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Abstract: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by
differences in social communication and repetitive behaviors, often associated with atypical visual
attention patterns. In this paper, the Gaze-Based Autism Classifier (GBAC) is proposed, which is a
Deep Neural Network model that leverages both data distillation and data attribution techniques to
enhance ASD classification accuracy and explainability. Using data sampled by eye tracking sensors,
the model identifies unique gaze behaviors linked to ASD and applies an explainability technique
called TracIn for data attribution by computing self-influence scores to filter out noisy or anomalous
training samples. This refinement process significantly improves both accuracy and computational
efficiency, achieving a test accuracy of 94.35% while using only 77% of the dataset, showing that
the proposed GBAC outperforms the same model trained on the full dataset and random sample
reductions, as well as the benchmarks. Additionally, the data attribution analysis provides insights
into the most influential training examples, offering a deeper understanding of how gaze patterns
correlate with ASD-specific characteristics. These results underscore the potential of integrating
explainable artificial intelligence into neurodevelopmental disorder diagnostics, advancing clinical
research by providing deeper insights into the visual attention patterns associated with ASD.

Keywords: autism spectrum disorder; gaze analysis; eye tracking sensors; deep neural networks;
explainability; TracIn method

1. Introduction

In recent years, Neural Networks (NNs) have gained significant importance in the
classification and diagnosis of medical conditions: their ability to process large amounts
of complex, high-dimensional data, such as images, time series, or sensor recordings, on
a scale unreachable by traditional methods, makes them particularly well-suited for the
medical field where diagnoses are often complex and multi-dimensional [1]. This is particu-
larly relevant for neurodevelopmental disorders like Autism Spectrum Disorder (ASD) and
Attention Deficit Hyperactivity Disorder (ADHD), where current official diagnostic proto-
cols, based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [2], rely
heavily on subjective tools such as behavioral observations, standardized questionnaires,
and interviews with parents and teachers.

Specifically, the diagnostic process for ASD focuses on identifying deficits in social
communication and interaction, along with restricted and repetitive patterns of behavior [2].
However, these approaches come with significant drawbacks: their accuracy often depends on
the clinician’s expertise and the individual’s responses, leading to variability in the diagnostic
outcomes. Moreover, these tools frequently fail to incorporate the latest advancements in
clinical research, which highlights the need for more objective, data-driven methods. This
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reliance on subjective assessments reduces diagnostic precision and consistency, creating
challenges for early detection and timely interventions.

Incorporating objective data sources that align with emerging clinical evidence, such
as eye tracking metrics [3], gait analysis [4], and other behavioral or physiological mea-
surements [5,6], could provide more reliable and data-driven diagnoses. By leveraging the
power of Deep Learning (DL), these models could be integrated into the diagnostic process
and enhance current practices by integrating objective biomarkers with clinical expertise:
rather than replacing official diagnostic techniques, they are designed to support the overall
diagnostic process, for example, serving as screening tools in schools or as decision support
systems for clinical staff. The ultimate goal is to enhance both precision and efficiency,
leading to faster and more accurate diagnoses. By reducing diagnostic times and clinician
workload, this approach aims to make the diagnostic process more accessible, streamlined,
and reliable.

As mentioned earlier, among the physiological and behavioral data sources currently
being explored, eye tracking has shown particular promise in supporting ASD diagnosis:
eye tracking technology allows for the precise measurement of gaze patterns, providing
crucial insights into visual attention behaviors [7]. Research has consistently shown that
individuals with ASD often exhibit atypical gaze patterns, such as a reduced focus on
socially relevant stimuli, including faces and eyes, in favor of peripheral or object-focused
attention [8], which could be used as a potential biomarker for early diagnosis. Integrating
eye tracking data such as scanpaths and fixation maps into DL models can refine the
diagnostic process by introducing objective methods that complement traditional clinical
assessments. This approach helps detect early indicators of ASD and enhances both the
accuracy and efficiency of the diagnostic workflow.

Although NNs offer significant advantages in analyzing large datasets, the computa-
tional cost and time required can become overwhelming when processing extremely large
volumes of data. To address these challenges, data attribution methods have emerged as
valuable tools in Machine Learning (ML): they provide insights into the inner workings
of complex models, shedding light on the factors that drive predictions at the individual
sample level, by quantifying the influence of specific data points, enhancing the inter-
pretability and trustworthiness of otherwise “black-box” models. Several data attribution
methods have been proposed, such as Trak [9], SimFluence [10], and Datamodels [11]. In
this paper, we use TracIn [12], a method that traces the model’s behavior back to its training
data by leveraging loss gradients to calculate influence scores. These scores help assess
relationships between training and test samples and can also uncover anomalies or misla-
beled data points within the training set, making TracIn especially useful for improving
model performance on large-scale datasets. Combining in this way the strengths of DL
and data attribution methods enables the creation of more efficient, interpretable, and
reliable diagnostic models for conditions like ASD, holding promise for both clinical and
computational fields.

In this paper, three different NNs combined were employed to classify ASD using
scanpaths, fixation maps, and images data derived from eye tracking experiments [13]. The
primary aim was to accurately classify individuals with ASD from neurotypical controls
by analyzing their unique visual attention patterns and, to further improve both model
performance and interpretability, TracIn [12] was used. Two key functionalities of TracIn
were employed: firstly, self-influence was evaluated to identify outliers in the dataset,
which were subsequently removed, improving both model accuracy and training times;
secondly, influence scores were applied to assess which training images, and their associated
scanpaths, had the most significant impact on the classification of ASD. This process
helped to identify the most representative visual patterns for the ASD class, offering a
deeper understanding of the model’s behavior and its ability to distinguish ASD-related
gaze behaviors from those of neurotypical individuals, which is consistent with medical
evidence.
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Our experimental results demonstrate a significant improvement in classification
performance compared to previous methods, achieving a test accuracy of 94.35% and an
F1-score of 93.15% on the “Saliency4ASD” dataset [13]. By filtering out noisy or anomalous
data points using self-influence scores, we not only enhanced model accuracy but also
reduced computational costs. Additionally, our analysis highlights that images featuring
people or groups of people are the most influential in distinguishing ASD-related gaze
patterns from neurotypical behaviors. This finding aligns with existing clinical research,
further supporting the model’s ability to identify key visual cues relevant to ASD diagnosis.

