
Autonomous Planetary Landing via Deep Reinforcement Learning and Transfer
Learning

Giulia Ciabatti1, Shreyansh Daftry2 and Roberto Capobianco1,3

giulia.ciabatti8@gmail.com *

Abstract

The aim of this work is to develop an application for
autonomous landing. We exploit the properties of Deep
Reinforcement Learning and Transfer Learning, in order
to tackle the problem of planetary landing on unknown
or barely-known extra-terrestrial environments by learning
good-performing policies, which are transferable from the
training environment to other, new environments, without
losing optimality. To this end, we model a real-physics sim-
ulator, by means of the Bullet/PyBullet library, composed by
a lander, defined through the standard ROS/URDF frame-
work and realistic 3D terrain models, for which we adapt
official NASA 3D meshes, reconstructed from the data re-
trieved during missions. Where such model were not avail-
able, we reconstruct the terrain from mission imagery - gen-
erally SAR imagery. In this setup, we train a Deep Rein-
forcement Learning model - using DDPG - to autonomous
land on the lunar environment. Moreover, we perform trans-
fer learning on the Mars and Titan environment. While still
preliminary, our results show that DDPG can learn a good
landing policy, which can be transferred to other environ-
ments.

1. Introduction
Autonomous landing and navigation represent an impor-

tant challenge for space exploration [11, 12]. While system-
embedded Artificial Intelligence (AI) has made significant
progress during the last few years, space exploration gen-
erally still follows a more traditional approach in practical
applications [19, 1].

Recent researches have been carried out with promising
results in the field of autonomous landing, like in the case of
the applications of Deep Learning and Meta-Reinforcement
Learning for autonomous lunar landing, presented, respec-
tively, by Furfaro et al. [9] and by Scorsoglio et al. [22]
or Deep Reinforcement Learning for six-degree-of-freedom
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Mars landing, presented by Gaudet et al. [5] and the Deep
Reinforcement learning application to learn the parameters
of the Adaptive Generalized ZEM-ZEV Feedback Guid-
ance, presented by Furfaro et al. [10].

Inspired by these results, we tackle the autonomous plan-
etary landing problem (in particular the terminal landing
phase). In order to do so, we utilize a Deep Reinforce-
ment Learning algorithm that allows us to handle high-
dimensional and heterogeneous input data, such as vision-
based navigation imagery from an RGB camera, LiDAR
detections and pose data. Given that our action space is
continuous, we use the Deep Deterministic Policy Gradient
algorithm - DDPG [8].

In order to evaluate the performance of DDPG on this
task, we develop a simulator exploiting the Bullet/PyBullet
physical engine and adapting official NASA 3D terrain
models - or reconstructing them from SAR imagery re-
trieved from missions, when none is available, as for the Ti-
tan environment. In order to perform Reinforcement Learn-
ing experiments, we additionally wrap this simulator in the
OpenAI gym interface [2].

After evaluating the performances of the DDPG algo-
rithm in our simulator, we preliminarly test the transfer
learning performances on the reconstructed Titan environ-
ment. This was, to the best of our knowledge, the first time
transfer learning was attempted for planetary landing.

2. Purpose Statement
The purpose of this paper is twofold. First, a pure

Python-embedded, real-physics simulator for planetary
landing is developed. This first task is necessary due to the
lack of open-source frameworks and simulators for plane-
tary landing - especially for the terminal landing phase -
which could also be exploited to implement and train AI
algorithms. Thus, the aim of this first part of work is to
provide an open-source, easily customizable simulator ded-
icated to the study of these problems. Both the simulator
and the lander model are also fully compatible with the
ROS1 framework. Second, a Deep Reinforcement Learn-
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ing approach is exploited in order to perform vision-based
autonomous planetary landing and domain transfer on the
developed simulator. In particular, we use the Deep De-
terministic Policy Gradient - DDPG [8]. The aim of this
second part is (1) to tackle the difficulty in controlling a
robotic system on an extra-terrestrial environment - in this
case during the terminal landing phase - from remote and
in absence of positioning systems - such as GPS - available
on Earth and (2) to test the ability to transfer the learned
knowledge from a known domain to another one. A good
performance in transfer learning can grant the ability to per-
form efficient landing also on unknown domains, especially
for those where precise modeling and simulations are im-
possible due to the lack of data/imagery and their difficult
retrieval - e.g. asteroids, unknown or barely-known planet
and satellite surfaces, etc [14, 21]. Also, efficient transfer
learning applications may represent a solution to ”fill the
reality gap” when transferring from the simulation domain
to the real domain, as the reality gap is oftentimes an obsta-
cle to implement many robotics solutions in real world.

