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Introduction
Dalfampridine (DA) has been shown to improve 
walking ability in a subset of patients with multi-
ple sclerosis (MS).1,2 More recent experiences 
with DA showed that benefits to MS patients may 
be broader than just on walking speed, with 
improvements in gait pattern, manual dysfunc-
tion, walking endurance, balance, fatigability, 
cognitive dysfunction and quality of life.3–12

Recently, we demonstrated in a randomized, 
double-blind, placebo-controlled trial the efficacy 
of DA treatment in improving information pro-
cessing speed in patients with MS and a docu-
mented deficit in this cognitive domain.13 This 
was the only randomized, double-blind, placebo-
controlled trial of class I which demonstrated the 
cognitive efficacy of DA with a medium effect 
size.14 Proper selection of patients experiencing 
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clinical benefits in Symbol Digit Modalities Test 
(SDMT)15 from DA has not yet been reported.

Therefore, here we report a post-hoc analysis 
aimed to test the predictive value of a set of demo-
graphic and clinical criteria baseline characteris-
tics. Moreover, it is unknown whether the 
beneficial effects of DA on cognition are limited 
to patients showing poor SDMT response or 
extended to patients with deficit regarding motor 
function. This implies that responsiveness to DA 
should be evaluated in the clinical setting sepa-
rately for cognitive and motor function.

Materials and methods

Patients and procedures
This post hoc analysis included patients who 
received DA in the trial. The study design for the 
DA trial study has been previously reported.13 
Briefly, this was a randomized, double-blind, pla-
cebo-controlled trial in which 120 patients with 
MS were randomized in a 2:1 ratio to receive DA 
10 mg or placebo twice daily for 12 consecutive 
weeks. 

The study was sponsored by an investigator initi-
ated trial grant from Biogen, who reviewed the 
protocol and provided both DA and matching 
placebo.

We enrolled patients from two regional referral 
MS Centers in Rome from February 2015 to June 
2016. Patients were referred to the trial in the 
clinics, based on their subjective cognitive com-
plaints. Eligible participants were patients with a 
diagnosis of MS according to the revised 
McDonald criteria,16 with an age ranging from 18 
to 65 years (inclusive) and a score in the SDMT 
below the 10th percentile of normative values of 
the Italian population.17,18 Exclusion criteria 
were: (1) the occurrence of a clinical relapse in 
the previous 60 days; (2) history of major depres-
sion or psychosis; (3) severe or moderate depres-
sion according to Beck Depression Inventory-II 
(with a cut-off score of 19);19,20 (4) history of sei-
zures; (5) conditions that would interfere with 
study conduction; (6) introduction or modifica-
tion of any medication including medication for 
mood, fatigue or cognition in the previous month. 
Eligible patients completed the whole cognitive 
battery, the clinical evaluation and other study 
questionnaires according to the study protocol. 

After 12 weeks patients came back to the Centers 
to repeat the tests.

Outcome measures
The main endpoint of efficacy–response to treat-
ment was an improvement in the SDMT, calcu-
lated as the number of patients presenting at 
least an improvement of four points in the raw 
SDMT.

The administration of SDMT was preceded by a 
learning sequence at all time-points; furthermore, 
to reduce the learning effect, two alternative ver-
sions of the test were presented.15,17,21 Other out-
comes of the study included the 9-Hole Peg Test 
(9HPT), the Timed 25-Foot Walk Test (T25-
FWT) and the 3-s version of Paced Auditory 
Serial Addition Test (PASAT)22 seconds rate, 
which were used to calculate the Multiple 
Sclerosis Functional Composite (MSFC) score.23

Statistical methods
Data management and analyses were performed 
on available data by an independent research 
organization (TFS Trial Form Support S.L., 
Rome, Italy) with no role in the study design and 
data collection. Previous results from the trial13 
showed at the 12-week assessment a raw score 
increase in the SDMT from baseline of 9.9 [95% 
confidence interval (CI) 8.5–11.4] for patients 
treated with DA and of 5.2 (95% CI 2.8–7.6) for 
patients in the placebo group (p = 0.0018). In the 
present analysis, we included only data from 
patients in the arm treated with DA. Since the 
median value of improvement in treated patients 
at the SDMT performance at the end of the treat-
ment period was 10 points, we chose this value as 
cut-off to categorize patients as “full responders” 
(FR) or “partially responders” (PR).

