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Abstract
We present a standalone Matlab software platform complete with visualization for the reconstruction of the neural activity 
in the brain from MEG or EEG data. The underlying inversion combines hierarchical Bayesian models and Krylov subspace 
iterative least squares solvers. The Bayesian framework of the underlying inversion algorithm allows to account for anatomi-
cal information and possible a priori belief about the focality of the reconstruction. The computational efficiency makes the 
software suitable for the reconstruction of lengthy time series on standard computing equipment. The algorithm requires 
minimal user provided input parameters, although the user can express the desired focality and accuracy of the solution. The 
code has been designed so as to favor the parallelization performed automatically by Matlab, according to the resources of 
the host computer. We demonstrate the flexibility of the platform by reconstructing activity patterns with supports of differ-
ent sizes from MEG and EEG data. Moreover, we show that the software reconstructs well activity patches located either in 
the subcortical brain structures or on the cortex. The inverse solver and visualization modules can be used either individu-
ally or in combination. We also provide a version of the inverse solver that can be used within Brainstorm toolbox. All the 
software is available online by Github, including the Brainstorm plugin, with accompanying documentation and test data.

Keywords  Brain activity reconstruction · Bayesian framework · Conditionally Gaussian prior · Sensitivity weighting · 
Iterative Krylov solver · Sliced visualization

Introduction

The recording of the extracranial magnetic field, or alterna-
tively, the voltage distribution on the scalp, induced by the 
concerted firing of bundles of neuron in the brain constitute 
the data of MagnetoEnchephaloGraphy (MEG) or Electro-
EncephaloGraphy (EEG), two modalities for monitoring 
brain activity in a totally non-invasive manner with an exqui-
site time resolution in the millisecond range. It is because 
of its high temporal resolution that the M/EEG modalities 
are the tools of choice to investigate and localize brain phe-
nomena that occur within a short time interval, such as the 
initiation of an epileptic seizure.

The challenges in the use of the M/EEG modalities come 
from the weakness of the signal, and ill-posedness of the 
inverse problem of mapping the boundary data to the brain 
region. In particular, the number of M/EEG channels is of 
the order of one to a few hundreds, while the brain activity 
is typically represented in the form of an ensemble of cur-
rent dipoles at a number of locations in the brain ranging 
in tens of thousands, distributed on the cortex as well as 
in the internal structures. The difficulties associated with 
the solution of the M/EEG inverse problem include the low 
signal-to-noise ratio, the high sensitivity of the solution to 
the perturbations in the data, and the non-uniqueness of 
the solution (Hämäläinen et al. 1993; Baillet et al. 2001; 
Brette and Destexhe 2012), thus requiring that the data is 
augmented with additional information in the form of a regu-
larization term or a prior. An additional byproduct of the 
non-uniqueness of the solution is that most classical inver-
sion methods tend to favor sources closer to the sensors, 
thus giving preference to cortical activity over activation in 
the deeper brain.
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Inverse problems can be recast in the form of Bayes-
ian inference problems, and several algorithms based on 
Bayesian hierarchical models can be found in the literature 
(Auranen et al. 2005; Calvetti et al. 2009; Henson et al. 
2009, 2010; Kiebel et al. 2008; Lucka et al. 2012; Lopez 
et al. 2014; Mattout et al. 2006; Nummenmaa et al. 2007a, 
b; Owen et al. 2012; Sato et al. 2004; Stephan et al. 2009; 
Trujillo-Barreto et al. 2004; Wipf and Nagarajan 2009; Wipf 
et al. 2010). The inverse solver algorithm discussed in this 
paper (Calvetti et al. 2009, 2015) is based on a model where 
the unknown dipoles are conditionally independent Gaussian 
random variables whose variances, also unknown, are mod-
eled as random variables following a gamma distribution. 
The hierarchical structure of the prior, particularly suitable 
for modeling focal activity patterns, effectively doubles the 
number of unknowns, as now both the dipoles and their vari-
ances need to be estimated. The negative logarithm of the 
resulting posterior density, or Gibbs energy, has been shown 
to be globally convex (Calvetti et al. 2009), hence to have 
a unique minimizer. The Iterative Alternating Sequential 
(IAS) algorithm computes an approximation of the Maxi-
mum a Posteriori (MAP) single estimate of the posterior. 
Each iteration of the algorithm consists of a sequence of two 
steps, one requiring the solution of a least squares problem 
to update the estimate of the dipoles and the other consist-
ing of a formula evaluation to update the estimate of their 
variances.

