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Abstract: We analyze the entropy production in run-and-tumble models. After presenting the
general formalism in the framework of the Fokker–Planck equations in one space dimension, we
derive some known exact results in simple physical situations (free run-and-tumble particles and
harmonic confinement). We then extend the calculation to the case of anisotropic motion (different
speeds and tumbling rates for right- and left-oriented particles), obtaining exact expressions of the
entropy production rate. We conclude by discussing the general case of heterogeneous run-and-
tumble motion described by space-dependent parameters and extending the analysis to the case of
d-dimensional motions.
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1. Introduction

Active matter is a recently established research field in statistical physics [1]. It
includes systems made of (typically) many particles endowed with self-propulsion, the
most prominent examples coming from biology, e.g., microswimmers or motile cells at the
microscale [2] or birds and pedestrians at the macroscale [3], but encompasses also motile
artificial particles at all scales [4]. Motility—which is a conversion of energy from some
fuel/reservoir into the motion of each particle, is a fascinating ingredient for theoretical
physics, as it implies a source of time-reversal symmetry breaking in the bulk of the
systems [5–8], different from the usual force coming from the boundaries, which occurs in
older examples of out-of-equilibrium systems such as fluids under the action of externally
imposed gradients (e.g., heat flow, convection, turbulence, etc.) [9,10].

The interest of statistical physics in those systems is both at the level of a single active
particle and at the level of large populations of active particles, since in both cases the lack
of thermodynamic equilibrium triggers the appearance of unexpected phenomena [11–14].
A single self-propelling particle hides a complex arrangement of several internal degrees of
freedom such as molecular motors actuating flagella, as in bacteria or sperms; it, therefore,
may require nontrivial stochastic modeling, in contrast with passive Brownian particles [15].
A population of motile particles may exhibit collective behaviors that are not allowed when
the motility ingredient is removed, typical examples being the polarization transition of
aligning active particles [16] and the motility-induced phase separation for purely repulsive
active particles [17,18].

One of the questions concerning the non-equilibrium statistical physics of the single
active particle is how to characterize the dissipation occurring because of the time-reversal
symmetry breaking induced by the self-propulsion mechanism [19]. A relevant approach to
this problem is given by stochastic thermodynamics, which equips the theory of stochastic
processes with a mesoscopic (fluctuating) definition of work, heat, and entropy production,
including a fluctuating version of the second principle of thermodynamics [20–22]. The
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application of stochastic thermodynamics to single active particles has been developed in
recent years, starting from models with continuous noise [23–27] such as active Ornstein–
Uhlenbeck particles (AOUPs) and active Brownian particles (ABPs), and only more recently,
it has been addressed also for time-discontinuous models such as run-and-tumble (RT) par-
ticles [28–30]. Such a model is considered a better description of certain biophysical systems,
for instance, the E. coli bacteria which have reorientation dynamics dominated by sudden
changes rather than rotational diffusion [31,32]. The less smooth mathematical structure
of the model makes the problem interesting: for instance, ABPs and AOUPs have a finite
entropy production even when translational thermal diffusion—often considered negligible
in real applications—is set to zero in the model. On the contrary, an RT particle—under
the influence of an external potential—in the limit of zero temperature becomes strongly
time-irreversible, meaning that the time reversal of an observable trajectory in general
is not observable, corresponding to an infinite entropy production [33]. The divergence
is healed when a finite diffusivity D > 0 is considered: typically—as seen also in this
paper—the steady-state entropy production diverges for D → 0. Morally, this corresponds
to the fact that a model for active particles may have a finite rate for energy dissipation
Ẇ even at zero temperature T = 0, and therefore, it is not a paradox to find a divergence
for the entropy production rate, expected on general grounds to be Ẇ/T. A closer look at
the problem, however, suggests that in many cases—particularly in biology—all energy
conversion processes occurring inside an active particle are triggered by thermal processes
(e.g., the dynamics of motor proteins is fueled by ATP molecules but the energy barriers
among the protein configurations cannot be overcome at T = 0), and therefore, one could
expect Ẇ ∼ T so that one might obtain a finite entropy production rate in the limit T → 0.
This problem is, however, not the scope of this paper, and the question will be addressed in
future research. The entropy production for run-and-tumble particles confined to move
into a one-dimensional box was the subject of [28], following the recipe given in [34]. Here,
we revisit this problem with a more straightforward derivation.

