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Abstract—Suitable representations of dynamical systems can
simplify their analysis and control. On this line of thought, this
article aims to answer the following question: Can a transformation
of the generalized coordinates under which the actuators directly
perform work on a subset of the configuration variables be found?
We not only show that the answer to this question is yes but also
provide necessary and sufficient conditions. More specifically, we
look for a representation of the configuration space such that the
right-hand side of the dynamics in Euler–Lagrange form becomes
[I O]Tu, being u the system input. We identify a class of sys-
tems, called collocated, for which this problem is solvable. Under
mild conditions on the input matrix, a simple test is presented to
verify whether a system is collocated or not. By exploiting power
invariance, we provide necessary and sufficient conditions that a
change of coordinates decouples the input channels if and only if
the dynamics is collocated. In addition, we use the collocated form
to derive novel controllers for damped underactuated mechanical
systems. To demonstrate the theoretical findings, we consider sev-
eral Lagrangian systems with a focus on continuum soft robots.
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NOMENCLATURE

Symbol Description.
R

n Euclidean space of dimension n.
S
n Unit sphere of dimension n.

R
n×m Space of n×m matrices over R.

X Manifold of interest with X =
{M,N}.

R
>0 Positive real numbers n.

TvX Tangent space of manifold X at v ∈ X .
B(v) Neighborhood of v ∈ X .
se(3) Special Euclidean algebra of dimension

3.
so(3) Special orthogonal algebra of dimen-

sion 3.
In ∈ R

n×n Identity matrix of dimension n.
On×m Zero matrix of dimension n×m.
P > 0 Symmetric positive-definite matrix.
Si ∈ R

n Column i of matrix S ∈ R
n×m.

Sij ∈ R Element in row i and column j of S.
[v]i ∈ R

i Vector containing the first i components
of v ∈ R

n, with i ≤ n.
‖v‖ Euclidean norm of v.
r̃ ∈ so(3) Skew-symmetric matrix defined by r ∈

R
3.

α̂=

(
β̃ γ
0 0

)
∈se(3) Tensor representation of α=(βT γT )T

with β,γ ∈ R
3.

Jf (x)=
∂f
∂x ∈Rl×h Jacobian of the vector function f(x) :

R
h→R

l.
tanh(v) Vector obtained by applying tanh(·)

componentwise to v.

I. INTRODUCTION

E LECTRICAL, hydraulic, and mechanical systems, or their
combinations, are Lagrangian systems that usually exhibit

complex behavior. However, their physical nature displays spe-
cial properties, such as symmetry and passivity, which have been
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exploited to solve many control problems [1], [2], [3], [4], [5],
otherwise difficult to address for generic nonlinear dynamics. To
cope with their high nonlinearity and large number of degrees
of freedom (DOF), representations with specific structures play
a crucial role in simplifying analysis, as well as control design
and synthesis. For example, coordinate transformations are often
used to highlight some internal structures that simplify the
derivation of feedback controllers for robotic systems and prove
their stability [6], [7], [8], [9]. This article considers the input
decoupling (ID) problem for input-affine Lagrangian systems.
In particular, given a Lagrangian system whose inputs enter
the second-order equations of motion through a configuration-
dependent actuation matrix, we study under which conditions
on the definition of generalized coordinates each input affects
one and only one equation of motion. The coordinates solving
the ID problem constitute a set of variables that simplify con-
trol design and synthesis because the input directly affects the
equations of motion in a decentralized form. If the decoupling
coordinates are regarded as system outputs, any control law
implemented in these coordinates automatically decouples also
the input–output channels. For fully actuated or overactuated
Lagrangian systems, i.e., when the number of independent inputs
is equal to or larger than the number of generalized coordinates,
the ID problem can be solved by a configuration-dependent
input transformation that inverts (or pseudoinverts) the actuation
matrix. On the other hand, in the case of underactuated systems, a
solution is available so far if the actuation matrix is constant and
requires only a linear change of generalized coordinates [10].

For multi-input–multioutput plants described in state-space
form, the input–output decoupling problem is solved by an
inversion-based feedback controller, both in the linear [11] and
nonlinear case [12], [13], [14]. For this, a feedback transfor-
mation is needed that requires a state and input transformation
together with a feedback action. In particular, input–output
decoupling is possible by a static state feedback if and only
if the system has a well-defined vector relative degree, namely a
nonsingular decoupling matrix [15], [16]. This result can be used
to solve the ID problem for Lagrangian systems by taking the
configuration variables (or a subset of them) as system outputs.
In fact, in this way, the system has a vector relative degree, with
all outputs having uniform relative degree two. It can be shown
that, in the case of underactuation, the necessary and sufficient
condition is the involutivity of the distribution spanned by the
columns of the actuation matrix [17]. Unfortunately, involutivity
is not easy to check, especially for high-dimensional dynamics,
and has to be evaluated case by case, see [18], [19], [20], and [21].
Furthermore, finding the ID state variables in this case requires
solving a system of nonlinear partial differential equations [16,
Ch. 5], which could be impractical for control synthesis. Finally,
in [22], Skogestad et al. have proposed input transformations for
dynamic processes that achieve exact linearization and ID, under
complete model knowledge. However, the analysis is restricted
to systems with equal number of states, inputs, and outputs.

In this article, we focus on Lagrangian systems and we
show that the choice of particular coordinates, called actua-
tion coordinates, solves the ID problem without requiring a
configuration-dependent transformation of the input nor a state

Fig. 1. Graphical representation of the proposed change of coordinates ad-
dressing the ID problem for a fully actuated Lagrangian system. In the q
coordinates, the input u undergoes a nonlinear transformation through the
actuation matrix A(q) when performing work on q, i.e., τq = A(q)u. The
proposed change of coordinates θ = h(q) bends the configuration space so that
each component of u acts directly on one component of θ, namely τθ = u.
The existence of this transformation is possible because of the conservation of
power Ḣq , represented by the yellow area, under a change of coordinates, i.e.,
Ḣq = Ḣθ .

feedback. We derive necessary and sufficient conditions under
which the actuation coordinates exist and constructively show
that these coordinates solve the ID problem for fully actuated,
overactuated, and underactuated Lagrangian systems. In particu-
lar, the unactuated coordinates remain arbitrary when the system
is underactuated.

