
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Load Balancing Algorithm for Equalising
Latency across Fog or Edge Computing Nodes

Gabriele Proietti Mattia, Antonio Pietrabissa and Roberto Beraldi

Abstract—When dealing with distributed applications in Edge or Fog computing environments, the service latency that the user
experiences at a given node can be considered an indicator of how much the node itself is loaded with respect to the others. Indeed,
only considering the average CPU time or the RAM utilisation, for example, does not give a clear depiction of the load situation
because these parameters are application- and hardware-agnostic. They do not give any information about how the application is
performing from the user’s perspective, and they cannot be used for a QoS-oriented load balancing. In this paper, we propose a load
balancing algorithm that is focused on the service latency with the objective of levelling it across all the nodes in a fully decentralised
manner. In this way, no user will experience a worse QoS than the other. By providing a differential model of the system and an
adaptive heuristic to find the solution to the problem in real settings, we show both in simulation and in a real-world deployment, based
on a cluster of Raspberry Pi boards, that our approach is able to level the service latency among a set of heterogeneous nodes
organised in different topology.

Index Terms—Edge computing, Fog computing, Load balancing, Service latency

✦

1 INTRODUCTION

S ERVICE latency plays a crucial role in modern distributed
applications [1]. In particular, in the Edge and Fog Com-

puting environments, due to the geographic displacement of
the nodes, some of them can be subjected to more traffic than
others. In these situations, for designing an effective and
QoS-oriented load balancing algorithm, it is not possible to
consider only the typical hardware parameters that regard,
for example, the CPU load, the RAM utilisation or the
network traffic. This is because all of these performance
indicators are both hardware and application-agnostic, they
do not consider that the devices may be heterogeneous, and
the same application on different hardware performs differ-
ently. Suppose that we have two Edge or Fog nodes Node
A and Node B with two different CPUs, CPU A and CPU
B respectively. Suppose that we designed an algorithm that
enables nodes to cooperate, and some nodes can forward
part of their flow of tasks to be executed to another node.
Also, suppose that we designed an algorithm which is able
to level the CPU time and in the end both CPU A and B are
levelled to 50%. If there are no differences in network delays,
we now wonder if the users that will make requests to Node
A will experience the same latency of the users which will
make requests to Node B. The answer is yes, but only in
one case, the performance of CPU A must be exactly equal
to one of CPU B, a characteristic of the system which is not
common in Edge or Fog computing and even if we deploy
the same hardware, we will never have exactly the same
performances, due to background processes of the OS and
intrinsic hardware differences. Given these conditions, it is

• G. Proietti Mattia, A. Pietrabissa and R. Beraldi were with the De-
partment of Computer, Control and Management Engineering ”Antonio
Ruberti”, Sapienza University of Rome, Via Ariosto 25, 00185 Rome,
Italy.
E-mail: proiettimattia@diag.uniroma1.it, pietrabissa@diag.uniroma1.it,
beraldi@diag.uniroma1.it

Manuscript received April 19, 2022; revised August 26, 2022.

necessary to change the performance indicators which drive
the balancing, we need to design an algorithm which is able
to balance the QoS that each user will experience: each user,
independently from the node at which it will request the
service, will have to experience the same service latency.
The latency can be intended as a performance parameter
which best describes how the application is behaving, in-
dependently of the effective load situation. Therefore by
levelling the latency of the service, we will probably not
balance the CPU load. Indeed, slower devices will be, in
general, less loaded than the faster ones because they will
saturate when the load is lesser than the faster ones. But
in general, we will be sure that each user will experience
the same QoS as the others since there will be no user that
will experience a higher or a lower service latency than the
other. The motivation of this work is clear, and our principal
focus is designing, in a fully decentralised environment (that
particularly fits the Fog and Edge Computing models) with
no central entity, a load balancing algorithm that is able to
level the service latency across all the nodes by tuning the
percentage of tasks that a node can forward to another, a
percentage that we call the migration ratio. In other words,
each node can decide if and at which level it can cooperate
with others offloading part of its work for reducing its
service latency until it reaches a stable value that is equal
across all the neighbours when this is possible, or at least
closer to the value of the others.

The contributions of the papers can be summarised as
follows.

• A continuous-time model which describes the dynam-
ics of the system by using a system of differential
equations that reaches stability when all the nodes
experience the same service latency;

• Mathematical proof of convergence to a Wardrop equi-
librium of the continuous-time model;

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

• An heuristic algorithm which tries to find a solution
to the problem in a real environment by continuously
adapting the migration ratios in rounds of fixed dura-
tion;

• Simulation results of the proposed heuristic algorithm;
• Results of the implementation of the proposed algo-

rithm in a testbed of Raspberry Pis which shows the
efficacy of the solution even in a real setting.

The rest of this paper is organised as follows. In Sec-
tion 2 we present some related work, then in Section 3 we
define the system model by describing its dynamic relying
on differential equations. This model does not give us an
algorithm for finding the solution in a real deployment, and
therefore we propose a heuristic in Section 4 that is tested
in a simulator. Then in Section 5 we show the results of
the proposed heuristic in a real environment and finally, the
conclusions will be drawn in Section 6.

2 RELATED WORK

The main area in which this work lies is the problem of
load balancing in Edge and Fog computing [2] [3] [4] [5].
In our work, we design a load balancing algorithm that is
QoS oriented, which targets the delay that users experience
when using the deployed application. Similar works, like [6]
propose the (OLBA) framework, which takes into account
turn-around time and service delay and relies on Particle
Swarm Optimization (PSO) for finding the best load bal-
ancing strategy but the approach is not fully decentralized,
the same approach is followed by [7]. Then, Tripathy et
al. in [8] focus on the QoS parameters but in a smart
city setting and a smart allocation scheme is performed
through a genetic algorithm. However, the approach is not
“online”, and the scheduling decision is not taken for every
task. More technological approaches instead, like the one
proposed in [9], design algorithms specifically targeting
well-known frameworks like Kubernetes. In that case, the
authors propose a proxy-based approach that periodically
monitors the pods’ state, and according to the load, it
forwards the requests to balance it; however, the approach
does not consider node heterogeneity which can have the
same load but generates different service latency. Similarly,
Singh et al. in [10] propose a container-as-a-service (CaaS)
load balancing strategy that is focused on energy efficiency,
however, the approach is based on two steps service level
agreement, while our tries to use only one, moreover the
results are only provided in simulations. A game theory-
based approach is proposed by [11], however, no simulation
or real implementation results are provided. Sthapit et al,
in [12] propose a modelling of Edge computing layer as a
set of queues and design a load balancing strategy which
targets the job completion rate and the energy consumption,
however, only simulation results are provided, like in [13].

A set of works, instead, focus on healthcare [14] and
the “internet of healthcare things” [15]. For example, [16]
proposes a load balancing framework which is able to avoid
any failure in responsiveness and [17] which targets a smart
city. Both approaches focus on the quality of service but they
do not directly target the service latency, which is critical
when having heterogeneous computing nodes.

By introducing even the Cloud layer [18] we increase the
computation capability, although the cloud is not used in
this work, we can still refer to the load balancing strategies
offered by different works. For example, [19] proposes an
Edge-Fog-Cloud algorithm for distributing the traffic in all
of the three layers but the focus is not the latency opti-
misation, [1] provides a model based on queuing theory,
[20] studies a load balancing approach for the Fog-Cloud
environment classifying requests in real-time, important
and time-tolerant but again the approach is not focused on
latency levelling, then [21] proposes a scheduling approach
based on blockchain and [22] a strategy to cope with failures
by using Software-Defined Networks (SDN).

The technique used for modelling the system comes from
the control systems theory [23]. In particular, the literature
on the Wardrop equilibrium to which we prove the conver-
gence of the model is quite extensive.