The structure of this paper is as follows. In Section 2, we review the minimal in-
gredients for the definition of entropy production of Markov processes described by a
Fokker–Planck equation. In Section 3, we discuss entropy production for RT particles in 1D,
starting with some known results rederived more straightforwardly, i.e., free RT particles
and then RT particles in a harmonic potential. In Section 4, we give the expression for
anisotropic models, i.e., RT particles in 1D with different tumbling rates and/or different
self-propulsion velocities in the two directions of motion. In Section 5, we give a more
general treatment which includes several cases of practical interest, and in Section 6, we
extend the calculation to the d-dimensional case. Section 7 is devoted to conclusions.

2. Theoretical Setup within the Fokker–Planck Equation

Here, we briefly recall the theoretical framework for the computation of the entropy
production rate in stochastic processes governed by Fokker–Planck-like equations [21].
Denoting by S(t) the entropy of the system at time t, we can decompose the rate of change
of the entropy into two terms, Π and Φ, as

Ṡ =
dS
dt

= Π − Φ , (1)

where Π is the entropy production due to irreversible processes inside the system and
Φ is the entropy flux from the system to the environment. The entropy production Π is
non-negative, while Φ can have either sign.

We consider a generic stochastic process describing a particle moving in a one-
dimensional space. The probability density function (PDF) P(x, t) to find the particle
at position x at time t obeys the following continuity equation:

∂tP(x, t) = −∂x J(x, t) , (2)
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where J(x, t) is the current and ∂t and ∂x denote, respectively, the time and space derivatives.
In the case of the Fokker–Planck equation, one has the following constitutive relation linking
the current to the probability:

J(x, t) = [µ f (x)− D∂x]P(x, t) , (3)

where D is the diffusion constant, f (x) a generic space-dependent mechanical force acting
on the particle, and µ the particle mobility.

The Gibbs entropy S(t) of the distribution P(x, t) is defined as

S(t) = −
∫

dx P(x, t) log P(x, t) , (4)

and the rate of the entropy change reads

Ṡ(t) = −
∫

dx Ṗ(x, t)[1 + log P(x, t)] ,

=
∫

dx ∂x J(x, t)[1 + log P(x, t)] ,

= −
∫

dx J(x, t)∂x log P(x, t) , (5)

where we have used the continuity Equation (2) and integration by parts assuming vanish-
ing distributions at boundaries. By using the relation (3), we can write

J(x, t)
DP(x, t)

=
µ f (x)

D
− ∂x log P(x, t) , (6)

and thus the expression for Ṡ(t) becomes

Ṡ = −
∫

dx
J(x, t)

D

[
µ f (x)− J(x, t)

P(x, t)

]
. (7)

We finally obtain the following forms of the entropy rates defined in (1):

Ṡ(t) = Π(t)− Φ(t) , (8)

Π(t) =
∫

dx
J2(x, t)

DP(x, t)
, (9)

Φ(t) =
µ

D

∫
dx J(x, t) f (x) . (10)

As a functional of J, we immediately realize that Π(t) is non-negative, the integrand
being proportional to J2 with positive coefficients, while Φ can be either negative or
positive. Π is the entropy production rate that can be also computed through the Kullback–
Leibler divergence between the probability of a path of the system with respect to the
time-reversal one.

In the stationary regime, we can compute the entropy production rate Π by noting
that the rate of entropy change Ṡ must be zero,

Ṡst = 0 = Πst − Φst , (11)

and, thus, we can compute Π through the expression for Φ since they are equal on stationary
trajectories

Πst = Φst . (12)
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When the Brownian particle reaches equilibrium, as, for example, in the presence of a
confining potential V(x), the entropy production rate is zero

Πst =
µ

D

∫
dx f (x)[µ f (x)− D∂x]Peq(x) = 0 , (13)

as is immediately clear considering that f (x) = −∂xV(x) and Peq(x) ∝ e−µV(x)/D. Instead,
in the case of a driven Brownian particle, we have a finite entropy production. Indeed, in
this case, the constant force produces a drift velocity v = µ f , thus resulting in

Πst =
v2

D
, (14)

as obtained from (3), (10), and (12).

