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Abstract: The Benford law applied within complex networks is an interesting area of research. This
paper proposes a new algorithm for the generation of a Benford network based on priority rank,
and further specifies the formal definition. The condition to be taken into account is the probability
density of the node degree. In addition to this first algorithm, an iterative algorithm is proposed based
on rewiring. Its development requires the introduction of an ad hoc measure for understanding how
far an arbitrary network is from a Benford network. The definition is a semi-distance and does not
lead to a distance in mathematical terms, instead serving to identify the Benford network as a class.
The semi-distance is a function of the network; it is computationally less expensive than the degree of
conformity and serves to set a descent condition for the rewiring. The algorithm stops when it meets
the condition that either the network is Benford or the maximum number of iterations is reached.
The second condition is needed because only a limited set of densities allow for a Benford network.
Another important topic is assortativity and the extremes which can be achieved by constraining the
network topology; for this reason, we ran simulations on artificial networks and explored further
theoretical settings as preliminary work on models of preferential attachment. Based on our extensive
analysis, the first proposed algorithm remains the best one from a computational point of view.

Keywords: Benford law; complex networks; semi-distance

1. Introduction

Complex networks showing the properties of Benford’s Law can be regarded as
Benford Networks (BN). A literature review suggests a gap in the development of this
topic. Erdős–Rényi, Watts–Strogatz, and Barabasi–Albert are paradigmatic networks which
have been widely used for data modeling [1]. Benford’s Law (BL) has been raised to the
attention of the public as a tool for fraud detection. Tests on the validity of BL as applied
social networks show the applicability of this kind of randomness in networks based on
human activities (accounting data, census data, etc.) [2–5].

Yet, there is neither extensive literature on BN nor any definition of the distance to a
BN. The generation of artificial BN is not well represented, as the focus to date has been
mostly on the application of datasets. This paper aims to fill this research gap by proposing
an algorithm for fast and accurate generation of a BN. The speed is due to the method of
construction, which foresees the creation of ranks for matching the nodes as extremities
of the edges. While the literature contains a few papers proposing the priority ranks for
the generation of networks, BNs have not previously been considered in this context [1,6].
Most diffused rewiring algorithms for the creation of target networks have two drawbacks
in their computational cost and in the need for a specific network to measure the distance
from it. Although it is not computationally efficient, we set up a rewiring algorithm for
the creation of BNs in order to explore the edge densities compatible with BNs. This task
immediately triggers the need to understand the distance of a network created or rewired
from a BN. The existing and well-used conformity degree appears either too rough or
too computationally expensive for fine-tuning simulations [7–9]. Measures of distance
among networks such as the Hamming, Levenshtein, Jaro–Winkler, and Monge–Elkan
ones, to cite a few, have been developed in graph theory, and are used in very different
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fields from spin glasses to linguistics [10–14]. These can be considered as particular cases
of graph edit distances, wherein the base concept is the representation of graphs as strings
and the calculus of the number of manipulations needed to go from one graph to the
other [15–17]. The main drawback of such distances remains the computational time. The
exact computation of such measures is NP-hard, and a reduction of the computational time
needs to either approximate solutions or restrict the class of graphs [18]. In the field of
complex networks, the difference between two networks has been based mostly on the
centrality measures, invariants of the networks, common organizational principles, and
more recently on the Laplacian [15,19,20]. Computational time continues to be an issue. As
to the second drawback, it is worth pointing out that each of the above-mentioned distances
requires two given networks due to the definitions. In fact, the property of being a BN is
identifying a set of networks, not a single network. Therefore, the question of measuring
how far a network is from a BN is equivalent to asking the distance of the network from a
set. This requires determination of the best BN to use, which in turn requires additional
computation time. Furthermore, distances among sets, such as the Jaccard index do not
improve the computational time, as the best BN network to use as a comparison still has to
be determined [21,22].

Therefore, in this study we introduce formal definitions which lead to a semi-metric
network space. We compares the computational complexity and show that the proposed
rank-based algorithm remains faster than all the other rewiring algorithms.

The rest of this paper is arranged as follows: the next section introduces the formal
definitions; Section 3 shows the algorithms; Section 3.1 explains the fast algorithm based
on priority ranking; and Section 3.2 outlines a rewiring algorithm, provides an analysis of
the assortativity as a function of the density, and discusses the construction of additional
algorithms. Last, we elaborate further on the notion of the distance to a BN.