These results stem from power invariance under a change
of coordinates, as graphically illustrated in Fig. 1 for the fully
actuated case. Remarkably, similar considerations hold also
when the dynamics is underactuated. We apply the results to
several mechanical examples as archetypal Lagrangian systems.
In addition, we prove that robotic systems driven by threadlike
actuators, such as inelastic tendons or thin fluidic chambers,
always admit actuation coordinates. Our results have relevant
consequences on the control of continuum soft robots and other
underactuated mechanical systems. Indeed, recent control laws
for planar underactuated soft robots [10], [23], [24], [25], [26]
generalize to all collocated mechanical systems with damping,
such as soft robots moving in 3-D. Interestingly, the energy-
based regulator in [27] uses in fact actuation coordinates to
decouple the equations of motion of a 3-DOF underactuated soft
robotic system. Similarly, in flexible link robots, the actuation
coordinates are the clamped angles at the base of each beam,
which have been extensively used in control design [28].

The rest of the article is organized as follows. In Section II, we
introduce the notation and formalize the ID problem. Section III
defines the class of Lagrangian systems, called collocated, for
which the ID problem is solvable. Necessary and sufficient
conditions for solving the ID problem are then derived for
fully actuated or overactuated dynamics in Section IV and for
underactuated systems in Section V. In Section VI, we prove
that threadlike actuators yield collocated mechanical systems.
Section VII extends two control strategies derived for under-
actuated mechanical systems with constant actuation matrix to
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the collocated case, validating one of these controllers on a 3-D
tendon-driven underactuated soft robot. Finally, Section VIII
concludes this article.

II. PRELIMINARIES

A. Notation

We denote vectors and matrices with bold letters. Arguments
of the functions are omitted when clear from the context. The
notations adopted in the article are given in the Nomenclature.

B. Dynamic Model

Let q ∈ M be the generalized coordinates of a dynamical
system evolving on an n-dimensional smooth manifold M with
Lagrangian Lq(q, q̇). The system trajectories satisfy the Euler–
Lagrange equations of motions⎧⎨

⎩
d
dt

(
∂Lq(q,q̇)

∂q̇

)T
−
(

∂Lq(q,q̇)
∂q

)T
= τ q(q,u)

τ q(q,u) = A(q)u
(1)

whereu ∈ R
m are the available actuation inputs,A(q) ∈ R

n×m

is the actuation matrix, and τ q(q,u) ∈ Im(A(q)) collects the
generalized forces performing work on q. For all q ∈ M, we
assume that A(q) is a full-rank matrix, i.e., r = rank(A(q)) =
min(m,n). When the dynamics is fully actuated (m = n) or
underactuated (m < n), this is equivalent to asking that the
actuation channels are all independent. On the other hand, if (1)
is overactuated (m > n), we assume that there are exactly n in-
dependent inputs. Note that, for the following derivations, when
r = m∗ < min(m,n) one can consistently discard m−m∗ lin-
early dependent columns of A(q) and consider the dynamics as
underactuated.

In Appendix A, we recall two basic properties of Lagrangian
systems used in the following results.

C. Problem Statement

We look for a change of coordinates θ = h(q) from B(q) ⊂
M to N where each of the first r equations of motion in (1) is
affected by one, and only one, independent actuator input, i.e.,
the right-hand side of the transformed equations of motion (see
Property 2 in Appendix A) takes the form

τ θ(θ,u) = Aθ(θ)u =

(
Ir

On−r×r

)
u. (2)

We refer to such problem as the ID problem for the Lagrangian
dynamics (1). If a solution exists, then we say that (1) admits
a collocated form. Note that (2) covers only the fully- and
underactuated cases. When the dynamics is overactuated, i.e.,
m > n, it is impossible to obtain (2) because only r = n input
channels can be decoupled, and the remainingm− n inputs will
affect the dynamics through a configuration-dependent actuation
matrix.

III. COLLOCATED LAGRANGIAN SYSTEMS

In this section, we characterize a new class of Lagrangian
systems, which we call collocated because only such Lagrangian

dynamics admit a collocated form under a change of generalized
coordinates. In addition, a set of coordinates that solve the ID
problem comes for free without further system analysis.

To this end, we will exploit a concept that is known as the
passive output in the context of passivity-based control [29].
Consider the following vector function linear in the velocity:

ẏ = AT (q)q̇

which is called the passive output because (1) is passive with
respect to the pair (u, ẏ), with the storage function being the
system Hamiltonian (see Appendix A). We will assume that (1)
has ẏ integrable as follows.

Integrability assumption: For all q ∈ M, there exists a func-
tion g(q) : M → R

m such that

Jg(q) =
∂g

∂q
= AT (q). (3)

If the passive output is integrable, then we say that the
Lagrangian system (1) is collocated because it admits a col-
located form as defined in Section II-C. Furthermore, we define
y = g(q) as actuation coordinates because, in such coordinates,
u acts directly on the equations of motion according to (2).

Remark: Each component of g(q) is defined up to a constant
since any function ḡ(q) = g(q) + k, with k ∈ R

m, satisfies the
condition J ḡ = Jg .

The integrability assumption requires each column of A(q)
to be the gradient of a scalar function of the configuration vari-
ables. If A(q) is constant, i.e., A(q) = A, then g(q) = ATq.
More in general, when the column Ai(q) has continuous partial
derivatives, ẏi = AT

i (q)q̇ is integrable [30, Ch. 2] if and only if

∂Aji

∂qk
=

∂Aki

∂qj
∀j, k ∈ {1, . . . , n}. (4)

Note that this condition is equivalent to asking that, when ui

is constant, the generalized work done by ui on q does not
depend on the system trajectories but only on the initial and
final configurations qa and qb, respectively, i.e.,

Wui
(q) :=

∫ qb

qa

uiA
T
i (q)dq = ui [gi(qb)− gi(qa)]

where the last equality follows from the gradient theorem [30,
Prop. 1, Ch. 2]. In other words, Pi(ui, q) := uigi(q) plays the
role of a potential energy for the dynamics. If the actuation
matrix is obtained using a differential formalism, such as the
virtual works principle, it is reasonable to expect—although
without any guarantee—that the integrability holds due to the
inherent differentiation involved. It is also worth observing the
following.