3. Run-and-Tumble Motion

We now calculate the entropy production in the case of run-and-tumble motions in the
presence of thermal noise. We consider a particle that alternates sequences of run motion
and tumble events: it moves at constant speed v in a given direction until it tumbles at rate
α, randomly choosing the new direction of motion [35,36]. In the one-dimensional case
analyzed here, there are only two possible directions of motion, let us say right and left (in
the last Section 6, we generalize the analysis to higher dimensions). We assume that the
particle is also subject to thermal noise, described by a diffusion coefficient D. We first treat
the case of a free particle and then the motion in a confining harmonic potential. We derive
in a simple way the exact expressions of the entropy production rates, without resorting
to the explicit solutions of the kinetic equations of motion, reproducing the exact results
known in the literature [28–30,37]. Unlike the previous section, for the sake of simplicity,
here and in the following, we will omit in the reported equations the explicit dependence
on the x and t variables of the various quantities.

3.1. Free Run-and-Tumble Particles

We first analyze the case of a free run-and-tumble particle. We indicate with R(x, t)
the probability density function to find the particle at position x at the time t moving
towards the right, and with L(x, t) the probability density function for the particle moving
towards the left. The coupled kinetic equations describing the run-and-tumble motion in
the presence of thermal noise are

∂tR = D∂2
xR − v∂xR +

α

2
(L − R) , (15)

∂tL = D∂2
xL + v∂xL − α

2
(L − R) . (16)

Once we introduce the currents

JR = vR − D∂xR , (17)

JL = −vL − D∂xL , (18)

JLR =
α

2
(R − L) , (19)

we can write the equations of motion as follows:

∂tR = −∂x JR − JLR , (20)

∂tL = −∂x JL + JLR . (21)
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The entropy S is given by the sum of the two entropies

S = SR + SL , (22)

SR = −
∫

dx R log R , (23)

SL = −
∫

dx L log L . (24)

Performing the time derivative, we have

Ṡ = ṠR + ṠL , (25)

ṠR = −
∫

dx ∂tR(1 + log R) , (26)

ṠL = −
∫

dx ∂tL(1 + log L) , (27)

and, using Equations (20) and (21), we obtain

ṠR =
∫

dx (∂x JR + JLR)(1 + log R)

= −
∫

dx
JR
R

∂xR +
∫

dx JLR(1 + log R) . (28)

and similarly

ṠL =
∫

dx (∂x JL − JLR)(1 + log L)

= −
∫

dx
JL
L

∂xL −
∫

dx JLR(1 + log L) , (29)

having considered that distributions vanish at infinity. Using the expressions for JR,L, we
can write

∂xR
R

=
1
D

(
v − JR

R

)
, (30)

∂xL
L

= − 1
D

(
v +

JL
L

)
, (31)

so that, upon neglecting boundary terms, we obtain

Ṡ = Π − Φ , (32)

Π =
1
D

∫
dx

(
J2
R
R

+
J2
L
L

)
+

α

2

∫
dx (R − L) log

R
L

, (33)

Φ =
v
D

∫
dx (JR − JL) . (34)

At the steady state, we obtain Ṡ = 0 so that Πst = Φst, and thus, the entropy production
rate is given by

Πst =
v
D

∫
dx (JR − JL) . (35)

Once we introduce

P ≡ R + L , (36)

Q ≡ R − L , (37)
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with
∫

dxP(x) = 1, we obtain

JR − JL = vP − D∂xQ , (38)

so that

Πst =
v2

D
. (39)

We note that the above result is the same as the one obtained for a driven Brownian
particle. Indeed, we observe that a free run-and-tumble particle with diffusion can be
viewed as a drift-diffusive particle going constantly in the direction parallel to its own
driving force, even if such a force (proportional to the velocity of the particle) changes
direction at random times. The process of tumbling is instantaneous and therefore does not
add any contribution to the entropy production.