2. Formal Definitions

This section introduces formal definitions. First, we recall that BL describes the
probability distribution of the first digit.

Definition 1. A set of numbers is said to satisfy BL if the leading digit x (x ∈ {1, . . . , 9}) occurs
with the following probability distribution:

p(x) = log10(x + 1)− log10(x) = log10

(
x + 1

x

)
= log10

(
1 +

1
x

)
Table 1 shows the values corresponding to x ∈ {1, · · · , 9}.

Table 1. The distribution of the leading digits in a set following BL.

Leading Digit 1 2 3 4 5 6 7 8 9

p(·) 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6%

Remark 1. The distribution of the leading digits in a set of numbers following BL, properly rounded
at the second decimal place and maintaining a sum equal to 1, is provided by

pBL = (0.30, 0.18, 0.12, 0.1, 0.08, 0.07, 0.06, 0.05, 0.04).

Focusing on symmetric networks as represented through the adjacency matrix A, where there
is an edge among the nodes i and j iff A(i, j) = A(j, i) = 1, the degree of a node is a well-known
and widely used quantity. Here, we recall its definition for the sake of clarity.

Definition 2. The degree of a node is the number of its edges.
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Remark 2. The degree of node i is calculated as ki = ∑j A(i, j) = ∑j A(j, i). The node degree can
be considered as a random variable, which leaves room for the definition of a BN.

Definition 3. A Benford network (BN) is a network in which the distribution of the leading digit
of the node degree follows Benford’s Law.

This definition is in line with the definitions commonly used for Erdős–Rényi (random) and
scale-free networks.

For ease of reference, we report the base definitions of assortativity and density commonly used
in undirected complex networks [1].

Definition 4. The assortativity coefficient r of a network is the Pearson correlation coefficient of
degree between pairs of nodes connected through an edge.

Definition 5. The density of a network is the portion of the potential connections in a network that
are actual connections, and is calculated as the ratio of the number of existing edges divided by the
total number of potential edges.

We now need a definition to measure how close a network is to a BN, as well as ensuring that
this measure has fast computing time.

After examining the pros and cons of several graph edits, complex networks, and set measures,
we found that they suffer from two main drawbacks: long computational time, and the need to
identify a specific BN for the calculus. With respect to the first issue, it is worth emphasizing
that graph edit distances are NP-hard. A different approach shown in the literature on complex
networks is the comparison of their global properties and summary statistics such as network density,
degree distribution, transitivity, average shortest path length, and other common organizational
principles [20]. However, comparison with a BN only requires checking the node degree; adding
other measures does not contribute to determining whether a network is a BN or its distance from a
BN. As to the second issue, the problem arises from the fact that the distance measures are based
on the presence of two networks. However, the property of being a BN encompasses an entire set
of networks, exactly like a scale-free network, a pure random network, or a Watts–Strogatz small
world in not identifying one specific network. Furthermore, measuring distances among sets, for
example using the Jaccard index, incurs the same problem. Thus, in order to calculate the distance
through this approach a single BN should be selected, which adds a further optimization problem
to solve. Therefore, we follow another approach here, focusing only on the characterization of BNs
through BL.

Definition 6. Given two networks, A and B, we define d(A, B) as the distance among the his-
tograms of the leading digits of the node degrees.

Because we need to estimate the frequencies of the leading digit, d(A, B) is actually a distance
among vectors in Rn, where n = 9. Hence, we base it on the sum of the absolute values of the
differences (i.e., norm 1 of the difference among the vectors), although any equivalent distance can
be used.

Definition 7. Let pA = (pA
1 , · · · , pA

n ) and pB = (pB
1 , · · · , bB

n ) be the set of the y-values of
the histogram (i.e., the frequency) of the leading digit of the node degree calculated on the net-
works A and B, respectively. Then, the distance d(A, B) among the two networks A and B is
d(A, B) = ∑n

i=1 | pA
i − pB

i |.

Remark 3. If a network, let us say B, is a BN, then pB = pBL.

Definition 8. The distance dBN(A) = d(A, BN) of an empirical network A from a BN is
d(A, BN) = ∑n

i=1 | pA
i − pBL

i |, that is, the sum of the absolute values of the differences among the
pBL and the y-values of distribution of the leading digit of the node degrees of the network A. This
definition applied to a raw vector is not far from the Mean Absolute Distance (MAD) [9], which is
its average; however, in this paper it is used for characterizing a network, using the node degree as
an intermediate step. In this setting, dBN(·) = d(·, BN) is merely a particular case of d(·, ·).
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Definition 9. A network A is considered to be a BN when dBN(A) = 0.