In conclusion, the last set of works worth mentioning
focuses on load balancing by using intelligent approaches
like reinforcement learning [24], [25], [26]. The heuristic
proposed in this work (Section 1) is not explicitly using re-
inforcement learning but it follows a strategy that mimics a
learning process since the migration ratios are continuously
adapted to meet a goal by using a learning rate α.

Symbol Meaning

Model

N Set of nodes
A Adjancency matrix
aij Cell of the adjacency matrix that is 1

if node i can communicate with node j, otherwise 0
xi(t) Net load (in req/s) of node i at time t
λi Traffic to node i (in reqs/)
µi Service rate of node i (in reqs/s)
ρi Utilization rate of node i (defined as λi/µi)
Ki Maximum queue length for node i
li(t) Service latency of node i at time t
lai (t) Average service latency between node i and

its neighbours at time t
mij(t) Percentage (over λi) of tasks forwarded from node i

to node j at time t
m̄ij(t) Percentage (over xi(t)) of tasks forwarded from node i

to node j at time t
ψij(t̂) Amount of traffic (in req/s) that node i forwards to

node j at time t
Φ(x) Beckmann potential
V (x) Candidate Lyapunov function

Adaptive Heuristic (Algorithm 1)

M Matrix of migration ratios
mij Current percentage (of λi) of tasks forwarded from

node i to node j
α Step size
ϵ Tolerance on the average latency for which the algorithm

stops the updating of the migration ratios (balance zone)
T Round duration

Trajectories and Experiments

dt Average service latency
da Average service latency among all the nodes

TABLE 1
List of symbols used

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

3 PERFORMANCE MODEL

In our model, we suppose to have a set N of nodes whose
network topology is described by the adjacency matrix A. In
particular, given any two nodes i and j, they can communi-
cate only if aij = aji = 1 since we always suppose that
the communication between nodes is bi-directional. Each
node i receives a fixed traffic rate of λi requests/s from
the underlying clients, and it is able to execute µi req/s.
Moreover, a node i is able to forward part of its load (in
terms of requests/s) to a given neighbouring node j, and
we do not consider the network communication latencies.
We call the percentage of forwarded requests from node i to
j the “migration ratio”, and it is expressed as mij .

We now want to model the system mathematically and,
to do so, we define which is the total load of a node i over
time. We call this function xi(t) since it models the state of
node i in a given time t:

xi(t) = λi −
∑
j∈V

aijψij(t) +
∑
j∈V

ajiψji(t) (1)

where the initial condition, at t = 0, since ψij(0) =
0 ∀i, j is

xi(0) = λi ∀ i (2)

Equation 1 can be interpreted as follows. The total net
load that a node i sees over time is made up of three
addends. The first (i) component represents the constant
traffic coming by the clients that are directly connected to
the node, and it is called λi. The second (ii) addend is
subtracted since it represents the sum of the traffic that the
node i forwards to any neighbouring node j (for which
aij ̸= 0) that is ψij(t). However, (iii) even neighbouring
nodes may also decide to forward part of their traffic to i,
and this part, ψji(t) again summed for all the neighbours,
is added to the total load of the node xi(t) and represents
the last addend. As it will be now clear, for any node i,
the functions ψij(t) describe the traffic (in terms of req/s)
that node i forwards to the neighbouring j at any time t and
they are our unknowns. By knowing the ψij(t), we will then
need to find a time t∗ where ψij(t) = ψij(t

∗), ∀i, j, t > t∗

and the values ψij(t
∗) ∀i, j will be the final traffic that

each node will need to forward to each neighbour to reach
the final goal. However, for applying the solution to a real
setup, it is not enough to know which are the forwarded
rates ψij(t). Indeed, we need to find the migration ratio
from a node i to a node j, expressed in the percentage of
the clients’ incoming load (λi) that a node must forward.
This is because, for simplicity and for having a term of
comparison with further simulations and experimental tests,
we hypothesise that a node can only forward the traffic that
is coming from the clients and not the one that is coming
from the neighbours. Therefore we impose that the total
traffic from node i to node j that is

∑
j ψij(t) must be lower

or equal to λi. When this is true, we call this strategy “single-
hop”, and we can derive the migration ratio from a node i to
node j as the portion of the incoming traffic from the clients
to i:

mij(t) =
ψij(t)

λi
(3)

At this point, we need to model this final goal: the
levelling of latency among all the nodes. For finding the
functions mij(t), instead of trying to define them directly, it
is easier to describe their variation over time, and for this
reason, we calculate the derivative with respect to the time
of Equation 1 that is:

ẋi(t) = −
∑
j∈N

aijψ̇ij(t) +
∑
j∈N

ajiψ̇ji(t) (4)

The variation over time of the forwarded traffic from i to
j can be defined as:

ψ̇ij(t) = xi(t) ˙̄mij(t) (5)

That is the product between the load of the node i,
xi(t), and the variation on the percentage of this load to be
forwarded to j, that we call ˙̄mij(t) to differentiate them from
the effective migration ratio mij(t). We can then rewrite the
derivative as:

ẋi(t) = −
∑
j∈N

aijxi(t) ˙̄mij(t) +
∑
j∈N

ajixj(t) ˙̄mji(t) (6)

Equation 6 describes the dynamic of the state of node i,
that is how the load that every node i sees at time t changes
over time. The formulation can be repeated for every node.
Thus we have a system of |N | Ordinary Differential Equa-
tions (O.D.E.). Before solving the system, we need to define
the functions ˙̄mij(t) that are still unknown, but we remind
that the solution to the system will allow us to know the
original mij(t).

Basically, we define the ˙̄mij(t) as the multiplication
of three factors logically derived from the fact that our
objective is that, in every node, every task must have the
same duration, and therefore the average service latency of
each node must be the same. Moreover, we need to keep
in mind two essential behaviours of the entire system: (i)
when a node i migrates a portion of the incoming traffic
to another node j, the node i will see its average service
latency decrease, while in the node j the average task service
latency will increase. This is because the service latency
function is a monotonically increasing function with respect
to the load of a node. In our case, we suppose, for simplicity,
that nodes can be modelled as M/M/1/K queues and the
service latency at time t of node i can be expressed as (given
ρi(t) = xi(t)/µi):

li(t) =
1− (Ki + 1)ρi(t)

Ki +Kiρi(t)
(Ki+1)

µi(1− ρi(t))(1− ρi(t)Ki)
(7)

Then (ii) the average delay between neighbours nodes
plays a crucial role because the average service latency of
a given node can be higher or lower than the average, and
trying to level them to the average proved to be the key
strategy to solving the problem. But how can we level them
to the average? There are three sub-strategies that we need
to adopt to reach the goal, and they concretise into three
factors:

1) the tasks migration must be performed only if the delay
of the current node i, li(t), is greater than the average

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

delay between itself and its neighbours, called lai
, for

this reason, the first factor is:

˙̄mα
ij(t) = max

[
0,
li(t)− lai

(t)

li(t)

]
(8)

2) the tasks migration must be performed only if the delay
of the current node i, li(t), is greater than the delay of
its neighbour j, lj(t), and therefore:

˙̄mβ
ij(t) = max

[
0,
li(t)− lj(t)

lhi
(t)

]
(9)

3) the tasks migration must be performed only if the delay
of the neighbour node j, lj(t), is lesser than the average
delay between node i and itself, and therefore:

˙̄mγ
ij(t) = max

[
0,
lai

(t)− lj(t)

lki
(t)

]
(10)

The final dynamic of the migration ratios is, therefore

˙̄mij(t) = ˙̄mα
ij(t) · ˙̄mβ

ij(t) · ˙̄mγ
ij(t) (11)

and the idea behind the formulation is that the dynamic
of the state ẋ(t) stops when at least one of them becomes
zero, both for the received load and the forwarded one.