In addition to the theoretical advantage of guaranteed 
unique MAP estimate, the computational advantage of the 
software lies in the implementation of the optimization algo-
rithm. The two alternating steps consist of a closed formula 
update of the variances, and a linear least squares prob-
lem for updating the dipoles. The latter step, that is poten-
tially time consuming, is implemented in IAS by using a 
Krylov subspace iterative method based on the Conjugate 
Gradient for Least Squares (CGLS) with a particular right 
preconditioner coming from a symmetric factorization of 
the precision matrix of the prior, therefore referred to as 
priorconditioner, and a left preconditioner coming from 
a symmetric factorization of the precision matrix of the 
noise. Unlike in the traditional use of iterative solvers for 
linear systems where the prior provides a regularization, 
the iterative algorithm in IAS solves a reduced low rank 
linear system informed by the prior, and it is equipped with 
a suitable early stopping rule, acting as a regularization. 
This novel approach, the priorconditioned Krylov solver 
scheme, reduces dramatically the computational cost and 
has the advantage of converging very fast, typically requir-
ing only few (in the order of tens) matrix-vector products 
with the lead field matrix, is more than an alternative way 
of solving a linear system, since the solution with early stop-
ping depends nonlinearly on the data (Calvetti et al. 2018). 
The subject-specific anatomical information based on the 

segmented MRI images is encoded in the right precondi-
tioner. Anatomical information about the brain to augment 
the data has been previously used in MEG algorithms, see, 
e.g., in Lin et al. (2006).

The popularity of standard public domain M/EEG solv-
ers, e.g., Minimum Norm Estimate (MNE) (Hämäläinen 
and Ilmoniemi 1984; Lin et al. 2006) and LORETA (Pas-
cual-Marqui 1999) is partly due to the fact that they can be 
used with minimal user intervention. This observation has 
motivated our effort to reduce the number of user-provided 
parameters in the present IAS-MEEG to a minimum, with a 
clear physical interpretation. The key parameter is an esti-
mate of the signal-to-noise ratio (SNR). Another optional 
input parameter controls the focality of the solution. In Cal-
vetti et al. (2009), the sparsity-promoting propensity of the 
IAS algorithm, and its relation to some other algorithms 
favoring sparse solutions (Gorodnitsky and Rao 1997; Naga-
rajan et al. 2006; Uutela et al. 1999) was highlighted. In par-
ticular, it was shown that the shape paraof the gamma hyper-
prior distribution controls the sparsity, and, furthermore, in 
Calvetti et al. (2019), it was shown that at an appropriate 
limit of the shape parameter, the IAS solution converges 
towards the weighted Minimum Current Estimate (MCE) 
(Uutela et al. 1999), providing a good intuition for the role 
of the shape parameter.

Sensitivity weighting, or depth weighting, has been com-
monly used in connection with, e.g., MNE and MCE meth-
ods to overcome the bias of minimization based methods 
towards sources closer to the measuring devices. Recently, 
a proper Bayesian interpretation of the sensitivity weighting 
has been provided in Calvetti et al. (2019). In the present 
version of the algorithm, the sensitivity weighting is auto-
matic, arising from a very natural exchangeability argument 
(Calvetti et al. 2019), requiring that for the given SNR, all 
dipole configurations with equal cardinality of the support 
should a priori be equally probable.

In Calvetti et al. (2019), the performance of the IAS-
MEEG package for the identification of an active brain 
region ranging from the cortex to the deep structures of the 
basal ganglia was systematically compared to that of three 
other standard inversion methods provided in Brainstorm 
(Tadel et al. 2011): wMNE (Lin et al. 2006), dSPM (Dale 
et al. 2000), and sLORETA (Pascual-Marqui 1999; Wagner 
et al. 2004). Extensive statistical evaluations demonstrated 
that IAS-MEEG is very well suited for the localization of 
focal brain activity in both cortical and subcortical regions, 
and its ability to identify an activation pattern even in the 
presence of disturbances due to internal brain noise was 
confirmed.

In this paper we present a standalone software platform 
for the reconstruction of the neural activity in the brain from 
MEG or EEG data based on the IAS algorithm, and a visual-
ization of the result as sagittal, coronal and axial slices. The 



12	 Brain Topography (2023) 36:10–22

1 3

reduction in computing time due to the iterative priorcondi-
tioned Krylov subspace least squares solver makes the soft-
ware particularly suitable for the reconstruction of lengthy 
time series on standard computing equipment. The algorithm 
requires minimal user provided input parameters, effectively 
reduced to an estimate of the signal-to-noise ratio. Option-
ally, a parameter controlling the focality of the solution, the 
desired accuracy of the solution, and a parameter related to 
expected maximal strength of the sources may be entered. 
The input data consist of the MRI and M/EEG measure-
ments, cleaned of obvious artifacts due, e.g., to heartbeat 
or eye motion, a discretized source space, and the lead field 
matrix. The computational procedure consists of the follow-
ing processing stages: (1) Set up the anatomical prior from 
information in the MRI data; (2) Initialize the vector of the 
variances of the hyperpriors for the dipoles according the 
Bayesian sensitivity weighting formula; (3) Initialize the 
variances of the dipoles; (4) Update alternatively the esti-
mate of the current dipole moments and their variances until 
convergence to a specified accuracy has been achieved; (5) 
Visualize the reconstructed activity.