Remark: If AT (q) is integrable according to (3), then the
orthogonal complement to the codistribution spanned byAT (q)
satisfies the Frobenius theorem. However, in general, the inverse
implication does not hold without also an input transformation.

Even when (4) is satisfied, it could be challenging to integrate
the passive output ẏ in the closed form. Nonetheless, it is always
possible to perform the numerical integration online based on the
measure of q and q̇. Assuming an exact knowledge of A(q) and
neglecting integration errors, there is formally no difference in
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Fig. 2. Geostationary satellite actuated by a normal force u1 and a tangential
force u2. The body configuration is described by the distance q1 from the Earth
center and the angle q2 with respect to the horizontal axis. Only the normal force
is collocated because it performs work directly and only on q1.

havingy in a closed form or computing it online. Furthermore, in
many cases, the numerical integration should not be necessary.
This is because the actuation coordinates are inherently related
to the system inputs and should be easily measurable.

In some cases, the integrability may come directly as a con-
sequence of the physical nature of the system, as illustrated in
the following.

Example 1 (Cartesian forces on a robot): Inspired by the
work in [31], consider a manipulator with n-DOF subject to m
external forces applied to its structure. Assume that each force
f i changes its magnitude over time but keeps the same direction
in the global Cartesian frame so that

f i = df ,iui; i ∈ {1, . . . ,m}

with ‖df ,i‖ = 1, and where df ,i ∈ R
3 represents the direction

of f i and ui ∈ R
>0 its magnitude. If pi(q) ∈ R

3 denotes the
point of application of f i in the global frame, then the effect of
the force in the dynamics is

τq,i = JT
pi
(q)f i = JT

pi
(q)df ,iui = Ai(q)ui.

Thus, one can integrate Ai(q) as gi(q) = dT
f ,ipi(q). �

On the other hand, the integrability conditions may not hold
even for elementary dynamics.

Example 2 (Geostationary satellite): Consider a geostation-
ary satellite orbiting around the Earth in a plane. The configu-
ration q = (q1 q2)

T describes its motion, being q1 the distance
from the Earth center and q2 the angle with respect to a reference
axis, as shown in Fig. 2 . The satellite is controlled by a normal
and tangential force, denoted as u1 and u2, respectively. The
application of the Lagrangian formalism yields

τ q = A(q)u =

(
1 0
0 q1

)
u.

The first column of A(q) is already in the collocated form
because u1 performs work only on q1. However, the second

column of A(q) is nonintegrable because

∂A12

∂q2
= 0 	= 1 =

∂A22

∂q1
.

Indeed, the generalized work done on q by the tangential force
u2 depends on the time evolution of q1. �

In the following, we consider the three different actuation sce-
narios, namely fully actuated, overactuated, and underactuated
dynamics.

IV. CHANGE OF COORDINATES FOR FULLY ACTUATED

SYSTEMS

In this section, we show that when the system is fully actuated,
the existence ofn actuator coordinates is necessary and sufficient
to bring the dynamics to the collocated form. This case allows il-
lustrating the results in the most simple scenario, where an input
transformation is sufficient to solve the ID problem. However,
the same arguments will be used also for underactuated systems.

Theorem 1: Suppose the system is fully actuated, i.e., m =
n. There exists a change of coordinates θ = h(q) : B(q) → N
such that (1) takes the form

d

dt

(
∂Lθ(θ, θ̇)

∂θ̇

)T

−
(
∂Lθ(θ, θ̇)

∂θ

)T

= u (5)

i.e., Aθ(θ) = In, if and only if the integrability assumption (3)
holds. Let g(q) be the integral of AT (q)q̇. Then, a possible
choice for θ is θ = g(q).

Proof: Under the integrability assumption, θ = g(q) defines
a change of coordinates because its Jacobian Jg(q) = AT(q)
has rank n at q.

Since the generalized power is coordinate invariant
(Property 2 in Appendix A), it follows

θ̇
T
τ θ = q̇T τ q.

Noting that θ̇ = Jg(q)q̇ and using τ q = A(q)u, the previous
equation rewrites as

q̇TJT
g (q)τ θ = q̇TA(q)u

or, equivalently

q̇T
(
JT

g (q)τ θ −A(q)u
)
= 0. (6)

Since (6) holds for all q̇ ∈ TqM, it follows that

JT
g (q)τ θ −A(q)u = 0.

Furthermore, Jg(q) = AT (q) leads to

A(q) (τ θ − u) = 0.

The previous equation defines a homogeneous linear system in
the unknown τ θ − u, which admits the unique solution τ θ = u
since A(q) is nonsingular, thus yielding the sufficiency of (5).

As for the necessity, suppose that a change of coordinates
θ = h(q) exists such that (5) holds. Property 2 implies that, for
all q̇ ∈ TqM

q̇T
(
JT

h(q)−A(q)
)
u = 0
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Fig. 3. Planar mechanism with two rotational joints having configuration
q ∈ S1 × S1. Positive (relative) rotations are counted counterclockwise. For
i = 1, 2, the force ui actuates a cart coupled to the robot by a linear spring of
stiffness ki. The dynamics of the carts is negligible, and thus, the forces u act
instantaneously on the mechanism.

leading to (
JT

h(q)−A(q)
)
u = 0 ∀u ∈ R

n.

If one chooses u = (In)i; i ∈ {1, . . . , n}, then(
JT

h(q)−A(q)
)
u = (JT

h(q)−A(q))i = 0.