As already mentioned, the lai(t) is the average delay
between the current node i and its neighbours:

lai(t) =
li(t) +

∑
j∈V ;i ̸=j aij lj(t)

1 +
∑

j∈V aij
(12)

Finally, lhi
(t) and lki

(t) are the summations of the dif-
ferences over time:

lhi(t) = max

0,∑
j∈V

li(t)− lj(t)

 (13)

lki(t) = max

0,∑
j∈V

lai(t)− lj(t)

 (14)

We will resort to numerical calculus to find the time
trajectories of the system of non-linear ODE described in
Equation 4 with initial conditions xi(0) = λi, ∀i. The nu-
merical solution describes the trajectory of the state xi(t) of
every node i, but our objective is to find the final migration
ratios that, if wired within a real system, allow us to reach
the latency-levelling goal. For doing this, from the definition
of the effective migration ratios (Equation 3), we first need
to compute ψij(t) as:

ψij(t) =

∫ t

0
ψ̇ij(u)du =

∫ t

0
xi(u) ˙̄mij(u)du (15)

Now, the solution to the system at Equation 4 does
not distinguish between single and multi-hop strategies.
However, we can easily understand if the solution can be
implemented in a single-hop manner by taking into consid-
eration that if a node i is obliged to forward requests coming
from the neighbours, then necessarily, there will exist a time
t̂ for which ∑

j

ψij(t̂) > λi (16)

By using Equation 3 we have that the total effective
migration ratio for a node i will be greater than one∑

j

λimij(t̂) > λi (17)

∑
j

mij(t̂) > 1 (18)

This means that if Equation 18 does not hold for every
node in the system, then the final solution at convergence
can be implemented in a single-hop manner by applying
the forwarding policy for which nodes can only forward the
requests from the clients. Otherwise, we can still practically
use the solution that we find at time t̂ that is single-hop, but
if t̂ < t∗, then we probably do not have levelled the latency
across all the nodes (see Topology C at Section 3.2).

3.1 Latency-levelling property

We now prove that when the trajectories of the solution of
the system at Equation 6 converge, then the service latency
is aligned to the same value in every node. Then we prove
that the same system asymptotically converges to a unique
Wardrop equilibrium.

Lemma 3.1. If the solution’s trajectories of the O.D.E. system at
Equation 6 converges, i.e. ∃ t∗ s.t. ẋi(t) = 0 ∀t > t∗,∀i then all
the nodes have the same service latency, i.e. l0(t) = l1(t) = . . . =
li(t) ∀i and this latency is the average latency lai(t

∗) among all
the neighbours of each node i at time t∗.

Proof. We can prove the theorem by contradiction. Suppose
that the system solution converged at t∗ but there exists one
node i that has not the same service latency as the other
nodes, i.e. li(t) ̸= lj(t),∀j ̸= i,∀t > t∗. We can distinguish
two possible cases, for any t > t∗:

(a) li(t) > lai
, i.e. the service latency of node i is higher than

the average latency between i and its neighbours, we
point out that every other neighbouring node’s latency
can be higher, equal or lower than the average latency
but at least one node must have the latency below the
average, for the property of the average of a set of
numbers. From this fact, we have that the ˙̄mα

ij(t) ̸= 0

by definition, ˙̄mβ
ij(t) ̸= 0 and ˙̄mγ

ij(t) ̸= 0 because there
exists at least one node with average service latency
below the average and the same node’s latency is also
lower than the latency of node i. This means that from
Equation 6 the negative part is not zero, the positive
part instead is zero since i is the only node with latency
higher than the average it will not receive traffic from
any neighbour. Therefore we showed that ẋ(t) ̸= 0 for
some t > t∗, and this is a contradiction ;

(b) li(t) < lai
, i.e. the service latency of node i is lower

than the average latency between i and its neighbours.
As in the case (a), if the node i’s latency is below
than the average latency then there exists at least one
neighbour j whose latency is higher than the average.
The consequences are exactly the ones of case (a), and
we proved the contradiction ;

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

From these two cases emerges that the only possible case
is that li(t) = lai

and no other node can have a service
latency that is higher or lower than the average lai

.

Definition 3.1. Under flow rate vector λ = [λi]i∈I ∈ Λ, the
feasible state space is defined as

X :=
{

x = [xi]i∈N

∣∣∣xi ≥ 0,
∑
i∈N

xi =
∑
i∈N

λi
}
. (19)

The flow vectors x ∈ X are the feasible flow vectors.

Assumption 3.1. The latency functions li : [0, λ̄] → R≥0, for
all i ∈ N , are Lipschitz continuous, strictly increasing over the
interval [0, λ̄], where λ̄ :=

∑
i∈N λi, and such that li(0) = 0.

In the Wardrop literature, a stable flow is a state in which
no agent may improve its strategy unilaterally. This network
equilibrium takes the name of Wardrop equilibrium.

Definition 3.2. ([27]) A flow vector x ∈ X is at a Wardrop
equilibrium under flow rate λ if it holds that li(x) ≤ lj(x) for all
i ∈ N such that xi > 0 and ∀j ∈ N .

One may interpret the Wardrop equilibria as the set of states
in which the latency of all the loaded nodes (i.e., the nodes
i ∈ N such that xi > 0) are equalised.

As customary in Wardrop theory, we resort to the Beck-
mann potential [28], defined as

Φ(x) =
∑
i∈N

∫ xi

0
li(ξ)dξ, (20)

whose properties are summarised by by Property 3.1 below.

Property 3.1. Under Assumption 3.1, the Beckmann potential
(20) is continuous and the following properties hold:

1) there exists a unique feasible flow, denoted by w ∈ X , that
minimises Φ(x), with x ∈ X ;

2) correspondingly, there exist a unique, positive minimum of
Φ(x), denoted by Φmin := Φ(w) > 0;

3) w is the unique Wardrop equilibrium.

Thus, under Assumption 3.1 a unique equilibrium point
exists, where the latencies of all the nodes are equalised.
Furthermore, given that that the li’s are monotonically in-
creasing and null in zero, all the nodes are loaded at the
equilibrium, i.e., xi > 0 for all i ∈ N if x = w.

For the convergence proof, the Beckmann potential (20)
is used to build the candidate Lyapunov function V : X →
R≥0 as the continuously differentiable function

V (x) := Φ(x)− Φmin. (21)

The following Theorem holds.

Theorem 3.1. Under Assumption 3.1, the trajectories of the
nonlinear system (7), (8)-(11) with initial condition x(0) ∈ X
asymptotically converge to the Wardrop equilibrium w.

Proof. Firstly, we show that X is a positive invariant set for
the nonlinear system (7), (8)-(11), i.e., that if x(0) ∈ X it
holds that x(t) ∈ X for all t > 0:

1) It follows from equation (4) and by the symmetry of the
adjacency matrix A that

∑
i∈N ẋi(t) = 0 and, therefore,

that
∑

i∈N xi(t) =
∑

i∈N xi(0) = λ, for all x(0) ∈ X .
2) Equations (4), (8)-(11) yield that, for all i ∈ N , ẋi(t) ≥ 0

if xi(t) = 0; given that xi(0) ≥ 0, it holds that xi(t) ≥ 0.
Relying on standard Lyapunov theory, we prove now

that the function (21) is a Lyapunov function for the system
(7), (8)-(11) by showing that V and −V̇ are positive definite
with respect to the equilibrium point w, which is unique by
Property 3.1.

(V positive definite)
Given Property 3.1 and equation (21), it holds that

V (x) = 0 if x = w and V (x) > 0 for all x ∈ X \ {w}.