In order to show the application of this distance, we examine several real-world data
sets retrieved from the Stanford Large Network Dataset Collection repository (SNAP) for
scientific collaboration networks and Facebook [23]. These collaboration networks consist
of data extracted from the ArXiv sections on Astrophysics (AstroPh), Condensed Matter
(CondMat), General Relativity (GrQc), High Energy Physics (HepPh), and High Energy
Physics Theory (HepTh). If an author i co-authored a paper with author j, the graph
contains an undirected edge connecting i and j [24]. The Facebook dataset consists of
anonymized data collected from survey participants using a specific Facebook app [25].
Figure 1 shows the histogram of the leading digit of the node degrees.

Table 2 reports the number of nodes, the number of edges, and dBN(·) = d(·, BN).

1 2 3 4 5 6 7 8 9
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Figure 1. Example of the histogram of the node degree of datasets from SNAP (collaboration networks
from ArXiv (Astrophysics (AstroPh), Condensed Matter (CondMat), General Relativity (GrQc), High
Energy Physics (HepPh), High Energy Physics Theory (HepTh)) and from Facebook).

Table 2. Analysis of the datasets: the first columns report the description and number of edges, while
the last column shows the distance d(·, BN).

Description Nodes Edges d(·, BN)

Astro Physics 18,772 198,110 0.3725
Condensed Matter 23,133 93,497 0.5009
General Relativity 5242 14,496 0.8502
High Energy Physics 12,008 118,521 0.5657
High Energy Physics Theory 9877 25,998 0.7923
Facebook 2 1034 54015 0.0907

There are quite a few differences among the datasets. In all the collaboration networks
there is a high excess of nodes in bin 5 compared to the BN, meaning that the papers are
quite frequently coauthored by groups. This is maximal in General Relativity, where the
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distance from a BN is higher than in the other datasets. The distribution of the first digit in
the Condensed Matter section is quite close to the BN. Because the presence of one edge
implies co-authorship among two nodes and each node represents an author, the histogram
emphasizes the prevailing amount of papers co-authored by two scientists. However, this
is not sufficient to state that the collaborations in Condensed Matter result in the network
closest to the BN, as the Astrophysics community has a smaller distance despite not yet
being a BN. Definitively, co-authorships cannot be considered to occur at random. The
dataset from Facebook is quite different from the others, and shows a network that is much
closer to the BN.

When we consider the space of all the networks, d(A, B) a is not a distance in the math-
ematical sense. In fact, the first two conditions surely hold for the distance (d(A, A) = 0,
and d(A, B) = d(B, A)). The triangular inequality cannot be defined because the sum of
two networks is not defined.

Now, we recall the definition of semi-metric space [26].

Definition 10. Let Z be a set of elements common to each pair that corresponds to a positive real
number, which we call the distance between them. If a and b are any two elements, we designate this
distance by d(a, b), and can postulate that the following axioms are satisfied: I. d(a, b) = d(b, a);
and II. d(a, b) = 0, if and only if a = b. A space that satisfies these conditions is a semi-metric space.

Remark 4. The set of networks together with d(A, B) is a semi-metric space.

Remark 5. d(A, B) provides a partial order of the set of network.

Such networks can be quite different among themselves, as the request on the BN is
only on the marginal distribution of the node degree.

3. Algorithms for Simulating BNs

The relevance of introducing a way to detect how far an arbitrary network is from a BN
allows us to introduce algorithms for generating a Benford network. To provide practical
simulations, we ran the algorithms on a network of 100 nodes, such that the network is
a BN when it has 30 nodes with the leading digit of its degree equal to 1, 18 with leading
digit 2, etc., as summarized in Table 3.

Table 3. The distribution of the leading digits in a set following BL.

Leading Digit 1 2 3 4 5 6 7 8 9

number of nodes 30 18 12 10 8 7 6 5 4

The conformity tests already in use are not suitable for either accuracy or compu-
tational time. For instance, the four levels of conformity proposed in [9], namely, ‘close
conformity’, ‘acceptable conformity’, ‘marginal conformity’, and ‘nonconformity’, are too
rough to fine-tune an optimization algorithm. In general, tests of conformity [7,8] are
computationally more expensive than the calculus of dBN(A).