Statistical analyses were performed using Stata 
14.2. Two-tailed p-values < 0.05 were considered 
as significant.

We used a univariate logistic regression consider-
ing baseline characteristics to identify predictors 
of response. Moreover, to explore potential pre-
dictors of better response to DA, we ran a three-
step hierarchical linear regression model (stepwise 
fashion) to identify which demographic variables 
(step 1), clinical factors (step 2) and motor and 
cognitive scores (step 3) were associated with 
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change in raw SDMT score from baseline assess-
ment (dependent variable).

Results
Out of 120 randomized to receive DA (n = 80) or 
placebo (n = 40), 71 patients allocated to the DA 
group completed 12 weeks of treatment.

Briefly, the sample consisted of 41 women and 30 
men with a mean ± standard deviation (SD) age 
of 49.1 ± 7.7 years, mean (SD) disease duration 
of 13.9 ± 8.6 years, mean SDMT raw score of 
30.2 ± 7.8 and median (range) Expanded 
Disability Status Scale (EDSS) score of 3.5 (1.0–
6.0). Of them, 63 had a relapsing–remitting, 
seven a secondary progressive and one a primary 
progressive phenotype; 45 were on-treatment and 
the remaining 26 were off-treatment with disease-
modifying drugs (Table 1 reports baseline clinical 
characteristics for both FR and PR groups).

According to our definition, 34 patients were 
classified as FR and 37 as PR.

The FR group consisted of 23 women and 11 
men with a mean age of 48.1 ± 7.2 years; in the 
PR group we found 18 females and 19 males with 
a mean age of 49.0 ± 8.2 years. We did not find 
differences between groups in baseline character-
istics (Table 1) except for median EDSS, which 
was lower in FR group compared with PR [3.0, 
range 1.5–4.5 versus 4.0, range 3.0–5.0, odds 
ratio (OR) 0.69; 95% CI 0.5–0.97, p = 0.034].

The FR group also presented a better performance 
in MSFC (0.79 ± 1.99 versus −0.40  ± 1.96) with a 
higher possibility of being FR in presence of a bet-
ter MSFC value (OR 1.37; 95%CI 1.05–1.8, 
p = 0.022); in particular FR group presented a 
lower T25-FWT and a lower 9HPT with domi-
nant hand compared with PR group (6.63 ± 1.86 
versus 8.04 ± 2.96; OR 0.76; 95% CI 0.6–0.98, 

Table 1. OR of baseline clinical characteristics for dalfampridine responders.

PR FR OR 95% CI p

 n = 37 n = 34  

Gender, n (%)

 Male 19 (51.4) 11 (32.4) 1  

 Female 18 (48.7) 23 (67.7) 2.21 0.8–5.8 0.108

Age years, mean (SD) 49.0 (8.2) 48.1 (7.2) 1.00 0.9–1.1 0.924

Formal education, mean (SD) 13.1 (3.5) 12.5 (3.5) 0.95 0.8–1.1 0.477

Phenotypes, n (%)

 Relapsing remitting 34 (91.9) 29 (85.3) 1  

 Secondary progressive 3 (8.1) 4 (11.8) 1.56 0.3–7.6 0.579

 Primary progressive 0 (0.0) 1 (2.9)  

Patients under DMT, n (%)

 No 13 (35.1) 13 (38.2) 1  

 Yes 24 (62.2) 21 (61.8) 0.91 0.3–2.4 0.854

Disease duration, years, mean (SD) 15.2 (8.0) 12.5 (9.0) 0.96 0.9–1.0 0.179

EDSS, median (range) 4 (3–5) 3 (1.5–4.5) 0.69 0.5–0.97 0.034

p values refer to univariate logistic regression.
CI, confidence interval; DMT, disease modifying treatment; EDSS, Expanded Disability Status Scale; FR, fully responders; 
OR, odds ratio; PR, partially responders.
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p = 0.033 and 22.97 ± 6.33 versus 29.26 ± 14.25, 
OR 0.92; 95% CI 0.86–0.99, p = 0.029) (Table 2).