3. Theory Background: Deep Reinforcement
Learning

We cast our problem as an episodic Deep Reinforcement
Learning [24, 15] task. At each time-step t, our agent/lander
interacts with a fully-observable environment E in the form
of an Markov Decision Problem. As such, it has to choose
an action at ∈ A, based on the observation st ∈ S, receiv-
ing back from the environment a reward rt and a new state
st+1. In our environments, all the actions are real-valued:
A ⊂ RN .
The policy π determines our agent’s behaviour, mapping
states to actions: π : S → A. The action-value function
describes the expected return obtained after executing an
action at in state st and then following π:

Qπ(st, at) = Eπ[
T∑
i=t

γi−tri|st, at] (1)

3.1. Deep Deterministic Policy Gradient - DDPG

In order to handle a continuous action space, we use the
Deep Deterministic Policy Gradient - DDPG - first intro-
duced by Timothy P. Lillicrap et al. [8]. The basic archi-
tecture of the DDPG algorithm consists of an actor-critic
model. The critic is learned by means of the Bellman equa-
tion:

Qπ(st, at) = Ert,st+1∼E [rt + γEat+1∼π[Q
π(st+1, at+1)]],

(2)

rewritten, in case of deterministic target policy, as:

Qπ(st, at) = Ert,st+1∼E [rt + γEat+1∼π[Q
µ(st+1, µst+1

)]],
(3)

making it possible to learn Qµ off-policy, while the actor
exploits the parameterized function µ(s|θµ), which defines
a deterministic map from state to specific action, in accor-
dance to the policy π, and is updated by means of the chain
rule to the expected return:

∇θµJ ≈ Est∼ρβ [∇θµQ(s, a|θQ)|s=st,a=µ(st,θµ)] (4)

= Est∼ρβ [∇θµQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θ
µ)|s=st ]

(5)

where J is the initial distribution.
The DDPG algorithm makes use of the Ornstein-Uhlenbeck
process [25] to improve exploration efficiency in physical
control problems.
DDPG allows us to better handle large observation spaces,
in particular the “raw” input from the RGB camera pixels,
which has a dimension of 256x256, making use of a Replay
Buffer and a separate target network to calculate yt, first
introduced by Mnih et al. [15], where:

yt = rt + γQ(st+1, µ(st+1)|θQ) (6)

and the Loss function to minimize in order to optimize the
function approximators θQ:

L(θQ) = Est∼ρβ ,at∼β,rt∼E [(Q(st, at|θQ)− yt)2] (7)

3.2. Transfer Learning

Generally, Transfer Learning tasks consist in exploiting
the acquired knowledge in a task and /or in a domain to per-
form similar tasks in relatable domains, i.e. domain transfer.

In our experiments, we test the capacity of our lan-
der/agent to transfer the knowledge learned in a lunar land-
ing task to a general planetary landing, which presents dif-
ferent terrain morphology and different physical conditions,
in particular, for this first application, a different gravita-
tional acceleration.

Good-performing Transfer Learning applications may
represent a valid solution for many robotics problems, in
particular for the ones involving not-well-known domains
[4], for which data and imagery lack and where robotic sys-
tems need to be fully autonomous - e.g. for interplanetary
exploration.

