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Abstract: Cherkis andKapustin (CommunMath Phys 218(2):333–371, 2001 andCom-
munMath Phys 234(1):1–35, 2003) introduced periodic monopoles (with singularities),
i.e.monopoles on R2 × S

1 possibly singular at a finite collection of points. In this paper
we show that for generic choices of parameters the moduli spaces of periodic monopoles
(with singularities) with structure group SO(3) are either empty or smooth hyperkähler
manifolds. Furthermore, we prove an index theorem and therefore compute the dimen-
sion of the moduli spaces.

1. Introduction

Let (X, g) be an oriented Riemannian 3-manifold and P → X a principal G-bundle,
whereG is a compact Lie group. Consider the product X×Rs endowed with the product
metric, the volume form ds ∧ dvg and the pulled-back G-bundle P̂ . An anti-self-dual
(ASD) connection (or instanton) on P̂ is a connection Â such that ∗FÂ + FÂ = 0. If

Â is R-invariant one can write Â = A + � ⊗ ds for a connection A on P → X and a
section � of the adjoint bundle ad(P). Monopoles on X are pairs (A,�) such that Â is
an R-invariant ASD connection on X × R. Working directly in 3-dimensions we have
the following definition.

Definition 1.1 (Magnetic). monopoles are solutions (A,�) to the Bogomolny equation

∗FA = dA�. (1.2)

Here ∗ is the Hodge star operator of (X, g); FA is the curvature of the connection A and
� is called the Higgs field. The moduli space of monopoles on P → X is the space of
equivalence classes of solutions to (1.2) with respect to the action of the gauge group.

An immediate consequence of Eq. (1.2) and the Bianchi identity is

d∗AdA� = 0. (1.3)
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In particular, when X is compact smoothmonopoles coincide with reducible (if |�| �= 0)
flat connections. In order to find non-trivial solutions to (1.2) one has to consider a
non-compact base manifold X , in the sense that either X is complete or we allow for
singularities of the fields (A,�), or a combination of the two possibilities, as in this
paper.

The classical case of smooth monopoles on R
3 and the rich geometric properties

of their moduli spaces have been investigated from many different points of view; a
standard reference is Atiyah and Hitchin’s book [3]. Monopoles with and without singu-
larities have also been studied on 3-manifolds X with different geometries: hyperbolic
monopoles were introduced by Atiyah [2]; Braam reduced the study of monopoles on
an asymptotically hyperbolic manifold X to that of S1-invariant ASD connections on
a conformal compactification [9]; partial results were established by Floer [20,21] for
asymptotically Euclidean X ; more recently, Kottke initiated the study of monopoles
on asymptotically conical 3-manifolds [27]. Monopoles with singularities were first
considered by Kronheimer [29]; the virtual dimension of the moduli space of singular
monopoles over a compact manifold X was computed by Pauly [34]; Charbonneau and
Hurtubise consideredmonopoleswith singularities on the product of a compact Riemann
surface with a circle [12].

An important feature of the moduli spaces of monopoles on R
3 is that they are

hyperkähler manifolds by virtue of an infinite dimensional hyperkähler quotient. In
the lowest non-trivial dimension, the Atiyah–Hitchin manifold, i.e., the moduli space of
centred charge 2 SU (2)monopoles onR3 (or its double cover) is a complete hyperkähler
4-manifoldwith finite L2-normof the curvature, a so-called gravitational instanton, with
an interesting asymptotic geometry: the volume of large geodesic balls of radius r grows
like r3; the complement of a large ball is a circle bundle over R3/Z2 and the metric is
asymptotically adapted to this circle fibration. We say that the Atiyah–Hitchin metric is
an ALF gravitational instanton.

Pursuing the idea that moduli spaces of solutions to dimensional reductions of
the Yang–Mills ASD equations on R

4 are “a natural place to look for gravitational
instantons” [13], in [14–16] Cherkis and Kapustin introduced the study of periodic
monopoles, i.e., monopoles on R

2 × S
1, possibly with isolated singularities at a finite

collection of points. They argued that, when 4-dimensional, moduli spaces of periodic
monopoles (with singularities) are gravitational instantons of type ALG: the volume of
large balls grows quadratically and the metric is asymptotically adapted to a fibration
by 2-dimensional tori.