Univariate and multivariable hierarchical linear 
regression models predicting change in SDMT 
score at week 12 in patients treated with dalfam-
pridine (n = 71) are shown in Table 3. The 
strongest predictor of univariate linear regres-
sion was 9HPT dominant hand. (p = 0.011). 
The hierarchical linear regression model did not 
reveal any demographic variable (step 1) pre-
dicting the outcome. The introduction of base-
line clinical variables (step 2) revealed that the 
EDSS score contributed significantly to the 
regression equation (F1,69 = 4.10, p = 0.047), 
although explaining only 5% of the variance in 
outcome. Finally, entering in the model the 
baseline motor and cognitive scores (step 3) 
revealed other significant independent predic-
tors (9HPT dominant hand, SDMT and 
PASAT) that explained 24% of the variance in 
outcome, and this R2-change was significant 
(F1,63 = 4.83, p = 0.032).

In Table 4, mean changes from baseline of 9HPT 
dominant hand, 9HPT no dominant hand and 
T25-FWT are reported for patients PR and FR to 
DA treatment. FR group did not show any sig-
nificant improvement of motor performance 
compared with PR group. Mean changes of 
SDMT from baseline were not different compar-
ing two groups of patients as divided according to 
their response to measures of motor functions 
(data not shown).

Discussion
The mechanisms underlying the observed changes 
in responsiveness of DA remain speculative.

A neurophysiological study suggests that patients with 
MS with a normal pre-therapy central motor conduc-
tion time (CMCT) are very unlikely to benefit from 
DA, whereas patients with a prolonged CMCT have 
a higher chance to respond to treatment.24 Given that 
DA may improve signal conduction by blocking 
potassium channels along demyelinated axons, 
patients with extensive demyelination might benefit 
more from this treatment. In addition to that, in 
experimental models, Dietrich et al.25 demonstrated 
that 4-aminopyridine could prevent axonal loss.

Few attempts have aimed to predict clinical 
responsiveness to DA in MS patients. Some stud-
ies provide evidence that walking function at 
baseline can accurately predict the responder sta-
tus, patients more disabled at baseline having the 
best outcome.26–28 On the other hand, original 
works by Goodman et al.,1,2,29 as well as work by 
Allart et  al.,3 showed that responders and non-
responders had similar baseline characteristics.

In our study the positive effect of DA on process-
ing speed was specific to the primary outcome of 
SDMT. Patients were recruited based on a spe-
cific impairment in processing speed, while the 
impairment in other domains was not necessary. 
Therefore, processing speed impairment in MS 
should be associated with higher amount of 
axonal demyelination within the neural cognitive 

Table 2. OR of baseline cognitive and motor scores for dalfampridine responders.

PR FR OR 95% CI p

 37 34  

PASAT 3 raw, mean (SD) 26.35 (11.26) 30.79 (14.46) 1.03 0.99–1.07 0.152

PASAT 3 adjusted, mean (SD) −1.53 (0.93) −1.16 (1.19) 1.39 0.89–2.19 0.152

T25-FWT, mean (SD) 8.04 (2.96) 6.63 (1.86) 0.76 0.60–0.98 0.033

9HPT dominant hand, mean (SD) 29.26 (14.25) 22.97 (6.33) 0.92 0.86–0.99 0.029

9HPT no dominant hand, mean (SD) 29.48 (10.47) 25.75 (8.44) 0.96 0.90–1.01 0.117

MSFC −0.40 (1.96) 0.79 (1.99) 1.37 1.05–1.80 0.022

p values refer to univariate logistic regression.
9HPT, 9-Hole Peg Test; CI, confidence interval; FR, fully responders; MSFC, Multiple Sclerosis Functional Composite; OR, 
odds ratio; PASAT, Paced Auditory Serial Addition Test; PR, partially responders; T25-FWT, Timed 25-Foot Walk Test.
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network, providing more targets for DA to rein-
force processing speed.

In the present study, EDSS score, as well as 
motor functions (T25-FWT and 9HPT), 

predicted improvement in information processing 
speed by DA. The strongest predictor in the uni-
variate analysis was 9HPT in dominant hand, 
indicating the best response in patients with pre-
served manual abilities. Lower EDSS value and 

Table 3. Univariate and multivariable hierarchical linear regression models predicting change in SDMT score at week 12 in patients 
treated with dalfampridine (n = 71).