3.2. Run-and-Tumble Particles in Harmonic Potential

We now consider the case of a run-and-tumble particle in a confining (harmonic)
potential

V(x) =
k
2

x2, (40)

where k is the potential stiffness. The Fokker–Planck equations for R and L are

∂tR = −∂x JR − JLR , (41)

∂tL = −∂x JL + JLR , (42)

where

JR = (v + µ f − D∂x)R , (43)

JL = (−v + µ f − D∂x)L , (44)

JLR =
α

2
(R − L) , (45)

and f (x) = −∂xV(x) = −kx is the force field. Proceeding as before, we can write the
entropy rate as

Ṡ = Π − Φ , (46)

Π =
1
D

∫
dx

(
J2
R
R

+
J2
L
L

)
+

α

2

∫
dx (R − L) log

R
L

, (47)

Φ =
v
D

∫
dx (JR − JL)−

µk
D

∫
dx x(JR + JL) . (48)

In the steady state, we have Πst = Φst and, considering that J = JR + JL = 0, we
obtain

Πst =
v
D

∫
dx (JR − JL) . (49)

By noting that
JR − JL = vP − µkxQ − D∂xQ , (50)

where P and Q are defined in (36)–(37), we have (considering the normalization condition
and the vanishing of the distributions at infinity)

Πst =
v
D
(v + I) , (51)

where
I ≡ −µk

∫
dx xQ , (52)
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From (41), (42), and (45), in the stationary regime, we have

∂x(JR − JL) = −αQ , (53)

and multiplying by the force and integrating over space gives

µk
∫

dx x∂x(JR − JL) = αI . (54)

Integrating by parts, we obtain

αI = −µk
∫

dx(JR − JL) = −µk(v + I) , (55)

and then
I = − µkv

α + µk
. (56)

Substituting in (51), we finally obtain the expression of the entropy production rate:

Πst =
v2

D
α

α + µk
. (57)

The above expression is in agreement with that reported in [30]—see Equation (55)—and
also in [37], Equation (41), where it was obtained using a path integral approach. We note that
for k = 0, we recover the previous expression (39), valid for a free run-and-tumble particle.
It is remarkable that the above result has been obtained without resorting to the exact
stationary solution of the run-and-tumble equations, which indeed in this case cannot be
written in closed form [38].

4. Anisotropic Run-and-Tumble Motion

We extend here the analysis of the previous section to the case of particles performing
anisotropic run-and-tumble motion, i.e., we consider tumbling rates and speeds which
depend on the orientation of the particle, αR ̸= αL and vR ̸= vL. These parameters are
assumed to be constant in time and space, which will allow us to obtain exact results for
the entropy production. In the next section, we relax the spatial homogeneity condition,
allowing the speeds and tumbling rates to depend explicitly on the variable x. We treat
here the case of motion in the presence of a harmonic potential V(x) = k

2 x2, the free case
being recovered in the limit of zero spring constant, k = 0. The Fokker–Planck equations
for R and L are

∂tR = −∂x JR − JLR , (58)

∂tL = −∂x JL + JLR , (59)

where

JR = (vR + µ f − D∂x)R , (60)

JL = (−vL + µ f − D∂x)L , (61)

JLR =
1
2
(αRR − αLL) , (62)
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and f (x) = −∂xV(x) = −kx is the force field. The entropy rate is

Ṡ = Π − Φ , (63)

Π =
1
D

∫
dx

(
J2
R
R

+
J2
L
L

)
+

1
2

∫
dx (αRR − αLL) log

R
L

, (64)

Φ =
1
D

∫
dx (vR JR − vL JL)−

µk
D

∫
dx x(JR + JL) . (65)

In the steady state, we have

Πst =
1
D

∫
dx (vR JR − vL JL) . (66)

By using (60) and (61), we have

DΠst = v2
R

∫
dxR + v2

L

∫
dxL

+ µkvL

∫
dxxL − µkvR

∫
dxxR . (67)

We now observe that the first two integrals in (67) are given by∫
dxR =

αL
αR + αL

, (68)∫
dxL =

αR
αR + αL

, (69)

as obtained considering the normalization condition of P = R + L and that the integral of
JLR (62) must be zero, as follows from Fokker–Planck equations in the stationary regime.