This paper addresses some of the foundational questions opened by Cherkis and
Kapustin’s work. The main results are summarised in the following theorem.

Theorem 1.4. For generic choices of the parameters defining the boundary conditions,
the moduli space Mn,k of charge k SO(3) periodic monopoles with n isolated sin-
gularities is a smooth hyperkähler manifold of dimension 4k − 4, provided it is not
empty.

Here the charge is a certain topological invariant of a monopole, cf.Definition 4.1 for
details. In [22] we construct solutions to (1.2) on R

2 × S
1 by gluing methods, showing

that Mn,k is indeed non-empty.

Plan of the paper. In Sect. 2 we introduce formal aspects of the construction of the mod-
uli spaces Mn,k and fix some notation. In Sect. 3 we define periodic Dirac monopoles,
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i.e., solutions to (1.2) onR2×S
1 with structure groupU (1) and one isolated singularity.

Following [14,16], we then use this material to define boundary conditions for periodic
monopoles with non-abelian structure group G = SO(3).

Sections 5 and 6 deal with the local analysis in a neighbourhood of the singularities
and on the big end ofR2×S

1: we introduce weighted Sobolev spaces, prove embedding
and multiplication results and study the mapping properties of the relevant operators.
These analytic results are applied in Sect. 7 to prove that the moduli spaces Mn,k
are smooth hyperkähler manifolds (when non-empty), provided there are no reducible
solutions of the Bogomolny equation satisfying the given boundary conditions.

The final section contains the proof of the dimension formula, i.e., the computation
of the index of a certain Dirac-type operator. No index theorem available in the literature
applies to the situation at hand and we give a geometric proof of the index formula based
on the excision principle.

2. Preliminaries

In this section, whose purpose is mainly to fix the notation, we recall formal aspects of
the deformation theory of monopoles. In particular, we introduce the relevant elliptic
operators and state Weitzenböck formulas that will be used throughout the paper.

Let X be a non-compact oriented 3-manifold and P → X a principal G-bundle.
Denote by C the infinite dimensional space of smooth pairs c = (A,�), where A is a
connection on P → X and � ∈ �0(X; adP) a Higgs field. Since X is not compact,
elements c ∈ C have to satisfy appropriate boundary conditions, which we suppose
to be included in the definition of C. The space C is an affine space. The underlying
vector space is the space of section�(X; adP) = �1(X; adP)⊕�0(X; adP) satisfying
appropriate decay conditions. Let G be the group of bounded smooth sections of Aut(P)

which preserve the chosen boundary conditions. Here g ∈ Aut (P) acts on a pair c =
(A,�) ∈ C by c 	→ c + (d1g)g−1, where

d1g = − (dAg, [�, g]) ∈ �(X; adP). (2.1)

Consider the gauge-equivariant map � : C → �1(X; adP) defined by (A,�) 	→
∗FA − dA�. By fixing a base point c = (A,�) ∈ C we write �(A + a,� + ψ) =
�(c) + d2(a, ψ) + (a, ψ) · (a, ψ) for all (a, ψ) ∈ �(X; adP). The linearisation d2 of
� at c and the quadratic term are defined by:

d2(a, ψ) = ∗dAa − dAψ + [�, a] (2.2)

(a, ψ) · (a, ψ) = ∗[a, a] − [a, ψ] (2.3)

The linearisation at c of the action of G on C is the operator d1 : �0(X; ad P) →
�(X; adP) defined as in (2.1). Couple d2 with d∗1 to obtain an elliptic operator

D = d2 ⊕ d∗1 : �(X; adP) −→ �(X; adP). (2.4)

Themoduli spaceM ofmonopoles in C isM = �−1(0)/G. Suppose that c = (A, ϕ)

is a solution to the Bogomolny equation and consider the elliptic complex

�0(X; ad P)
d1−→ �(X; adP)

d2−→ �1(X; ad P) (2.5)

(this is a complex preciselywhen�(A,�) = 0). Standard theory [18, Chapter 4] implies
that M is a smooth manifold if—after choosing Sobolev completions of the spaces of
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ad(P)-valued forms so that� and the action of gauge transformationsG×C → C extend
to smooth maps of Banach spaces and (2.5) is a Fredholm complex—the cohomology
groups of (2.5) in degree 0 and 2 vanish. Then the tangent space T[c]M at the point [c]
is identified with ker Dc, i.e. the cohomology of (2.5) in degree 1.

