024; Lucas et al., 2019), so
we followed previous studies to adapt the response variable to
each model algorithm (Bland et al., 2015; Borgelt et al., 2022;
González-Suárez et al., 2012; Mancini et al., 2023; Silva et al.,
2022; Soto-Saravia et al., 2021; Zizka et al., 2021, 2022). In RF
models, we used RL categories as a factor variable. For NN and
PGLS, RL categories were transformed to a numerical variable:
1, LC; 2, NT; 3, VU; 4, EN; 5, CR.

For model selection and the selection of parameters and
hyperparameters, we applied different procedures for the 4
model algorithms. Thus, different models may include differ-
ent variables and different types of relationships (Appendix
S11). For CLM, we fitted a full model with all variables with
the clm() function from the R package ordinal (Christensen,
2020), which applies a probit link function. To account for
unbalanced distribution among categories, we used weights
inversely proportional to the number of species in each cate-
gory. Over this full model, we performed a stepwise backward
model selection procedure with Bayesian information crite-
rion (BIC) with the MASS R package (Venables & Ripley,
2002).

We fitted the PGLS with gls() function in the R package nlme
(Pinheiro et al., 2021). Instead of using phylogenetic eigenvec-
tors as predictors, the PGLS accounts for phylogeny with the
corBrownian function from R package ape (Paradis & Schliep,
2019) to derive a correlation matrix based on species phylo-
genetic distances (Revell, 2010; Rohlf, 2001). Using the full
generalized least square model, we performed a stepwise back-
ward model selection procedure by BIC in the R package MASS
(Venables & Ripley, 2002). We fitted the PGLS only to the
species in common to the phylogeny of Jetz and Pyron (2018)
and the IUCN RL, but we predicted for all species irrespective
of their inclusion in Jetz and Pyron (2018).
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We fitted RF models with the randomForest R package (Liaw
& Wiener, 2002). Although RF models can operate with large
numbers of variables, this can lead to an increase in the corre-
lation of trees, reducing the overall performance of the model
(Murphy et al., 2010). To avoid this problem, we applied an RF
model selection approach with the function rf.modelSel() from
the R package rfUtilities (Evans & Murphy, 2018; Murphy et al.,
2010). We used the mir option for scaling importance values, a
vector 100 percentiles values to test r, a mtry value equal to the
square root of the number of variables, and 2000 trees.

We fitted the NN with the h2o R package (LeDell et al.,
2022). NN models depend on many hyperparameters, and
selecting the appropriate set of hyperparameters is critical for
model performance (Diaz et al., 2017; Torres et al., 2019). There
is no a priori set of best hyperparameters; an alternative consists
of checking a range of hyperparameters, evaluating the model
performance, and selecting the best combination (Diaz et al.,
2017). We applied a process of hyperparameter optimization for
multilayer artificial NN models that considered 648 different
potential models, which resulted from combinations of 3 acti-
vation functions (hyperbolic tangent activation function [Tanh],
rectifier with dropout [RectifierWithDropout], and hyperbolic
tangent activation function with dropout [TanhWithDropout]),
4 options for hidden layers ([349, 174, 87, 29], [174, 87, 29],
[87, 29], [27, 9]), 6 input-dropout ratio options (0.05, 0.1, 0.15,
0.2, 0.3, 0.4), 3 options for Lasso regularization (10−3, 10−4,
10−5), and 3 options for ridge regularization (10−3, 10−4, 10−5).
The search criteria in the grid of the potential models was done
using a random discrete strategy, which is considerably more
efficient at reducing the computation time and finding models
that are as good or better than a systematic grid search (Bergstra
& Bengio, 2012). Random search samples uniformly from the
set of all possible hyperparameter value combinations and spec-
ifies a stopping criterion, which controls when the random grid
search is completed. We used a combination of 3 criteria to stop
the grid search: max runtime seconds = 5000, which specified
the maximum runtime in seconds for the entire grid; stop-
ping rounds, which stopped the search after 3 training rounds
without improving the stopping metric selected in the model
(logloss = 1 × 10−2); and stopping tolerance, which stopped the
search if the ratio between the best moving average and refer-
ence moving average of the last models was ≥1 × 10−2 (LeDell
et al., 2022).