In the following subsections, we first introduce a very fast algorithm for generating a
BN, then tackle the problem of the BL appearing as a function of the density of the network.

3.1. A Fast Algorithm for a BN with Maximal/Minimal Assortativity

Creating a BN is a first step that can serve as a basis for comparing and testing
algorithms. The selection of N = 100 nodes is without loss of generality, as for a different
number of nodes all that is needed is to recalculate the total number of nodes which
contribute to the total count of each leading digit. The overall approach remains the
same. Here, we propose an algorithm that immediately builds a BN. The pseudo-code is
as follows:
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1. initialize a network with N nodes and 0 edges
2. assign each node its degree so as to fullfill the BL
3. Unil each degree is reached:
select the beginning and end of each edge

which, from the point of view of the adjacency matrix, reads as follows:

1. create an NxN matrix A with each element equal to 0
2. create a vector v of length N storing the degree of each node
3. Until each degree is reached:
select i, j, and set A(i,j)=A(j,i)=1

The first step is O(N2), as it involves the creation of a matrix in which each element is
equal to 0. Practically, in the second step a list is created in which each node is assigned the
desired node degree (for instance, nodes 1–4 are assigned the node-degree 9, nodes 5–9 are
assigned the node-degree 8, etc., until the last 30 nodes with degree 1, although this is not
the only possibility). This step is O(N), as it consists of reading a vector with N entries.

The third step is the selection of the beginning and end of each edge. To perform
the task, the list is scrolled to select the match, which in principle can be done randomly.
However, random matching of the beginning and end of each link is not as fast as following
a precise criterion, since it involves a pseudo-random number generator. We propose two
criteria, one aiming at maximal assortativity, the other at minimal assortativity. Therefore,
the last part can be detailed as follows:

1. create an NxN matrix A with each element equal to 0
2. create a vector v of length N

assigning the degree in descending order
3. for each node i=1,\ldots,N

until its node degree v(i) is reached:
match the other end j of each edge
with the first available node

in the above, ‘available’ stands for ‘not already connected’, that is, for which the node
degree has not already been reached.

Because the order of the degrees is descending, the algorithm begins with the nodes
with the highest degree.

The algorithm provides a BN. This is trivial due to the condition of the node degree.
Figure 2 shows the network.

Remark 6. A network obtained in this way gives rise to the maximal assortativity. The condition
of the descending order ensures that nodes with a high degree first have edges with nodes with a high
degree, and have edges with nodes with a lower degree only when there is no better possibility [1].
Because assortativity is the correlation among the node degrees, any inversion in the sequence
immediately decreases the values in the formula.

The complexity of this match is the same as a roll of the list, assigning the node degree
(O(N)) and then the second one to find the first available node; thus, with N nodes the com-
plexity is O(N ∗ (N − 1)) ∼ O(N2), which is much faster than any other random rewiring
procedure, as it avoids the computational time needed for the pseudo-random generator.
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Figure 2. Maximal assortative network provided by our proposed fast algorithm. Nodes with a
similar degree tend to be connected among themselves. In the figure, this is very evident in the group
of 1-connected units (nodes ranging from 71 to 100), in the group of 2-connected units (nodes ranging
from 53 to 70), in the group of 3-connected units (nodes ranging from 41 to 52), and in the group of
4-connected units (nodes ranging from 31 to 40).

Remark 7. The proposed algorithm has a computational time O(N2).

Remark 8. Here, we introduce a condition to avoid loops (i.e., A(i, i) = 0 ∀i = 1, · · · , N) except
where strictly necessary to match the degree list. In fact, general speaking, not all assignments of
degrees to the nodes are compatible with the topology of a network. Figure 3 shows this issue. If
loops are not allowed and four nodes have degree four, then the fifth node needs to have degree four
as well. For instance, if we assign degree 3 to the node, we need to remove one link; hence one of the
other nodes, say node b, needs to have its degree decreased to 3 as well. Therefore, the set of degrees
q = (3, 4, 4, 4, 4) is incompatible with the network unless we allow loops.

a

b

Figure 3. Example of the constraint on the number of edges: if node a has four edges, then node b
must have four edges. Node a cannot have three edges if all the other nodes have four edges.
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When running the algorithm on a network of 100 nodes, 171 edges are created,
which corresponds to Nedges = 1

2 < p, q >, where p = (30, 18, 12, 10, 8, 7, 6, 5, 4) and
q = (1, 2, 3, 4, 5, 6, 7, 8, 9). The constant 1

2 is needed due to the bidirectional role of the edges.
The density is 0.034, and there are no loops.