We can interpret D as a twisted Dirac operator on �(X; adP). The Clifford multi-
plication of a 1-form α and a k-form β on X is

γ (α)β = α ∧ β − α
�β (2.6)

Define a twisted Dirac operator /DA on �(X; adP) by

�1 ⊕�0 (id,∗)−−−→ �1 ⊕�3 γ ◦∇A−−−→ �2 ⊕�0 (∗,id)−−−→ �1 ⊕�0. (2.7)

The operator D of (2.4) is D = τ /DA + [�, · ], where τ is a sign operator with τ = 1
on 1-forms and τ = −1 on 0-forms. From this point of view, the product (2.3) is the
multiplication on �(X; adP) obtained combining Clifford multiplication of forms and
the Lie bracket on ad(P). The formal L2-adjoint of D is D∗ = D−2[�, · ] and we have
the following Weitzenböck formulas.

Lemma 2.8 (See for example [21, Lemma 18]).

DD∗ = ∇∗A∇A − ad(�)2 + � + Ric and D∗D = DD∗ + 2dA�,

where � = ∗FA − dA�.

As a final remark in this general setting, observe that if one fixes boundary conditions
so that infinitesimal deformations are L2-integrable, the L2-product restricted to ker D
defines a Riemannian metric on the moduli space M. As in the Euclidean case, if X =
R
2 × S

1 this L2-metric is hyperkähler by virtue of an infinite dimensional hyperkähler
quotient [3, Chapter 4, pp. 28–33].

3. Periodic Dirac Monopole

When the structure group G = U (1), the Bogomolny equation (1.2) reduces to a linear
equation. By (1.3) the Higgs field � is a harmonic function such that ∗d�

2π i represents the
first Chern class of a line bundle. Bounded global solutions are necessarily trivial; onR3

they are given by pairs (A,�) = (0, v) while on R
2 × S

1 by (A,�) = (d + ib dt, v),
where v ∈ R and b ∈ R/Z. We call such pairs flat (or vacuum) abelian monopoles.
Non-trivial abelian solutions are obtained if one allows an isolated singularity.

Definition 3.1. Fix a point q ∈ R
3 and let Hq denote the radial extension of the Hopf

line bundle to R
3\{q}. Fix k ∈ Z and v ∈ R. The Euclidean Dirac monopole of charge

k and mass v with singularity at q is the abelian monopole (A,�) on Hk
q , where

� = i

(
v − k

2|x − q|
)

,

x ∈ R
3, and A is the SO(3)-invariant connection on Hk

q with curvature ∗d�.
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The connection A exists since i
2π ∗d� represents the first Chern class of the line bundle

Hk
q on R

3\{q} and it is unique up to gauge transformation because R
3\{q} is simply

connected.
Periodic Dirac monopoles are defined in a similar way. Fix coordinates (z, t) ∈

C × R/2πZ and a point q = (z0, t0) ∈ R
2 × S

1. Line bundles of a fixed degree on
(R2 × S

1)\{q} differ by tensoring by flat line bundles. We can distinguish connections
with the same curvature by comparing their holonomy around loops γz := {z} × S

1
t for

z �= z0. Set θq = arg(z− z0) and fix an origin in the circle parametrised by θq . It follows
from Remark 3.5 below that the holonomy around γz of a connection on a degree k line
bundle over (R2 × S

1)\{q} is of the form e−ikθq e−2π ib for some b ∈ R/Z. Denote by
Lq the degree 1 line bundle on (R2 × S

1)\{q} with connection Aq whose holonomy
around γz is e−iθq . Any line bundle of degree 1 is of the form Lq ⊗ Lb for some flat line
bundle Lb.

Definition 3.2. Fix a point q ∈ R
2×S

1. The periodic Dirac monopole of charge k ∈ Z,
with singularity at q and twisted by the flat line bundle Lv,b for some v ∈ R and b ∈ R/Z

is the pair (A,�) on Lk
q ⊗ Lv,b, where

−i� = v + kGq

and up to gauge transformations the connection A = k Aq + ib dt . Here Gq defined in
(3.3) below is a Green’s function of R2 × S

1 with singularity at q.