Thus, it holds JT
h(q) = A(q) and g(q) = h(q). �

The following example illustrates the previous result.
Example 3 (Spring actuated mechanism): Consider a planar

mechanism with two passive revolute joints, having angles q1
and q2 so thatq = (q1 q2)

T . A spring with stiffnesski is attached
to the distal end of each link, whose length is li, i = 1, 2. The
springs are also connected to two carts moving on linear rails
under the forces u1 and u2, with reference to Fig. 3. Assuming
that the dynamics of the carts is negligible, it can be shown that
the actuator inputs u directly affect the joint motion through the
actuation matrix

A(q) =

(−l1s1 l1c1 + l2c12
0 l2c12

)
where si(ci) = sin(qi) (cos(qi)) and sij(cij) = sin(qi +
qj)(cos(qi + qj)). Outside of singularities q1 ∈ {0, π} and q1 +
q2 ∈ {±π/2}, rank(A(q)) = 2 and the integrability test (4) is
successful because

∂A11

∂q2
=

∂ (−l1s1)

∂q2
= 0 =

∂A21

∂q1

∂A21

∂q2
=

∂ (l1c1 + l2c12)

∂q2
= −l2s12

=
∂ (l2c12)

∂q1
=

∂A22

∂q1
.

The passive output is integrable as

y =

(
l1c1

l1s1 + l2s12

)
.

Note that y1 is the x-coordinate of the position of the spring end
attached to link 1. Similarly, y2 is the y-coordinate of the spring
attached to link 2. Indeed, the forces u1 and u2 perform work
on the distal ends of the spring attached to the mechanism along
these directions. �

A. Overactuated Case

The previous result extends to overactuated systems, namely
dynamics with more inputs than generalized coordinates. Thus,
we have r = n < m. We partitionA(q), which is a wide matrix,
as

A(q) =
(
Aa(q) Ao(q)

)
(7)

where Aa(q) ∈ R
n×n andAo(q) ∈ R

n×(m−n). Without loss of
generality, we can have that rank(Aa(q)) = n and the integra-
bility condition holds for Aa(q).

Corollary 1: If the system is overactuated, i.e., r = n < m
and the same hypotheses of Theorem 1 hold for Aa(q), then
there exists a change of coordinatesθ = h(q) : B(q) → N such
that (1) takes the form

d

dt

(
∂Lθ(θ, θ̇)

∂θ̇

)T

−
(
∂Lθ(θ, θ̇)

∂θ

)T

=
(
In Ao,θ(θ)

)
u

(8)
where

Ao,θ(θ) = A−1
a Ao

(
q = h−1(θ)

) ∈ R
n×(m−n).

If g(q) is the integral of AT
a (q)q̇, then θ can be chosen as

θ = g(q).
Proof: Choosing again θ = g(q) and following steps similar

to those of the proof of Theorem 1, one obtains

Aa(q)τ θ = A(q)u.

ExpandingA(q) into (7) and left-multiplying the previous equa-
tion by A−1

a (q) gives

τ θ = A−1
a (q)

(
Aa(q) Ao(q)

)
u

=

⎛
⎜⎝In A−1

a (q)Ao(q)︸ ︷︷ ︸
Ao,θ(θ)

⎞
⎟⎠u

with q = g−1(θ).
Now, assume a change of coordinates θ = h(q) exists such

that (8) holds. After some computations, power invariance leads
to the algebraic system(

JT
h(q)(q)−Aa(q) JT

h(q)Ao,θ(q)−Ao(q)
)
u = 0

which must hold for all u ∈ R
m. By taking ui =

(Im)i; i ∈ {1, . . . ,m}, it follows JT
h(q) = Aa(q) and

Ao(q) = JT
h(q)Ao,θ(q). Hence, at least n passive outputs are

integrable as y = h(q). �
Note that it is not possible, in general, to simplify the expres-

sion of both terms in the actuation matrix because there are too
many input variables to be decoupled.

Example 4 (Tendon-driven joint): Consider the tendon-driven
finger of [32, Ch. 6.4] with 1-DOF q and two actuator inputs
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Fig. 4. Tendon-driven rotational joint having a single configuration variable
q ∈ S1. The cables tension u1 and u2 generate a torque at the joint.

u = (u1 u2)
T , as sketched in Fig. 4. Assume for simplicity that

the angle q > 0 (similar results hold for q < 0). The system input
is τ q = A(q)u, where

A(q) =
(√

a2 + b2 sin
(
tan−1

(
a
b

)
+ q

2

) −R
)

and u collects the cable tensions. Thus, the passive output is

ẏ = AT (q)q̇ =

(√
a2 + b2 sin

(
tan−1

(
a
b

)
+ q

2

)
q̇

−Rq̇

)
.

Since the system is overactuated, there are two possible choices
of the actuation coordinates out of singularities of A(q). When
q = −2 tan−1

(
a
b

)
, the first column of A(q) becomes zero, and

the first actuator does not have any effect on the motion. In this
case, one can easily integrate ẏ as

y = g(q) =

(
−2

√
a2 + b2 cos

(
tan−1

(
a
b

)
+ q

2

)
−Rq

)
.

As expected, the choice of either the first or second component
of y yields dynamics in the form of (8). Note that y is the tendon
displacement with respect to the straight configuration. In fact,
the system inputs perform work directly on the finger tendons.�

V. CHANGE OF COORDINATES FOR UNDERACTUATED SYSTEMS

We now focus on underactuated systems, specifically dynam-
ics for which the number of independent actuator inputs is less
than that of DOF. In the following, we show that also in this
case, the actuation coordinates solve the ID problem. First, it is
convenient to expand the actuation matrix as

A(q) =

(
Aa(q)
Au(q)

)
(9)

where Aa(q) ∈ R
m×m is nonsingular and Au(q) ∈

R
(n−m)×m. Note that such partition is always possible after

reordering the linearly independent rows of A(q). Furthermore,
since n > r = m, ẏ is an m-dimensional vector.

Theorem 2: Assume that (1) is underactuated, i.e., m < n.
The integrability assumption is a necessary and sufficient condi-
tion for a change of coordinates θ = h(q) : B(q) → N to exist
such that (1) becomes

d

dt

(
∂Lθ(θ, θ̇)

∂θ̇

)T

−
(
∂Lθ(θ, θ̇)

∂θ

)T

=

(
u

0n−m

)
(10)

i.e., Aθ(θ) has the form

Aθ(θ) =

(
In

O(n−m)×m

)
.