One of the novelties of the current article is the integra-
tion of results from several earlier works, making the model 
scaling and parameter selection automatic, rendering the 
necessary user interference minimal, limited to the input of 
an estimate of the signal-to-noise ratio. However, the algo-
rithm leaves the option to control some of the features such 
as the parameter controlling the required source focality 
in the solution. Another novel aspect is the integration of 
EEG and MEG modalities in the same IAS algorithm, which 
makes the platform particularly flexible.

The paper is organized as follows. After a brief review 
of the M/EEG inverse problem from a Bayesian perspec-
tive in Section “Materials and Methods”, we recall the main 
step of IAS algorithm in “The IAS Algorithm” section and 
discuss the physiological meaning of its parameters. Sec-
tion 4 describes the lightweight visualization tool that we 
provide together with the algorithm, and in Section 5 the 
scripts contained in the IAS-MEEG package are described. 
Finally, in Section 6 we present some computed examples 
with synthetic and real data.

Materials and Methods

Symbols and Notation

For the convenience of the reader, we begin by stating the 
assumptions and then establish the notation that we will use 
in the following sections.

The source space is assumed to have n dipoles, some of 
which have a natural preferred orientation determined by 

the underlying neuroanatomy. For the j-th dipole, 1 ≤ j ≤ n , 
we denote:

When needed, the dipole variables are collected in the 
vectors:

The local anatomical prior matrices are used to construct the 
block diagonal matrix

that admits a Cholesky factorization as

where � is an upper triangular matrix. In the following we 
will also use the matrix

and its factorization

In the solution of the M/EEG inverse problem we use the 
notation

We will denote a time slice of data by the vector b ∈ ℝ
m , 

with m the number of M/EEG sensors.
Finally, for a vector V ∈ ℝ

n and a matrix � ∈ ℝ
n×n we 

use the norms:

and

rj ∈ ℝ
3 point coordinates,

qj ∈ ℝ
3 dipole moment,

�j ∈ ℝ
3 preferred dipole direction,

�j ∈ ℝ dipole variance,

�∗
j
, �j ∈ ℝ hyperparameters,

�j ∈ ℝ
3×3 local anatomical prior covariance.

R = [r1,… , rn] ∈ ℝ
3n,

Q = [q1,… , qn] ∈ ℝ
3n,

N = [�1,… , �n] ∈ ℝ
3n,

� = [�1,… , �n] ∈ ℝ
n,

�∗ = [�∗
1
,… , �∗

n
] ∈ ℝ

n.

� = diag(�1,… ,�n) ∈ ℝ
3n×3n,

� = �
�
�,

�� = diag(�1�1,… , �n�n) ∈ ℝ
3n×3n,

�� = �
�

�
�� .

� ∈ ℝ
m×3n the lead field matrix,

B ∈ ℝ
m×t a dataset of t time slices,

� ∈ ℝ
m the noise vector,

� ∈ ℝ
m×m the noise covariance matrix.

‖V‖2 = V� V ,

‖V‖2
�
= V�

�
−1V .
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The Bayesian Hierarchical Model

The cortical and sub-cortical surfaces of the brain are 
extracted from the MR images of the subject under study and 
discretized in a regular triangulation whose nodes form the 
source space. A current dipole is located in each point rj , 
1 ≤ j ≤ n , of the source space. Let qj , 1 ≤ j ≤ n , be the 
moment of the j-th dipole. The primary unknown is the cur-
rent dipole moment vector Q = [q1,… , qn] . Each dipole has 
a preferred direction �j that can be extracted from the MRI. 
The local prior variance of the amplitude of each dipole �j 
is modeled as a random variable following the Gamma dis-
tribution with hyperparameters (�j, �∗j ):

The observation vector b ∈ ℝ
m and the dipole moment vec-

tor Q ∈ ℝ
3n are assumed to be linearly related:

where � ∈ ℝ
m×3n is the lead field matrix and � ∈ ℝ

m is the 
observation noise vector.