The main contributions of this paper are as follows:

1. Efficient Classification with Limited Fixation Points. An NN architecture is presented
that effectively handles scanpaths with a limited number of fixation points, which are
often sparse in eye tracking data. By applying data augmentation techniques to these
fixation points (as detailed in Section 3), a more diverse set of scanpaths is generated.
This augmentation enhances the model’s ability to generalize across various scanpath
patterns, leading to improved accuracy and robustness in ASD classification.

2. Incorporation of TracIn for Dataset Distillation. TracIn [12], a data attribution method,
is incorporated into the classification process for ASD detection using NNs. This
enables the identification and removal of non-contributory or anomalous samples,
enhancing the quality of the training dataset: as a result, classification efficiency and
accuracy are improved by focusing on the most relevant and influential data points.

3. Optimized Performance and Reduced Computational Costs. By refining the dataset
on the most significant training examples, this approach boosts overall classification
performance while reducing computational costs. This targeted training not only
leads to more accurate predictions but also optimizes resource usage, making the
process more efficient for large-scale classification tasks.

4. Comprehensive Explainability and Data Insights. The proposed method offers a
detailed explainability analysis, providing insights into the influence of specific images
from the training data on the ASD class. This transparency aids in understanding
how individual samples contribute to the model’s predictions. Additionally, the
approach captures critical patterns and relationships within the data, facilitating
better management of large-scale datasets and helping to inform decisions in both the
training and deployment stages.

These contributions demonstrate the effectiveness of integrating data attribution
techniques, such as TracIn, in improving the accuracy, efficiency, and interpretability of
neural network-based classification models, particularly for ASD diagnosis.

The rest of the paper is structured as follows. Section 2 reviews related work on the
application of NNs in medical diagnostics, with a focus on ASD detection, and discusses
the importance of explainability in ML and DL models for clinical applications. Section 3
provides an overview of the dataset, and details the preprocessing techniques applied, while
Section 4 details the proposed methodology, including the NN architecture and the use of
TracIn for outlier detection and interpretation. Lastly, Section 5 presents the experimental
setup and results, discussing the impact of outlier removal on model performance, and
Section 6 concludes the paper with key insights and directions for future research.

2. Related Works

The use of NNs in medical diagnostics has gained considerable attention in recent years,
driven by their ability to process large, complex datasets and identify patterns that are often
elusive to traditional diagnostic methods [14]. From image recognition in radiology [15] to the
outcome prediction of patients with tumors [16], DL models have shown remarkable potential
in identifying patterns and correlations that may not be apparent through traditional methods.
Studies have demonstrated their effectiveness across various domains, including oncology [17],
cardiology [18], and detection of depression [19,20], where they aid in early diagnosis and
decision support systems. This revolution in healthcare data processing has transformed how
medical professionals can interpret data, offering more accurate and faster diagnostic tools.



Sensors 2024, 24, 7792 4 of 16

2.1. Neural Networks and ASD Classification

In the context of neurodevelopmental disorders, such as ASD and ADHD, NNs are
increasingly being employed to analyze complex behavioral data, leveraging datasets that
align with clinical evidence and medical research on how specific tools could aid in their
diagnosis. For example, brain imaging techniques such as Functional Magnetic Resonance
Imaging (fMRI) have been used in combination with DL models [21,22] to accurately
identify individuals with ADHD, as studies have demonstrated notable differences in
their brain activity compared to neurotypical individuals [23,24]. Additionally, Electroen-
cephalography (EEG) has been employed in the detection of ASD using NNs [25,26], as it
has been shown [27] that EEG signals can effectively be used as a biomarker to differentiate
individuals with ASD from neurotypical individuals.

In addition to medical tools like fMRI and EEG, other physiological and behavioral
features have been explored for classifying ASD. Gait analysis, for example, has been used
in DL studies to classify autism based on walking patterns, as the DSM-5 [2] identifies these
as associated features of ASD. Research shows that individuals with ASD often exhibit
distinct gait characteristics, which can serve as valuable biomarkers for diagnosis [28–30].
Similarly, eye gaze patterns have proven to be reliable indicators of autism: eye tracking
technology offers a non-invasive and objective way to study visual attention, and research
has consistently demonstrated that children with ASD tend to focus less on faces during
social interactions, instead directing their attention to less socially informative areas of a
scene [31]. For instance, a novel framework for ASD screening is introduced in [32] for
integrating information from multiple behavioral modalities, such as photo-taking and
image-viewing tasks, to enhance classification performance. They created a reliable model
that classifies people with ASD using a photo-taking task where subjects freely explore
their environment in a more ecological setting. By leveraging temporal information in eye
movements, the framework achieves an accuracy of 99%, outperforming other state-of-
the-art methods. These insights have led to the integration of eye tracking data into DL
models, where gaze patterns—represented as scanpaths and fixation maps—are used to
train classifiers for ASD detection. In the following section, we will use a state-of-the-art
model as a benchmark to compare our results with those of other models implemented on
the same dataset, as summarized in Section 5.1.

In [33], the authors propose “RM3ASD”, a framework that extracts features from both
raw images, used as stimuli in eye tracking experiments, and scanpaths containing gaze
and temporal data. To optimize their model, they experimented with 23 different classifiers,
with the TreeBagger classifier achieving the highest accuracy of approximately 68.5%.

Another method is presented in [34], where the model “SP-ASDNet” combines a CNN
for feature extraction and an LSTM network to analyze the temporal information of fixation
points, aiming to classify observers as either typically developing (TD) or having ASD.
SP-ASDNet achieved a validation accuracy of 74.22%, but its test accuracy dropped to
57.90%, indicating potential overfitting.

Two DL methods for detecting autism-related gaze patterns during free viewing are
introduced in [35]. The first, “STAR-FC”, uses generative synthetic saccade models with
auxiliary data, while the second method transforms real scanpaths and image stimuli into
a unified representation. Their models achieved validation accuracies of up to 67.23% and
test accuracies of 61.39% for ASD prediction.

Finally, in [32], the authors introduced a novel ASD screening approach using two
DNNs. One network combined ResNet-50 and LSTM for processing photo sequences, while
the other analyzed eye movements during image viewing. Their multi-modal approach
improved accuracy from 89% to 93% on the “Saliency4ASD” dataset.

2.2. Data Attribution in NNs

The increasing use of NNs in healthcare has raised concerns about their black-box
nature, where the internal decision-making processes are often opaque. This lack of
transparency has made explainability a crucial requirement for AI models, particularly
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in healthcare, where understanding and trusting predictions are vital for both clinicians
and patients. Explainability methods, specifically Training Data Attribution (TDA), have
emerged to address this issue by evaluating the influence of individual training data
points on a model’s predictions, providing insights into how specific data contribute to the
model’s output.