To make predictions comparable among the model algo-
rithms and to allow the use of the same validation measures, all
model predictions were transformed to an integer variable. For
CLM, we selected the integer value with the highest probability
in the prediction. For PGLS and NN, the continuous predic-
tions were rounded to integer values, whereas for RF, factorial
predictions were transformed to integer values.

Comparative extinction risk analyses that aim to identify the
drivers of extinction risk, measured with RL category or popula-
tion trend (Lucas et al., 2019), usually exclude species classified
under criterion B or D to avoid circularity. Indeed, the extent
of occurrence and the area of occupancy used for application
of criteria B1 and B2, respectively, are highly correlated with
geographic range size, which is typically included as model pre-

dictor. Such circularity can lead to an overestimation of the
importance of range size, obscuring the role of other impor-
tant drivers. Instead, when comparative extinction risk analyses
have a predictive goal, species classified under criterion B are
not excluded so as to generate the best possible predictions (see,
e.g., Zizka et al. [2021] and Caetano et al. [2022]). Our main goal
was to obtain the best predictions of RL category and identify
potential mismatches with official RL assessments among the
same species used in model training, rather than evaluating the
importance of range size compared with other variables. For this
reason, we retained species assessed under criterion B (36.12%
of all species included in our analyses, n = 2053) or D (3.20% of
all species included in our analyses, n = 182).

Variable importance

To calculate the variable importance for CLM and PGLS, we
excluded each variable and assessed the resulting change in the
models’ log likelihood (Breiman, 2001; Lu & Ishwaran, 2021;
Williamson et al., 2021). For RF models, we used the mean
decrease accuracy (MDA), which is an index indicating how
much the accuracy decreases when the variable is excluded
(Genuer et al., 2010; Hong et al., 2016). For NN models, we
used the method implemented by Gedeon (1997), which con-
siders the weights connecting the input features to the first
2 hidden layers. Then, we calculated variable importance by
taxonomic order and for all amphibians, averaging individual
variable importance from all algorithms. When a variable was
not included in a specific model, we assigned it a value of 0 (Bar-
ton, 2009; Burnham & Anderson, 2002; Lukacs et al., 2010). All
importance values were rescaled to 100 for comparability.

Model validation

We evaluated each model’s performance with taxonomic-block
validation, iteratively extracting one family from the data set for
testing and then fitting the model on the remaining families
(Roberts et al., 2017). This approach is more robust to assess
models’ predictive performance compared with the random
cross-validation used in several previous studies (González-
del-Pliego et al., 2019) because random cross-validation tends
to produce overoptimistic results due to the autocorrelation
between phylogenetically close species. However, to compare
our results to previous comparative extinction risk models on
amphibians, we also ran a classical random cross-validation in
which we extracted 10% of the species in each run and repeated
the operation 10 times. For each predicted set, we validated the
models at 2 different levels. First, the models were validated at
the RL category level by calculating the overall accuracy (rate of
correct classification) and the mean classification error (abso-
lute value of the difference between predicted and observed
categories) for all categories and the overall accuracy, sensitivity
(rate of correct classification of threatened species), specificity
(rate of correct classification of nonthreatened species), and
true skill statistic (TSS = specificity + sensitivity − 1). To
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8 of 18 Lucas ET AL.

ensure comparability with previous studies of extinction risk
(González-del-Pliego et al., 2019), although models were fit-
ted using all categories, we aggregated models’ predictions into
binary classes of nonthreatened (LC and NT) versus threatened
(VU, EN, CR) and calculated the overall accuracy, sensitivity,
specificity, and TSS.