Let g(q) be the integral of AT (q)q̇. Then, a possible choice of
θ is

θ =

(
g(q)
0n−m

)
.+

(
Om×m Om×(n−m)

O(n−m)×m In−m

)
.q. (11)

Proof: The choice of θ as given in (11) qualifies as a change
of coordinates because its Jacobian

Jh(q) =

(
AT

a (q) AT
u (q)

O(n−m)×m In−m

)
(12)

is nonsingular at q. Power invariance and (12) imply

θ̇
T
τ θ = q̇TJT

h(q)τ θ = q̇TA(q)u = q̇T τ q.

Furthermore, being q̇ arbitrary, it follows JT
h(q)τ θ = A(q)u,

which can be rewritten as(
Aa(q) Om×(n−m)

Au(q) In−m

)
︸ ︷︷ ︸

JT
h (q)

(
τ θa

− u
τ θu

)
= 0 (13)

where we expanded τ θ into the two vectors τ θa
∈ R

m and
τ θu

∈ R
n−m performing work on θa and θu, respectively.

Equation (13) describes a homogeneous linear system with the
unique solution (

τ θa
− u

τ θu

)
= 0 (14)

being that JT
h(q) is nonsingular.

To prove the necessary part of the statement, suppose there
exists θ = h(q) such that (10) holds and partition

Jh(q) =

(
Jha

(q)

Jhu
(q)

)

with Jha
(q) ∈ R

m×n and Jhu
(q) ∈ R

(n−m)×n. Exploiting
once again power invariance, we obtain, after some computa-
tions

q̇T
(
JT

ha
(q)−A(q)

)
u = 0

or, equivalently

Jha
(q) = AT (q).

Thus, the first m components of h(q) satisfy the integrability
assumption. �

In Appendix B, we report an alternative proof of the sufficient
part of Theorem 2, which uses algebraic arguments instead of
power invariance.

Remark: There is no constraint on choosing the unactuated
variables, except that the corresponding Jacobian is nonsingular.
Indeed, the factorization given in (13) holds independently ofθu.
In other words, Theorem 2 does not rely on a specific choice of
θu, which could be used to further simplify the structure of the
equations of motion.
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Fig. 5. Continuum soft robot discretized into two bodies. Under the PCC
assumption, the configuration of each body is described by its curvature κi,
bending angle φi, and elongation δLi for i = 1, 2. Three tendons run from the
base to the tip and spatial motion is obtained by applying a suitable cable tension
u ∈ R3.

Note that the previous results can also be derived in a Hamil-
tonian formulation by considering the type 2 generating func-
tion [33] G2(q, p̃) = hT (q)p̃, where p̃ is the momentum in the
actuation coordinates.

We illustrate the application of Theorem 2 on a soft robotic
arm.

Example 5 (Continuum soft robot): Consider a continuum
soft robot discretized into two bodies, modeled under the piece-
wise constant curvature (PCC) hypothesis. Then, each body has
three DOF, corresponding to its curvature κi, bending direction
φi, and elongation δLi, i = 1, 2, so that

q =
(
κ1 φ1 δL1 κ2 φ2 δL2

)T
.

Three tendons that run from the base to the tip actuate the robot.
Each actuator is located at a distance d ∈ R

+ from the backbone
and rotated from the previous by 120 ◦, as illustrated in Fig. 5.
By exploiting the principle of virtual works, one can show that
τ q = A(q)u, where

A(q)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−dc2 d
(

1
2c2 −

√
3
2 s2

)
d
(

1
2c2 +

√
3
2 s2

)
dq1s2 −dq1

(
1
2 s2+

√
3
2 c2

)
−dq1

(
1
2 s2−

√
3
2 c2

)
1 1 1

−dc5 d
(

1
2c5 −

√
3
2 s5

)
d
(

1
2c5 +

√
3
2 s5

)
dq4s5 −dq4

(
1
2 s5+

√
3
2 c5

)
−dq4

(
1
2 s5−

√
3
2 c5

)
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

and u ∈ R
3 collects the cables tension. It is easy to verify that

rank(A(q)) = 3 except when q1 = q4 = 0 and q2 = q5 + kπ

with k ∈ Z. In fact, control authority is lost when the arm is in
the stretched configuration. However, this is an artifact due to the
choice of the bending direction as a generalized coordinate [34].
Thus, the system is underactuated with m = 3 and n = 6.

It can be shown that (derivations are omitted for the sake of
space) ẏ = AT (q)q̇ ∈ R

3 can be integrated as

y =

⎛
⎜⎜⎝

q3 + q6 + d(q1c2 + q4c5)

q3 + q6 − d
2 (q1c2 + q4c5) +

√
3
2 d(q1s2 + q4s5)

q3 + q6 − d
2 (q1c2 + q4c5)−

√
3
2 d(q1s2 + q4s5)

⎞
⎟⎟⎠ .

According to Theorem 2, the ID problem is solvable through a
coordinate change having the form

θ =

(
θa

θu

)
=

(
y
θu

)
(16)

where θu ∈ R
3 is any complement to y. For example, a possible

choice is

θu =

⎛
⎜⎜⎝

q3 + dq1c2

q3 − d
2q1c2 +

√
3
2 dq1s2

q3 − d
2q1c2 −

√
3
2 dq1s2

⎞
⎟⎟⎠ .

Remarkably, the components of θa correspond to the change
in tendon’s length inside the arm. Similarly, θu collects the
tendons elongation in the first body only.

The reader can verify that J−T
h takes the expression given

by (17) shown at the bottom of the next page, which yields

τ θ(θ,u) = J−T
h (q)A(q)u =

(
I3

O3×3

)
u

�

VI. INTEGRABILITY OF THREADLIKE ACTUATORS

This section shows that the conclusions drawn in Examples 4
and 5 hold for any mechanical system driven by threadlike
actuators. This type of actuation is growing in popularity because
it allows creating lightweight structures with high power density,
and precise and distributed actuation [35]. We first prove the
existence of the actuation coordinates for chains of rigid bodies.
We then extend such results to continuum bodies described by
reduced-order models.