TDA is especially useful in sensitive fields like neurodevelopmental disorders, where
explainability and trust in AI are critical for successful clinical integration. These meth-
ods are generally categorized into two approaches: retraining-based and gradient-based
methods [36]. The first ones, such as downsampling [37], assess the impact of different
training subsets on model performance, offering comprehensive insights but at high com-
putational costs, making them impractical for large datasets or complex models. In contrast,
gradient-based methods are more efficient, leveraging gradients from the loss function to
compute influence scores. These methods, like TracIn [12], track changes in loss on test
points throughout training, offering scalable solutions with lower computational overhead.

In neurodevelopmental disorder diagnosis, TDA methods enhance model explainability
by identifying which training examples most strongly influence predictions, offering trans-
parency in how disorders such as ASD are classified. Aligning these results with clinical
research not only validates the models but also demonstrates that AI can complement ongoing
clinical progress. Recent work has successfully integrated TDA with ASD detection. For in-
stance, DL with explainability methods using eye tracking data are combined in [38] to bridge
the gap between clinical research and model predictions. Another study in [39] employs a
hybrid DL approach to identify key ASD-related features for improving early diagnosis, while
SHAP explanations have demonstrated how analyzing interaction features in home videos
can support early ASD identification, aiding early interventions [40].

3. Dataset Overview and Preparation

Eye tracking provides a non-invasive, quantifiable tool for studying attentional differ-
ences, and it is widely used in clinical research [41]. In this study, eye gaze tracking was
chosen as the primary method due to its proven effectiveness in identifying differences in
visual attention patterns between ASD and TD children, as explained in Section 2.1.

The dataset used in this paper, described in [42] and published in 2018, contains eye
movement data recorded using the “Tobii T120 Eye Tracker®” sensor, from 14 children
with ASD and 14 neurotypical controls (TD) with an age between 5 and 12. It includes
600 scanpaths, fixation maps, and heatmaps across 300 visual stimuli, categorized into
objects, people, landscapes, and more, as shown in Figure 1, and participants looked at
each of them for 3 s.

The original dataset provided two sets of data for each image: one for the ASD group
and one for the TD group. Each set included scanpaths, fixation maps, and heatmaps,
aggregating all fixation points for the respective class. However, this setup is not ideal for
practical applications, since the goal is to detect ASD at the individual level, rather than
analyzing a collective group of children within the same diagnostic category. Additionally,
aggregating scanpaths from multiple participants masks individual differences and pat-
terns, which are critical for training a model to accurately identify ASD in a single child.
Therefore, a number of preprocessing steps were applied to make the dataset compliant
with the scope of this research paper.

The first preprocessing step involved decomposing the aggregated scanpath files
into individual scanpaths, denoted as si,j, where i represents the participant and j the
specific image viewed, producing Nj × j scanpaths across both classes (ASD and TD),
where Nj is the number of participants that saw that specific image. For each scanpath
si,j, the corresponding image j was replicated, ensuring that each scanpath had its paired
image. This decomposition was straightforward because the scanpath files included indexes
indicating the number of fixation points for each participant. A new scanpath started at
each index 0, marking the beginning of a new participant’s data. To ensure the rationality
and validity of this approach, it is important to note that the decomposition result is unique.
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The provided indexes and fixation counts for each participant allowed for an unambiguous
mapping of aggregated scanpaths to individual participants. A data augmentation process
was applied to address the shortness of single scanpaths, which often contained very few
fixation points (sometimes as few as two). Each scanpath is defined by three columns
(xi, yi, di), where xi and yi are the spatial coordinates of the fixation, and di is the duration.
Durations were initially in milliseconds and were rescaled between 1 and 100. Then,
the points were then replicated according to their scaled duration, and a random shift
∆x, ∆y ∈ [−10, 10] was applied to each fixation point to capture a broader area. Lastly,
a similar preprocessing approach was applied to the fixation maps, originally provided
in aggregated form. They were aligned with the individualized scanpaths: each fixation
map was recreated with a radius of 10 pixels, expanding the region of interest to the hole
beyond a single gaze point. This augmentation process serves several purposes. Firstly,
this transformation improved the density of the scanpaths and aimed to make the gaze
patterns more informative, ensuring that even short scanpaths provide richer information
for the model during training. Secondly, the random spatial shifts introduce natural
variability, reflecting slight changes in gaze patterns that are typical in real-world scenarios.
Importantly, this augmentation preserves the original structure and temporal dynamics of
the gaze behavior, as the replication is directly proportional to the fixation duration.

Figure 1. Samples from the Saliency4ASD dataset used for training the neural network model, which
include images, fixation maps, and scanpaths.

4. Methodology

The proposed method, which will be referred to in the following as “Gaze-Based
Autism Classifier” (GBAC), is illustrated in Figures 2–4, and its hyperparameters are
summarized in Table 1. GBAC integrates TracIn into the diagnosis of ASD through an NN
that takes eye gaze data as input. GBAC comprises three sub-networks: a Convolutional
Neural Network (CNN) for processing the original image, a CNN for fixation points, and an
LSTM for scanpath coordinates. Once trained, TracIn is applied to evaluate self-influence,
helping to identify outliers that negatively affect model performance; these outliers are
then removed from the dataset, and the model is retrained on the refined subset. Finally,
TracIn is used to identify proponents and opponents for the test set images, highlighting
the most influential data points for classifying ASD, which helps in understanding key
differences between ASD and neurotypical cases.
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Figure 2. Architecture of the first two sub-networks (CNN_image_FM, CNN_fixmaps_FM), which
processes the input images and fixation maps to extract spatial features for ASD classification.
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Figure 3. Architecture of the LSTM_scanpath_HS network used for scanpath sequences, capturing
the temporal dependencies between fixation points.
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Figure 4. Overview of the complete GBAC model, illustrating the concatenation of the outputs from
the image, fixation point, and scanpath sub-networks for the final classification.

Table 1. Main hyperparameters of the GBAC model.