Ensemble prediction and species prioritization

We compared the models’ predictions with the official RL
categories (Figure 1). Any mismatch between predictions and
official RL categories can pinpoint species that might be more
or less threatened than officially reported by the RL. Assum-
ing the models capture genuine drivers of RL category, a species
that is predicted to be in a more threatened RL category than
officially reported by the RL can have 2 possible interpreta-
tions: the species was misclassified due to lack of sufficient
data at the time of the assessment or even though the species
is not threatened, it is expected to be particularly vulnera-
ble due to either intrinsic traits or extrinsic factors and hence
more likely than other species to experience a change in RL
category over time. In either case, the species should be pri-
oritized for reassessment. The ranking of priorities, however,
should also account for model uncertainty. At equal mismatch
value, high model uncertainty should correspond to lower
priority.

We used an ensemble forecasting approach to predict RL
category (Araujo & New, 2007). To calculate the ensemble pre-
diction, we combined the predictions of all models that achieved
an acceptable predictive performance. We considered predic-
tive performance acceptable when mean error was <1.00 during
family-block validation (i.e.,<1 category mismatch). Using these
subsets of models, we calculated the ensemble prediction for
each species as the mean of the predictions from the individual
models. In addition, we calculated the standard deviation of RL
category prediction among the subset of models. Then, we cal-
culated the difference in extinction risk (DE) with the ensemble
prediction and the current RL category of the species:

DE = ensemble prediction − RL category. (1)

A positive difference represents species predicted to be more
threatened than the published RL category (i.e., overpredicted
species). Conversely, a negative difference indicates species pre-
dicted to be less threatened than the published RL category (i.e.,
underpredicted species).

To account for the variability across model predictions, we
also calculated the scaled standard deviation (SSD) per species
as the SD of the predictions for the species divided by the max-
imum SD across all species in each taxonomic order, which
resulted in a scaled value from 0 to 1. Then, we used the DE
and the SSD to calculate a species prioritization index (SPI). To
differentiate overpredicted species and underpredicted species,
we applied the index separately to these 2 groups obtaining 2
SPIs: species prioritization index overpredicted (SPIO) for over-

predicted species (species for which their published RL category
showed a lower RL category than our predicted category) and
species prioritization index underpredicted (SPIU) for under-
predicted species (species for which their published RL category
was higher than our predicted category):

SPI = DE2 − SSD2
. (2)

High SPI values were represented by species with high DE
and low values of SSD among the predictions of the algorithms
included. High SPIO values indicated species that should be
particularly prioritized for reassessment because they were pre-
dicted to be more threatened than currently assessed (according
to the ensemble prediction). High SPIU values instead indicated
species that were predicted to be less threatened than currently
assessed.

To visualize the spatial pattern of assessment priorities, we
intersected species range maps with a grid of 100 × 100 km with
the Lambert cylindrical equal area projection (Harfoot et al.,
2021) in ArcMap 10.3 (ESRI, 2008) and calculated for each grid
cell the average SPIO (the sum of SPIO corrected by the number
of species on the same grid to control for the species richness)
and average SPIU (the sum of SPIU corrected by the number of
species on the same grid to control for the species richness). To
determine whether there was a taxonomic bias in the SPI values,
we calculated SPIO and SPIU for each family.

Validation of the predicted priorities based on
recent reassessments

We used 1772 species reassessed in the latest update of the
IUCN RL (IUCN, 2023; Appendices S9 & S10) to assess the
validity of our SPI for guiding reassessments. We compared
the SPI values of these species with their change in RL cate-
gories (uplisting to a higher category, no change, downlisting
to a lower category). We fitted a multinomial model explain-
ing the change in the RL category of species as a function of
the SPI, with 3 response levels: no change (n = 1395), uplist
(n = 153), and downlist (n = 243). Because the SPI does not
differentiate the directionality of change in RL, we also tested
whether the previously calculated DE was different for uplisted
species, species with no change, and downlisted species. We also
repeated our multinomial model with DE, instead of SPI, as
the predictor variable. Multinomial models were fitted using the
nnet R package (Venables & Ripley, 2002), and we used Wald
tests in the RVAideMemoire R package (Herve, 2023) to test for
significance of coefficients.