The condition on the match among nodes with the closer (higher) degree can be
inverted, setting the connections among the nodes with either the highest node degree or
the lowest one. The result continues to be a BN network, as the requirements on the BN are
unchanged, except now with the assortativity slightly negative and very close to 0, with
one link less than needed, resulting in the need to add one loop. The density remains the
same. The computational complexity remains the same as well, as the list is simply scrolled
in the reverse direction. Figure 4 shows the network.
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Figure 4. Minimal assortative network provided by the fast algorithm. Nodes 1, 2, and 3 have
degree 9 and are connected to a total of 27 of the 1-connected units. There are a total of 30 units with
only 1 connection, meaning that node 4, which is the last to have degree 9, can connect to the last
three 1-connected units and be connected to the other six nodes of the group of 2-connected nodes.
Therefore, the figure does not show a star for node 4. The next group of nodes (from 5 to 9) have eight
connections and are linked first to the 2-connected nodes, then to the 3-connected,. . . , etc.

Remark 9. This is not the only way to create a BN. For instance, in a BN, a node with degree 1
makes the same contribution to the distribution as a node with degree 10, 11, · · · , 19, as the leading
digit remains 1. In general, a node contributes to the count of a leading digit x if it has x, x0, x1,
· · · , x9 edges, meaning that each node degree may have 11 different values and contribute to the
counting of the same leading digit. The computational complexity remains the same as the function
of N, as N − 1 is an upper limit for the edges departing from every single node. However, keeping
the node degrees as low as possible contributes to the speed of the algorithm (obviously, creating
30 connections for the set of the 30 nodes with degree 1 is 10 times faster than creating 30 × 10
connections in which each node with degree 1 is replaced by a node with degree 10).

3.2. The BN as a Function of the Density of the Network

This section recalls the first results on random networks, where the task was to
understand the density required for particular properties. The rationale behind the fact
that many densities can be compatible with the validity of the BL on the node degree
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distribution relies on the fact that only the leading digit contributes to the BL. The same
argument as in Remark 9 allows us to calculate the total number of the BN which can be
obtained from a network with N nodes. If the identity of each node has to be kept the
same, then there are 11N BN networks (11 possible values for each of the N nodes, where
each value can be taken independently from the values of the other nodes). The number
of possible networks is simply too high for an exaustive analysis. If we focus on network
topology, the identification number of each node is not relevant. For instance, in a group
of four nodes with the leading digit of the degree equal to 9, it is not relevant if the first
has degree 9 and the remaining three have degree 99, or if the second has degree 9 and the
others have degree 99. What matters is how many have degree 9, 91, 92, · · · , 99. Therefore,
in each set of nodes having the same leading digit, the number of possible assignments for
the node degree is calculated as the number of combinations with repetition of 11 objects.
Two combinations with repetition are considered identical if they have the same elements
repeated the same number of times, regardless of their order. Recall that the number of
combinations of r = 11 elements taken at k at each time is(

r + k − 1
k

)
(1)

Therefore, the total number of networks with topologies different from each other is

P = ∏9
i=1

(
11 + p(i) − 1

p(i)

)
= 2.7225 × 1046 different configurations, where

p = (30, 18, 12, 10, 8, 7, 6, 5, 4). As this number of networks remains too high for exaustive
generation and analysis of each, we fix a discrete set of densities.

In this section, we first perform a preliminary analysis of the range of densities of
BNs, then obtain a picture of the assortativity as a function of the densities through a
rewiring procedure.

3.2.1. Analysis of the Range of Densities of BNs

Keeping N = 100 as our reference, a BN network in which each node has at least one
link and with the minimum number of edges (that is, minimum density) is the same as
the one built in the previous section. In fact, the set of node degrees is the lowest which
can fit BL. Eventual lower densities of a BN can be obtained if nodes have 0 connections,
allowing the percentage of the node degree to fit BL despite being calculated on a lower
number of nodes. Alternatively, if we want to increase the number of edges, the minimal
amount which we have to add is 9 to move from a node with degree 1 to one with
degree 10. This results in a gap in the possible set of densities, while after this value
there can be many BNs with intermediate values for the densities, up to the one with the
maximum number of edges. The latter has 30 nodes with degree 19, 18 nodes with degree
29, · · · , and 4 nodes with degree 99, due to the role of the leading digit. The number of
edges is 2160, which corresponds to 1

2 < p, q >, where p = (30, 18, 12, 10, 8, 7, 6, 5, 4) and
q = (19, 29, 39, 49, 59, 69, 79, 89, 99). The density is 0.436.