Consider a mechanical system of rigid bodies with n-DOF
actuated through m inelastic tendons. As described in [32,
Ch. 6], one can always define m extension functions gi(q); i ∈
{1, . . . ,m}, which measure the tendons displacement as a func-
tion of q. The application of the principle of virtual works yields

τ q = JT
g(q)u = A(q)u

where u ∈ R
m collects the tendons tension. It immediately

follows that the passive output ẏ is integrable as y = g(q).
This result extends to mechanical systems with continuum

bodies modeled under the geometric variable strain (GVS)
technique, see [36] and [37] for a detailed presentation of all
the quantities defined in the following. We denote the strain
as ξ ∈ R

6, where X ∈ [0, L] is the curvilinear abscissa with L
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the body rest length. The GVS approach reduces the infinite-
dimensional state of the system by assuming that ξ admits a
representation of the form

ξ = φ(X, q) (18)

where q ∈ R
n is the configuration vector, parameterizing the

strain. Under (18), the dynamic model of a continuum takes
the form of (1) [38]. For threadlike actuators, such as tendons
and thin fluidic chambers, the generalized actuation force is
τ q = A(q)u where

A(q) =

∫ L

0

JT
φΦa(X, q)dX

andΦa(X, q) ∈ R
6×m is the spatial actuation matrix, whose ith

column

(Φa(X, q))i =

(
d̃i(X)ti(X, q)

ti(X, q)

)
∈ R

6 (19)

represents the distributed force of the ith actuator. In the previous
expression, di(X) ∈ R

3 and ti(X, q) ∈ R
3 are the actuator

distance to the body backbone and its unit tangent vector [39],
respectively. The latter can be computed as

ti(X, q) =
[ξ̂di + d′

i]3∥∥∥ξ̂di + d′
i

∥∥∥
where di is expressed in homogeneous coordinates and (·)′ :=
∂(·)
∂X . Given ti(X, q), it is also possible to compute the length
Lci of the actuator as

Lci(q) =

∫ L

0

tTi (X, q)[ξ̂di(X) + d′
i(X)]3dX (20)

or, after some manipulations

Lci(q) =

∫ L

0

(Φa(X, q))Ti

(
ξ +

(
03

d′
i

))
dX.

The time derivative of (20) is

L̇ci(q) =

∫ L

0

tTi [
˙̂
ξdi]3dX =

∫ L

0

(Φa(X, q))Ti JφdXq̇

= (A(q))Ti q̇

which implies that the passive output ẏ = AT (q)q̇ is integrable
as

y = g(q) =

⎛
⎜⎝Lc1(q)

...
Lcm(q)

⎞
⎟⎠ ∈ R

m.

Thus, the actuation coordinates correspond to the length of the
actuators, as for rigid systems. The earlier results are indepen-
dent of the number of DOF and actuators. In other words, finite-
dimensional models of mechanical systems actuated via tendons
always admit a collocated form, independently of being fully-,
over-, or underactuated. Recalling that the actuator coordinates
are defined up to a constant, it is also possible to consider the
actuator elongation δLci := Lci − L∗

ci
; i ∈ {1, . . . ,m}, with

respect to a reference length L∗
ci

∈ R, such as that in the stress-
free configuration. This way, proprioceptive sensors such as
encoders can easily measure the actuation coordinates. Conse-
quently, the proposed change of coordinates is also helpful for
control synthesis.

In Appendix C, we show that similar arguments apply to soft
robots with volumetric actuators.

VII. CONTROL OF COLLOCATED UNDERACTUATED

MECHANICAL SYSTEMS

The aforementioned results prove a fact empirically observed
in soft and continuum robot control. In particular, several
works [40], [41], [42], [43] have shown that it is possible to
obtain excellent closed-loop performance in shape and position
tasks by controlling the actuator length. This is the case for both
model-based and model-free approaches. However, to the best
of the authors’ knowledge, it has never been clarified why these
coordinates represent a better choice than others, such as the
curvature and bending direction. In the actuation coordinates,
the dynamics is collocated, which is expected to simplify and
robustify the closed loop, especially when the control law does
not require significant system knowledge. When a controller is
implemented in the actuation coordinates, explicit inversion of
the actuation matrix is unnecessary because these coordinates
inherently incorporate the inversion. It is also worth noting that
any control problem formulated in the initial configuration space
can be reformulated in the actuation coordinates. Remarkably,
the previous considerations remain true also when the dynamics
is underactuated. Furthermore, note that direct inversion ofA(q)
is not possible in this case beingA(q) a tall matrix. These results

J−T
h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − 2
3dc5

2
3dq4

s5
1
3

0 0 0 2
3d

(
1
2c5 −

√
3
2 s5

)
− 2

3dq4

(
1
2 s5 +

√
3
2 c5

)
1
3

0 0 0 2
3d

(
1
2c5 +

√
3
2 s5

)
− 2

3dq4

(
1
2 s5 −

√
3
2 c5

)
1
3

− 2
3dc2

2
3dq1

s2
1
3

2
3dc5 − 2

3dq4
s5 − 1

3

2
3d

(
1
2c2 −

√
3
2 s2

)
− 2

3d

(
1
2c2 +

√
3
2 s2

)
1
3 − 2

3d

(
1
2c5 −

√
3
2 s5

)
2

3dq4

(
1
2 s5 +

√
3
2 c5

)
− 1

3

2
3d

(
1
2c2 +

√
3
2 s2

)
− 2

3d

(
1
2c2 −

√
3
2 s2

)
1
3 − 2

3d

(
1
2c5 +

√
3
2 s5

)
2

3dq4

(
1
2 s5 −

√
3
2 c5

)
− 1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)
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Fig. 6. Time evolutions of (a)–(c) actuator elongations and (d)–(f) configuration variables under the P-satI-D (24) in y space and the PD+ (25) in q space,
respectively. The P-satI-D regulates the actuation coordinates to the desired target. On the other hand, the closed-loop system under the PD+ regulator is stable
but has a steady-state error. (a) P-satI-D in y space; t ∈ [0; 1] s. (b) P-satI-D in y space; t ∈ [2; 3] s. (c) P-satI-D in y space; t ∈ [4; 5] s. (d) PD+ in q space;
t ∈ [0; 1] s. (e) PD+ in q space; t ∈ [2; 3] s. (f) PD+ in q space; t ∈ [4; 5] s.

allow extending the controllers in [10], [23], [24], [25], [26], [37]
for planar underactuated mechanical systems with damping to
those moving in 3-D. The following corollary formalizes such a
statement for the regulators in [10] and [26].