RESULTS

Predictors of RL category in amphibians

Using the 4 fitted algorithms, the most important group of vari-
ables explaining RL category for all amphibians were variables
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CONSERVATION BIOLOGY 9 of 18

FIGURE 2 Variable importance for 4 model algorithms (cumulative link models [CLM], random forest [RF], phylogenetic generalized least square models
[PGLS], neural network [NN]) modeling the International Union for Conservation of Nature Red List categories for each amphibian order, for the averaged
importance in each order, and for the averaged importance for the 3 orders and 4 model algorithms (amphibians). Variables (land use and land-use change, climate,
climate change, realm, range and spatial configuration, phylogeny, biological traits) are ordered by variable group following Table 1 and separated by black horizontal
lines. Values of variable importance for binary variables derived from factor variables are summed in the original factor variable. Because different models could
include different variables, when a variable was not included in a specific model (gray), a value of zero was assigned for the calculation of average importance at the
level of taxonomic order and the class amphibians.

describing the geographic range area and the spatial config-
uration (50.71%), followed by land-use and land-use change
variables (14.05%), biological traits (10.06%), climate change
variables (9.53%), climate variables (8.63%), the context in
which the species is present (realm, 5.36%), and phylogeny
variables (1.67%) (Figure 2; Appendix S12). We observed that
range area, urbanization, and range circularity were consistently
important across the 3 amphibian orders, but some variables

were important only for certain taxa, such as accessibility for
Anura, realm for Caudata, or annual temperature and change
precipitation seasonality for Gymnophiona. As expected, range
area was negatively associated with RL category (i.e., species
with larger ranges were less likely to be threatened), and lower
accessibility (i.e., less travel time to cities, less distance from
cities) and higher urbanization were associated with higher RL
category (Appendices S12–S24).
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10 of 18 Lucas ET AL.

FIGURE 3 Performance metrics from the family block validation for 4 model algorithms (cumulative link models [CLM], random forest [RF], phylogenetic
generalized least square models [PGLS], neural network [NN]) modeling the International Union for Conservation of Nature (IUCN) Red List (RL) categories for
each amphibian order (a–f) considering IUCN RL categories and (g–j) considering binary classification (threatened or nonthreatened) risk categories: accuracy (rate
of correct classification in all categories), mean error (absolute value of the difference between predicted and current RL categories), and true skill statistic (TSS)
(TSS = specificity + sensitivity − 1) (a–c) averaged among IUCN RL categories (independently of the number of species in each category) and (d–f) by the number
of species ([b], mean error averaged among categories was used to exclude models for the ensemble prediction when the value was ≥1.00; red line, mean error =
1.00; [d–f], values averaged among species provide a comparison with classical performance metrics reported in comparative studies of extinction risk) and (g–j)
accuracy, TSS, specificity (rate of correct classification of nonthreatened species), and sensitivity (rate of correct classification of threatened species) reported for
each amphibian order and each model algorithm (red line, TSS = 0.5, which indicates an accurate model).

Validation for RL categories

Family-block validation showed an average accuracy across cate-
gories (independent of the number of species in each category)
and models of 0.81 (SD 0.10) (Figure 3a; Appendices S25 &
S26) and an average TSS of 0.25 (0.22) for all models. Caudata
models showed the highest TSS values (0.30 [0.21]), followed
by Anura (0.28 [0.20]) and Gymnophiona, which showed the
lowest TSS values (0.17 [0.24]) among all models. Among the
models, CLM models performed best (Figure 4c). The average
mean error was 0.96 (0.65), therefore just less than one category
on average, although it was highly variable across the 3 orders
(Figure 3b).