4. Simulator Setup
The simulator for planetary landing is entirely built in

Python. In particular, it is developed using the PyBul-
let/Bullet library [3], that allows to implement an effec-
tive physical engine. Our purpose is to develop an open-
source simulator that would allow to effectively implement
not only vision-based navigation and proximity operations,
but also physical interactions between spacecraft/lander and
environment, since, even after some detailed research, we



Figure 1. NASA 3D Model of (a) Moon’s Near Side (b) Moon’s Far Side and (c) Mars’ Victoria Crater

Figure 2. Terrain 3D Simulation of (a) Moon’s Near Side (b) Moon’s Far Side and (c) Mars’ Victoria Crater

found it very difficult to find one. Our simulator includes
realistic 3D terrain models and a lander model, developed
using the classical pipeline to build a visual robot model.
As previously stated, the simulator is compatible with ROS
and is wrapped in the OpenAI gym [2] interface.

4.1. Terrain Simulation

In order to effectively implement the training algorithm,
it is necessary to dispose of a real-physics environment sim-
ulator to model the force actions - such as collisions and
gravitational field - and a realistic, heterogeneous terrain,
that has to be wide enough to allow the change of initial con-
ditions and three-dimensional to simulate different heights
and roughness. At this purpose, we adapt the 3D mesh mod-
els provided by the official NASA GitHub repository [16]
for the Moon and Mars terrains - mesh models and model
descriptions are also available here [17].

The first terrain we use is a lunar landscape, in particu-
lar the ”near side” of the Earth’s Moon, as shown in Fig-
ure 1(a). This side is smoother since the craters were filled
by the large lava flows billions of years ago. A preliminary
training is performed on this model, also to test the sound-
ness of the Deep Reinforcement Learning model-simulator
interactions. A longer training phase - the ”main” train-
ing - is performed on the lunar ”far side” terrain. This
model presents a dense distribution of craters and signifi-

cant roughness, as illustrated in Figure 1(b).
Mars’ Victoria Crater 3D model was first chosen and

adapted to test Transfer Learning performances. Fig-
ure 1(c). This landscape simulates the 800 m wide crater
on the Martian surface and the terrain presents a significant
roughness, recalling the Moon’s far side scenario.

The Moon and Mars 3D meshes have been appropri-
ately scaled, textured and hence used to generate the height
map in the simulator workframe and, thus, the physical
interactions between environment and lander by means of
the PyBullet/Bullet library. The final 3D terrain render-
ing in the simulator for the Moon’s Near Side, Far Side
and Mars’ Victoria Crater respectively is represented in Fig-
ure 2(a), 2(b), and 2(c).

4.1.1 Titan Terrain

In order to test our model’s Transfer Learning performance
on a semi-unknown environment, we choose to try to recon-
struct Saturn’s moon Titan terrain. This choice is dictated
by NASA’s interest in future missions to explore Titan, such
as the Dragonfly mission [13], in order to collect important
samples. In particular, we try to model the heterogeneous
Polar Lake district - Figure 3(a) - which represents an im-
portant landing site for sample gathering, because of its pe-
culiar morphology due to the presence of small, densely dis-



Figure 3. (a) Titan’s Polar Lacus Zone, and examples of the SAR imagery retrieved by NASA’s Cssini-Huygens mission from (b) Titan’s
Xanadu Annex region and (c) Titan lakes

Figure 4. Titan’s Terrain 3D Simulation

tributed hydrocarbon seas [23].
Since 3D accurate meshes - such as the ones we use to

generate Moon and Mars terrains - are not available for
Titan, we try to reconstruct a realistic landscape starting
from the official Cassini-Huygens mission imagery - gener-
ally SAR imagery [20], Figure 3(b) and 3(c) - provided by
NASA [18]. Starting from such imagery, a height map is re-
constructed as a 3D mesh. The generated mesh is then ren-
dered to simulate the terrain, as previously done for Moon
and Mars – see Figure 4. Note: the blue ”dot” at the center
of the terrains represents the lander.