(−V̇ positive definite)
By equations (20) and (21), V̇ is written as

V̇
(
x(t)

)
= Φ̇

(
x(t)

)
=

d

dt
Φ
(
x(t)

)
=

∑
i∈N

ẋi(t)li
(
xi(t)

)
. (22)

From equations (4) and (22), it follows that

−V̇
(
x(t)

)
=

∑
i∈N

(∑
j∈N

aijxi(t) ˙̄mij(t)+

−
∑
j∈N

ajixj(t) ˙̄mji(t)
)
li
(
xi(t)

)
=

=
∑
i∈N

∑
j∈N

aijxi(t) ˙̄mij(t)li
(
xi(t)

)
+

−
∑
i∈N

∑
j∈N

ajixj(t) ˙̄mji(t)li
(
xi(t)

)
=

=
∑
i∈N

∑
j∈N

aijxi(t) ˙̄mij(t)
(
li
(
xi(t)

)
− lj

(
xj(t)

))
.

(23)

Each term of the last summation is either positive or null,
given that the following relations hold:

• If li
(
xi(t)

)
≤ lj

(
xj(t)

)
Lemma 3.1 yields ˙̄mij(t) = 0

and, therefore, the term is null.
• If li

(
xi(t)

)
> lj

(
xj(t)

)
, equations 3.1 yields ˙̄mij(t) ≤ 0

and, given that aij and xi(t) are non-negative, the term
is either positive or null.

The relations above show that V̇ (x) = 0 if x = w since,
by Definition (3.2), it holds that lj(xj) = li(xi) for all i, j ∈
N .

To conclude that −V̇ is positive definite, it remains to
show that there is at least one positive term when the
system is not at the Wardrop equilibrium. If x ∈ X \ {w},
by Definition (3.2) there exists at least one pair i′, j′ ∈ N
such that li′(xi′) > lj′(xj′(t)). We consider, without loss
of generality, that i′ and j′ are neighbouring nodes: in fact,
if i′ and j′ were not neighbouring nodes, since the graph
is connected, there would a path between the nodes and,
therefore, at least one pair of consecutive nodes in the path
with different latency. Being i′, j′ ∈ Ni′ two nodes with dif-
ferent latency, there exists a pair of nodes i, j ∈ Ni′ (possibly
i′ and/or j′ themselves) such that li(xi) > lai′ (x) > lj(xj).
Therefore, Lemma 3.1 yields ˙̄mij > 0. Finally, given that
li(xi) > lj(xj) ≥ 0, Assumption 3.1 yields xi > 0.

Summarising: if x ∈ X \{w}, there exists a pair of nodes
i, j ∈ N such that aij = 1, xi > 0, ˙̄mij > 0 and li(xi) >

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

lj(xj), i.e., there exists at least a positive term in the last
summation of equation (23).

3.2 Trajectories and Topologies
We will now explore some configurations of nodes and
parameters that we will reuse later in the simulations and
in the experimental setting, the general idea is to show how
this model can predict quite well the behaviour of a real
system. The crucial point for the results to match is the
alignment of the service latency, but the alignment value
and the migration ratios may differ, as will be clearer later. In
this section, we study the behaviour of the latency over time
dt(t), computed by using the Equation 7 and the migration
ratios mij(t) computed by using Equation 3.

We tested different network topologies, the first three
are shown in Figure 1. These small topologies are taken into
consideration because it is easy to have a direct comparison
with the behaviour shown in simulations and in a real
deployment. Finally, we tested a fully connected topology
with 15 nodes.

λ 1.00
µ 2.00

λ 2.50
µ 2.00

λ 4.00
µ 2.50

0

2

1

(a) Topology A

λ 1.00
µ 2.00

λ 3.00
µ 1.50

λ 2.50
µ 1.50

λ 4.00
µ 2.50

0

1

2

3

(b) Topology B

λ 1.50
µ 1.50

λ 3.00
µ 1.00

λ 4.00
µ 2.50

1

0

3

2

λ 1.00
µ 2.00

(c) Topology C

Fig. 1. The nodes topology and parameters configuration used across
the mathematical model, the simulations and the final experimental
setting.

Topology A (Figure 1a) is composed of three nodes
arranged in a fully connected graph, the Figure 2a shows the
trajectories of the latency and the migrations ratios mij of
the nodes. As we can observe, after the transient the system
reaches the steady-state at about t = 15 where the latencies
are levelled at 1.2s. From the migration ratio, Figure 2b, we
can observe that Node 1 gives 25% of its load λ1 to Node 2
since it has the higher service latency at t = 0 and part of
its load is forwarded to the node that is below the average
service latency, that is Node 2. Node 2 only has to receive
load while Node 0 and Node 1 have to lose their load in
order to balance the service latency, indeed even Node 0
forward exactly the 5% of its load to slightly reduce the
service latency.

Topology B (Figure 1b) comprehends four nodes con-
nected as a ring, the Figure 1b shows the numerical tra-
jectories of the performance parameters. Each node, from
0 to 3, starts with service latency, respectively, 0.86s, 2.06s,
1.22s and 2.18s and the end of the transient (Figure 3a) is
levelled to 1.38s. At the steady state and we can observe
how (Figure 3b) Node 3 forwards about the 65% of its traffic
to nodes 0 and 2 for lowering the latency, the same is done
by Node 1, which forwards a total of about 60% of its load to
Nodes 2 and 1, then Node 2 does not forward tasks because
already close to the average latency while starting from
t = 10 Node 0 starts to forward tasks to its neighbours

0 10 20 30 40 50

Time

0.9

1.0

1.1

1.2

1.3

1.4

d
t

(s
)

(a) Service latency dt (s)

0 10 20 30 40 50

Time

0.00

0.05

0.10

0.15

0.20

0.25

m
ij

m01

m02

m10

m12

m20

m21

(b) Migration ratios mij

Fig. 2. Trajectories of the average latency dt and the migration ratios
mij for the three nodes described by Topology A (Figure 1a).

up to the 10%. This means that Node 1 must give back
part of the load to Nodes 1 and 3, but these nodes already
forwarded part of their load to Node 0, this behaviour is
justified by the fact that the derivative of migration ratios
functions ˙̄mij(t) are always positive. Therefore the only way
to diminish them is to make a node to give back the load to
the sender.

0 10 20 30 40 50

Time

1.0

1.2

1.4

1.6

1.8

2.0

2.2

d
t

(s
)

(a) Service latency dt (s)

0 10 20 30 40 50

Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m
ij

m01

m03

m10

m12

m21

m23

m30

m32

(b) Migration ratios mij

Fig. 3. Trajectories of the average latency dt and the migration ratios
mij for the four nodes described by Topology B (Figure 1b).

Topology C (Figure 1c) is a star topology and includes
four nodes, but this particular configuration of the nodes is
more challenging because one single node is connected to
all the others while the others are only connected to the
same node, and therefore the node at the centre can be
overwhelmed by the load of the others. However, the model
converges to a levelled latency of 1.4s (Figure 4a) but the
solution that is reached is actually not achievable because
the condition expressed at Equation 18 is no more respected
(Figure 4b), since the model is unconstrained. This does not
mean that we cannot use the solution. Indeed, it is sufficient
to consider the transient as long as the condition is still met,
i.e. at t = 26 and consider the migration ratios there. What is
clear is that the exact levelling of the latency is not feasible,
but considering the solution, at t = 26 we still reached a
point in which the latencies are closer, even if they do not
exactly match. In particular, we recall that in this solution,
the node m02 is required to forward all of its traffic λ0 and
execute only the traffic forwarded by the other nodes.