3.2.2. Rewiring Algorithm

Rewiring is a quite immediate method for achieving a target topology. The pseudo-
code can be outlined as follows:

1. start from a random seed network with the due density
2. while the network is not a BN

(or the maximal number of trial is reached)
2.a select a link for the rewire
2.b if the rewire produces a network closer to a BN:

then accept the rewire
otherwise skip

end
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3. store the distances from a BN
4. report the data in a figure

Remark 10. dBN(·) is essential for measuring whether the resulting network is closer to a BN, and
thus whether to accept the rewire.

Remark 11. The algorithm follows a descending direction (i.e., the rewire is accepted only if the
distance from a BN decreases).

Conformity tests can provide an answer regarding either the rejection or acceptance
of a probability distribution; this answer need not be only a yes/no, and various scales of
conformity degrees can be used [7,9,27]. However, conformity tests are not the best choice
for running simulations. Those that provide only four degrees of acceptance (‘conformity’,
. . . ’not conformity’) are too rough to form a basis for simulations. Moreover, it is easy to find
through cross-checking that all the conformity tests are computationally more expensive
than calculating a histogram and the distance from a vector with 9 components. Our notion
of distance does not aim at providing a conformity test, although it is possible to use them
to elaborate on the matter as soon as bounds are defined.

Here, we deepen our analysis by focusing on the assortativity. The starting point is a
BN; the rewiring aims at either increasing or decreasing the assortativity while maintaining
the BN and allowing swapping of the edges. The algorithm is an iterative one, and can be
outlined as follows:

1. select two links of a BN network
2. if the swap increases (decreases) the assortativity,

then accept the swap

Table 4 summarizes the results of 100, 000 simulation steps. The first row reports the
densities which were examined, taken with a step equal to 0.01 below the density 0.1, to
obtain fine detail, with step 0.1 being above 0.1. The BN appears from density 0.034 until
to density 0.436, shown in bold. Below the minimal density, a BN can still be found if
the histogram is calculated on the nodes which have at least one edge. Figure 4 shows a
graphical representation of the results of Table 4.

Table 4. Densities calculated as percentages of the total number of links used to run the simulations on
rewiring to achieve a BN. The first percentages differ by only 0.01 in order to fine-tune the threshold
of the BN. The values above 0.1 differ by 0.1 because the increase in distance from a BN follows
relatively stable path. The minimal, maximal, and average distance from a BN are shown, and
correspond to the plot in Figure 5.

density 0.01 0.02 0.03 0.034 0.04 0.05 0.06 0.07 0.08 0.09

mean ass. 0 0 0.013 0.03 0.05 0.045 0.004 −0.011 −0.016 0.151
min ass. −0.167 0.006 0.006 0.00 −0.117 −0.105 −0.179 −0.052 0.00 0.00
max ass. 0 0.027 0.191 0.070 0.36 0.385 0.215 0.484 0.314 0.289

density 0.1 0.2 0.3 0.4 0.436

mean ass. −0.087 0.002 −0.022 0.003 0.00
min ass. −0.118 −0.05 −0.147 −0.210 −0.085
max ass. 0.136 0.191 0.162 0.171 0.020
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Figure 5. Figure corresponding to Table 4. The mean assortativity is shown as a function of the
density. The error bars show the distance between the minimal and maximal assortativity.

3.2.3. An Intermediate Algorithm for the Immediate Construction of a BN and
Random Rewiring

The distance from a BN which we use for simulation is fast and accurate. It does not
involve a rewiring process, which is computationally more expensive. Suppose, however,
that a seed network is assigned as a starting point for simulations. Is it possible to drive
the rewiring without random selection of the nodes to be checked? In other words, can the
edges to be rewired be selected through targeted distribution? The answer to this question
provides a way of targeting the rewiring process. To outline this through an example, we
refer to Figure 1, specifically the High Energy Physics collaboration network. The maximal
distance from the BL is in the bin corresponding to the leading digit, 5. Removing edges
from that set of nodes would quickly improve the proximity of the distribution of the node
degrees to the BL. Of course, this targeted selection can be carried out using the distance
already introduced by working on the nodes of each bin instead, than selecting them at
random. The computational time is O(N3), as it involves a double reading of a list to
determine which nodes need to have other nodes removed or added, followed by another
scrolling of the list of nodes to find the match.