Now we consider the case k > 0. From (58) and (59) in the stationary regime, we have

∂x(vR JR − vL JL) = −vR + vL
2

(αRR − αLL) , (70)

and then, multiplying by µkx and integrating over x

µk
∫

dx x∂x(vR JR − vL JL) =
vR + vL

2
(αR I − αLY) , (71)

where

I ≡ −µk
∫

dx xR , (72)

Y ≡ −µk
∫

dx xL. (73)

Integrating by parts, we obtain

µk
∫

dx (vR JR − vL JL) = −vR + vL
2

(αR I − αLY) . (74)

The quantities I and Y are related to each other. Indeed, in the steady state, the total current
is zero and then, using (60) and (61), we have

0 =
∫

dx(JR + JL) = vR

∫
dxR − vL

∫
dxL + I + Y . (75)

Using (68) and (69), we obtain

I + Y =
vLαR − vRαL

αR + αL
. (76)
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Combining Equations (74) and (76)—together with (68) and (69)—we obtain an equation
for I, whose solution is

I =
αL

αR + αL

αRvL − αLvR − 2µkvR
2µk + αR + αL

. (77)

Using (76), we obtain for Y

Y =
αR

αR + αL

αRvL − αLvR + 2µkvL
2µk + αR + αL

. (78)

Substituting in (74) and using (66), we finally arrive at the expression of the entropy
production rate for k > 0:

Πst =
(vR + vL)

2

D
αRαL

(2µk + αR + αL)(αR + αL)
. (79)

Defining the average speed v = (vR + vL)/2, the average tumbling rate α = (αR + αL)/2,
and the tumbling rate semidifference δ = (αR − αL)/2, the EPR takes the simple form

Πst =
v2

D
α2 − δ2

α(µk + α)
. (80)

For αR = αL, i.e., δ = 0, the EPR reads

Πst =
v2

D
α

µk + α
, δ = 0 , (81)

similar to the expression obtained in the isotropic case (57) with the average speed v =
(vR + vL)/2.

In the free case, the EPR can be computed directly by putting k = 0 into Equation (67),
which—together with Equations (68) and (69)—leads to

Πst =
1
D

αLv2
R + αRv2

L
αR + αL

. (82)

We first note that the limit k → 0 of Equation (79) is different from (82), i.e., it is singular.
This has already been noticed, in the case vR = vL, in [39]. The reason is that in the free
anisotropic case, a residual total current is present even in the steady state (i.e., asymptoti-
cally in time) and that is an additional source of dissipation. Such a current vanishes as
soon as k > 0, even very small. Formula (82) gives for αR = αL = α:

Πst =
1
D

v2
R + v2

L
2

, (83)

a result already obtained in [29] by means of a trajectory-based approach. When vR =vL =v,
we instead obtain [39]

Πst =
v2

D
, (84)

i.e., the same result for the free isotropic case, remarkably independent from the tumbling rates.
It is worth noting that in the general case, for a fixed external potential (k > 0),

the EPR reaches its maximum value v2/D in the symmetric case (δ = 0) and for large
tumbling rates (α → ∞). However, some interesting behaviors of the EPR are obtained by
considering some parameters fixed. While it is true that by fixing k and α, the maximum
EPR v2(1 + µk/α)−1/D is always obtained for δ = 0, in the case of fixed k and αL, one has
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that the maximum EPR is reached for α∗ = αR/αL > 1 (see Figure 1). The same would
happen by fixing the value of αR, with the relative tumbling rate given by α∗ = αL/αR.

0 1 2 3 4 5 6 7

 α
∗

0.0

0.5

1.0

Π
s
t

Π
max

k
*
= 10

-3 

0.5

1

2

5

Figure 1. Entropy production rate at stationarity —see (79) in the text—as a function of the
relative tumbling rate α∗ = αR/αL for different values of the reduced harmonic constant
k∗ = k/αL = 10−3 , 0.5, 1, 2, 5. The red line is the maximum EPR Πmax vs. α∗

max(k∗). Units are
such that v = 1, D = 1, µ = 1.