Component Hyperparameter Value

CNN (Images)

Number of Conv Layers 4

Filter Sizes [32, 64, 128, 256]

Kernel Sizes [3, 3, 3, 3]

Activation Function ReLU

Pooling Avg/Max

CNN (Fixation Maps)

Number of Conv Layers 4

Filter Sizes [32, 64, 128, 256]

Kernel Sizes [3, 3, 3, 3]

Activation Function ReLU

Pooling Avg/Max

LSTM

Number of Layers 2

Hidden Size 1024 (both layers)

Dropout 0.3 (both layers)

Input Size Layer 1 2

Input Size Layer 2 1024

Fully Connected Layers
Number of Layers 4 (1 per branch, 1 final)

Activation Function Sigmoid (final)

Optimizer - Adam

Loss Function - Binary Cross-Entropy Loss
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4.1. Neural Network Architecture

The NN architecture developed for the classification of ASD based on eye tracking
data integrates three primary sub-networks: one for processing images, one for fixation
points, and one for scanpaths, effectively capturing both spatial and temporal aspects of the
data. The first sub-network, called “CNN_images_FM”, is a CNN that processes the images
shown to participants: this CNN extracts spatial features from the images through multiple
convolutional layers, each applying a filter to the input and passing the result through
a non-linear Rectified Linear Unit (ReLU) activation function. The output feature maps
capture the essential visual characteristics of the images, denoted as CNNimg(Ij), where Ij is
the input image for a particular participant. The second sub-network is another CNN called
“CNN_fixmaps_FM”, tailored for the fixation points captured during eye tracking: each fix-
ation point is characterized by its spatial coordinates (xi, yi). Similar to the image CNN, this
sub-network applies a series of convolutional layers to extract meaningful features from the
fixation data, producing an output denoted as CNNfix(xi, yi). This sub-network captures
the spatial relevance of fixation points across the images. The architectures of the first two
sub-networks are shown in Figure 2. The “CNN_images_FM” and “CNN_fixmaps_FM”
sub-networks were designed with similar architectures to efficiently extract spatial features
from their respective inputs: raw images and fixation maps. Although the inputs differ,
the underlying task of spatial feature extraction is consistent, making the shared structure
suitable for both. Specifically, the “CNN_fixmaps_FM” network extracts spatial relevance
from fixation patterns, such as density and distribution, while the “CNN_images_FM”
network processes detailed visual features within the raw images. This decision also aligns
with our aim to maintain simplicity and practicality in the architecture. For real-world
applications, efficient and robust designs are crucial.

In order to handle the temporal nature of the scanpath data, the third sub-network,
called “LSTM_scanpath_HS”, utilizes a Long Short-Term Memory (LSTM) network, as
shown in Figure 3. Scanpaths, defined as sequences of fixation points (x1, y1), . . . , (xk, yk),
are fed into the LSTM, which processes these sequential points over time, maintaining a
hidden state that captures the temporal dependencies. At each time step, the LSTM updates
its hidden state, and the final hidden state hT encapsulates the entire scanpath sequence,
represented as LSTMscnpts(si,j).

After the outputs of these three sub-networks are generated—CNNimg(Ij), CNNfix(xi, yi),
and LSTMscnpts(si,j)—each output is passed through its linear layer, which reduces its
dimensionality to 1. Specifically, the transformations are as follows:

Oimg = Linear
[
CNNimg(Ij)

]
, (1)

Ofix = Linear[CNNfix(xi, yi)] , (2)

Oscnpts = Linear
[
LSTMscnpts(si,j)

]
. (3)

These three outputs (Oimg, Ofix, and Oscnpts) are then concatenated along the dimen-
sion x. The concatenated vector is passed through a final linear layer that performs the
classification, producing the output probability ŷ:

ŷ = Softmax
{

Linear
[(

Oimg, Ofix, Oscnpts
)]}

. (4)

The GBAC architecture, illustrated in Figure 4, was intentionally divided into three
different sub-networks, each one designed to capture a specific type of information relevant
to the classification task; in this way, this separation allows for a more targeted extraction of
features that are crucial for distinguishing between ASD and TD classes. The first sub-network
(presented in Figure 2) processes the original images as input, focusing on the primary visual
elements within the scene, ensuring that the model captures the fundamental characteristics
of the image that might influence gaze behavior. The second sub-network (presented in
Figure 2) takes fixation maps as input: by isolating fixation patterns from the original image,
this sub-network aims to identify visual patterns that differentiate ASD and TD individuals,
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independent of the raw image content. The third sub-network (presented in Figure 3) processes
scanpaths, introducing a temporal dimension to the analysis, and providing insights into how
visual information is processed over time in ASD and TD individuals.

Each sub-network is followed by a dedicated fully connected layer (presented in
Figure 4) to independently assess the contribution of its respective input modality; the
outputs of these fully connected layers are then concatenated and passed through a final
fully connected layer to combine the insights from all three sub-networks. This design
ensures that each sub-network output is individually processed before combining them for
the final classification, allowing the model to separately handle spatial and temporal data
before integrating them into the final decision-making layer. Such an approach optimizes
the model’s ability to capture both the spatial and temporal aspects of gaze behavior,
resulting in more accurate ASD detection.

4.2. TracIn Formulation

TracIn is a method designed to estimate the influence of individual training samples
on the model’s predictions by approximating the impact that each sample has on the final
trained model; it achieves that by leveraging gradient-based techniques to compute influ-
ence scores, offering a scalable and computationally efficient way to assess the significance
of training data throughout the learning process.

To reduce the computational cost of exact influence computation, TracIn uses a first-
order gradient approximation by replaying the training process across multiple checkpoints,
which store model states at different points during training. For each training sample,
the gradient of the loss function concerning the model parameters is calculated at these
checkpoints. The influence score is then derived by accumulating the inner product of
these gradients across the checkpoints.

Given the loss function l of the model, a set of k checkpoints, learning rates ηi, model
parameters w(i) at checkpoint i, and a training sample x, the self-influence score measuring
how much a sample influences its own prediction is computed as follows:

Self-Influence(x) =
k

∑
i=1

ηi∇l(w(i), x) · ∇l(w(i), x) . (5)

The self-influence score reflects the extent to which a specific training sample impacts
the model’s weights during training: samples with higher self-influence values are of-
ten outliers, mislabeled, or exhibit conflicting behavior, negatively affecting the model’s
generalization capability and are typically removed to improve overall performance.