When we averaged the values by the number of species
(instead of by categories), our independent family-block vali-
dation showed an average accuracy of 0.54 (SD 0.13) among
all models (Figure 3d). RF showed the best results (Appendix
S27). The TSS averaged across species showed a mean value of
0.39 (0.10) for all models. Anura models showed the best TSS
values, followed by Caudata and Gymnophiona, which showed
the lowest TSS values among all models. The CLM models
showed the best TSS (Figure 3f). Average mean error among
all models was 0.67 (0.13). The RF models showed on aver-
age the lowest mean error (0.57 [0.17]), followed by CLM (0.66
[0.02]), PGLS (0.72 [0.11]), and NN (0.75 [0.14]). The mean
error was lowest for Gymnophiona (0.57 [0.11]), followed by
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CONSERVATION BIOLOGY 11 of 18

FIGURE 4 Distribution of the number of species by difference in extinction risk (DE) value (ensemble prediction—red-list category) and standard deviation
(SD) of the predictions. Because DE and SD values stem from integer values of the predicted category and the red-list category, many species overlap, so the
number of species per point is represented by different point sizes (SD 0, species with only one model with TSS > 0.4 [Gymnophiona]) (IUCN, International Union
for Conservation of Nature; LC, least concern; EN, endangered; CR, critically endangered; SPI, species prioritization index). Photo A by Matthew Clancy, photo B
by José G. Martínez-Fonseca, and photo C by Eduardo Boza-Oviedo.

Anura (0.69 [0.11]) and Caudata (0.76 [0.11]) (Figure 3e). Ran-
dom cross-validation led to substantially better estimates. Mean
error by category averaged among categories was 0.83 (0.56)
(Appendices S28–S31).

Validation for binary (threatened or
nonthreatened) outcome

When considering family-block validation for binary classi-
fication (threatened or nonthreatened species), the average
accuracy was 0.81 (SD 0.02) across all models (Figure 3g–j;
Appendix S32). Accuracy values were very similar among the

4 model algorithms (SD 0.01). Average TSS across all mod-
els was 0.46 (0.20). There was low variability in TSS among
different model algorithms (SD 0.09), but variability was high
among orders (SD 0.19). Among all algorithms tested, CLM
resulted in the highest TSS (TSS = 0.59 [0.05]). In general, all
models showed a good balance for specificity and sensitivity
values, except for PGLS, RF, and NN models for gymnophio-
nans. The CLM models showed on average the least absolute
difference between specificity and sensitivity in the 3 orders
(Figure 3g–j). Random cross-validation showed a TSS for all
models of 0.58 (0.19), 0.63 (0.07) for anurans, 0.68 (0.08)
for caudates, and 0.44 (0.28) for gymnophionans (Appendices
S33 & S34).
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12 of 18 Lucas ET AL.

FIGURE 5 (a) Difference between the ensemble prediction and the current International Union for Conservation of Nature Red List category and (b) the
species prioritization index (SPI) (percentages in [b] describe the quantiles for the SPI).

Ensemble prediction and species prioritization

Based on the mean error averaged among categories and
using the RL categories as a response variable (see above),
we excluded 3 models with high errors (≥1.00) (Figure 3a;
Appendix S26) when we calculated the ensemble prediction:
PGLS, RF, and NN models for gymnophionans. The ensemble
prediction indicated that 40.22% of species (n = 2286) might be
threatened with extinction, compared with 38.18% of species
(n = 2170) assessed as such for the modeled species (Appen-
dices S35). According to our predictions, 40.89% (n = 2324)
species were overpredicted (DE > 0) and 30.95% (n = 1759)
were underpredicted (DE < 0), with 28.17% (n = 1601) of
species having the same predicted values as the published RL
category (Figures 3 & 4a). However, most of DE values were
relatively small, only 16.52% (n = 939) had a DE >1 or <−1 (1
indicates a difference of one category), and 3.24% (n = 184) had
a DE >2 or <−2 (Figure 5a).