5. General Run-and-Tumble Motion

Let us now treat the very general case of anisotropic and heterogeneous run-and-
tumble motion. We consider the possibility that tumbling rates and speeds not only could
be different for left- and right-oriented particles but also could depend on the spatial
variables αR,L(x) and vR,L(x). Moreover, we consider the presence of a generic external
force f (x), not necessarily originated by a confining quadratic potential. In this general
case, the Fokker–Planck equations for R and L can be written as follows (for the sake of
simplicity we omit the dependence on the x-variable of the physical parameters):

∂tR = −∂x JR − JLR , (85)

∂tL = −∂x JL + JLR , (86)

where

JR = (vR + µ f − D∂x)R , (87)

JL = (−vL + µ f − D∂x)L , (88)

JLR =
1
2
(αRR − αLL) . (89)

The entropy rate is

Ṡ = Π − Φ , (90)

Π =
1
D

∫
dx

(
J2
R
R

+
J2
L
L

)
+

1
2

∫
dx (αRR − αLL) log

R
L

, (91)

Φ =
1
D

∫
dx (vR JR − vL JL) +

µ

D

∫
dx f (JR + JL) . (92)
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In the steady state, we have

Πst =
1
D

∫
dx (vR JR − vL JL) +

µ

D

∫
dx f (JR + JL) . (93)

In the case of vanishing flows at steady state JR + JL = 0 (as occurs, for example, in the
presence of confining potentials), the above expression is formally identical to the one
obtained in the previous section (66), but now the parameters vR,L and αR,L are explicitly
space-dependent quantities. In the general case, it is not possible to obtain exact expressions
of the EPR, and we need to resort to a numerical solution of kinetic equations or numerical
simulations of the trajectories of the run-and-tumble particles.

We conclude this section by mentioning some particular case studies, which are
interesting for their physical or biological relevance.
Photokinetic bacteria. Photokinetic bacteria are characterized by spatially varying speed
which depends on local light intensity I [40]. For static nonhomogeneous light fields I(x),
we can describe the particle dynamics through a space-dependent speed v(x) [41] (we
assume equal left and right speeds)

v(x) = v(I(x)) . (94)

Chemotaxis. In the presence of nutrient concentration, some motile bacteria modify their
tumble rates to effectively direct their movement toward the food source [31,35]. We can
describe such a phenomenon by expressing the tumble rates in terms of the chemotactic
field c(x). In the limit of a weak concentration gradient, we can write [35,42,43]

αR(x) = α − γv∂xc(x) , (95)

αL(x) = α + γv∂xc(x) , (96)

with γ measuring the strength of the particle reaction to chemical gradients, and we have
assumed equal speeds vR = vL = v. Moreover, it is interesting to consider more realistic
models of bacterial dynamics including noninstantaneous tumbling, with the addition of
finite dwell times in the tumble state and possibly different rates of transition between the
run and tumble states [44,45].
Generic confining potentials. In the previous sections, we analyzed the case of a force field
f (x) = −∂xV(x) originated by quadratic potentials V(x) ∝ x2. It would be interesting to
consider the generic confining potential [46,47]

V(x) = a|x|p , p ≥ 1 , (97)

and investigate the dependence on the exponent p. Furthermore, of interest is the case of
double-well potentials

V(x) = ax4 − bx2 + cx , (98)

in its symmetric (c = 0) or asymmetric (c ̸= 0) version.
Ratchet potentials. Finally, we mention the study of the ratchet effect [5]. In this case, the
active motion takes place in the presence of a periodic asymmetric potential, giving rise
to unidirectional motion with a stationary flow of particles, JR + JL ̸= 0. In the case of a
piecewise-linear ratchet potential, the entropy production for particles with equal tumbling
rates and speeds was analyzed in [48].

6. Run-and-Tumble Motion in RdRdRd

To date, we have considered the case of one-dimensional motions. Here, we extend
the analysis to d-dimensional run-and-tumble walks. We consider a particle that, in the
free case, moves along straight lines with velocity v = ve, where v is the speed and e a
unit vector in Rd, and randomly changes its direction of motion e with rate α, choosing the
new direction from a uniform distribution. We first derive the general expression of the
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EPR considering generic space- and orientation-dependent speed and tumbling rate, v(x, e)
and α(x, e). Then we specialize to the simple case of constant v and α, showing the exact
expression of the EPR in the presence of a harmonic potential.