Modeling the noise term as a zero mean Gaussian random 
variable, � ∼ N(0,�) , where � ∈ ℝ

m×m is the noise covari-
ance matrix, the likelihood density of b conditional on Q 
can be written as

We define the Bayesian hierarchical prior model of the activ-
ity in position rj as

where �j ∈ ℝ
3×3 is the local anatomical prior matrix

and (�j, �j, �j) is a local orthonormal frame at rj.
Assuming a priori that the dipoles are conditionally inde-

pendent leads to a conditionally Gaussian prior model

with the hyperprior model

�j ∼ �
j

hyper
(�j ∣ �

∗
j
, �j) = � (�∗

j
, �j) ∝ �

�j−1

j
exp

(
−
�j

�∗
j

)
.

(1)b = �Q + �,

�(b ∣ Q) ∝ exp
�
−
1

2
‖b −�Q‖2

�

�
.

�
j

prior
(qj ∣ �j) ∼ N(0, �j�j) ∝ exp

⎛⎜⎜⎝
−
‖qj‖2�j

2�j
−

3

2
log �j

⎞⎟⎟⎠
,

�j = �j�
�

j
+ 𝛿(�j�

�

j
+ �j�

�

j
), 0 < 𝛿 < 1,

�prior(Q ∣ �) =

n∏
j=1

�
j

prior
(qj ∣ �j),

�hyper(� ∣ �∗, �) =

n∏
j=1

�
j

hyper
(�j ∣ �

∗
j
, �j).

It follows from Bayes’ theorem that the posterior distribution 
is of the form

The Maximum A Posteriori (MAP) estimate of both the 
dipole moment vector Q and corresponding variance vector 
� is obtained minimizing the energy function

by the IAS algorithm. In fact, the minimization with respect 
to Q affects only part (a) and reduces to a quadratic mini-
mization problem that can be solved very efficiently using a 
priorconditioned CGLS algorithm, while the minimization 
with respect to the hyperparameters �j affects only part (b) 
and admits a solution in closed form.

The IAS Algorithm

The Algorithm

The IAS algorithm minimizes the energy function E(Q,�) 
by proceeding through a sequence of iteration steps alternat-
ing the minimization with respect to Q and the minimization 
with respect to � . The algorithm is initialized by assigning 
to � a given value, for instance, �∗ . The first step is to mini-
mize part (a) of the energy function (2) with fixed � = �∗ . 
The MAP estimate of Q given � = �∗ is obtained by solving 
the minimization problem

The minimizer can be found by solving an associated linear 
system in the least squares sense, and an efficient implemen-
tation can be done using a priorconditioned CGLS algo-
rithm, see (Calvetti et al. 2015) for details. Once Qest has 
been computed, the updated value of � is obtained minimiz-
ing part (b) of (2) keeping Q = Qest fixed,

�(Q,� ∣ b,�∗, �) ∝ �(b ∣ Q)�(Q,� ∣ �∗, �)

∝ exp

�
−

1

2
‖b −�Q‖2

�
−

1

2

n�
j=1

‖qj‖2�j

�j

+

n�
j=1

�
�j −

5

2

�
log �j −

n�
j=1

�j

�∗
j

�
.

(a)
︷ ︸︸ ︷

‖b−MQ‖2Σ +
n∑

j=1

‖qj‖2Cj

θj
− 2

n∑

j=1

[(
βj − 5

2

)
log θj − θj

θ∗j

]

︸ ︷︷ ︸
(b)

(2)

(2)

(3)Qest = argmin

�
1

2
‖b −�Q‖2

�
+

1

2
‖Q‖2

��

�
.
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This problem has the analytical solution

where �j = �j − 5∕2 . Subsequently, a new estimate of Q is 
obtained by solving problem (3) again with � = �est . Thus, 
the minimization problems (3) and (4) are solved alternat-
ingly until a convergence criterion is met. The flowchart of 
the IAS algorithm is shown in the left of Fig. 1 with the 
pseudocode of the algorithm shown in the right.

Choice of the Parameters

While the IAS algorithm depends on two parameter vec-
tors, the shape parameter vector � and the scaling parameter 
vector �∗ , the user needs only to enter an estimate for the 
signal-to-noise ratio. Internally to the algorithm, the scaling 
parameter is automatically computed, and the shape param-
eter is in practice reduced to a single scalar input that can be 
set at a default value. The description is given below.

The shape parameters 𝛽j > 5∕2 , 1 ≤ j ≤ n , control the 
focality of the reconstructed sources: values close to the 
lower bound favor sparse solutions while larger values favor 
distributed solutions. For the sake of simplicity, we assume 
that the same value of �j = � is used for all dipoles in the 
source space. Recalling that �j = �j − 5∕2 , 1 ≤ j ≤ n , we set 
�j = � , 1 ≤ j ≤ n . Reasonable values of � are in the interval 
[0.0001, 0.1]: when � = 0.0001 the algorithm favors current 
density estimates with narrow support, while for � = 0.1 the 
support of the estimated density is wider.