The distribution of SPI was positively skewed; values ranged
from 14.00, indicating a high priority for reassessment, to−0.64,
indicating a low reassessment priority (Figure 4b; Appendix
S35). Average SPIU was concentrated mainly in Central Amer-
ica, the Andes, the Caribbean, the West coast of the United

States, southwestern Europe, Southeast Asia, and southeast-
ern Australia (Figure 6a). Average SPIO was concentrated
mainly in Central America, the Andes, and Southeast Asia
(Figure 6b). Rhinodermatidae and Cryptobranchidae had sub-
stantially higher SPIU values than the average SPI, whereas
Ichthyophiidae and Siphonopidae had substantially higher SPIO
values than the average SPI (Appendix S36).

Validation of the predicted priorities based on
recent reassessments

Species that recently had their RL category changed had higher
SPI (mean 1.08 [SD 1.94]) Appendix S37) than species that had
not had their RL category changed (0.34 [1.07]). The multi-
nomial model confirmed that species that experienced change
in RL category (either in the uplist or downlist group) had a
significantly higher SPI than species in the no-change group
(p < 0.001) (Appendix S38).

The directionality of the changes confirmed the validity of
our predictions. Uplisted species had a significantly higher DE
(mean 0.13 [SD 1.10]) than species with categories that did
not change (0.04 [0.64]) and downlisted species (−0.66 [0.88])
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CONSERVATION BIOLOGY 13 of 18

FIGURE 6 Results for the species prioritization index (SPI): (a) underpredicted species (SPIU) (i.e., species whose red-list category is higher than predicted by
the model) and (b) overpredicted species (SPIO) (i.e., species with an International Union for Conservation of Nature [IUCN] Red List category lower than that
predicted by the model). The letters A, B, and C point to the location of the species A, B, and C in Figure 4, which are examples of underpredicted, equally predicted
(species with an IUCN Red List category equal to that predicted by the model), and overpredicted species.

(Appendix S39). However, the difference in mean DE between
downlisted species and no-change species was not significant
(p > 0.05).

DISCUSSION

We presented an ensemble of comparative predictive models
to assess their potential to prioritize amphibian species for
reassessment on the IUCN RL. We proposed an approach to
predicting species RL category that combines the predictions
of models with sufficient predictive power while accounting for
their uncertainty. This approach prioritizes the reassessment of
species whose predicted RL category differs the most from its
published category on the RL and for which predictions are
consistent among models.

Correlates of RL category in amphibians

The most important variable across our models was range size,
which is not surprising given the large proportion of species
classified as threatened under criterion B (IUCN, 2012). This

variable is commonly used in comparative extinction risk analy-
ses (Chichorro et al., 2019) of, for example, amphibians (Cooper
et al., 2008; González-del-Pliego et al., 2019; Sodhi et al.,
2008). Other range-related variables were also important, partic-
ularly species’ realm, which is consistent with studies that show
RL category is highly structured in amphibians (González-del-
Pliego et al., 2019), as was to some extent the shape of the
range (range circularity), as has been reported for terrestrial
vertebrates (Lucas et al., 2016, 2019). Among human pressure
variables, urbanization and accessibility were the most impor-
tant factors, probably providing proxies for population declines
due to human activities (Cardillo, 2021; González-del-Pliego
et al., 2019; Sodhi et al., 2008). A novel and important result
was the great importance of climate and climate change covari-
ates. Climate change effects are emerging as a serious threat to
this group of species (Cohen et al., 2019; Lertzman-Lepofsky
et al., 2020; Loarie et al., 2009; Miller et al., 2018), but the lack of
information on species-specific effects of climate change makes
it difficult for RL assessors to take climate change into account
(Cazalis et al., 2022; Foden & Young, 2016; Mancini et al., 2024).
In addition, climate may act as a mediating factor of the effect
of direct drivers, such as habitat loss or chytrid fungal infec-
tions (Mantyka-pringle et al., 2012; Sonn et al., 2019). Biological
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14 of 18 Lucas ET AL.