By denoting with p(x, t; e) the PDF to find the particle at position x ∈ Rd at time t with
velocity orientation e, the kinetic equation of the run-and-tumble motion can be written
as [49]

∂t p = −∇ · j + α(P− 1)p , (99)

where the current j is as follows (we consider the presence of thermal noise and generic
force field f(x)):

j = (−D∇+ ve + µf)p , (100)

and we introduced the projector operator

Pp(x, t; e) =
∫ de

Ωd
p(x, t; e) , (101)

with Ωd =2πd/2/Γ(d/2) the solid angle in d-dimension. Hereafter, we consider normaliza-
tion condition

∫
dx de p(x, t; e) = 1. We define the total entropy S as, generalizing (22),

S(t) =
∫

de s(t; e) , (102)

where the orientation-dependent entropy s is

s(t; e) = −
∫

dx p(x, t; e) log p(x, t; e) . (103)

By performing a derivation similar to that of the previous section, we arrive at the expres-
sion of the entropy rate

Ṡ = Π − Φ , (104)

Π =
∫

dx
∫

de
[
|j|2
Dp

+ α(p − Pp) log p
]

, (105)

Φ =
1
D

∫
dx
∫

de (ve + µf) · j , (106)

which generalize to dimension d > 1 the expressions previously obtained in (91), (92). In
the steady state, we have Π = Φ, and, assuming a null net current

∫
de j = 0, we have that

the EPR reads
Πst =

1
D

∫
dx
∫

de ve · j . (107)

The results obtained so far are valid in the general, nonhomogeneous, and nonisotropic
case, i.e., for generic v(x, e) and α(x, e). We now specify the calculation to the case of
constant parameters v and α, extending the analysis of planar motions in [30] to Rd with
generic d > 1. By using (100), we can write the EPR as

Πst =
v2

D

[
1 +

µ

v

∫
dx
∫

de p e · f
]

, (108)

having used the normalization condition and neglecting boundary terms. Consider below
a force field due to a harmonic potential, i.e., f = −kx. By substituting (100) in (99) in the
stationary regime, multiplying by e · x, integrating over dx and de, and using integration
by parts, we arrive at an equation for the quantity

I ≡
∫

dx
∫

de p e · x , (109)
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appearing in the second term of (108), which is

(α − dkµ)I = v − kµ(1 + d)I , (110)

leading to

I =
v

α + µk
. (111)

Substituting in (108), we finally obtain the expression of the EPR

Πst =
v2

D
α

α + µk
, (112)

which is the same as that obtained in the one-dimensional case (57) and is therefore
independent of spatial dimensions.

7. Conclusions

We computed the average entropy production rate in the steady state for a noninteract-
ing run-and-tumble particle in several different physical setups. The general strategy is to
start from the kinetic equations and then compute the entropy flux, identical to the entropy
production in a steady state. The entropy flux—in the absence of a total net current (e.g., in
confined or spatially symmetric situations)—is seen to be proportional to the difference
of left–right currents JL, JR, weighted by the left–right speeds vL, vR (Equations (35), (49),
and (66) in the different situations). The left–right currents endow also a dependence upon
the tumbling rates. Such a weighted difference can be computed, in most of the consid-
ered situations, without computing the single currents but going directly to compute their
weighted difference. This is a shortcut which allows us to revisit the free and harmonically
confined cases, which already had a solution in the literature. The power of the method
enables us to compute the entropy production rate also in nonsymmetric setups where
the tumbling rates and the velocities are different when particles go to the left or to the
right. A discussion of the more general case where all parameters are space-dependent
was also presented, but explicit results cannot be usually obtained: a few cases of physical
relevance are discussed with some detail. Finally, we extended the calculation to the case
of run-and-tumble motions in a d-dimensional space, showing the formal expression of the
EPR in the general case of space- and orientation-dependent parameters and reporting the
exact solution in the case of harmonic potential and constant speed and tumbling rate. Fu-
ture research should focus on the entropy production for interacting RT systems exhibiting
motility-induced phase separation [18], where non-equilibrium density fluctuations have
been investigated, usually starting from opportune coarse-graining descriptions [50–52].
Finally, the theoretical framework considered here might be tested against experiments
such as the ones recently performed on different biological systems, where EPR can be
computed in a model-independent fashion [53–55].
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