In the rest of the section we derive asymptotic expansions for the Green’s function
Gq and the connection Aq , both at infinity and close to the singularity.

3.1. The Green’s function of R2 × S
1. By taking coordinates centred at q ∈ R

2 × S
1,

we can assume that the singularity is located at q = 0. We use polar coordinates z =
reiθ ∈ C. Consider the series

G(z, t) = −1

2

∑
m∈Z

[
1√

r2 + (t − 2mπ)2
− a|m|

]
, (3.3)

where

a|m| = 1

2|m|π if m �= 0 a0 = 2
log 4π − γ

2π

(γ is the Euler constant, γ = limn→∞
∑n

k=1 k−1 − log n).

Lemma 3.4. The series (3.3) converges uniformly on compact sets of (R2 × S
1)\{0} to

a Green’s function of R2 × S
1 with singularity at 0.

(i) Whenever z �= 0, G can be expressed as

G(z, t) = 1

2π
log r − 1

2π

∑
m∈Z∗

K0(|m|r)eimt ,

where K0 is the second modified Bessel function.
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(ii) There exists a constant C1 > 0 such that
∣∣∣∣∇k
(
G(z, t)− 1

2π
log r

)∣∣∣∣ ≤ C1e
−r

for all r ≥ 2 and k = 0, 1, 2.
(iii) There exists a constant C2 > 0 such that

∣∣∣∣∇k
(
G(z, t)− a0

2
+

1

2ρ

)∣∣∣∣ ≤ C2ρ
2−k

for all (z, t) with ρ = √
r2 + t2 < π

2 and k = 0, 1, 2.

Proof. The convergence of (3.3), the expansion in (i) and the estimate in (ii) are proved
in [25, Lemma 3.1 (a), (b)]. (iii) follows from the classical multipole expansion. ��

3.2. The connection. Fix a constant v ∈ R and consider the Higgs field � = iv + iG.
The 2-form i ∗dG represents the curvature of a line bundle L = Lq over (R2×S

1)\{q}.
A connection A = Aq on L is uniquely determined up to the addition of a closed 1-
form. The action of gauge transformations is the addition of exact forms, so the gauge
equivalence class of A is uniquely determined up to the addition of an imaginarymultiple
of dt , corresponding to tensoring L by a flat line bundle.

Remark 3.5. In order to calculate the holonomy of A around a loop γz = {z} × S
1
t

one can use Lemma 3.4.(i) to show that d
(∫

γz
A
)
=
(∫

γz
Fθ t

)
dθq +

(∫
γz
Fr t
)
dr =

i
(∫

γz
r(∂rG)

)
dθq − i

(∫
γz

∂θG
)
dr = i dθq . Here, as before, θq = arg(z − z0) and

r = |z − z0| if q = (z0, t0) ∈ R
2 × S

1.

In a neighbourhoodof the singularity L is isomorphic to theHopf line bundle extended
radially from a small sphere S2 enclosing the origin. At infinity L is isomorphic to the
radial extension of a line bundle of degree 1 over the torus T2∞. Representatives for the
connection in these asymptotic models are given by:

• Introduce spherical coordinates (z, t) = (ρ sin φ eiθ , ρ cosφ) on a 3-ball Bσ around
the singularity. The unique connection A0 on H with harmonic curvature i

2 dvS2 is
defined by i

2 (±1− cosφ)dθ in the standard cover U± = S
2\(0, 0,±1) of S2.

• Consider the connection A∞ = −i t
2π dθ on the trivial line bundle C over S1θ × Rt .

If (eiθ , t, ξ) ∈ C, the map τ(eiθ , t, ξ) = (eiθ , t + 2π, eiθ ξ) satisfies τ ∗A∞ = A∞.
Define a line bundle with connection over T2

θ,t as the quotient (C, A∞)/τ .