The last topology that we tested comprehends instead 15
nodes in a fully connected topology with 1 ≤ λi ≤ 4, 1 ≤
µi ≤ 4 and 2 ≤ Ki ≤ 6. All of these parameters are picked

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

0 10 20 30 40 50

Time

1.0

1.5

2.0

2.5

3.0

3.5

d
t

(s
)

S
in

gl
e

H
op

M
u

lt
i

H
op

(a) Service latency dt (s)

0 10 20 30 40 50

Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

m
ij

S
in

g
le

H
o
p

M
u

lt
i

H
o
p

m01

m02

m03

m10

m20

m30

(b) Migration ratios mij

Fig. 4. Trajectories of the average latency dt and and the migration ratios
mij for the four nodes described by Topology C (Figure 1c).

at random, but the purpose of this is to understand how
the system behaves with many nodes. We used SageMath1

Python ODE solver to derive the trajectories up to t = 100
with the numeric solver Runga-Kutta-Felhberg on a Ryzen
9 5800X processor. Figure 5a shows the behaviour of the
latency for all the nodes, and as we can see, the system
reduces their variance, but again we need to cut the solution
at time t = 31 because

∑
j mij(t) ≥ 1 for some i when

t ≥ 31 (5b).

0 10 20 30 40 50

Time

0.5

1.0

1.5

2.0

2.5

d
t

(s
)

(a) Service latency dt (s)

0 10 20 30 40 50

Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ij

(b) Migration ratios mij

Fig. 5. Trajectories of the average latency dt and the migration ratios
mij for 15 nodes in a fully connected topology.

This last result shows how the model scales with the
number of nodes, however, we do not envision modelling a
system of more than 20 Edge or Fog nodes because aligning
the latency in a very large set of nodes may not be the
best strategy for balancing the load. As we can see, some
nodes can be obliged to forward all of their traffic, and if
the parameters λi and µi are particularly different, then it
would not be possible to level the latency without counting
the difficulties of implementing the algorithm in the real
world where the network latency have a significant impact.
Instead, it is more efficient to create groups of a maximum
of 20 nodes and try levelling the latency within the groups,
these groups can, for example, represent neighbourhoods of
a smart city.

4 ADAPTIVE HEURISTIC

We now want to effectively implement a strategy for lev-
elling the latency among the nodes. The mathematical

1. https://www.sagemath.org/

model tells us what are, at steady state, the migration
ratios mij ∀i, j but calculating them requires finding the
trajectories of the model. Moreover, there are other 3 points
that motivate the design of an algorithm. First of all, (1)
the mathematical model assumes that we know the state
of every node but in the real world, we want to have a
fully decentralised approach, each node should be able to
see the only state of its neighbours and tune the migra-
tion ratios accordingly, also that state must be explicitly
requested when needed. Then (2) real nodes may be subject
to variation in load conditions over time, thus the algorithm
should react and re-tune the migration ratios to cope with
the changes. As the last point, (3) the model does not take
into account the communication latency that exists between
the nodes. Therefore, we now propose an adaptive strategy
which follows a heuristic approach to find the most suitable
set of migration ratios for every node in such a way the
latency is made equal when it is possible or at least closer
when it is not feasible.

Figure 6 summarises the logic behind the heuristic.
Firstly, we suppose to divide the time into rounds of T
seconds each. The Algorithm 1 is run every time a round
ends and has as a final objective the one of modifying
the migration ratios when it is needed. We also divide the
algorithm into steps for describing the rationale behind its
design. The input that it takes comprehends the index of
the current node i in which the algorithm is executed (we
remind that the algorithm is fully distributed, there is no
central entity or coordinator), the step size α, the set of
nodes N , the vector of migration ratios M⃗i which describe
the percentage of tasks that is forwarded to each (neighbour)
node, percentage on the average latency that defines the
balancing zone ϵ and the incidence vector for node i that
is Ii and describes which are the neighbours of the current
node. Suppose that the round time T just elapsed, and the
algorithm does the following:

1) first of all, the node computes the average latency
between itself and all the neighbours, moreover, it com-
putes the upper and lower average limits by multiply-
ing the average latency by 1± ϵ, these limits allow us to
relax the constraint that each node must exactly match
the latency of each other, which in real scenarios is very
unlikely due to the arrivals’ distribution. As the last
step, it is also computed the sum of all the migration
ratios, which cannot exceed 1.0;

2) once the average is known, we proceed to the adjusting
of the migration ratios; the first check that we perform is
to see if the current node is below the average and if it is
migrating tasks to other nodes. Indeed, if this happens,
then it means that the node is forwarding too much
traffic to the others. We remind from the mathematical
model, that the strategy for making the algorithm work
is that a node can only receive or give traffic to others at
the same time, and, in general, only the nodes that are
above the average must forward tasks to the ones that
are below. Thus, a node that is below the average and it
is giving traffic to others must reduce the ratios in such
a way its average returns the balance zone (dai±ϵ). This
is what the algorithm does in during this step for all the
neighbours nodes by previously checking if the ratio

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

given to the node does not reach negative numbers and
this is done by using the auxiliary functions described
in Algorithm 2. If the adjustment is done, the function
returns with no further steps;

3) at this point, we check if the average latency of the
current node is below the high level of the average
zone, because if this is true then it means that the node
latency is in the average zone, then no further action is
needed;

4) if we reach this step, then the node’s latency is out
of balance, i.e. it is above the high level of the zone,
then we need to adjust the migration ratios for every
neighbour node, but we can distinguish the following
two cases:

a) if the average latency of neighbour node j is above
the balance zone, then we reduce the migration ratio
towards it of the step size α since it means that we
are forwarding too much traffic;

b) if the average latency of the neighbour node is below
the balance zone, then we increase the migration
ratio towards it of the step size α, this will cause
our latency to be reduced and its one to increase,
approaching the balancing zone.

ε

A node in this zone must increase the
migration ratio towards nodes below the

balance zone and decrease the ratios towards
nodes in the same zone

A node in this zone must decrease the
migration ratio towards nodes if

greater than zero

Balance
zone

Nodes in this zone have to
forward traffic

Nodes in this zone have to
receive traffic

lai

Time

Duration

Nodes in this zone are balanced no
further action needed

Nodes in this zone are balanced no
further action needed

lai (1 + ε)

lai (1 - ε)

t

lai

ε lai

Fig. 6. Representation of the logic behind the adaptive heuristic for a
node i in a given time t. We suppose the average delay lai between the
node i and its neighbours to be fixed during an instant time t.

4.1 Simulations results
We now show some results of the proposed algorithm in
a discrete event simulator written in Python by using the
library “Simpy”2 and published as open source3. We will
use the same topologies and parameters (Figure 1) used in
for computing the trajectories of the mathematical model in
order to have terms of comparison.

In the simulator, we again assume no communication
delays between the nodes and the same nodes are modelled
as M/M/1/K queues since the objective of simulations is
to understand if the migration ratios found by the heuristic
match the model. All the tests are done with the simulator to
use a round time T = 60s and the behaviour of the average
latency are filtered with a Savitzy-Golay filter with window

2. https://pypi.org/project/simpy/
3. https://gitlab.com/gabrielepmattia/simulator-2022-tsc

Algorithm 1 Adaptive Heuristic for levelling latencies

Require: i, α, N , M⃗i, ϵ, Ii
currentNode←N [i]
[1. Compute the average latency among all the neighbour nodes]
averageLatency← currentNode.getLatency()
numberOfNeighbours← 0
for all j in |N | and Iij ̸= 0 [Loop over the neighbours] do

averageLatency← node.getLatency() and
numberOfNeighbours← numberOfNeighbours + 1

end for
averageLatency← averageLatency / numberOfNeighbours
averageLatencyLow← averageLatency · (1.0 + ϵ)
averageLatencyHigh← averageLatency · (1.0− ϵ)
totalRatiosGiven←

∑
j mij

[2. If under average and migrating, then reduce migration]
if currentNode.getLatency() ≤ averageLatencyLow and totalRatios-
Given > 0 then

for all j in |N | and Iij ̸= 0 do
if N [j].getLatency() ≥ averageLatencyHigh then

if canBeSubtractedToNode(j, α) and canSubtract(α) then
mij ← mij − α
totalRatiosGiven← totalRatiosGiven - α

end if
end if

end for
return

end if
[3. If latency below the high zone limit, then the node is balanced]
if currentNode.getLatency() < averageLatencyHigh then

return
end if
[4. If latency greater or equal the high limit we need to migrate]
for all j in |N | and Iij ̸= 0 do