4.2. The Lander

The lander model is defined in the Unified Robot De-
scription Format - URDF, following the classical ROS
pipeline to build a visual robot model, i.e. subsequently
attaching links to the base through joints, and thus mod-
eling also collisions, mass and inertia. In particular, the
lander model is simply defined as a central body as base,
composed by a cylindrical and a spherical bodies, defined
through meshes, with four links as legs, attached to the base

through fixed-type joints and a sensor box. Four propulsive
forces are defined as external forces, acting at the edge of
the base, equidistant from the center of mass. We find that
this simple vertical lifting force model can best simulate a
generic propeller’s resultant force.

The lander model is provided with two sensors: an RGB
camera and a LiDAR, which are virtually attached to the
sensor box. In Figure 5(a), it is shown an example of the
simulator graphical rendering of the lander model landing
on the Moon’s far side environment: the up-left box shows
the point of view from the lander’s RGB camera, while the
green ”beam cone” represents the LiDAR detection (green
rays mean ”hit”: the LiDAR is sensing another physical ob-
ject, i.e. the terrain. ”Miss” rays are red). In Figure 5(b), it
is shown the landing on Titan’s surface: the dark-grey spots
representing the hydrocarbon lakes are classified as ”miss”
by the LiDAR, i.e. as non-landing zones. It is also possible
to detect and visualize the fragmented nature of the terrain
combining a Depth Camera and a Segmentation Mask - re-
spectively second and third box on the left from above.

5. Experiment Setup
Several experiments are executed on the four terrains.

In particular, we try several training sessions on the lunar
scenario switching between the two lunar terrains for hyper-
parameter fine tuning in accordance to the task.

In particular, our DDPG implementation presents a
lower learning rate with respect to the original paper et
al. [8] and we set the ”theta” parameter, the mean and
the standard deviation to a higher value for our Ornstein-
Uhlenbeck process [25] implementation. Transfer learn-
ing is then executed on Mars’ Victoria Crater and the Ti-
tan terrain. The initial state is randomly initialized - with
the exception of the altitude along the z-axis - in order to
let the lander/agent explore the environment configurations
as widely as possible. The agent’s task is to land upright
and stand on the four legs, without flipping over. During
the aerial phase, the agent has to keep as steady as possi-
ble, modulating the four vertical thruster forces in order to



Figure 5. Examples of Simulator’s graphical rendering from landing on (a) Moon’s Far Side and (b) Titan

slow down without gaining altitude back again, and avoid
no-landing zones if necessary by steering aside, but without
rolling on itself.

The action space is continuous and four-dimensional -
in fact, the lander is provided with four thrusters. The ob-
servation space is composed by the RGB camera pixels -
a 256x256-dimensional image and the four RGB channels,
plus the alpha channel - the LiDAR input, composed by
a hundred rays, indicating the distance between the lander
and the hit object (here, the terrain), a 3D vector for the po-
sition and the quaternion for the orientation - summing up
to a 262251-dimensional observation space.

5.1. Training Sessions

At first, we train the DDPG model on the Moon’s Near
Side for 200 episodes, order to test the Deep Reinforcement
Learning model-simulator interactions. Even if the training
is short for this kind of task, the model seems to perform
very well. In Figure 6(a) is reported a plot of the average
episodic reward for this case.

We train the model on the Moon’s Far Side keeping the
same hyper-parameters and the same number of episodes.
It is clearly visible in Figure 6(b), even if the average
episodic reward visibly increases, how the agent struggles
more to find the optimal action policy, especially in the ini-
tial episodes: this is due to the heterogeneity of the terrain
and the consequential higher variation of the observation
space - i.e. RGB camera and LiDAR input.

We then train the model in a ”main training” session. We
set the starting altitude at double the value of the first two
experiments and train the model for a thousand episodes
on the Moon’s Far Side. This experiment setup is much

closer to a real simulation of a terminal landing phase, in
particular for what concerns physical interactions with the
environment and sensor input. The average episodic reward
curve presents a sharp increase up to the 250th episode and
then mainly stabilizes, presenting oscillations - Figure 6(c).