traits were not very important in general. Phylogenic eigen-
vectors were not important in our models, and PGLS did not
perform better than other models, suggesting that phylogeny
may be a proxy of other covariates used in our analyses, such as
climate or trait variables not included in previous studies (e.g.,
González-del-Pliego et al., 2019).

Performance of the different model algorithms

No modeling approach consistently outperformed the others,
but several approaches produced good results for the 2 most
speciose taxonomic orders (Anura and Caudata). The overall
accuracy of our models at the category level was high with
predictions diverging by <1 RL category from the published
assessments on average. It should be considered, however, that
when predictions are made for species in families not included
in the training data set, our family-block validation attempts a
validation with independent data sets providing a more realistic
measure of performance. As expected, random cross-validation
led to substantially better estimates, a result consistent with
those from previous comparative extinction risk analyses of
mammals (Bland et al., 2015), reptiles (Caetano et al., 2022), and
plants (Zizka et al., 2021). Compared with the latest analysis on
amphibians (González-del-Pliego et al., 2019), which accurately
predicted the RL category for 20% of species, our 12 models
showed a substantial improvement in the accuracy of the RL cat-
egory: 54% of species were accurately predicted. The TSS values
at the category level for our models were not high, but they were
slightly better than previous predictions of RL category in birds
and mammals (Santini et al., 2019).

The performance of the different algorithms showed impor-
tant variations among the 3 amphibian orders. RF and NN
models performed better for anurans and caudates, suggesting
that sample size may be a limiting factor in these complex mod-
els (Tange et al., 2017; Vabalas et al., 2019). This may explain
why simpler models, such as the CLM, outperformed the other
model algorithms for gymnophionans. The CLM algorithm was
the only one in which ordinal factor variables were used as
the published IUCN RL categories. The other 3 algorithms
required modifications of the response variable. In addition, we
modified the predicted values for model validation and com-
parison between the different model algorithms; thus, those
changes may have had an effect on the estimation of errors. We
used 4 commonly used model algorithms in comparative anal-
yses of extinction risk (Cazalis et al., 2022). Other less tested
but promising model algorithms, such as the recently proposed
XGBoost (Chen & Guestrin, 2016), could be added in the
future.

Applications, limitations, and future steps

Spatial and taxonomic patterns in SPI can be informative for
reassessment prioritization, as well as interpretation of models’
limitations. A mismatch between observed and predicted cat-
egories can arise from 3 mechanisms: misclassification of the

species due to a lack of or incorrect data; change in RL category
of the species; or imperfect model fit. Our models included a
number of proxies of intrinsic vulnerability and extrinsic fac-
tors that may lead to changes in the parameters used by the
RL. Hence, if the model captures indirect relationships between
such variables and species RL category, a mismatch can indeed
highlight a possible change in the conservation status. The selec-
tion of the best-performing models and the prioritization of
coherent predictions across algorithms minimize the effects of
imperfect model fit mechanism.

An overprediction of RL category can help in the identi-
fication of species that may have a higher RL category than
the current assessment, even if not currently threatened. This
may be the case for many LC or NT species, which may be
prioritized for reassessment. This can result from the use of
ancillary information in the model (e.g., climate change, land-
use change, etc.) that was not directly used in the assessment
process because it was unavailable to the assessors or because
they were unaware of the information. Overpredicted species
that are currently LC or NT could be monitored for emerg-
ing threats that would qualify them for a threatened category.
Overprediction can also be a modeling artifact; it ignores the
complex and composite nature of RL assessments that typically
require multiple subcriteria to be met for a species to be consid-
ered threatened (Di Marco, 2022) (e.g., restricted range size and
continuing population decline).