[4a. Reduce the ratio to neighbour above the average high limit]
if N [j].getLatency() ≥ averageLatencyHigh then

if canBeSubtractedToNode(j, α) and canSubtract(α) then
mij ← mij − α
totalRatiosGiven← totalRatiosGiven - α

end if
end if
[4b. Increase the ratio to neighbour below the average low limit]
if N [j].getLatency() ≤ averageLatencyLow then

if canBeGiven(α) then
mij ← mij + α
totalRatiosGiven← totalRatiosGiven + α

end if
end if

end for

Algorithm 2 Auxiliary functions

Require: i, α, N , M⃗i, z̄,
¯
z, Ii, totalRatiosGiven

[Check if the specified amount of ration can be given]
def canBeGiven(alpha: float): boolean

return totalRatiosGiven + alpha ≤ 1.0
end def

[Check if the specified amount of ratio can be subtracted]
def canSubtract(alpha: float)

return totalRatiosGiven - alpha > 0.0
end def

[Check if the specified amount of ration can be subtracted to a node]
def canBeSubtractedToNode(j: int, alpha: float)

return mij − alpha > 0.0
end def

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

size 20 and polynomial degree of 4. Moreover, the balance
zone uses ϵ = 0.05, the step size α = 0.01 and Ki = 4 ∀ i.
A peculiar characteristic of the simulator is that the average
latency is computed as the average of the last 10 rounds,
this is done in order to stabilize the curves, otherwise due
to the exponential distribution of the inter-arrival times and
of the execution times the average latency may be subjected
to significant variations.

Figure 7 shows the results of the simulations of Topology
A. First of all, we can observe how after 25 rounds, the
average latency starts to stabilize at about 1.2s (Figure 7a),
we have highlighted in grey the balance zone that is the
average delay da ± ϵ and in the chart the average it is
computed across all of the nodes. We can notice how the
latency result is perfectly matching the model compared
to Figure 2a, the fluctuations around the average is due
to the exponential inter-arrival times and execution times.
For levelling the latency the migration ratios found by the
algorithm are represented in Figure 7b. In particular, we can
observe thatm12 stabilizes at around 0.24 andm02 at around
0.07 while the others are less than 0.03. Again these result
matches the ones of the model shown in Figure 2b, in which
m12 and m02 stabilizes at 0.26 and 0.05 respectively, while
the others are set to 0.

0 25 50 75 100 125 150 175
Round

0.4

0.6

0.8

1.0

1.2

1.4

d
t

(s
)

Node 0
Node 1
Node 2

(a) Service latency dt (s)

0 25 50 75 100 125 150 175
Round

0.00

0.05

0.10

0.15

0.20

0.25

M
ig

ra
tio

n
R

at
io m01

m02
m10
m12
m20
m21

(b) Migration ratios mij

Fig. 7. Behaviour of the average latency dt and migration ratios for
Topology A (Figure 1a) in the simulated environment.

Topology B results are shown in Figure 8. As far as
regards the average service latency (Figure 8a) we can
observe how it stabilizes at about 1.4s which is in line with
the mathematical model shown Figure 3a. The same holds
for the migrations ratios, for example, the Node 0 gives 5%
of the λ0 to its two neighbours respectively that match the
model, Node 1 gives about 20% of its traffic to Node 0 but
the model 26% and about 45% to Node 2 while the model
34%. The same slight differences hold for Nodes 3 and 4 and
are due to the traffic variability.

Topology C results are shown in Figure 9. Regarding the
service latency (Figure 9) we can see how it does not con-
verge to the same value for each node, and this behaviour
is the same presented in the model in Figure 4a where we
truncated the trajectory at t = 26. Indeed, the same values
are obtained in the simulation, Node 0, 1 and 3 align at
about 1.5s while Node 2 stabilizes to 1.3s because it cannot
receive enough traffic from Node 0 in order to increase its
latency to match 1.5s. This does happen in the model after
t = 26 but Node 0 would forward more traffic than the
one that is available. Regarding instead the migration ratios,

0 25 50 75 100 125 150 175
Round

1.0

1.2

1.4

1.6

1.8

2.0

2.2

d
t

(s
)

Node 0
Node 1
Node 2
Node 3

(a) Service latency dt (s)

0 25 50 75 100 125 150 175
Round

0.0

0.1

0.2

0.3

0.4

M
ig

ra
tio

n
R

at
io

m03
m01
m10
m12
m21
m23
m32
m30

(b) Migration ratios mij

Fig. 8. Behaviour of the average latency dt and migration ratios for
Topology B (Figure 1b) in the simulated environment.

shown in Figure 9b, we can observe that as the latency, they
match with the truncated solution of the model (Figure 4b)
with slight differences. In particular, m30 reaches 0.9, m02

reaches 0.9 while in the model 1.0, then m03 and m10 reach
0.2 respectively while in the model 0.0 and 0.2.

0 50 100 150 200 250 300
Round

1.0

1.5

2.0

2.5

3.0

3.5

4.0
d
t

(s
)

Node 0
Node 1
Node 2
Node 3

(a) Service latency dt (s)

0 50 100 150 200 250 300
Round

0.0

0.2

0.4

0.6

0.8

1.0

M
ig

ra
tio

n
R

at
io m01

m02
m03
m10
m20
m30

(b) Migration ratios mij

Fig. 9. Behaviour of the average latency dt and migration ratios for
Topology C (Figure 1c) in the simulated environment.

5 EXPERIMENTAL SETTING

After testing the proposed adaptive heuristic in simulations,
we finally implemented it in a testbed of Raspberry Pi
44 connected with Gigabit Ethernet to a dedicated subnet.
Each node implements a Python web server based on the
Flask5 library, that once deployed with Docker, receives
the traffic from a machine that acts as a traffic generator.
The source of the application is published as open source6.
The webserver implements the scheduling decision, indeed,
when a new task arrives, it decides to execute it locally
or forward it to another neighbour node according to the
current configuration of migration ratios. Migration ratios
are updated according to Algorithm 1 every T seconds

For implementing the tasks of variable duration, we
used a loop that performed the same operation repeated
a fixed amount of times, we measured the duration of a
single iteration, and from there, we compute the number of
iterations to match the desired µi parameter for each node.

4. https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/

5. https://pypi.org/project/Flask/
6. https://gitlab.com/gabrielepmattia/framework-2022-tsc

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

The operation carried out in the loop is the computation
of the SHA-512 hash of the same (20 bytes) string. We
measured that the operation in question, in a Raspberry Pi
4, has an average duration of 4.721µs (on 30’000 iterations
repeated 10 times). Therefore, for example, setting µ = 2 is
equal to perform (1/2)/4.721−6 ≈ 105′900 loop iterations.

5.1 Deployment
The deployment process involves two phases. (I) After the
container is started in every node, the webserver is put on
wait for the configuration that is passed via POST. The
configuration is a JSON file where the main parameters
are declared, for example, the queue length K , how many
rounds are used for computing the average latency, the
round duration T and the balance zone size ϵ. This structure
also contains some parameters that regard the identification
of the node: the IP, the ID, the name, µ, the step size α and
λ. The last part regards the topology of the network that
defines with which nodes the communication is possible.
After the configuration is received (II) each node starts 2
threads: the update thread that is in charge of updating the
migration ratios at every round and collecting all statistics
parameters used by the algorithm as service latency, the
number of executed tasks and the queue length; and the
worker thread that is in charge executing a service execution
request by picking the first available from the internal
queue. Now the node is ready to receive the requests from
the task generator and the adaptive heuristic (Algorithm 1)
updates the migration ratios accordingly every T seconds.

