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Abstract: Improper drug prescription is a main cause of both drug-related harms (inefficacy and
toxicity) and ineffective spending and waste of the healthcare system’s resources. Nowadays, strate-
gies to support an improved, informed prescription process may benefit from the adequate use
of pharmacogenomic testing. Using next-generation sequencing, we analyzed the genomic profile
for three major cytochromes P450 (CYP2C9, CYP2C19, CYP2D6) and studied the frequencies of
dysfunctional isozymes (e.g., poor, intermediate, or rapid/ultra-rapid metabolizers) in a cohort of
298 Italian subjects. We found just 14.8% of subjects with a fully normal set of cytochromes, whereas
26.5% of subjects had combined cytochrome dysfunction (more than one isozyme involved). As
improper drug prescription is more frequent, and more burdening, in polytreated patients, since drug–
drug interactions also cause patient harm, we discuss the potential benefits of a more comprehensive
PGX testing approach to support informed drug selection in such patients.

Keywords: cytochrome P450; CYP2C9; CYP2C19; CYP2D6; drug–drug interactions; pharmacogenomics;
polypharmacy; co-prescription; adverse drug reactions

1. Introduction

Cytochrome P450 (CYP450) isozymes constitute a large superfamily of heme proteins
involved in various metabolic pathways such as bile acid biosynthesis, cholesterol and
steroid hormone metabolism, and vitamin metabolism [1]. CYP450s became popular after
their key role in the pre-emptive prediction of individual response to drug administration
was revealed.

Drug metabolism is determined by the number and type of biochemical transforma-
tions the drug goes through inside the human body, determining the pharmacokinetics.
Drug biotransformations are performed by a plethora of enzymes, grouped into Phase I
(oxidative, reductive, and hydrolysis reactions) and Phase II (conjugation reactions) drug
metabolic enzymes (DMEs). DME action produces drug metabolites that can be more easily
eliminated and may have or not have pharmacological/toxic action. Thus, the amount of
circulating drug/metabolites, which mediates both pharmacological actions (e.g., efficacy)
and undesirable effects (side effects, adverse drug reactions), is mainly dependent on
the activity level of DMEs, which often show extensive interindividual variability. Such
variability has two main sources: (i) genetic variability, affecting the quality or quantity of
the expressed protein, and (ii) biochemical enzyme regulation by inducing or inhibiting
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molecules. Both mechanisms contribute to an increased range of interindividual variabil-
ity in the activity level of the Phase I enzymes CYP450s, which metabolize up to 80% of
available drugs by families 1, 2, and 3 [2,3].

Genetic variability leading to heavily decreased/increased activity of CYP450s (and
other pharmacogenes) and its effect on drug efficacy/toxicity are studied by pharmacoge-
nomics (PGXs). PGX studies have led to an extensive comprehension of the genotype
effects on individual drug response, and this knowledge has been widely systemized
by international scientific consortia, leading to the development of guidelines and rec-
ommendations about the opportunity to characterize CYP450 gene variants and about
the actions to take (such as drug dose adjustment or drug substitution) when a patient
carries these variants [4,5]. Pre-emptive PGX testing, i.e., a DNA test aimed to evaluate
the presence of clinically relevant variations (polymorphisms) in genes involved in drug
response, with the aim to prevent adverse drug reactions (ADRs) and/or inefficacy, is
compulsory (e.g., recommended in the drug label) for an increasing but still limited list of
medications [6]. Official recommendations are released only when wide and comprehen-
sive data on genotype–phenotype associations are available—thus, only when large and
well-designed studies have been completed. This is usually the case for medications associ-
ated with high therapeutic risk, such as anticancer drugs or anticoagulant medications [7,8].
The main cytochromes included in PGX testing recommendations by the U.S. Food and
Drug Administration (FDA) are CYP2C19 (25 drugs in 10 therapeutic areas), CYP2C9
(17 drugs in 9 therapeutic areas), and CYP2D6 (72 drugs in 13 therapeutic areas) (Table 1).
Since genes encoding CYP450s are often highly polymorphic, such recommendations re-
fer to the “genotype-predicted” phenotype, such as poor metabolism (PM), intermediate
metabolism (IM), normal metabolism (NM), or rapid/ultra-rapid metabolism (UM).

Table 1. CYP450 pharmacogenomic biomarkers in drug labels, by the FDA. The numbers of labelled
drugs (N) and their therapeutic areas are shown.