Corollary 2: Consider an underactuated mechanical system
satisfying the same hypotheses of Theorem 2. Suppose that there
exists a dissipation function F(q, q̇) such that, for all q̇ ∈ TqM

∂F(q, q̇)

∂q̇
q̇ > 0 (21)

and, in the actuation coordinates

∂2Lθ(θ,0)

∂θ2
u

> 0. (22)

Let KP ,KD,KI ∈ R
m×m > 0, and γ > 0. There exist con-

stants α > 0 and γ̄ > 0 such that, if KP > αIm and γ > γ̄,
both the following regulators.

1) PD+ (with feedforward) [10]

u = −
(
∂Lθ(θad,θud,0,0)

∂θa

)T

+KP (θad − θa)−KDθ̇a. (23)

2) P-satI-D [26]

u = KP (θad − θa)−KDθ̇a

+
KI

γ

∫ t

0

tanh (θad − θa) (z)dz (24)

will globally asymptotically stabilize the closed-loop sys-
tem at (θa θu θ̇a θ̇u) = (θad θud 0 0), where θad ∈

Fig. 7. Time evolution of the control inputs under the P-satI-D (24) in y space
and the PD+ (25) in q space, respectively. (a) P-satI-D in y space. (b) PD+ in q
space.

R
m and θud ∈ R

n−m is the unique solution to

(
∂Lθ(θad,θu,0,0)

∂θu

)T

= 0.

Under (22), for any value of the actuated coordinates θa, there
is a unique equilibrium of those unactuated, i.e., the system
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Fig. 8. Frame sequences of robot motion, divided in three time windows. Panels (a)–(c) and (d)–(f) show the robot when controlled in the y or q coordinates
using the laws (24) and (25), respectively. The initial and final configurations of each interval are shown in blue while light gray shapes represent intermediate
configurations. A red star indicates the constant target position of the end-effector. (a) P-satI-D in y space; t ∈ [0; 2] s. (b) P-satI-D in y space; t ∈ [2; 4] s.
(c) P-satI-D in y space; t ∈ [4; 6] s. (d) PD+ in q space; t ∈ [0; 2] s. (e) PD+ in q space; t ∈ [2; 4] s. (f) PD+ in q space; t ∈ [4; 6] s.

equilibria are uniquely determined by θa. Instead, (21) guar-
antees the internal stability of the closed-loop system. Note that
the aforementioned controllers admit more general structures,
see [10] and [26]. In addition, despite being developed for con-
tinuum soft robots, these apply to any underactuated mechanical
system with damping on the unactuated variables.

We exploit the previous corollary to perform a shape reg-
ulation task for a continuum soft robot moving in 3-D. The
robot has a rest length L = 0.4m and cross-section radius
R ∈ [0.02; 0.008]m, which varies linearly from the base to
the tip. The mass density is ρ = 680 kg/m3. Furthermore, we
consider a linear visco-elastic stress–strain curve with Young
modulus E = 8.88× 105 N/m2, Poisson ratio P = 0.5, and
material damping D = 1× 104 N/m2s. Eight tendons actuate
the robot. The first six have an oblique routing and are displaced
60◦ each. Their initial distance from the center line is 0.0016m.
Three of these run from the base to half of the robot while the
remaining ones up to the tip. The last two tendons have a helical
routing with pitch 0.4

2π m and are displaced 180◦, with a distance
from the backbone of 0.006m. The strain is modeled as

ξ(X, q) =
(
Σ−1Φa(X, q∗) Φu(X)

)︸ ︷︷ ︸
Φξ(X)

q + ξ∗

where q ∈ R
15, q∗ = 015 and ξ∗ = (0 0 1 0 0 0)T denote

the stress-free configuration and strain, respectively, Σ(X) ∈
R

6×6 is the positive-definite body stiffness matrix and the
columns of Φa ∈ R

6×8 are defined as in (19). The strain basis

Σ−1Φa(X, q∗) has proven to accurately describe the deforma-
tions due to the actuation forces [39]. Instead

Φu(X) =

⎛
⎜⎜⎝
1 P1(X) P2(X) 0 0 0 0
0 0 0 1 P1(X) P2(X) 0
0 0 0 0 0 0 1

03×7

⎞
⎟⎟⎠

with P1(X) := 2X
L − 1 and P2(X) := 6(XL )2 − 6X

L + 1, en-
codes three Legendre polynomials modeling the angular defor-
mations due to the gravitational field, not captured by Σ−1Φa.
Sincen = 15 and r = m = 8, the system is underactuated. Note
that only shape regulation tasks can be achieved in general. We
compare (24) with the PD+ regulator in q space of [44]

u = −A†(qd)

(
∂Lq(qd,0)

∂q

)T

+AT (q) [kP (qd − q)− kDq̇] . (25)

Due to A(q), the aforementioned control law guarantees only
local asymptotic stability [2], [44], and it requires information
on the entire state of the robot to be implemented. The control
gains of (24) and (25) are KP = kP I8, KD = kDI8, KI =
kII8, and γ = 1, with kP = 2.5× 103N/m, kD = 10 N · s/m,
and kI = 2× 103 N/m · s. Because of the underactuation, only
the configurations satisfying the equilibrium equation(

∂Lq(qeq,0)

∂q

)T

= A(qeq)u

with u ∈ R
8, can be controlled. We command the three desired

shapes given in (26) shown at the bottom of the next page,
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as step references spaced in time by 2 s Furthermore, qd,i is
converted into a desired tendon displacementθad,i(t) = yd,i(t);
i = 1, 2, 3, for (24). The robot starts from the straight (stress-
free) configuration at rest, and the simulation runs for 6 s.
In the following simulations, y has been computed through
numerical integration because it was impossible to derive its
closed-form expression. On the other hand, in an experimental
setup equipped with motor encoders y could have been di-
rectly evaluated or obtained from the available measurements.
Fig. 6(a)–(c) and (d)–(f) shows the evolution of the actuation
coordinates and the configuration variables under (24) and (25),
respectively, for three subintervals of length 1 s. As expected,
the P-satI-D regulates the actuation coordinates to the desired
set point. On the other hand, the PD+ in q space fails this task,
always showing a steady-state error. However, the closed-loop
system remains stable. The control action for the two closed-loop
systems is reported in Fig. 7. Note that the controller outputs are
quite different. Finally, Fig. 8 presents a photo sequence of the
two closed-loop systems. The end-effector reaches the correct
position only under the P-satI-D. Indeed, the average norm of
the steady-state Cartesian error is 5.8× 10−5 m for the P-satI-D
and, respectively, 1.2× 10−2 m for the PD+ regulator.