β 95% confidence intervals p-value Adjusted R2

Lower bound Upper bound

Univariate analysis

 Sex (male versus female) 1.45 −1.43 4.34 0.32  

 Age (each year) 0.02 −0.17 0.20 0.86  

 Formal education (⩽13 versus >13 years) 0.32 −3.11 3.76 0.85  

 Disease duration (each year) −0.07 −0.23 0.10 0.43  

 Phenotype (SP/PP versus RR) 0.99 −3.54 5.52 0.66  

 EDSS score (each step) −0.98 −1.94 −0.02 0.047  

 DMT exposure (yes versus no) −0.63 −3.60 2.35 0.68  

 T25-FWT (each second) −0.58 −1.14 −0.01 0.047  

 9HPT dominant hand (each second) −0.16 −0.28 −0.04 0.011  

 9HPT non-dominant hand (each second) −0.15 −0.29 −0.01 0.044  

 SDMT (each point) −0.07 −0.26 0.12 0.47  

 PASAT (each point) 0.11 0.01 0.22 0.048  

Multivariable hierarchical analysis

Step 1  

 No predictors  

Step 2 0.05

 Constant 13.61 9.86 17.36 <0.001  

 EDSS score (each step) −1.11 −2.12 −0.10 0.033  

Step 3 0.24

 Constant 22.44 14.50 30.39 <0.001  

 9HPT dominant hand (each second) −0.30 −0.48 −0.12 0.001  

 SDMT (each point) −0.27 −0.47 −0.07 0.01  

 PASAT (each point) 0.13 0.01 0.26 0.032  

9HPT, 9-Hole Peg Test; DMT, disease-modifying treatment; EDSS, Expanded Disability Status Scale; PASAT, Paced Auditory Serial Addition Test; PP, 
primary progressive; RR, relapsing–remitting; SDMT, Symbol Digit Modalities Test; SP, secondary progressive; T25-FWT, Timed 25-Foot Walk Test.

https://journals.sagepub.com/home/tan


Therapeutic Advances in Neurological Disorders 14

6 journals.sagepub.com/home/tan

better performance at T25-FWT were also pre-
dictive of a good response.

Patients with an impairment of information pro-
cessing speed, as those enrolled in the present 
study, showed lower deep gray matter volume, less 
white matter integrity, but also stronger increases 
in functional connectivity.30 EDSS had a direct lin-
ear relationship with lesion load and inverse of tha-
lamic volume, while it benefitted from functional 
connectivity, representing mechanisms of adapta-
tion to structural damage and inflammation.31 
Although it is quite difficult to apply cut-offs of 
EDSS to individual patients, functional connectiv-
ity generally decreases in comparison with struc-
tural measure at EDSS score greater than 3.0, 
which may be critical and indicate exhaustion of 
compensatory mechanisms.31 Similarly, it has been 
demonstrated that impaired finger dexterity in MS 
is associated with a decreased functional connec-
tivity in several regions involved in motor functions 
such as superior frontal gyrus, lingual gyrus and 
posterior cerebellum.32 In our patients, a poor 
response should reflect failure of functional con-
nectivity, interfering with the action of DA, which 
primarily involves an enhanced conduction in 
demyelinated pathways.

An interesting issue, also emerging from the pre-
sent study, is that the motor response to DA is 
similar in FR and PR at SDMT, corroborating the 
hypothesis of different networks involving motor 
control and sustained attention. Correlations 
between functional connectivity clinical and neu-
ropsychological variables in MS showed that a 
higher EDSS score correlated with a maladaptive 
neuronal response in the supplementary motor 
area bilaterally and in the right precentral opercu-
lum,33 as well as with a more rigid (less fluid) global 
connectivity.34 Conversely, temporal network and 

relay areas the cerebellum and brainstem corre-
lated with cognitive performances.34–36 Prosperini 
et al.11 in a sub-study of the present trial demon-
strated that patients classified as responders to DA 
according to SDMT improved also their postural 
sway, thus confirming the hypothesis of an overlap 
between the two networks connecting balance and 
information processing speed.37,38

A limitation of this post hoc study is that PR and 
FR subgroups were defined retrospectively. The 
similar sample size of the two subgroups PR 
n = 37 and FR n = 34, however, may enhance sta-
tistical comparisons.

Conclusion
We have previously demonstrated that DA admin-
istered for 12 weeks improves information pro-
cessing speed in patients with MS showing poor 
SDMT performance; here we found that favored 
response is extended to patients with motor defi-
cit. However, a greater response to DA was 
observed only in a subpopulation of patients who 
had a lower EDSS and a better performance on 
tests of walking and hand dexterity. A maladaptive 
structural and functional plasticity in more motor 
disabled patients might account for these findings. 
These findings could help us to select the best 
candidate for DA treatment, even though further 
studies are required to confirm our hypothesis and 
to explore other predictors of treatment response.
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