CYP2C9
(N = 17)

CYP2C19
(N = 25)

CYP2D6
(N = 72)

CYP2B6
(N = 3)

CYP3A5
(N = 1)

CYP1A2
(N = 1)

Anesthesiology Anesthesiology

Cardiology Cardiology Cardiology Cardiology Cardiology

Dental

Dermatology

Endocrinology

Gastroenterology Gastroenterology Gastroenterology

Gynecology Gynecology Gynecology Gynecology

Hematology

Inborn Errors of Metabolism

Infectious Diseases Infectious Diseases Infectious Diseases

Neurology Neurology Neurology

Oncology Oncology Oncology Oncology

Psychiatry Psychiatry

Pulmonary Pulmonary

Rheumatology Rheumatology Rheumatology

Urology

The biochemical modulation of CYP450 proteins is an extremely variegate phenomenon
since a long list of inducers or inhibitors exists, including many drugs themselves, food
and beverages, and smoking [9,10]. The network of drug–CYP450 interactions, besides
determining the pharmacokinetics of a substrate drug, contributes to the phenomenon
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of drug–drug interactions (DDIs): modulating the activity level of a CYP450 isozyme, a
drug can alter the pharmacokinetics of a second drug metabolized by the same CYP450.
The more drugs are taken together, the higher the risk of deleterious DDIs, which, in turn,
affects the treatment’s efficacy, safety, and compliance [11,12]. Nowadays, DDI evaluation is
increasingly affordable and advisable, since many bioinformatics tools (free or commercial)
have been established to check DDIs and to optimize pharmacological therapies by drug
exchange/dose adjustment [13–15]. However, it is noteworthy that DDI analysis tools
usually suppose a normal activity of DMEs, whereas the DDI profile of a drug cocktail
should be corrected by the genomic profile of each patient. For example, in a CYP2D6
normal metabolizer, DDI analysis could recommend avoiding the co-administration of a
substrate and an inhibitor of the enzyme, but such a warning would be much stronger for
a CYP2D6 poor metabolizer and weaker for a CYP2D6 rapid metabolizer. The landscape
becomes more and more complex according to the number of drugs and to the number of
dysfunctional (PM, IM, or UM) DMEs in a given subject.

In our opinion, the time is ripe to drive a paradigm shift in the current approach to
DDI analysis and PGX testing, enlarging the target patient population where PGX testing is
recommendable. We especially refer to the number of polytreated patients, which includes
main categories such as elderly patients (high frequency of comorbidities to be treated),
oncologic patients (high frequency of co-medications to treat cancer therapy’s side effects),
and psychiatric patients (high frequency of co-prescription to reach therapeutic response).
In these groups, comprehensive PGX testing (e.g., including main pharmacogenes) should
be preemptively performed to guide appropriate and patient-sized selection of the main
drug(s) (e.g., medication to treat the main disease) and to harmonize co-prescriptions
according to the specific DDI/PGX pattern. The proposed approach is increasingly ac-
tionable considering the advent, diffusion, and increasing economical sustainability of
high-throughput technologies (determining many genetic variants in a single test) applied
to PGX testing, such as next-generation sequencing [16,17].

This study was aimed to estimate the extent of potential benefits of pre-emptive and
comprehensive PGX testing, by analyzing the combined frequencies of dysfunctional alleles
for three main cytochromes P450 (2C9, 2C19, and 2D6) in a cohort of 298 Italian patients.

2. Results

All the single-nucleotide polymorphisms analyzed in this study (Table 2) were suc-
cessfully genotyped in all subjects (N = 298) by targeted next-generation sequencing. The
obtained genotype for each cytochrome was converted to a predicted phenotype and the
patient was classified, accordingly, as a normal metabolizer (NM), poor metabolizer (PM),
intermediate metabolizer (IM), or rapid/ultra-rapid metabolizer (UM).

Table 2. List of tested gene variants and allele functional status according to the CPIC allele function-
ality reference tables [18–21].

Analyzed Gene Polymorphisms Functional Status

CYP2C9
*2 Decreased function
*3 No function

CYP2C19
*2, *3, *4, *5, *7 No function
*10 Decreased function
*17 Increased function