4. A New Definition of the Distance to a BN

We now focus on a refinement of the notion of distance. We can formalize the problem
as follows: consider x random variables describing the node degree. Of course, it is going
to follow a distribution. The question is then which distribution should follow another
random variable y such that z = x + y follows a BL. In a formal setting, p(z) ∼ fBL. In
other words, when a random rewire is performed instead of a priority list, how should this
random selection be carried out?

Definition 11. Let X be a random variable; then, a complement to BL is a density such that

fX+Y(a) = fBL (2)
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Practically speaking, the complement is the perturbation that has to be added to the
node degrees to fit BL.

Let us focus on Y independent on X. It well known that

fX+Y(a) =
d
da

∫ ∞

−∞
FX(a− y) fY(y)dy =

∫ ∞

−∞

d
da

FX(a− y) fY(y)dy =
∫ ∞

−∞
fX(a− y) fY(y)dy,

hence, (2) becomes
∫ ∞
−∞ fX(a − y) fY(y)dy = fBL. In a discrete setting, let p (q) be the

vector of discrete probabilities of X (Y) and let p, q, pBL ∈ Rn; then, Condition (2) reads
pi · qn−i = pi

BL.

Remark 12. In a general setting, the complement f̃ (X) = fY(y) can be calculated by solving the
implicit relation fX+Y(a) = fBL.

Whether specific results for the sum of two random variables are already available, the explicit
probability of Y can be detected. This is the case for scale-free networks, which are usually meant
for a node degree–exponent power law with exponent 2 < γ < 3, while BL is a power law with
exponent 1. Because the sum of two power-law variables is a power law with an exponent the tail
of which is dominated by the contribution of the term with the smallest exponent [28,29], when
determining whether the starting network is a scale-free one the perturbation of the node degree X
for achieving a BN is a random variable Y with exponent 1.

Remark 13. The complement can be used to introduce a partial order on X.

The complement is a function, and several measures can be considered for setting a
partial order on a set of functions.

Remark 14. Moreover, the set of class networks together with a partial order on f̃ (X) is a semi-
metric space.

This follows from the properties of the partial order on the functions and free gathering
of the networks into sets. For instance, while two networks may be not identical, if they are
both BNs they belong to the same class.

Remark 15. The fast and accurate algorithm presented in Section 3 remains the fastest for generat-
ing a BN, as random rewiring, though targeted, requires additional computational time for random
variable generation and eventual acceptance or rejection of the rewire.

5. Discussion and Conclusions

This paper is based on the notion of a gap existing in the literature concerning the
application of BL to complex networks. We introduce a clear definition of a BN. Our main
aim in this paper is to provide elements for BN simulation settings.

The first algorithm, which we propose in Section 3.1, is a priority-rank based algorithm.
It is fast and accurate, and is based on the creation of a match-list for assigning the edges.
This choice is faster than any random assignment, which involves the added computational
time of a random generator and the eventual rejection of selections, leading to even more
computational steps. The availability of a fast algorithm is a key element for further
studies on both properties of BNs and comparison with real-world datasets. We have
proven that this algorithm is the best computational choice in comparison to random
rewiring procedures, which in turn require the development of a way to measure the
distance between an arbitrary network and a BN. Defining distance among networks for
the purpose of measuring how close a network is to a BN is not trivial. Our examination of
commonly used measures of distance among networks indicated that they are not effective
for measuring distance from a BN, mainly due to high computational times [15,19–22]. For
instance, the networks shown in Figures 2 and 4 are BNs, although with quite different
topologies. The definition cannot be substituted by the conformity degrees due to their
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lack of precision. Defining the distance is the first step in setting up algorithms to generate
BNs. Therefore, in order to compare our algorithm with a random rewiring procedure,
we introduce a new semi-measure of the distance of a network from a BN and present
an analysis of the assortativity as a function of the density of the network. The last part
proposes a theoretical approach which opens the way for further exploration of mechanisms
of preferential attachment.

In summary, we trust that the results shown in this paper will add insights regarding
BNs and serve as the basis for future work and development.
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