The basic model trained on the entire dataset will be referred to as “GBAC-FT”.
However, in our approach, after computing the self-influence score for each training
sample, we remove the ones with the highest scores as they are likely to hinder the model’s
ability to generalize. This filtering process results in a more representative and concise
training set, leading to both improved accuracy and enhanced computational efficiency.
The model obtained on a reduced dataset is referred to as “GBAC-SIST”. For comparison
purposes, we also retrain the model using the same number of samples on a subset chosen
randomly, denoted as “GBAC-RST”. It is important to note that the self-influence filtering
is applied exclusively to the training set, while the test set remains unchanged across all
experiments. This ensures a fair comparison by evaluating each model on the same test
data, thereby maintaining the consistency and validity of the reported performance metrics.

In addition to self-influence, TracIn is also employed to calculate the influence of
training samples on test samples, helping to identify which training examples are most
relevant for correct classification. Specifically, the influence of a training sample x on a test
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sample xtest is determined by computing the inner product between the loss gradients of
the training and test samples:

Influence(x, xtest) =
k

∑
i=1

ηi∇l(w(i), x) · ∇l(w(i), xtest) . (6)

High influence scores indicate that a training sample strongly supports the correct
classification of the test sample (proponents), while negative influence scores may point to
conflicting or misleading training data (opponents). By analyzing the most influential training
samples for each class, we can identify those that best represent the key characteristics of both
ASD and TD groups. This process further refines the model, improving its performance and
providing deeper insights into the relationships between training and test data.

5. Experiments

Several experiments were conducted to evaluate the efficiency of the proposed method-
ology: the experimental setup, along with numerical and visual results, are presented in the
following sections. All the results reflect the average of r independent runs, with r = 5, each
utilizing a different random seed to ensure robustness. The three models composing GBAC,
presented in Section 4.1, were selected after conducting a comprehensive grid search to
determine the optimal architecture and hyperparameters for each sub-network. All the
experiments were performed using Python and Pytorch® backend on a machine equipped
with an AMD Ryzen™ 7 7700 8-core CPU at 3.80 GHz, 32 GB of RAM, and an NVIDIA®

GeForce™ RTX 4080 SUPER GPU at 16376 MB of GDDR6X RAM.

5.1. Experimental Results

The experiments were conducted to validate the effectiveness of the proposed GBAC
model for classifying ASD based on eye tracking data. Initially, the performance of the
GBAC-FT (summarized in Figure 5) model trained on the entire dataset was compared with
models trained on both random and self-influence-reduced subsets of the training data. A
key aspect of our method was the use of TracIn to compute self-influence scores, allowing
us to filter out high-influence training samples, which were typically noisy or outliers,
as explained in Section 4.2. We applied three different thresholds for dataset reduction,
removing samples with self-influence scores above each respective threshold. The suffix
“1”, “2”, or “3” is appended to both the GBAC-SIST and GBAC-RST models, denoting a
dataset usage of 77%, 67%, and 50%, respectively.

To provide a comprehensive understanding of the evaluation metrics used in the
experiments, the metrics used are define as follows.

Test Accuracy measures the proportion of correctly classified samples in the test
dataset, and it is defined as follows:

Test Accuracy =
Number of Correct Predictions
Total Number of Test Samples

(7)

Precision, F1-Score, and Recall are used to evaluate additional information on the test
results and are defined as follows:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(8)

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(9)

F1-Score = 2 · Precision · Recall
Precision + Recall

(10)

The results, summarized in Table 2, indicate that the Self-Influence Selected Training
GBAC-SIST models consistently outperformed the GBAC-RST versions across all configu-
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rations. The accuracy of GBAC-SIST improved from 93.18% to 94.35%, and the F1-score
increased from 0.9094 to 0.9315. Notably, the GBAC-SIST1 variant achieved the highest
test accuracy of 94.35% and an F1-score of 0.9315 while using only 77% of the dataset. In
contrast, GBAC-RST1, which used the same amount of training data selected randomly,
showed lower performance, emphasizing the advantage of self-influence-based selection,
as can be seen in Figure 6.

Table 2. Performance metrics of the GBAC models, comparing the full dataset model (GBAC-FT)
with self-influence-based (GBAC-SIST) and random-reduced (GBAC-RST) training sets.

Method Dataset Usage Test Accuracy (%) Precision Recall F1-Score

GBAC-FT 100% 93.64 0.926 0.918 0.9219

GBAC-SIST 1 77% 94.35 0.932 0.931 0.9315

GBAC-RST 1 77% 93.18 0.940 0.881 0.9094

GBAC-SIST 2 67% 94.13 0.932 0.911 0.9219

GBAC-RST 2 67% 92.81 0.938 0.897 0.9173

GBAC-SIST 3 50% 92.16 0.927 0.845 0.8848

GBAC-RST 3 50% 91.50 0.904 0.904 0.9040

2 4 6 8 10 12 14 16
Epochs

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

Model Accuracy (GBAC-FT)
Training Accuracy (GBAC-FT)
Validation Accuracy (GBAC-FT)

2 4 6 8 10 12 14 16
Epochs

0.0

0.5

1.0

1.5

2.0
Ac

cu
ra

cy
 (%

)

Model Loss (GBAC-FT)
Training Loss (GBAC-FT)
Validation Loss (GBAC-FT)

Figure 5. Accuracy and loss trends for training and validation sets across 16 epochs for model GBAC-FT.

2 4 6 8 10 12 14 16
Epochs

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

Model Accuracy (GBAC-SIST 1 vs GBAC-RST 1)

Training Accuracy (GBAC-SIST 1)
Validation Accuracy (GBAC-SIST 1)
Training Accuracy (GBAC-RST 1)
Validation Accuracy (GBAC-RST 1)

2 4 6 8 10 12 14 16
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

Model Loss (GBAC-SIST 1 vs GBAC-RST 1)
Training Loss (GBAC-SIST 1)
Validation Loss (GBAC-SIST 1)
Training Loss (GBAC-RST 1)
Validation Loss (GBAC-RST 1)

Figure 6. Accuracy and loss trends for training and validation sets across 16 epochs for models
GBAC-SIST 1 and GBAC-RST 1.