CYP2D6
*2, *2A Normal function
*3, *4, *5, *6, *7, *20, *38 No function
*9, *10, *41 Decreased function
*17, *29* Decreased function
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The genotype results and the associated predicted phenotype for each patient are
reported in Supplementary Table S1. The phenotype frequencies for each cytochrome
are shown in Figure 1. Concerning CYP2C9, 180 (60.4%) subjects were classified as NM,
103 (34.6%) subjects were classified as IM, and 15 (5%) subjects were classified as PM.
Regarding CYP2C19, 129 (43.3%) subjects were classified as NM, 93 (31.2%) subjects were
classified as UM, 75 (25.2%) subjects were classified as IM, and 1 (0.3%) subject was classified
as PM. Regarding CYP2D6, 238 subjects (79.96%) were classified as NM, 31 (10.4%) subjects
were classified as IM, 16 (5.3%) subjects were classified as UM, and 13 (4.36%) subjects were
classified as PM.
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Thus, in the analyzed population, alterations in the CYP2C19 phenotype are the most
frequent, with a total of 56.7% of subjects with an IM, PM, or UM phenotype, followed by
alterations in the CYP2C9 phenotype (39.6% subjects with an IM or PM phenotype) and
alterations in the CYP2D6 phenotype (20.1% subjects with an IM, PM, or UM phenotype).

We then analyzed the frequency of subjects carrying more than one dysfunctional
cytochrome (CYP2C9, CYP2C19, or CYP2D6), defining a CYP450 dysfunction as the pres-
ence of a non-normal cytochrome phenotype (any of IM, PM, or UM). We found that just
44 out of the 298 (14.8%) subjects have three fully functional CYP450 isozymes, whereas
174 (58.6%) subjects have at least one dysfunctional CYP450, 67 (22.5%) subjects have two
dysfunctional CYP450s, and 12 (4%) subjects have three dysfunctional CYP450s (Figure 2).
Table 3 reports the ranked frequencies of combined CYP450 phenotypes. The most frequent
combined phenotypic dysfunctions are represented by the alteration of both CYP2C9 and
CYP2C19 activity (10.05%), the alteration of both CYP2C19 and CYP2D6 activity (7.05%),
and the alteration of both CYP2C9 and CYP2D6 activity (5.36%).
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Figure 2. Frequencies of subjects carrying 1, 2, or 3 dysfunctional CYP450s.

Table 3. Ranked frequencies of combined CYP450 phenotypes (N = 298).

CYP2C9 Phenotype CYP2C19 Phenotype CYP2D6 Phenotype N %

NM UM NM 55 18.46

IM NM NM 50 16.78

NM IM NM 49 16.44

NM NM NM 44 14.80

IM UM NM 17 5.70

IM IM NM 11 3.69

PM NM NM 9 3.02

IM UM IM 7 2.35

NM NM IM 7 2.35

IM NM IM 5 1.68

IM NM UM 5 1.68

NM IM IM 4 1.34

NM IM PM 4 1.34

NM UM UM 4 1.34

IM NM PM 3 1.01

IM IM IM 3 1.01

NM IM UM 3 1.01

NM UM IM 3 1.01

NM UM PM 3 1.01

NM NM PM 2 0.67

PM NM UM 2 0.67

PM UM NM 2 0.67

IM IM UM 1 0.34

IM UM PM 1 0.34

NM NM UM 1 0.34

NM PM NM 1 0.34

PM NM IM 1 0.34

PM UM IM 1 0.34
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3. Discussion

In the last decade, PGX testing has developed patchily due to cost-effectiveness
considerations and to healthcare reimbursement policies in different countries. Nowadays,
testing costs are decreasing, and PGXs could be applied more systematically.

In this study, we show that only around 14% of the analyzed subjects have fully
functional CYP2C9, 2C19, and 2D6 (based on the analyzed gene variants). Further, more
than one-quarter of the patients have at least two dysfunctional (UM, PM, or IM) CYP450s
(Figure 2). In our opinion, these merely descriptive data are deeply relevant to fully un-
derstanding the unseen potential of more systematic and comprehensive PGX testing.
To support this suggestion, we report in Table 4 the top 20 prescribed drugs in the USA
in 2020 [22]; most of them are often co-prescribed, as they are used to treat frequent
comorbidities such as cardiovascular diseases, hypertension, metabolic disorders, and
gastric-acid-related disorders [23–25]. Looking at the drug–CYP450 interactions reported in
Table 4, and keeping in mind the frequency of combined CYP450 dysfunction, it seems ap-
parent how improper prescription can easily occur, especially in the cases of co-prescription
or polytherapy (five or more drugs) prescription.

Table 4. List of the 20 most prescribed medications. Drug interactions with CYP2C19, CYP2C9, and
CYP2D6 and therapeutic categories/areas are shown.