The scaling parameters �∗
j
 , 1 ≤ j ≤ n , are related to the 

expected value of the variance �j of the j-th dipole. By using 
a Bayesian argument that is based on requiring exchangea-
bility of dipoles to explain the signal-to-noise ratio shows 
that �∗

j
 needs to be chosen inversely proportional to the sen-

sitivity with respect to the j-th dipole. Its value can be evalu-
ated explicitly by the formula

where P is the power of the signal, � is the noise covariance 
matrix, �j ∈ ℝ

m×3 is the local lead field matrix and ‖ ⋅ ‖F 

�est = argmin

⎧
⎪⎨⎪⎩

n�
j=1

‖qj‖2�j

�j

−2

n�
j=1

��
�j −

5

2

�
log �j −

�j

�∗
j

��
.

(4)�est,j = �∗
j

⎛
⎜⎜⎝
�j

2
+

�����2
j

4
+

‖qj‖2�j

2�∗
j

⎞
⎟⎟⎠
, 1 ≤ j ≤ n.

�∗
j
=

P − trace(�)

�‖�j �
1∕2

j
‖2
F

, 1 ≤ j ≤ n,

denotes the Frobenius norm (Calvetti et al. 2019). Recalling 
the definition of the signal-to-noise ratio (SNR) as

we arrive at the formula

SNR =
signal power

noise power
=

P

trace(�)
,

�∗
j
=

P

�‖�j �
1∕2

j
‖2
F

�
1 −

1

SNR

�
, 1 ≤ j ≤ n.

Assign the parameters η = β − 5/2, Θ∗, and τ

Initialize Θ0 = Θ∗

Set k = 0

Update Q with fixed Θ = Θk:

Qk+1 = argmin
{
1
2
‖b−MQ‖2Σ +

1
2
‖Q‖2Dθ

}

where DT
θ Dθ = Cθ, Cθ = diag(θ1C1, . . . , θnCn)

Update Θ with fixed Q = Qk+1:

θk+1
j = θ∗j



ηj

2
+

√√√√η2
j

4
+

‖qj‖2Cj

2θ∗j





where ηj = βj − 5/2, 1 ≤ j ≤ n

‖Θk+1 −Θk‖
‖Θk‖

< τ Increase k by 1

Stop

TRUE

FALSE

Fig. 1   The IAS flowchart (left) and the IAS algorithm (right). The 
outer loop on k is performed through statements 6–25; the inner loop 
(statements 12–20) solves the minimization problem for Qk+1 by the 
preconditioned CGLS algorithm; the estimated Qk+1 is computed by 
statement 21; the estimated �k+1 is computed by statements 22–24. 
Observe that while the IAS algorithm requires the vector �∗ as input, 
the user specifies only the signal-to-noise ratio, and �∗ is automati-
cally generated based on the SNR-exchangeability argument. The 
parameters � and � have default values, and specifying them by the 
user is optional
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In Calvetti et al. (2019), the formula was related to the 
estimate of active focal sources via the exchangeability 
argument.

Time Series

In case of time dependent data, the IAS algorithm is applied 
to each individual time slice. The time slices can be pro-
cessed individually, or treated as a time series. In the latter 
case, the hyperparameter vector � is initialized to �∗ in the 
first time step, and set equal to the final estimate in the previ-
ous time step in each subsequent time steps. The rationale 
for the dynamic initialization of � is that since we do not 
expect significant changes in the current density from one 
time instance to the next, it is reasonable to assume the vari-
ance � not to vary much either, thus making the variance 
at time step t a good estimate of the variance at time step 
t + 1 . Computed examples show that in this way, the outer 
iteration loop typically requires only a few iterations to reach 
convergence.

Visualization of the Activity Map

To provide a standalone platform, the software is equipped 
with a computationally lightweight visualization tool based 
on basic graphic packages of Matlab. The visualization pro-
vides a sliced view of the reconstructed activity in three 
standard orthogonal anatomical planes, axial, coronal, and 
sagittal views. Given the source space in terms of the projec-
tions onto the three principal directions,

where the default right handed Cartesian coordinates axes 
are assumed to be in the order x = right , y = front and 
z = crown (see Fig. 2).

The sliced visualization algorithm subdivides the source 
space in the chosen direction into ten layers. More precisely, 
for instance in the axial projections, the vertices are parceled 
as

S = [r1, r2,… , rn], rj = (xj, yj, zj),

where z
�
= zmin + �(zmax − zmin)∕10 with � = 0, 1,… , 10 , 

and zmin and zmax define the extremal values of the source 
space components zj . Given the IAS-MEEG reconstruction 
of the brain activity, the visualization algorithm shows the 
intensities aj = ‖qj‖ of the dipoles in each parcel, rj ∈ Saxial

�
 , 

by plotting the projection (xj, yj) as a dot in two dimensions, 
encoding the intensity in the form of a color map.