5.2. Transfer Learning

Considering the encouraging results of the training ses-
sions, we set up two domain transfer learning tasks. The
initial conditions and the landing task are kept as they were
during the training sessions, but the environment is changed
in order to simulate at first a Martian environments, using
the Victoria Crater 3D model, and then a plausible Titan en-
vironment through our terrain, reconstructed by means of
SAR imagery converted to a 3D model. The gravitational
acceleration is changed to represent, respectively, Mars’ and
Titan’s real values. As a first approximation, the atmosphere
is neglected for these terminal landing phase experiments.

5.2.1 Transfer Learning Results

We test our lander performances on Mars and Titan. Even
in a completely different environment, both from a visual
point of view and for what concerns the interactive forces
of the gravitational field - on Mars the gravitational force is
3.711m/s2, while the Moon’s - where the agent was trained
- is 1.62m/s2. The lander manages to land correctly, keep-
ing a steady pose during the aerial landing phase, keeping
steadily on its legs at touchdown - without flipping over and
rolling on itself - and maximizing the reward. In Figure 7(a)
and 7(b) the reward on 20 episodes for Mars and Titan land-
ing tasks, respectively, are plotted. It is interesting to notice



Figure 6. Preliminary training results for (a) 200 episodes on the Moon’s Near Side, (b) 200 episodes on the Moon’s Far Side and (c) 1000
episodes on the Moon’s Far Side at double the altitude.

Figure 7. Transfer Learning reward for (a) Landing on Mars and (b Landing on Titan)

how the reward values for the Mars scenario tends to be
closer to the case of the Moon’s Near Side scenario: this
is due to the fact that Mars Victoria Crater’s terrain, with
the exception of the boundary around the crater, is gen-
erally smoother than the Moon’s far side, where the main
training was executed, presenting a roughness quite simi-
lar to the Moon’s Near Side terrain and leading to similar
- but slightly lower - reward scores. On the other hand, Ti-
tan’s terrain, resembling a Lacus zone, seems very heteroge-
neous, but the landing sites are generally smoother than the
Moon’s Far Side: Thus, the reward scores a little lower than
the one of the homogeneous, relatively flat Victoria Crater,
but higher that the rougher Moon terrain.

In Figure 8(a) and 8(b), the approaching and the touch-
down phase are represented for Mars landing, and, anal-
ogously, for Titan landing in Figure 9(a) and 9(b). Note
that the lander turns to red when detecting contact with the
ground.

6. Conclusions and Future Work

In this work, we have presented a newly implemented
simulator to model real-physics phenomena by means of the

Bullet/PyBullet physical engine and to render realistic ter-
rain 3D models. We adapted official NASA terrain 3D mod-
els where available or reconstructed a realistic Titan 3D ter-
rain through imagery retrieved by NASA’s Cassini-Huygens
mission. We have defined a lander in ROS/URDF to inter-
act with the simulator. We have implemented an algorithm
of Deep Reinforcement Learning - the DDPG algorithm - in
order to train our lander/agent to perform a terminal-phase
landing task. We have exploited the knowledge learned on
the lunar terrain in order to test a preliminary transfer learn-
ing task on two different environments - Mars and Titan.

Our future work includes improving the lander/agent
performances, in particular for different transfer learning
tasks. In order to do so, we are testing several Deep Rein-
forcement Learning models (such as TD3, first presented in
the paper by Fujimoto et al. [6] and a SAC, first presented in
the paper by Haarnoja et al. [7]. We also aim to improve our
simulator to include more terrain models and environments
- in particular for newly explored planetary environments
- and to implement obstacle avoidance. A new simulator is
also being studied in order to consider the entire EDL phase,
including also the atmosphere where needed.



Figure 8. Testing transfer learning for landing on Mars during (a) approach phase, and (b) at touchdown.

Figure 9. Testing transfer learning for landing on Mars during (a) approach phase, and (b) at touchdown.
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