Medication CYP2C19 CYP2C9 CYP2D6 Therapeutic Category Therapeutic Area

Atorvastatin Inh Inh Inh Antihyperlipidemic agents Metabolic disease

Levothyroxine Thyroid drugs Hypothyroidism

Metformin Antidiabetic agents Metabolic disease

Lisinopril Angiotensin-converting
enzyme inhibitors Cardiovascular disease

Amlodipine Inh Inh Calcium channel blocking
agents Cardiovascular disease

Metoprolol S Inh S Beta-adrenergic blocking
agents Hypertension

Albuterol Bronchodilators Respiratory diseases

Omeprazole Ind Inh S Inh S Inh Proton pump inhibitors Gastric-acid-related disorders

Losartan Inh Inh S Angiotensin II inhibitors Hypertension

Gabapentin Anticonvulsants Neuroleptic agents

Hydrochlorothiazide Diuretics Cardiovascular disease

Sertraline Inh S Inh S Inh S Antidepressants Psychotherapeutic agents

Simvastatin Inh S Inh Inh S Antihyperlipidemic agents Metabolic agents

Montelukast S Bronchodilators Respiratory diseases

Escitalopram Inh S Inh S Antidepressants Psychotherapeutic agents

Acetaminophen S Ind S Analgesic Analgesic

Rosuvastatin Inh S Antihyperlipidemic agents Metabolic agents

Bupropion S S Inh S Antidepressants Psychotherapeutic agents

Furosemide Diuretics Cardiovascular disease

Pantoprazole Inh S Inh Proton pump inhibitors Gastric-acid-related disorders

Aspirin Ind S Inh Analgesic and antiplatelet
agents

Analgesic/Cardiovascular
disease

Polytherapy regimens are a well-established factor associated with increased rates
of ADRs, hospitalization, nonadherence, and death [26–30]. The USA Centers for Disease
Control and Prevention reported that in the period 2015–2018, 24% of persons had been
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taking three or more drugs in the past month, and 12.8% of persons had been taking five or
more drugs in the past month [31]. Sutherland et al., in an interesting analysis of medication
co-prescription patterns in more than 10.000 patients in the USA, found that more than
20% of over-65s were taking drugs that are both substrates and inhibitors of CYP450s [23].
The significant demographic shift towards higher ages (2.1 billion over-60s and 426 million
over-80s by 2050, according to WHO) [32] means an increasing number of multimorbid
patients and an increasing pharmaceutical expense [33].

The societal challenge of healthy aging requires a drastic improvement in the safety
and efficacy of pharmacological treatments, as well as an improvement in compliance
and adherence to the prescribed therapies. Supporting appropriate therapy selection by
DDI/PGX evaluation could greatly contribute to such demand, and the strategy is supposed
to be cost-effective if applied to a well-defined patient population such as the elderly, or
generally in polytreated patients. In this regard, let us mention the categories of oncologic
and psychiatric patients.

Although oncology has always been a main field for precision medicine development
and implementation, PGX testing in the field is usually targeted to predict response to
the main antitumor medication(s). But cancer patients are frequently co-prescribed non-
oncologic medications (often analgesics and antiemetics); further, cancer prevalence is
higher in aged people already receiving treatment for comorbidities [34–36]. The reciprocal
interaction effect of oncologic and non-oncological medications is rarely considered, while
it brings the potential to interfere with anticancer therapy. It is estimated that about 30%
of cancer patients have a significant risk of severe DDIs [37], most of them involving
non-oncological medications such as coumarin, antiepileptics, and opioids [38].

In psychiatry, polypharmacy represents a standard treatment and includes several
drug classes such as antidepressants, antipsychotics, mood stabilizers, anxiolytics, hyp-
notics, antihistamines, and anticholinergics [39,40]. About one-third of these patients
experience severe side effects [39]. The optimization of drug cocktails in these patients
according to PGXs and DDIs has been proven to be effective in ameliorating the treatment
outcomes [41–43].

Recently, the Dutch Pharmacogenetics Working Group (DPWG) reported a nation-
wide evaluation of the cost-effectiveness of systematic adoption of a prescription decision
algorithm based on a single gene PGX test. The authors estimated that properly prescribed
single gene testing may prevent a considerable number of deaths per year due to drug
therapy failure [44]. Thus, it can be reasonably supposed that the number of avoidable
treatment failures (in terms of safety/efficacy) may be significantly decreased by the
appropriate prescription of comprehensive (multigene) PGX testing.

Given the limits of the present study, we believe that the observed extent of combined
dysfunction in different CYP450s constitutes a non-negligible reason to design shared
guidelines supporting the appropriate and systematic prescription of PGX testing, and that
healthcare policy makers should start to pay more attention to the unseen potential of DDI
analysis/PGX testing in polytreated patients [45,46].