Any connection A on L with FA = ∗d� is asymptotically gauge equivalent to A0 as
ρ → 0.As r →∞, up to gauge transformations, A is asymptotic to A∞+iα dθ+ib dt for
some α, b ∈ R/Z. The monodromy of this limiting connection is e−iθ−2π ib around the
circle {θ}×S

1
t and e

it−2π iα around the circle S1θ ×{t}. While b can be chosen arbitrarily,
α is fixed by the Bogomolny equation (1.2). Indeed, (3.3) implies that ∂tG(z, t) = 0
if t ∈ πZ and therefore the connection A restricted to the plane {t = π} is flat. On
the other hand, as we approach infinity the limiting holonomy of A on large circles
{r = const, t = π} converges to ei(π−2πα). Thus α = 1

2 modulo Z.
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Lemma 3.6. Fix parameters (v, b) ∈ R × R/Z. Let (A,�) be a solution to (1.2) with
� = i (v + G) and such that the holonomy of A around circles {reiθ } × S

1
t , r �= 0, is

e−iθ−2π ib.

(i) In the region where r ≥ 2 the connection A is gauge equivalent to

A∞ +
i

2
dθ + ib dt + a

for a 1-form a such that d∗a = 0 = ∂r� a and |a| + |∇a| = O(e−r ).
(ii) In a ball of radius π

2 centred at the singular point z = 0 = t , A is gauge equivalent
to A0 + a′ where |a′| + ρ|∇a′| = O(ρ2) and d∗a′ = 0 = ∂ρ� a′.

Proof. In order to prove (i), write � = i
(
v + 1

2π log r
)
+ ψ and solve (1.2) in a radial

gauge. Write A = A∞ + a, where a = aθdθ + atdt solves da = ∗dψ :
⎧⎨
⎩

∂r aθ = r∂tψ
∂r at = − 1

r ∂θψ = 0
∂θat − ∂t aθ = r∂rψ

Since |ψ | + |∇ψ | = O(e−r ), we can solve the system integrating along rays. Up to
exponentially decaying terms, a has a flat limit a∞ = a∞θ dθ + a∞t dt over the torus at
infinity. By holonomy considerations as above, up to gauge transformations a∞θ = i

2
and a∞t = ib. Then set aθ − a∞θ = − ∫∞r r∂tψ and at = a∞t . Using these expressions
one can check that a is a solution to the system above because ψ is harmonic; moreover,
d∗a = 0 because ψ is independent of θ . Finally, the decay of ψ and its gradient imply
the desired estimates. (ii) is proved similarly using Lemma 3.4.(iii). ��

3.3. The action of translations, rotations and scaling. Given an arbitrary point q =
(z0, t0) in R2× S

1 the same formulas describe the asymptotic behaviour of the periodic
Dirac monopole (Aq ,�q) with singularity at q in coordinates centred at q. It will be
useful to express the behaviour of (Aq ,�q) at large distances from q in a fixed coordinate
system.

Lemma 3.7. For r ≥ 2|z0| we have
1

i
�q(z, t) = v +

1

2π
log r − 1

2π
Re

(
z0
z

)
+ O(r−2)

Aq(z, t) = A∞ + ib dt + i
t0 + π

2π
dθ − i

2π
Im

(
z0
z

)
dt + O(r−2).

Proof. Write z = reiθ and z0 = r0eiθ0 and expand the logarithm for r > r0

log |z − z0| = log r −
∞∑
n=1

(−1)n
n

(r0
r

)n
cos [n(θ − θ0)]

= log r − Re

(
z0
z

)
+ O

(
r20
r2

)
.
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Together with Lemma 3.4.(ii), this proves the asymptotic expansion for the Higgs field.
In order to derive an asymptotic expansion for the connection Aq , solve the abelian
Bogomolny equation (1.2) using this asymptotic expansion for � as in the proof of
Lemma 3.6.(i). ��

The choice of the parameters (v, b) ∈ R× R/Z is related to rotations and dilations.
By a rotation in the z-plane, we can always assume that b = 0. On the other hand, given
any λ > 0 consider the homothety

hλ : R2 × R/2πZ −→ R
2 × R/2πλZ

of ratio λ. We saw that the Bogomolny equation is the dimensional reduction of the
ASD equation, which is conformally invariant. Then, forcing the Higgs field to scale as
a 1-form, (h∗λA, λ h∗λ�) is a monopole on R2 ×R/2πZ if and only if (A,�) solves the
Bogomolny equation onR2×R/2πλZ. Now, given a periodicDiracmonopole (Aq ,�q)

with mass v, set λ = v + a0
2 . Then as v →∞

λ−1h∗
λ−1� −→ i

(
1− 1

2
√
r2 + t2

)
,

i.e.the limit v →∞ corresponds to the limit R2 × S
1 → R

3 and in this limit a periodic
Dirac monopole converges to an Euclidean Dirac monopole.