In addition to the three sliced views of the full brain, 
the visualization software allows the user to select a point 
inside the brain, and produce an activity plot in the form of 
the single axial, coronal, and sagittal slices containing the 
selected point. This view is particularly useful if synthetic 
data corresponding to a focal source are used to monitor how 
well the algorithm is able to localize a focal source.

IAS‑MEEG Package

The IAS-MEEG Package is available at https://​github.​com/​
IAS-​code/​IAS-​MEEG and distributed under a Berkeley Soft-
ware Distribution (BSD) license. The documentation can be 
found at https://​ias-​code.​github.​io/​IAS-​MEEG/​index.​html.

The package is coded in Matlab using only basic com-
mands and does not require any of the Matlab toolboxes.

The package comprises four functions: 

1.	 BuildAnatomicalPrior: This function generates 
the anatomical prior that favors dipoles in the preferred 
direction. The inputs are: the coordinates of the points 
in the source space; the normal vectors extracted from 
the MRI. The user can choose the value of � , the relative 
variance of the components of the dipoles. The default 
value is 0.05. The output is the matrix � ∈ ℝ

3n×3n , that 
is the Cholesky factor of the anatomical prior covariance 
matrix.

2.	 SetParameters: This function scales the lead field 
matrix and the data, adjusts the truncation of the sensi-
tivities, and returns the scaling vector �∗ together with 
an estimate for the standard deviation of the noise for 
whitening. The inputs are: the lead field matrix; the 
Cholesky factor of the anatomical prior covariance as 
computed by BuildAnatomicalPrior; a small set 
of the data; the estimated signal-to-noise ratio; the per-
centage of the highest �∗

j
 values to be removed (optional: 

by default no truncation). Removed values can be 
checked by graphical inspection asking the function to 
produce plots. The outputs are: the �∗ vector; the cut-off 
value used to remove the higher values of �∗ ; the stand-
ard deviation of the scaled noise; the scaling factor for 
the lead field matrix; the scaling factor for the data.

Saxial
�

= [rj ∣ z�−1 ≤ zj < z
�
], 1 ≤ � ≤ 10,

Fig. 2   Orientation of the default coordinate axes

https://github.com/IAS-code/IAS-MEEG
https://github.com/IAS-code/IAS-MEEG
https://ias-code.github.io/IAS-MEEG/index.html


16	 Brain Topography (2023) 36:10–22

1 3

3.	 ���_��������� : This function solves the M/EEG 
inverse problem by the IAS algorithm described in “The 
Algorithm section. The inputs are: the lead field matrix; 
the dataset; the Cholesky factor of the anatomical prior 
covariance matrix, evaluated in BuildAnatomi-
calPrior; the parameters, evaluated in SetParam-
eters; the value of � for selecting the focality of the 
reconstructed activity (default value: 0.01; choose 0.001 
for focal sources). The user can choose the maximum 
number of iterations in the outer and inner loops, nouter 
and maxit , respectively, and the tolerance � used in the 
stopping criterion for � . Default values are: nouter=30, 
max_it=120 and � = 0.01. The output is the estimated 
dipole moment vector for each point of the source space, 
and a diagnostics matrix indicating the number of inner 
iterations for each outer iteration, and the relative change 
in � when tolerance is reached.

4.	 �������������������_����������
 : This function 
plots the activity map, that is the estimated current inten-
sity of each dipoles (cf. “Visualization of the Activity 
Map” section). The inputs are: the coordinates of the 
points in the source space; the estimated intensity vec-
tor. The outputs are the plots of the dipole intensity for 
different sections (axial, coronal and sagittal sections).

In addition, a visualization algorithm is included, which is 
particularly useful when simulated data are used. 

4’	� ������������������������_����������
 : This 
function plots three sections (axial, coronal and sag-
ittal sections) of the activity map passing through a 
given point in space. The inputs are: the coordinates 
of the points in the source space; the estimated inten-
sity vector; the point at which the three views intersect. 
Optional inputs include the coordinate system specifica-
tion and the type of marker indicating the intersection 
of the three views in the plot.

 To solve the M/EEG inverse problem by the IAS-MEEG 
algorithm the four functions must be called sequentially as 
shown in the flowchart in Fig. 3. The first box of the flow-
chart shows all the input necessary to run the IAS algorithm. 
The lead field matrix � , the source space � and the corre-
sponding normal orientation � that need to be given in input 
can be computed using an available software package (e.g. 
Brainstorm or Fieldtrip). These inputs are passed as Matlab 
variables to the different functions as specified in the cor-
respondig box of the flowchart in Fig. 3. We also assume 
that the input data matrix B contains M/EEG data that were 
already preprocessed (e.g. filtering, artifact removal) and is 
also passed as Matlab variable.