The abovementioned limits of our study include the restricted number of samples
and the recruiting environment of the participants, e.g., the Unit of Psychiatry of the
Sant’Andrea University Hospital of Rome, since it may have introduced a bias in the ob-
served distribution of CYP450 phenotypes. This could arise from an increased willingness
to participate in the study by people who experienced poor therapy efficacy and compli-
ance, a common situation in psychiatric patients [47,48]. On the other hand, this could also
be regarded as a point of strength, considering our intent to support the importance of
pre-emptive PGX testing in fragile, polytreated patients.

We also want to mention, as a limit shared by our study and by the overall PGX
community, that there is a certain degree of uncertainness in the genotype–phenotype
conversion that may account for some discrepancy in the CYP450 phenotype definitions
reported by different researchers. The reasons for such uncertainness have been extensively
discussed elsewhere [49–52], but they include technological issues, the limited portion of
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genomic variation screened by PGX assays, and some discordance/lack of full evidence
regarding the actual quantitative functional effect of gene polymorphisms on the actual
enzyme activity/expression.

4. Materials and Methods
4.1. Population

PGX testing was performed on consecutive patients (N = 298, 174 females and
124 males, mean age 47.7 ± 28.9 years) referred to the Unit of Psychiatry of the Sant’Andrea
University Hospital of Rome, Italy, in the period 2018–2023. The study was approved by the
local ethical committee (protocol N. 6279/2021) and performed according to the Principles
of Human Rights adopted by the World Medical Association (WMA) at the 18th WMA
General Assembly, Helsinki, Finland, in June 1964, and subsequently amended by the 64th
WMA General Assembly, Fortaleza, Brazil, in October 2013. All participants gave their
informed written consent.

4.2. PGX Testing

PGX testing was performed on a genomic DNA sample obtained from peripheral, EDTA
anticoagulated blood (3 mL). DNA was purified from 200 µL of whole blood using the
Qiasymphony automated nucleic acid extraction system (Qiagen, Hilden, Germany) with a
DSP DNA mini kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions.

A custom targeted-sequencing NGS panel was purchased from ThermoFischer Sci-
entific (Waltham, MA, USA). The NGS assay panel consisted of a pool of primer pairs
specifically designed by the vendor to target DNA regions of interest, including the ge-
nomic coordinates of the polymorphisms listed in Table 2. The pool of primers was used to
amplify genomic DNA and prepare DNA libraries using the Ion AmpliSeq™ Library Kit 2.0
(ThermoFisher Scientific, Waltham, MA, USA), according to the manufacturer’s instructions.
Clonal amplification, chip loading, and sequencing were performed on the IonChef/IonS5
GeneStudio system (ThermoFisher Scientific, Waltham, MA, USA), using the Ion 510™ &
Ion 520™ & Ion 530™ Kit—Chef according to the manufacturer’s instructions (ThermoFisher
Scientific, Waltham, MA, USA). Sequencing data were processed using the IonReporter software
(ThermoFisher Scientific, Waltham, MA, USA), which embedded a bioinformatics pipeline
allowing automatic variant calling and copy number variation evaluation.

4.3. Genotype-Based Prediction of CYP450 Phenotype

Dysfunctional alleles were defined as alleles giving a known alteration of protein function,
according to the Clinical Pharmacogenetics Implementation Consortium (CPIC) [4,18–21]. The
CPIC’s guidelines assign to each polymorphic allele an activity score (AS) ranging from 0,
indicating a no-function allele, to 1, indicating a normal functioning allele. Genotype–
phenotype translation is performed as follows: subjects with AS = 0 (two null alleles)
are poor metabolizers (PMs); subjects with AS = 0.25–1 (two reduced-function alleles or
one null allele plus a normal allele) are intermediate metabolizers (IMs); subjects with
AS = 1.25–2 are normal metabolizers (NMs); and subjects with AS > 2.25 (copy number
variation giving an allele duplication) are ultra-rapid metabolizers (UMs).

4.4. Statistics

Descriptive statistics were calculated using the SPSS software version 25 (IBM Statis-
tics). To analyze combined cytochrome phenotype frequencies, subjects characterized as
PM, IM, and UM were grouped together as “dysfunctional CYP450(s)” carriers.

5. Conclusions

The low frequency of subjects with a fully functional set of cytochrome P450 en-
zymes claims a paradigm shift in the approach to PGX test prescription, also considering
the increasing sustainability and availability of next-generation sequencing, allowing the
assessment of many pharmacogenes in the same test [53]. Since the additional health-
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care expenditure associated with increased rates of ADRs, hospitalization, and death in
polytreated patients is well documented, it is expected that the cost of preemptive and
comprehensive PGX testing is fully affordable when considering the benefits, at least in
such patient groups.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms241612696/s1.
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