4. Boundary Conditions

Having described the abelian periodic solutions to the Bogomolny equation, we proceed
to state and discuss the boundary conditions for periodic monopoles (with singularities)
introduced by Cherkis and Kapustin in [14,16]. Periodic monopoles will be required to
approach periodic Dirac monopoles of appropriate charges both at infinity and at the
singularities. This boundary behaviour is analogous to the one of SU (2) monopoles on
R
3 without singularities: it is well-known (cf. for example [26, Chapter IV, Part II]) that

every SU (2) monopole on R
3 with finite energy is asymptotic to an Euclidean Dirac

monopole. Before giving precise definitions, we need to address the issue of which
structure group to consider.

4.1. The structure group: SO(3) vs. SU (2). Limiting ourselves to compact Lie groups
of rank 2, the simplest choice would be to take G = SU (2). However, in order to
introduce singularities of the fields while hoping to obtain smooth and complete moduli
spaces, it is expected to be necessary to pick SO(3) as structure group. For example,
Kronheimer [29] showed that the moduli space of framed monopoles of charge 1 on R3

with one singularity at a point p and structure group G = SU (2) has a singularity of the
form C

2/Z2. In [16] Cherkis and Kapustin define periodicU (2) and SO(3)-monopoles
with singularities. We briefly discuss the relation between the two choices of structure
group, following Braam–Donaldson [8, §1.1–1.2, Part II] and Donaldson [17, §5.6].

Given a collection S of n distinct points p1, . . . , pn ∈ R
2×S

1, let V → (R2×S
1)\S

be an SO(3)-bundle. By a result ofWhitney [41, §III.7], isomorphism classes of SO(3)-
bundles over a CW-complex of dimension at most 3 are completely classified by the
second Stiefel–Whitney class w2. The second homology of (R2 × S

1)\S is generated
by the classes of 2-spheres S2pi each enclosing the point pi ∈ S. We fix the isomorphism
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class of V by requiring that w2(V ) · [S2pi ] = 1 for all i = 1, . . . , n. V does not lift to an
SU (2)-bundle whenever n > 0.

However, V does always lift to a U (2)-bundle E → (R2 × S
1)\S with c1(E) ≡

w2(V ) (mod 2). The adjoint bundle gE splits into a direct sum gE = R⊕g
(0)
E of a trivial

real line bundle, the trace part, and the trace-less part g(0)
E � V , a PU (2) � SO(3)

bundle. A pair (A,�) on E satisfying the Bogomolny equation induces an abelian
monopole (Atr ,�tr ) on det(E) and an SO(3)-monopole (A(0), �(0)) on V . The moduli
space of U (2) monopoles on E with fixed determinant is a double cover of the moduli
space of SO(3)monopoles on V , with H1((R2×S

1)\S;Z2) � Z2 as the group of deck
transformations. Very concretely, the Z2-action is given by tensoring E with the flat line
bundle L 1

2
with holonomy −id around circles γz = {z} × S

1
t .

We conclude that, up to a finite cover, it makes no difference to consider U (2)
monopoles with fixed central part and SO(3) monopoles. Moreover, fixing boundary
conditions resolves this ambiguity. We will work with structure group G = SO(3),
referring the reader to [16] on how to adapt the definitions to the case G = U (2).

4.2. Boundary conditions for SO(3)-monopoles. We begin with some preliminary no-
tational remarks. With the normalisation |A|2 = −2 Trace (A2) of the norm on su(2),
the isomorphism so(3) � su(2) via the adjoint representation is an isometry. Observe
that if V → (R2 × S

1)\S is a rank 3 real oriented Riemannian vector bundle and P
is the principal SO(3)-bundle of orthonormal frames of V , then V � ad P . Finally,
a reducible SO(3)-bundle V is an oriented Riemannian rank 3 vector bundle with a
decomposition V � R ⊕ M for an SO(2)-bundle M . We denote by σ̂ the trivialising
unit-norm section of the first factor. We will use the isomorphism V � ad P to identify
σ̂ with [σ3, · ], where σ3 = 1

2diag(i,−i), in a local trivialisation ad P � U × su2 over
an open set U . In this sense we will talk of diagonal and off-diagonal sections of V to
denote the sections of the two factors in the decomposition V � R⊕ M .