Interestingly, even smaller training subsets selected based on self-influence performed
better than models trained on the full dataset, as can be seen in Figures 7 and 8. For instance,
GBAC-SIST2, which used only 67% of the training data, achieved an accuracy of 94.13%,
surpassing GBAC-FT trained on the whole dataset. This highlights the benefit of removing
noisy or conflicting samples identified by TracIn’s self-influence scores, as it not only boosts
performance but also reduces the training set’s size, improving training efficiency and
model robustness. This result underscores the advantage of self-influence filtering, which
enhances generalization by removing noisy or conflicting data points that could interfere
with model learning. This kind of metrics are important to use since the understanding
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of eye movement dynamics in ASD subjects is still evolving in clinical research, and so it
is not feasible to visually determine whether the samples removed via the self-influence
calculation are indeed noise or outliers. The main purpose of evaluating self-influence
scores is to systematically identify samples that negatively impact model generalization,
without relying on subjective criteria. The effectiveness of this approach is also supported,
as shown in this section, by the improved model performance observed when samples are
removed based on self-influence scores, compared to random removal.
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Figure 7. Accuracy and loss trends for training and validation sets across 16 epochs for models
GBAC-SIST 2 and GBAC-RST 2.
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Results are also benchmarked against existing models in the literature, such as
RM3ASD [33], SP-ASDNet [34], and STAR-FC [35], with performance metrics presented
in Table 3 against the GBAC-SIST1 version that outperformed the other proposed vari-
ants. All experiments were performed using the Saliency4ASD dataset [13], consisting of
2033 samples evenly divided between the two classes, by the preprocessing steps detailed
in Section 3. The proposed GBAC model is able to obtain the best performance over all of
the metrics with a consistent gap with respect to the other considered approaches.

Table 3. Benchmark results comparing the GBAC models with existing ASD classification methods
on the Saliency4ASD dataset.

Model Test Accuracy (%) Precision Recall F1-Score

RM3ASD [33] 68.50 - - -
STAR-FC [35] 62.13 - - -
AttBasedNet [32] 93.00 - 0.930 -
SP-ASDNet [34] 57.90 0.562 0.592 0.5697
GBAC-SIST 1 94.35 0.931 0.932 0.9315
GBAC-FT 93.64 0.926 0.918 0.9219
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5.2. TracIn’s Influence Results

The TracIn influence scores described in Section 4.2 were applied to the dataset to identify
the most relevant classes of images that contributed to the network’s learning process. As shown
in Figure 9, some of the most recurrent and influential images for the ASD class provided crucial
insights into the patterns that are most effective for distinguishing ASD from TD. Specifically,
the analysis revealed that images featuring people or groups of people were the most impactful
training samples for classifying the ASD label: this aligns well with existing research in clinical
psychology and neuroscience, which consistently shows that individuals with ASD exhibit
atypical gaze patterns, characterized by reduced attention to socially relevant stimuli, such
as faces and people, in comparison to their neurotypical ones. This phenomenon is well-
documented in the literature, where gaze fixation patterns are considered a reliable biomarker
for early detection of ASD, aiding in the differentiation between ASD and TD behaviors, as
described in Section 2.1.

Figure 9. Examples of high-influence training images evaluated using (6) from TracIn, particularly
those featuring people or groups that played a key role in distinguishing ASD-related gaze patterns
from neurotypical behaviors.

Atypical gaze behaviors, such as fewer fixations on faces or reduced eye contact, are
considered key markers for ASD, as they reflect differences in social attention and cognitive
processing. To this end, studies have demonstrated that individuals with ASD tend to focus
more on peripheral objects or less socially informative regions within a scene, which can provide
a window into their distinct cognitive and perceptual processes; these gaze patterns not only aid
in identifying social deficits but also offer insights into broader behavioral traits, such as reduced
engagement in social interactions and difficulties in interpreting facial expressions. For example,
prolonged fixations on non-social objects may indicate a preference for static, less dynamic
stimuli, which contrasts with the more fluid and socially driven gaze behaviors typically
observed in TD individuals. Also, the use of gaze patterns as a diagnostic tool is supported by
numerous studies that leverage eye tracking technology to quantify these behavioral differences
as explained in Section 2.1 by analyzing such data, and machine learning models can be trained
to distinguish ASD from TD based on these subtle but significant differences in visual attention.

The application of TracIn allowed us to quantify the influence of specific training images,
providing a clear validation that the NN is learning meaningful distinctions that align with
clinical research. By leveraging TracIn, we identified which training samples most effectively
influenced correct classification, highlighting a preference for images featuring human faces or
interactions. This further supports the hypothesis that altered social attention is a core feature of
ASD. Additionally, the analysis underscores the role of scanpaths related to images of people
as the most informative features, corroborating findings from the existing medical literature
that emphasize differences in visual attention between individuals with ASD and those who
are typically developing. This confluence of ML outcomes with clinical insights demonstrates
how advanced data attribution techniques can enhance our understanding of model behavior,
providing transparency that is essential for medical AI applications.
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6. Conclusions

In this paper, we presented the GBAC, an NN model that leverages eye tracking data
and the TracIn method to classify ASD and provide insights into the visual attention behaviors
associated with the condition. By incorporating TracIn to compute self-influence scores, we were
able to filter out noisy or anomalous data, which significantly enhanced both model accuracy
and efficiency. The experimental results clearly demonstrated that the self-influence-based
reduced dataset GBAC-SIST consistently outperformed models trained on the full dataset
GBAC-FT and on randomly reduced datasets GBAC-RST, as well as all the benchmark models.
Specifically, the GBAC-SIST model achieved a test accuracy of 94.35% and an F1-score of 0.9315,
while using only 77% of the available data, showcasing the effectiveness of selectively removing
outliers to improve generalization.

Looking ahead, several promising directions for future research emerge. One avenue
involves the development of a portable diagnostic device that integrates the GBAC methodology
into a real-time hardware solution. This device could combine eye tracking systems with
on-device NN processing, allowing for early and accessible ASD screening in clinical and
non-clinical settings. Another important direction is to ensure that the model generalizes across
different populations by expanding the dataset to include a more diverse range of subjects across
various age groups and geographical regions. Additionally, while TracIn proved effective in our
experiments, future work could explore the impact of alternative data attribution methods, such
as TRACK [9], on both model performance and explainability. Lastly, integrating additional
data modalities, such as gait analysis, fMRI, or EEG, alongside eye tracking data, could provide
a more comprehensive diagnostic approach to ASD, potentially improving the robustness and
depth of the classification models.