5.2 Results
All of the topologies shown in Figure 1 have been run in
the above-mentioned framework, we will now illustrate the
results obtained. In all the experiments, we set Ki = 4, ∀ i,
the round time T = 30s, the tolerance ϵ = 0.1, α = 0.01 and
all the curves have been filtered with the Savitzy-Golay filter
by using window size 20 and polynomial degree 4. Figure 10
shows the behaviour of the average service latency and of
the migration ratios for Topology A (Figure 1a). Regarding
the latency (Figure 10a) we can observe how the alignment
value is slightly different from the model (Figure 2a) and
the simulations (Figure 7a), in particular, the average service
latency is levelled to 1.7s, and this represents an increase of
0.5s with respect the other tests, but as we can notice the
latency at round 1 is not matching the simulations, nor the
model and this is justified by the fact that the model of the
queue M/M/1/K is not representing well the behaviour of
a real node. Moreover, we ignore the eventual background
work of the CPU that may interfere with the tasks that we
are sampling. However, the algorithm manages to level the
latency among all the nodes but with migration ratios that
are different from the model. Indeed, in Figure 10b we can
observe how Node 0 forwards about the 17.5% of its traffic
to Node 2 and the Node 1 forwards about the same amount
of traffic to Node 0. This solution found by the heuristic is
quite different from the one predicted because we point out
that the solution, i.e. the combination of mij ratios, may not
be unique.

The Figure 10 shows the behaviour of the average ser-
vice latency and of the migration ratios for the Topology

0 20 40 60
Round

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d
t

(s
)

Node 0
Node 1
Node 2

(a) Service latency dt (s)

0 20 40 60

Round

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ig

ra
ti

on
R

at
io m01

m02

m10

m12

m20

m21

(b) Migration ratios mij

Fig. 10. Behaviour of the average latency dt and migration ratios for
Topology A (Figure 1a) in the experimental setting.

B (Figure 1b). As the previous result, the final alignment
latency is again different, we pass from 0.8s, 4.1s, 2.6s,
5.5s (respectively from Node 0 to 3) to 2.5s for each node
with respect 1.5s in the model and in the simulations. The
algorithm manages to level the latency by making Nodes 1
and 3 forward about the 30% of their traffic to Node 0, and
Node 3 forward the 15% of its traffic to Node 2 at steady
state.

0 10 20 30 40 50 60
Round

0

1

2

3

4

5

d
t

(s
)

Node 0
Node 1
Node 2
Node 3

(a) Service latency dt (s)

0 10 20 30 40 50 60

Round

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ig

ra
ti

on
R

at
io

m01

m03

m10

m12

m21

m23

m30

m32

(b) Migration ratios mij

Fig. 11. Behaviour of the average latency dt and migration ratios for
Topology B (Figure 1b) in the experimental setting.

The final test on the real deployment regards Topology
C (Figure 1c) and its result is shown in Figure 10. As we
can observe, latencies (Figure 12a) are higher than the ones
predicted of 1.5s, however, the final result is the same since
Nodes 0, 1 and 3 are aligned while Node 2 instead cannot
reach the alignment latency (see Figures 5a and 8a). This is
also reflected in the migration ratios (Figure 12b) in which
we have Node 3 which forwards the 70% of its load to Node
0 while Node 0 will try to forward all of its traffic to Node
2, even if the Figure is cut to t = 120.

Concluding, the results in a real testbed of Raspberry
Pi showed how the adaptive heuristic algorithm allows
reaching the final goal of levelling latency with a behaviour
that was predicted both in the model and in the simulations.
However, due to the absence of a more precise model of a
real node, the predicted alignment latency and migration ra-
tios are not the same but this does not limit the applicability
of the proposed heuristic, rather the tests showed how it can
work even in a real deployment.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0 25 50 75 100 125 150
Round

0

2

4

6

8

10

d
t

(s
)

Node 0
Node 1
Node 2
Node 3

(a) Service latency dt (s)

0 25 50 75 100 125 150

Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ig

ra
ti

on
R

at
io

m01

m02

m03

m10

m20

m30

(b) Migration ratios mij

Fig. 12. Behaviour of the average latency dt and migration ratios for
Topology C (Figure 1c) in the experimental setting.

6 CONCLUSIONS

In this paper, we showed a mathematical modelling of a
system of n Fog or Edge nodes which envisions a dynamic
in which the service latency is levelled among all the nodes
in a given topology. We also provided proof of the conver-
gence of the model to a Wardrop equilibrium. Then, even if
from the model we are able to derive the solution, that is,
the migration ratios mij from any node i to a node j, we
designed a fully decentralised and adaptive heuristic which
is able to reach the same solution but without the need to
have a centralised entity (which is able to run the model)
and with potential capability to adapt when the load varies
over time. We run the algorithm both in simulations and in
a real deployment of Raspberry Pi boards, and we showed
how the solution is very similar to the one predicted by the
mathematical model. However, further research directions
are needed to improve the proposed approach. First of
all, the communication latency has to be included in the
model, while in our case, we only consider them in the final
Raspberry Pi deployment, which justifies the differences in
the results. Moreover, a more precise model for a real node
must be studied since the M/M/1/K does not approximate
exactly a real computer node, and this again justifies the
discrepancy between the model and the final deployment
results. Then, as the last improvements points, a load that
varies over time can be introduced in the model, instead of
having a fixed λi we can suppose to have a λi(t) function,
and we can also consider to jointly level even other perfor-
mance parameters beyond the single service latency.

ACKNOWLEDGMENTS

This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and Re-
silience Plan funded by the European Union - NextGenera-
tionEU.

The authors would also like to thank the former master
student Marco Magnani for his preliminary implementation
of the proposed heuristic in a cluster of Raspberry Pi [29].

REFERENCES

[1] R. Fantacci and B. Picano, “Performance analysis of a delay
constrained data offloading scheme in an integrated cloud-fog-
edge computing system,” IEEE Transactions on Vehicular Technology,
vol. 69, pp. 12 004–12 014, 2020.

[2] M. Haghi Kashani and E. Mahdipour, “Load balancing algorithms
in fog computing: A systematic review,” IEEE Transactions on
Services Computing, pp. 1–1, 2022.

[3] M. Kaur and R. Aron, “A systematic study of load balancing
approaches in the fog computing environment,” The Journal of
Supercomputing, vol. 77, no. 8, pp. 9202–9247, Aug 2021. [Online].
Available: https://doi.org/10.1007/s11227-020-03600-8

[4] A. Chandak and N. K. Ray, “A review of load balancing in
fog computing,” in 2019 International Conference on Information
Technology (ICIT), 2019, pp. 460–465.

[5] R. Beraldi, C. Canali, R. Lancellotti, and G. Proietti Mattia, “Ran-
domized load balancing under loosely correlated state informa-
tion in fog computing,” in 23rd ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM’20), Alicante, Spain, Nov. 2020.

[6] S. Harnal, G. Sharma, N. Seth, and R. D. Mishra, Load
Balancing in Fog Computing Using QoS. Singapore: Springer
Singapore, 2022, pp. 147–172. [Online]. Available: https:
//doi.org/10.1007/978-981-16-3448-2 8

[7] D. Baburao, T. Pavankumar, and C. S. R. Prabhu, “Load
balancing in the fog nodes using particle swarm optimization-
based enhanced dynamic resource allocation method,” Applied
Nanoscience, Jul 2021. [Online]. Available: https://doi.org/10.
1007/s13204-021-01970-w

[8] S. S. Tripathy, R. K. Barik, and D. S. Roy, “Secure-m2fbalancer:
A secure mist to fog computing-based distributed load balancing
framework for smart city application,” in Advances in Communica-
tion, Devices and Networking, S. Dhar, S. C. Mukhopadhyay, S. N.
Sur, and C.-M. Liu, Eds. Singapore: Springer Singapore, 2022, pp.
277–285.