Fix a collection S of n distinct points p1, . . . , pn ∈ R
2 × S

1 and an SO(3)-bundle
V on (R2×S

1)\S with the topology described above. We also fix an origin and a frame
in R

2 × S
1 and use coordinates (z, t) ∈ C × R/2πZ with z = x + iy = reiθ . In [14,

§1.4] and [16, §2] Cherkis and Kapustin consider the following boundary conditions for
periodic monopoles (with singularities).

Definition 4.1. Fix a non-negative integer k∞ ∈ Z≥0, parameters (v, b) ∈ R × R/Z

and a point q = (μ, α) ∈ R
2 × S

1. When k∞ = 0 we further assume that v > 0. Let
C = C(p1, . . . , pn, k∞, v, b, q) be the space of smooth pairs c = (A,�) of a connection
A on V and a section � of V satisfying the following boundary conditions.

(1) For each pi ∈ S there exists a ball Bσ (pi ) and a gauge V |Bσ (pi )\{pi } � R ⊕ Hpi
such that (A,�) can be written

� = − 1

2ρi
σ̂ + ψ A = A0 σ̂ + a

with ξ = (a, ψ) = O(ρ−1+τ
i ) and |∇Aξ | + |[�, ξ ]| = O(ρ−2+τ

i ) for some rate
τ > 0. Here ρi is the distance from pi and A0 is the SO(3)-invariant connection
on Hpi .
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(2) There exists R > 0 and a gauge V � R⊕
(
Lk∞
q ⊗ Lv,b

)
over
(
R
2\BR
)×S

1 such

that (A,�) can be written

� =
[
v +

k∞
2π

log r − k∞
2π

Re

(
μ

z

)]
σ̂ + ψ

A =
[
b dt + k∞A∞ +

k∞
2π

(α + π)dθ − k∞
2π

Im

(
μ

z

)
dt

]
σ̂ + a

with ξ = (a, ψ) = O(r−1−τ ) and |∇Aξ | + |[�, ξ ]| = O(r−2−τ ) for some τ > 0.
Here A∞ is the connection on Lq of Lemma 3.6.

We refer to Lemmas 5.7 and 7.11 for some discussion of the optimal rate of con-
vergence of a monopole (A,�) ∈ C to the asymptotic models. Here we collect some
comments on Definition 4.1.

There is a topological constraint on the choice of the charge at infinity k∞. Indeed,
since [T∞] is homologous to the sum [S2p1] + · · · + [S2pn ] and k∞ (mod 2) is the value of
the second Stiefel–Whitney classw2(V ) on [T∞], we must have k∞ ≡ n modulo 2. The
(non-abelian) charge of an SO(3)-monopole (A,�) ∈ C is the non-negative integer k
defined by 2k = k∞ + n. In particular, for each charge k the number of singularities
cannot exceed 2k. In the extremal case k∞ = 0 we require that v > 0, so that � still
defines a reduction V � R ⊕ M of the structure group to SO(2) both at infinity and
close to the singularities.

The parameter q in Definition 4.1 is referred to as the centre of the monopole. It
is necessary to fix q in order to have L2-integrable infinitesimal deformations. Thus,
differently from the Euclidean case, only moduli spaces of centred periodic monopoles
carry a Riemannianmetric induced by the L2-norm of infinitesimal deformations. Notice
that the boundary conditions of Definition 4.1 depend on the choice of an origin and a
frame in R

2 × S
1.

Finally, Definition 4.1 implies that non-trivial periodic monopoles have infinite en-
ergy

A(A,�) = 1

2

∫
X
|FA|2 + |dA�|2. (4.2)

5. Monopoles with a Dirac-Type Singularity

This and the next section, of a technical nature, are aimed to introduce the analytical
tools needed toworkwithDefinition 4.1.We begin in this section by studyingmonopoles
on a punctured ball with a Dirac type singularity at the origin. We review the approach
of Kronheimer [29], who showed that the Hopf fibration induces a bijection between
monopoles on R