In contrast, underpredictions are likely a derivative, in most
cases, of model simplification. Among the most pressing threats
to amphibians are pathogens and invasive species (Scheele et al.,
2019; Stuart et al., 2004, 2008), which could not be included
explicitly in our models and might explain those mismatches and
likely explain the majority of underpredictions. Although less
probable, it is conceivable that underpredictions could signal
errors in species RL classification, warranting potential revision.
Hence, with due caution, underpredicted species could be can-
didates for downlisting, which may be of interest for zoos and
other institutions working in conservation.

Finally, mismatches may also indicate possible inconsistencies
in the assessments of different families or genera or in different
regions of the world assessed by different groups of experts.
Such inconsistencies can, for example, arise from the predom-
inant application of certain criteria or data types used (or not
used) in the assessments. All in all, the SPI values for species
should be assessed on a case-by-case basis by experts to help
define future reassessment priorities. Assessors may undoubt-
edly have additional factors to consider in the prioritization,
which may span from available funding for certain regions or
taxonomic groups to groups that have recently undergone tax-
onomic revision. In these cases, SPI can be used to prioritize
preselected groups of species based on other criteria to opti-
mize the efforts required to maintain up-to-date RL assessments
under limited available resources (Cazalis et al., 2022; Rondinini
et al., 2014).

Our validation with recently reassessed species supports
the validity of our approach for guiding future reassessment
efforts. Our SPI accurately predicted species that recently had
the RL category changed (Appendix S38) and proved partic-
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ularly good at differentiating downlisted species from species
with categories that did not change (Appendix S39). Amphib-
ians were first comprehensively assessed on 2004 (Stuart et al.,
2004), and despite the IUCN commitment to reassess species
within 10 years, the global reassessment was published in 2023
(Luedtke et al., 2023), a delay due partially to the high rate of
new species descriptions, the taxon’s rapid response to envi-
ronmental stressors, and the limited resources available for
reassessment. Considering the challenge of maintaining up-to-
date assessments for such a large group of species, our approach
can help accelerate and enhance the effectiveness of future
reassessment efforts.

Our approach is broadly applicable to all taxa included in
the IUCN RL and to regional or national assessments. Using
SPI may improve allocation of limited human and economic
resources available to maintain an up-to-date IUCN RL and
highlight future changes in the conservation status of species,
overall allowing for quicker and more effective conservation
decisions to minimize biodiversity loss. Overall, our approach
would help reduce the taxonomic and geographic bias associ-
ated with the reassessed species by reducing the time and costs
invested on common species. Furthermore, reducing reassess-
ment efforts might free up resources for new assessments,
hence reducing existing geographic and taxonomic biases. Our
prioritization index should not be used to exclude species for
reassessment, but it can help assessors determine which species
should be prioritized for more frequent reassessments. In addi-
tion, the prioritization index should be updated for each new
reassessment or when new relevant information about predic-
tors is available. Finally, we recommend that developing such
reassessment priority studies with specialist groups (in the case
of amphibians with the Global Amphibian Assessment team)
is useful to ensure they use the results with due considera-
tion of the strengths and weaknesses of the reassessment study.
Future steps to improve these models and their usability include
the reevaluation of predictions based on new assessments (Di
Marco, 2022) and the identification of mechanisms that led to
a mismatch between predicted and observed RL categories to
identify inherent biases in either the modeling process (e.g.,
omission of a relevant variable or inclusion of a misleading one)
or the assessment process (e.g., omission of a relevant infor-
mation, such as climate change). Incorporating diseases (e.g.,
Akçakaya et al., 2023), future climate change scenarios, and real-
time threat data (e.g., deforestation alerts) will also be critical
next steps in refining the prioritization process for amphibian
reassessments.
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