VIII. CONCLUSION

This article has considered the ID problem for Lagrangian
systems. We have shown that there exists a class of Lagrangian
dynamics, called collocated, for which a coordinate transfor-
mation decouples actuator inputs entering the equations of mo-
tion through a configuration-dependent actuation matrix. These
coordinates have a physical interpretation and can be easily
computed. Under mild conditions on the differentiability of the
actuation matrix, a simple test allows verifying if the dynamics is
collocated or not. As a consequence of power invariance, the re-
sults equally apply to fully actuated, overactuated, and underac-
tuated systems. In the case of underactuated dynamics, inputs are
collocated with the actuation coordinates while some freedom
in left in the definition of the unactuated coordinates. Since we
consider only coordinate transformations, the proposed method
differs from the standard differential geometric approach used
for controlling input-affine nonlinear systems, which typically
makes use of complete feedback transformations. As a byprod-
uct of our approach, we have shown that all mechanical systems
driven by threadlike actuators are collocated. Moreover, we were
able to extend control laws recently developed for underactuated
systems with constant actuation matrix to collocated mechanical
systems with damping.

Future work will be devoted to the experimental validation of
the proposed method and to special choices of the unactuated
variables that further simplify the equations of motion, ease the

check of conditions for obtaining input-state or input–output
exact linearization via feedback, or even reveal the existence
of flat outputs for the system. Additionally, we will consider
relaxing the integrability hypothesis at the cost of transforming
the input.

APPENDIX

A. Properties of Lagrangian Systems

We recall two important properties of Lagrangian systems that
play a key role in deriving the results in this article.

Property 1: Let Hq(q, q̇) :=
∂Lq(q,q̇)

∂q̇ q̇ − Lq(q, q̇) be the
system Hamiltonian. For all q ∈ M, q̇ ∈ TqM, and u ∈ R

m,
it holds

Ḣq(q, q̇) = q̇T τ q(q,u). (27)

Equation (27) states that the time rate of change of the Hamil-
tonian, i.e., the system total energy, equals the input power. It
also follows from (1) and (27) that the dynamics is passive with
respect to the pair (u, ẏ) = (u,AT (q)q̇) with storage function
Hq(q, q̇).

Property 2: If θ : B(q) → N = h(q) is a (local) diffeomor-
phism, with Jh(q) =

∂h
∂q , then

d

dt

(
∂Lθ(θ, θ̇)

∂θ̇

)T

−
(
∂Lθ(θ, θ̇)

∂θ

)T

= τ θ(θ,u) (28)

where

Lθ(θ, θ̇) = Lq(q = h−1(θ), q̇ = J−1
h θ̇)

and

τ θ(θ,u) = J−T
h τ q(q = h−1(θ),u).

This also implies that, for all θ ∈ N , θ̇ ∈ TθN , q ∈ M, q̇ ∈
TqM, and u ∈ R

m, it holds

Ḣθ(θ, θ̇) = θ̇
T
τ θ(θ,u) = q̇T τ q(q,u) = Ḣq(q, q̇) (29)

being Hθ(θ, θ̇) = Hq(q = h−1(θ), q̇ = J−1
h θ̇).

According to the previous property, the Euler–Lagrange equa-
tions and the power are invariant, i.e., they do not depend on the
choice of coordinates representing the dynamics.

B. Alternative Proof of Theorem 2

We provide an alternative proof of the if part of Theorem 2.
Similar considerations also hold for Theorem 1 and Corollary 1.

Proof: From Property 2, we have

τ θ = J−T
h A(q = h−1(θ))u. (30)

qd,1 =
(−8.85 −4.70 −1.39 −26.30 −23.41 −26.33 −1.74 −1.79 0.19 −0.08 −0.09 0.70 −0.68 −0.05 −1.55

)
,

qd,2 =
(−13.21 −11.74 −9.91 −15.40 −14.20 −14.25 −0.26 −0.72 0.09 −0.35 −0.11 0.20 −2.08 −0.75 −1.75

)
,

qd,3 =
(−12.99 −11.52 −20.49 −22.94 −19.77 −20.40 −0.86 −0.87 −0.55 −0.50 −0.43 −2.01 −1.33 0.10 1.51

)
.

(26)
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By exploiting the block triangular structure of Jh(q), it follows

J−T
h (q) =

(
A−1

a (q) Om×(n−m)

−AuA
−1
a (q) In−m

)

which yields

J−T
h A =

(
A−1

a (q) Om×(n−m)

−AuA
−1
a (q) In−m

)(
Aa(q)

Au(q)

)

=

(
Im

O(n−m)×m

)
.

�

C. Integrability of Volumetric Actuators

Following arguments similar to those in [45], it is possible
to extend the results of Section VI to robotic systems with
volumetric actuators [46].

Let V ∗
i be the volume of the ith actuator inside the robot when

in the reference configuration. Similarly, denote with Vi(q)
the volume in the current deformed configuration. The work
performed by the actuator on the robot is

Wui
= (Vi(q)− V ∗

i )ui.

To determine the effect of ui on the generalized coordinates, it
is possible to apply the principle of virtual works

δW(τq)i = δqT (τq)i = δqT

(
∂Vi(q)

∂q

)T

ui = δWui

obtaining

Ai(q) =

(
∂Vi(q)

∂q

)T

.

The previous equations imply that ẏi = AT
i (q)q̇ is integrable

and the corresponding actuation coordinate can be chosen as
δVi := Vi(q)− V ∗

i , which is the volume variation in the actuator
chamber.
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