Author Contributions: Conceptualization, M.P.; Methodology, F.C. and F.D.L.; Software, F.C. and
F.D.L.; Validation, A.R.; Formal analysis, A.R. and M.P.; Investigation, F.C. and F.D.L.; Data curation,
F.C. and F.D.L.; Writing – original draft, F.C.; Writing – review & editing, A.R. and M.P.; Supervision,
M.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Code and datasets will be made available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ASD Autism Spectrum Disorder
ADHD Attention Deficit Hyperactivity Disorder
DL Deep Learning
NN Neural Network
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
ML Machine Learning
TDA Training Data Attribution
SIST Self-Influence Selected Training
RST Random-Selected Training
GBAC Gaze-Based Autism Classifier
DSM-5 Diagnostic and Statistical Manual of Mental Disorders 5
fMRI Functional Magnetic Resonance Imaging
EEG Electroencephalography
Tobii T120 Tobii T120 Eye Tracker
GPU Graphics Processing Unit
ReLU Rectified Linear Unit



Sensors 2024, 24, 7792 15 of 16

References
1. Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [CrossRef]

[PubMed]
2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association:

Washington, DC, USA, 2013; Volume 5, pp. 50–58.
3. Wang, R.K.; Kwong, K.; Liu, K.; Kong, X.J. New Eye Tracking Metrics System: The Value in Early Diagnosis of Autism

Spectrum Disorder. Front. Psychiatry 2024, 15.
4. Kindregan, D.; Gallagher, L.; Gormley, J. Gait deviations in children with autism spectrum disorders: A review. Autism Res. Treat.

2015, 2015, 741480. [CrossRef]
5. Stein, L.I.; Lane, C.J.; Williams, M.E.; Dawson, M.E.; Polido, J.C.; Cermak, S.A. Physiological and behavioral stress and anxiety in

children with autism spectrum disorders during routine oral care. Biomed. Res. Int. 2014, 2014, 694876. [CrossRef]
6. Mikita, N.; Hollocks, M.J.; Papadopoulos, A.S.; Aslani, A.; Harrison, S.; Leibenluft, E.; Simonoff, E.; Stringaris, A. Irritability in

boys with autism spectrum disorders: An investigation of physiological reactivity. J. Child Psychol. Psychiatry 2015, 56, 1118–1126.
[CrossRef]

7. Guillon, Q.; Hadjikhani, N.; Baduel, S.; Rogé, B. Visual social attention in autism spectrum disorder: Insights from eye
tracking studies. Neurosci. Biobehav. Rev. 2014, 42, 279–297. [CrossRef]

8. Riby, D.M.; Hancock, P.J. Do faces capture the attention of individuals with Williams syndrome or autism? Evidence from
tracking eye movements. J. Autism Dev. Disord. 2009, 39, 421–431. [CrossRef]

9. Park, S.M.; Georgiev, K.; Ilyas, A.; Leclerc, G.; Madry, A. Trak: Attributing model behavior at scale. arXiv 2023, arXiv:2303.14186.
10. Guu, K.; Webson, A.; Pavlick, E.; Dixon, L.; Tenney, I.; Bolukbasi, T. Simfluence: Modeling the influence of individual training

examples by simulating training runs. arXiv 2023, arXiv:2303.08114.
11. Saunshi, N.; Gupta, A.; Braverman, M.; Arora, S. Understanding influence functions and datamodels via harmonic analysis.

In Proceedings of the Eleventh International Conference on Learning Representations (ICLR), Kigali, Rwanda, 1–5 May 2023.
12. Pruthi, G.; Liu, F.; Kale, S.; Sundararajan, M. Estimating training data influence by tracing gradient descent. Adv. Neural Inf.

Process. Syst. 2020, 33, 19920–19930.
13. Gutiérrez, J.; Che, Z.; Zhai, G.; Le Callet, P. Saliency4ASD: Challenge, dataset and tools for visual attention modeling for autism

spectrum disorder. Signal Process. Image Commun. 2021, 92, 116092. [CrossRef]
14. Shahid, N.; Rappon, T.; Berta, W. Applications of artificial neural networks in health care organizational decision-making:

A scoping review. PLoS ONE 2019, 14, e0212356. [CrossRef] [PubMed]
15. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510.

[CrossRef]
16. Fielding, L.P.; Fenoglio-Preiser, C.M.; Freedman, L.S. The future of prognostic factors in outcome prediction for patients

with cancer. Cancer 1992, 70, 2367–2377. [CrossRef] [PubMed]
17. Shimizu, H.; Nakayama, K.I. Artificial intelligence in oncology. Cancer Sci. 2020, 111, 1452–1460. [CrossRef]
18. Karatzia, L.; Aung, N.; Aksentijevic, D. Artificial intelligence in cardiology: Hope for the future and power for the present.

Front. Cardiovasc. Med. 2022, 9, 945726. [CrossRef]
19. Liu, H.; Peng, H.; Song, X.; Xu, C.; Zhang, M. Using AI chatbots to provide self-help depression interventions for university

students: A randomized trial of effectiveness. Internet Interv. 2022, 27, 100495. [CrossRef]
20. Deshpande, M.; Rao, V. Depression detection using emotion artificial intelligence. In Proceedings of the 2017 International

Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 858–862.
21. Riaz, A.; Asad, M.; Alonso, E.; Slabaugh, G. DeepFMRI: End-to-end deep learning for functional connectivity and classification of

ADHD using fMRI. J. Neurosci. Methods 2020, 335, 108506. [CrossRef]
22. Chowdhury, A.; Chatterjee, R.; Aich, G.; Ghosh, K. ADHDNet: A DNN based framework for efficient adhd detection from

fMRI dataset. In Proceedings of the International Conference on Pattern Recognition and Machine Intelligence, Kolkata, India,
15–18 December 2021; pp. 137–147.

23. Konrad, K.; Eickhoff, S.B. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention
deficit hyperactivity disorder. Hum. Brain Mapp. 2010, 31, 904–916. [CrossRef]

24. Colonnese, F.; Di Luzio, F.; Rosato, A.; Panella, M. Fast Convolutional Analysis of Task-Based fMRI Data for ADHD Detection.
In Proceedings of the International Work-Conference on Artificial Neural Networks, Ponta Delgada, Portugal, 19–21 June 2023;
pp. 364–375.