Brainstorm Plugin

The IAS algorithm is also available as a Brainstorm plugin, 
allowing its integration into the Brainstorm workflow. The 
added value of this integration is that it makes it possible for 
a user to perform all analysis steps, such as data preprocess-
ing and visualization, within the same toolbox. The three 
main functions of IAS code, BuildAnatomicalPrior, 
SetParameters and ���_��������� are integrated 
into the single function �������_��� available in the IAS-
MEEG package. To be used within Brainstorm this function 
must be copied in the Brainstorm folder
brainstorm3/toolbox/process/functions 

and launched as a process. Figure 4 shows the main window 
for running IAS within Brainstorm with the input parameters 
to be provided by the user.

Results

MEG Simulated Data

An example of the impact of the choice of shape param-
eter � on the reconstruction is shown in Fig. 5. Here, we 
used simulated MEG data generated by a patch of activ-
ity located in the occipital region of the left hemisphere. 
The same anatomical information and MEG sensors used 
for real dataset (cf. “MEG Real data” section) were used. 
A biological noise, simulated as in Calvetti et al. (2019), 
was added to the signal, yielding SNR = 15 . It is clear that 
when � = 0.0001 (see Fig. 5, bottom) the IAS algorithm 
favors sparse current density estimates respect to a choice 
of � = 0.1 (see Fig. 5, middle) where the estimated density 
has a more spread distribution.

MEG Real Data

In the documentation (https://​github.​com/​IAS-​code/​IAS-​
MEEG/​blob/​master/​IAS_​Demo.m) we provide an exam-
ple of reconstruction obtained by applying IAS-MEEG 
algorithm to a real dataset. We used the MEG sample data 
provided by MNE software package (Gramfort et al. 2014) 
which includes also the MRI reconstructions created with 
FreeSurfer. These MEG data were acquired with the Neu-
romag Vectorview system at MGH/HMS/MIT Athinoula 
A. Martinos Center Biomedical Imaging. In the protocol 
experiment, checkerboard patterns were presented into the 
left and right visual field, interspersed by tones to the left 
or right ear. The interval between the stimuli was 750ms. 
Occasionally, a smiley face was presented at the center of 
the visual field. The subject was asked to press a key with 
the right index finger as soon as possible after the appear-
ance of the face. In our example we only consider the trials 

https://github.com/IAS-code/IAS-MEEG/blob/master/IAS_Demo.m
https://github.com/IAS-code/IAS-MEEG/blob/master/IAS_Demo.m
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corresponding to the left visual stimulus and perform the 
averaging on these trials. The MRI data were imported in 

Brainstorm (Tadel et al. 2011) to generate a source space 
including both the cortical surface and substructure regions. 
Following (Calvetti et al. 2019), we adopt for the source 
space the DBA (Deep Brain Activity) model proposed by 
Attal et al. (2012), Attal and Schwartz (2013) where the 
deep regions are modeled either with surfaces or volumes 
depending on anatomical information. The source space 
obtained in this manner consists of around 19000 nodes 
and the lead field matrix was computed using the single 
layer model implemented in OpenMEEG (Gramfort et al. 
2010) software provided by Brainstorm. We reconstructed 
the neural activity by IAS-MEEG using the following input 
parameters: SNR = 9 , � = 0.01 and cut_off = 0.9 . Figure 6 
shows the reconstructed activity for the left visual stimulus 
at 92ms where evidently an activation in the right occipital 
region appears. The visual stimulus elicits activity in dif-
ferent regions of the visual cortex, thus to get an overview 
in time of the different activated regions at different time 

Fig. 3   The IAS-MEEG 
Package. The functions 
BuildAnatomicalP-
rior, SetParameters, 
IAS_algorithm perform the 
IAS algorithm. The function 
SlicedVisualization_
ActivityMap displays the 
reconstructed activity map

Inputs by the user:

R ∈ R3n,N ∈ R3n (source space coordinates and normals)

M ∈ Rm×3n (lead field matrix)

B ∈ Rm×t (M/EEG data)

SNR (estimated signal-to-noise ratio)

η = β − 5
2 (focality parameter [optional], default value: 0.01)

Build the anatomical prior matrix (function BuildAnatomicalPrior):

inputs: R, N, δ (default value: 0.05)

outputs: D (Cholesky factor of the anatomical prior)

Compute Θ∗ and the scaling factors (function SetParameters):

inputs: M, D, B, SNR, cut off ([optional] default value: 1)

outputs: Θ∗, Θmax, σ, Mscaling, Bscaling

Run IAS algorithm (function IAS_algorithm):

inputs:






M, Mscaling, D, B, Bscaling, σ, Θ∗, η ,

nouter(default value: 30), max it (default value: 120), τ (default value: 0.001)

outputs: Q ∈ R3n×t (estimated dipole moments)

Vizualize the activity map (function SlicedVisualization_ActivityMap):

inputs: R,
[
‖q1(time)‖, · · · , ‖qn(time)‖

]

outputs: plots of the activity map

Fig. 4   Main window of IAS process within Brainstorm toolbox
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points, the dipoles with maximum activity were selected and 
visualized. Figure 7 shows these reconstructed dipoles with 
the corresponding time trace.

EEG Real Data

To show an example on how to use the IAS-MEEG algo-
rithm within Brainstorm we run the plugin on the EEG 
sample dataset provided in the Tutorial EEG and Epilepsy 
https://​neuro​image.​usc.​edu/​brain​storm/​Tutor​ials/​Epile​
psy. The tutorial dataset was acquired in a patient who suf-
fered from focal epilepsy at the Epilepsy Center Freiburg, 
Germany. The EEG data was recorded at 256Hz, using a 
Neurofile NT digital video-EEG system with 128 channels 
and a 16-bit A/D converter. The spikes were marked with 
Brainstorm by the epileptologists at the Epilepsy Center in 
Freiburg. The individual MRI data were imported in Brain-
storm and a cortical source space with around 15000 nodes 
was created. The lead field matrix was computed using a 
three layer model (scalp, skull and bran) by OpenMEEG 
software provided in Brainstorm. The IAS-MEEG algorithm 
was applied to the EEG data averaged on the marked spikes. 
Figure 8 shows the IAS localization on epileptic spikes 
when the following input parameters were used: SNR = 9 , 
� = 0.001 and cut_off = 0.9 . In particular, we used a value 
of � that promotes focality.

Conclusions

In this article we presented the IAS-MEEG package, a stan-
dalone, Matlab-based, freely downloadable software for the 
reconstruction of the neural activity from M/EEG data, with 
a plugin to integrate it in Brainstorm. The IAS-MEEG pack-
age is based on an Iterative Alternating Sequential (IAS) 
inversion algorithm that combines hierarchical Bayesian 
models and Krylov subspace iterative least squares solv-
ers. The package is available via GitHub at https://​github.​
com/​IAS-​code/​IAS-​MEEG and distributed under a Berkeley 
Software Distribution (BSD) license. An online documen-
tation is also provided at https://​ias-​code.​github.​io/​IAS-​
MEEG/​index.​html. All core routines are written in standard 
Matlab language and do not rely on any special packages. 
Furthermore, the inverse solver and visualization modules 
can be used either individually or in combination, allowing 
an easy integration in Brainstorm (Tadel et al. 2011).

Appendix

In this appendix, we review the scaling of the fields and 
matrices as implemented in the program SetParameters. To 
scale the lead field matrix, we write the action of the lead 

Fig. 5   Top: The patch (red dots) used to generate the simulated 
data. Middle: The estimated neural activity for simulated data when 
� = 0.1 . Bottom: The estimated neural activity for simulated data 
when � = 0.0001

Fig. 6   Visualization of the activity along slices passing through the 
maximal reconstructed activity

https://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy
https://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy
https://github.com/IAS-code/IAS-MEEG
https://github.com/IAS-code/IAS-MEEG
https://ias-code.github.io/IAS-MEEG/index.html
https://ias-code.github.io/IAS-MEEG/index.html
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field matrix � in terms of the single dipoles in the source 
space,

Hence, the lead field vector p(j)
k

 indicates how much a unit 
dipole at position rk contributes to the jth channel. We define 
a scaling factor

(
�Q

)
j
=

n∑
k=1

(p
(j)

k
)�qk. indicating the average effect over all dipoles on the chan-

nel that is most sensitive to a given dipole. To equilibrate 
numerically the lead field matrix, we write the forward 
model (1), indicating the time dependency with a subscript 
t, 1 ≤ t ≤ T  , as

s
2
=

1

n

n�
k=1

max
1≤j≤m

�‖p(j)
k
‖2�,

Fig. 7   Time series of the intensity of the active dipoles

Fig. 8   IAS localization on epileptic spikes from EEG real data
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thus defining the scaled dimensionless lead field matrix �sc . 
To scale the data, we define the mean amplitude over the 
time series,

and scale the Eq. (5) to read

or, using the evident notation,

The standard deviation �sc of the scaled noise is estimated 
based on the signal-to-noise ratio, and the Eq. (6) is whit-
ened by dividing it by �sc.
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