[9] Q.-M. Nguyen, L.-A. Phan, and T. Kim, “Load-balancing of
kubernetes-based edge computing infrastructure using resource
adaptive proxy,” Sensors, vol. 22, no. 8, 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/8/2869

[10] A. Singh, G. S. Aujla, and R. S. Bali, “Container-based
load balancing for energy efficiency in software-defined edge
computing environment,” Sustainable Computing: Informatics and
Systems, vol. 30, p. 100463, 2021. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S2210537920301876

[11] F. Zhang, R. Deng, X. Zhao, and M. M. Wang, “Load balancing
for distributed intelligent edge computing: A state-based game
approach,” IEEE Transactions on Cognitive Communications and Net-
working, vol. 7, no. 4, pp. 1066–1077, 2021.

[12] S. Sthapit, J. Thompson, N. M. Robertson, and J. R. Hopgood,
“Computational load balancing on the edge in absence of cloud
and fog,” IEEE Transactions on Mobile Computing, vol. 18, no. 7, pp.
1499–1512, 2019.

[13] X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun, and
A. X. Liu, “Dynamic resource allocation for load balancing
in fog environment,” Wireless Communications and Mobile
Computing, vol. 2018, p. 6421607, Apr 2018. [Online]. Available:
https://doi.org/10.1155/2018/6421607

[14] H. M. Shakir and J. Karimpour, “Systematic study of load balanc-
ing in fog computing in iot healthcare system,” in 2021 Interna-
tional Conference on Advanced Computer Applications (ACA), 2021,
pp. 132–137.

[15] M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R.
Ahmed, O. Kaiwartya, and A. James-Taylor, “Toward a heteroge-
neous mist, fog, and cloud-based framework for the internet of
healthcare things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4049–4062, 2019.

[16] S. Malik, K. Gupta, D. Gupta, A. Singh, M. Ibrahim,
A. Ortega-Mansilla, N. Goyal, and H. Hamam, “Intelligent
load-balancing framework for fog-enabled communication in
healthcare,” Electronics, vol. 11, no. 4, 2022. [Online]. Available:
https://www.mdpi.com/2079-9292/11/4/566

[17] H. A. Khattak, H. Arshad, S. u. Islam, G. Ahmed, S. Jabbar,
A. M. Sharif, and S. Khalid, “Utilization and load balancing in
fog servers for health applications,” EURASIP Journal on Wireless
Communications and Networking, vol. 2019, no. 1, p. 91, Apr 2019.
[Online]. Available: https://doi.org/10.1186/s13638-019-1395-3

[18] A. Mijuskovic, A. Chiumento, R. Bemthuis, A. Aldea, and
P. Havinga, “Resource management techniques for cloud/fog and
edge computing: An evaluation framework and classification,”
Sensors, vol. 21, no. 5, 2021. [Online]. Available: https:
//www.mdpi.com/1424-8220/21/5/1832

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[19] N. Agrawal, “Dynamic load balancing assisted optimized access
control mechanism for edge-fog-cloud network in internet of
things environment,” Concurrency and Computation: Practice and
Experience, vol. 33, no. 21, p. e6440, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6440

[20] F. Alqahtani, M. Amoon, and A. A. Nasr, “Reliable scheduling and
load balancing for requests in cloud-fog computing,” Peer-to-Peer
Networking and Applications, vol. 14, no. 4, pp. 1905–1916, Jul 2021.
[Online]. Available: https://doi.org/10.1007/s12083-021-01125-2

[21] W. Li, S. Cao, K. Hu, J. Cao, and R. Buyya, “Blockchain-
enhanced fair task scheduling for cloud-fog-edge coordination
environments: Model and algorithm,” Security and Communication
Networks, vol. 2021, p. 5563312, Apr 2021. [Online]. Available:
https://doi.org/10.1155/2021/5563312

[22] E. Batista, G. Figueiredo, and C. Prazeres, “Load balancing
between fog and cloud in fog of things based platforms
through software-defined networking,” Journal of King Saud
University - Computer and Information Sciences, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1319157821002901

[23] A. Pietrabissa and V. Suraci, “Wardrop equilibrium on
time-varying graphs,” Automatica, vol. 84, pp. 159 –
165, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0005109817303643

[24] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H.
Ali, “A load balancing and optimization strategy (lbos) using
reinforcement learning in fog computing environment,” Journal of
Ambient Intelligence and Humanized Computing, pp. 1–16, 2020.

[25] A. AlOrbani and M. Bauer, “Load balancing and resource al-
location in smart cities using reinforcement learning,” in 2021
IEEE International Smart Cities Conference (ISC2). 445 Hoes Lane,
Piscataway, NJ 08854-4141 USA: IEEE, 2021, pp. 1–7.

[26] G. P. Mattia and R. Beraldi, “On real-time scheduling in fog
computing: A reinforcement learning algorithm with application
to smart cities,” in 2022 IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affiliated Events
(PerCom Workshops). 445 Hoes Lane, Piscataway, NJ 08854-4141
USA: IEEE, 2022, pp. 187–193.

[27] S. Fischer, L. Olbrich, and B. Vöcking, “Approximating wardrop
equilibria with finitely many agents,” in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008, pp. 238–252.

[28] M. Beckmann, C. B. McGuire, and C. B. Winsten, “Studies in the
economics of transportation,” Econometrica, vol. 26, no. 1, p. 183,
Jan. 1958.

[29] G. Proietti Mattia, M. Magnani, and R. Beraldi, “A latency-
levelling load balancing algorithm for fog and edge computing,”
in 25th ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM’22), Montreal,
Canada, Oct. 2022. [Online]. Available: https://dl.acm.org/doi/
abs/10.1145/3551659.3559048

Gabriele Proietti Mattia received the BSc,
the MSc and PhD degrees in Engineering in
Computer Science from Sapienza University of
Rome, Italy, in 2017, 2019 and 2023, respec-
tively. He is currently a Postdoc Researcher in
Engineering in Computer Science, and his re-
search interests include Fog and Edge com-
puting, distributed systems and algorithms, mi-
croservices, mobile applications and machine
learning.

Antonio Pietrabissa is Associate Professor at
the Department of Computer, Control and Man-
agement Engineering “Antonio Ruberti” (DIAG)
of the University of Rome Sapienza, where he
received his M.Sc. degree in Electronics Engi-
neering and his Ph.D. degree in Systems En-
gineering in 2000 and 2004, respectively, and
where he teaches Automatic Control and Pro-
cess Automation. Since 2000, he has partici-
pated in about 30 EU and National research
projects, playing the role of scientific coordinator

of the projects 5G-ALLSTARS, on 5G communications, funded within
the H2020 Europe-South Korea cooperation, ARIES, on fire emergency
prevention, funded by ESA, DAAS, on safe communications in explosive
risk areas, funded by MIUR-FILAS, and FedMedAI, on medical applica-
tions of federated learning, funded by Regione Lazio (IT). He serves as
Associate Editor for Control. Eng. Pract. (Elsevier) and for IEEE Trans.
Autom. Sci. Eng. His research focuses on the application of systems and
control theory to the analysis and control of networks. He is the author
of about 60 journal papers and 85 conference papers.

Roberto Beraldi received the laurea Degree
from the ’University of Calabria’ in 1991, a mas-
ter degree from CEFRIEL (Politecnico di Milano)
in 1992 and a PhD in computer science in 1996.
From 1996 he worked at Italian’s National Insti-
tute of Statistics (ISTAT), and since 2002, works
at the Department of Computer, Control and
Management Engineering ”Antonio Ruberti” of
Sapienza University of Rome, Italy, where he is
currently an Associate Professor. His research
interests include mobile networking, Fog/Edge

computing, and distributed systems. He regularly serves as TPC mem-
ber of international conferences and journals in these fields.