25. Baygin, M.; Dogan, S.; Tuncer, T.; Barua, P.D.; Faust, O.; Arunkumar, N.; Abdulhay, E.W.; Palmer, E.E.; Acharya, U.R. Automated
ASD detection using hybrid deep lightweight features extracted from EEG signals. Comput. Biol. Med. 2021, 134, 104548.
[CrossRef]

26. Ali, N.A.; Syafeeza, A.; Jaafar, A.; Alif, M.; Ali, N. Autism spectrum disorder classification on electroencephalogram signal using
deep learning algorithm. IAES Int. J. Artif. Intell. 2020, 9, 91–99. [CrossRef]

27. Oberman, L.M.; Hubbard, E.M.; McCleery, J.P.; Altschuler, E.L.; Ramachandran, V.S.; Pineda, J.A. EEG evidence for mirror neuron
dysfunction in autism spectrum disorders. Cogn. Brain Res. 2005, 24, 190–198. [CrossRef] [PubMed]

28. Colonnese, F.; Di Luzio, F.; Rosato, A.; Panella, M. Bimodal Feature Analysis with Deep Learning for Autism Spectrum
Disorder Detection. Int. J. Neural Syst. 2023, 34, 2450005. [CrossRef]

http://doi.org/10.7861/futurehosp.6-2-94
http://www.ncbi.nlm.nih.gov/pubmed/31363513
http://dx.doi.org/10.1155/2015/741480
http://dx.doi.org/10.1155/2014/694876
http://dx.doi.org/10.1111/jcpp.12382
http://dx.doi.org/10.1016/j.neubiorev.2014.03.013
http://dx.doi.org/10.1007/s10803-008-0641-z
http://dx.doi.org/10.1016/j.image.2020.116092
http://dx.doi.org/10.1371/journal.pone.0212356
http://www.ncbi.nlm.nih.gov/pubmed/30779785
http://dx.doi.org/10.1038/s41568-018-0016-5
http://dx.doi.org/10.1002/1097-0142(19921101)70:9<2367::AID-CNCR2820700927>3.0.CO;2-B
http://www.ncbi.nlm.nih.gov/pubmed/1394064
http://dx.doi.org/10.1111/cas.14377
http://dx.doi.org/10.3389/fcvm.2022.945726
http://dx.doi.org/10.1016/j.invent.2022.100495
http://dx.doi.org/10.1016/j.jneumeth.2019.108506
http://dx.doi.org/10.1002/hbm.21058
http://dx.doi.org/10.1016/j.compbiomed.2021.104548
http://dx.doi.org/10.11591/ijai.v9.i1.pp91-99
http://dx.doi.org/10.1016/j.cogbrainres.2005.01.014
http://www.ncbi.nlm.nih.gov/pubmed/15993757
http://dx.doi.org/10.1142/S0129065724500059


Sensors 2024, 24, 7792 16 of 16

29. Hasan, C.C.; Jailani, R.; Tahir, N. Automated classification of gait abnormalities in children with autism spectrum disorders based
on kinematic data. Int. J. Psychiatry Psychother. 2017, 2, 10–15.

30. Hasan, C.Z.C.; Jailani, R.; Tahir, N.M.; Sahak, R. Autism spectrum disorders gait identification using ground reaction forces.
TELKOMNIKA Telecommun. Comput. Electron. Control 2017, 15, 903–911.

31. Klin, A.; Jones, W.; Schultz, R.; Volkmar, F.; Cohen, D. Visual fixation patterns during viewing of naturalistic social situations as
predictors of social competence in individuals with autism. Arch. Gen. Psychiatry 2002, 59, 809–816. [CrossRef]

32. Chen, S.; Zhao, Q. Attention-based autism spectrum disorder screening with privileged modality. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1181–1190.

33. Mazumdar, P.; Arru, G.; Battisti, F. Early detection of children with autism spectrum disorder based on visual exploration
of images. Signal Processing: Image Commun. 2021, 94, 116184. [CrossRef]

34. Tao, Y.; Shyu, M.L. SP-ASDNet: CNN-LSTM based ASD classification model using observer scanpaths. In Proceedings of the
2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, China, 8–12 July 2019; pp. 641–646.

35. Liaqat, S.; Wu, C.; Duggirala, P.R.; Cheung, S.c.S.; Chuah, C.N.; Ozonoff, S.; Young, G. Predicting ASD diagnosis in children with
synthetic and image-based eye gaze data. Signal Process. Image Commun. 2021, 94, 116198. [CrossRef] [PubMed]

36. Hammoudeh, Z.; Lowd, D. Training data influence analysis and estimation: A survey. Mach. Learn. 2024, 113, 2351–2403.
[CrossRef]

37. Feldman, V.; Zhang, C. What neural networks memorize and why: Discovering the long tail via influence estimation. Adv. Neural
Inf. Process. Syst. 2020, 33, 2881–2891.

38. de Belen, R.A.J.; Bednarz, T.; Sowmya, A. Eyexplain autism: Interactive system for eye tracking data analysis and deep neural
network interpretation for autism spectrum disorder diagnosis. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (CHI EA ’21), Yokohama, Japan, 8–13 May 2021; pp. 1–7.

39. Garg, A.; Parashar, A.; Barman, D.; Jain, S.; Singhal, D.; Masud, M.; Abouhawwash, M. Autism spectrum disorder prediction by
an explainable deep learning approach. Comput. Mater. Contin. 2022, 71, 1459–1471.

40. Paolucci, C.; Giorgini, F.; Scheda, R.; Alessi, F.V.; Diciotti, S. Early prediction of autism spectrum disorders through interaction
analysis in home videos and explainable artificial intelligence. Comput. Hum. Behav. 2023, 148, 107877. [CrossRef]

41. Chandel, S.; Bhattacharya, R.; Nayak, M.; Pathak, A. Integrating Eye Gaze Estimation with the Internet of Medical Things (IoMT) for
Individualized and Efficient Healthcare. In Proceedings of the 2024 2nd World Conference on Communication & Computing (WCONF),
Raipur, India, 12–14 July 2024; pp. 1–6.

42. Duan, H.; Zhai, G.; Min, X.; Che, Z.; Fang, Y.; Yang, X.; Gutiérrez, J.; Callet, P.L. A dataset of eye movements for the children with autism
spectrum disorder. In Proceedings of the 10th ACM Multimedia Systems Conference, Amherst, MA, USA, 18–21 June 2019; pp. 255–260.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1001/archpsyc.59.9.809
http://dx.doi.org/10.1016/j.image.2021.116184
http://dx.doi.org/10.1016/j.image.2021.116198
http://www.ncbi.nlm.nih.gov/pubmed/33859457
http://dx.doi.org/10.1007/s10994-023-06495-7
http://dx.doi.org/10.1016/j.chb.2023.107877

	Introduction
	Related Works
	Neural Networks and ASD Classification
	Data Attribution in NNs

	Dataset Overview and Preparation
	Methodology
	Neural Network Architecture
	TracIn Formulation

	Experiments
	Experimental Results
	TracIn's Influence Results

	Conclusions
	References