3 with Dirac type singularities and S
1-invariant instantons on R

4. This
discussion will serve as motivation for the singular behaviour imposed in Definition 4.1.
Moreover, in a number of points throughout the paper we will deduce decay properties
of monopoles with Dirac type singularities from the 4-dimensional theory. Next, we
will introduce weighted Sobolev spaces and check that the necessary embedding and
multiplication properties hold. Finally, we will study the mapping properties of the
Laplacian DD∗, where D is the Dirac operator of (2.4), in these weighted spaces.
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5.1. Hopf lift of a monopole with a Dirac-type singularity. Let B3 = Bσ (0) be a ball
in R

3. Fix complex coordinates (z1, z2) on C
2 � R

4 and consider the Hopf projection
π : B4 → B3, (z1, z2) 	→ (|z1|2−|z2|2, 2z1z2) ∈ R⊕C, which exhibits B4\{0} as a cir-
cle bundle over B3\{0}with fibre-wise circle action eis ·(z1, z2) = (eis z1, e−is z2). Here
B4 = B√σ (0) ⊂ R

4. The Euclidean metric on B4\{0} can be expressed in Gibbons–
Hawking coordinates [23] as

2gR4 = π∗(h gR3) + π∗
(
h−1
)

θ20 , (5.1)

where h is the harmonic function h = 1
2ρ , ρ is the distance from the origin in R3 and θ0

is a connection on π with π∗ (∗dh) = dθ0.
Let V → B3\{0} be an SO(3)-bundle and (A,�) a connection and Higgs field on

V . Define a connection Â on π∗V → B4\{0} by
Â = π∗A − π∗

(
h−1�
)
⊗ θ0. (5.2)

Then Â is an S
1-invariant ASD connection on B4\{0}. The following lemma is proved

by Kronheimer as an application of Uhlenbeck’s Removable Singularities Theorem [40,
Theorem 4.1].

Lemma 5.3 (Proposition 3.7 of [29]). A smooth pair (A,�) is a monopole on B3\{0}
such that

(i) h−1|�| → k ∈ N as ρ → 0, and
(ii)
∫
B3 |dA(h−1�)|2h dvR3 < ∞

if and only if Â defined by (5.2) is gauge equivalent to a smooth S
1-invariant ASD

connection on B4 and the S1-action on the fibre over the origin of the extension of π∗V
has weight k.

Remark. More precisely, Kronheimer states the correspondence with |dA(h−1�)| < ∞
instead of (ii). However, Uhlenbeck’s Removable Singularities Theorem and the fact
that h ∈ L1

loc immediately imply Lemma 5.3.

Example 5.4 (Euclidean Dirac monopole). Consider the model case of an Euclidean
Dirac monopole k(A0,�0) of charge k and vanishing mass on the reducible SO(3)-
bundle V = R⊕ Hk and the corresponding ASD connection Â. Writing zi = |zi |eiθi ,
a simple computation shows that the map

g =
{

ekθ1σ3 if z1 �= 0
e−kθ2σ3 if z2 �= 0

, (5.5)

defines an isomorphism π∗V � (B4\{0})× su(2) such that g( Â) = g Âg−1− (dg)g−1
is the trivial connection. In this gauge the S1-action is given by

eis · (z1, z2, X) =
(
eis z1, e

−is z2,Ad
(
eksσ3
)
X
)

(5.6)

for (z1, z2) ∈ C
2 and X ∈ su(2).

In the general case of a monopole (A,�) with a Dirac type singularity of charge k
we deduce the decay of (A,�) to the model k(A0,�0) from Lemma 5.3.
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Lemma 5.7 (cf. [16, Appendix A]). Given a monopole (A,�) on B3\{0} satisfying the
assumptions of Lemma 5.3 there exists a gauge such that

(A,�) = k(A0,�0) + O(1).

Proof. Let Â be the corresponding smooth S
1-invariant connection on B4. By parallel

transport from 0 ∈ B4 we can define a trivialisation of B4 × su(2) such that

(a) | Â| ≤ C |z|, where C depends on ‖FÂ‖L∞ and |z| is the Euclidean distance from the
origin in R4;

(b) the S1-action on B4 × su(2) takes the standard form (5.6).

Consider the action of the singular gauge transformation (5.5):

g( Â) = g Âg−1 − (dg)g−1 = π∗A − π∗(h−1�)⊗ θ0

and −(dg)g−1 = kπ∗A0 − kπ∗(h−1�0)⊗ θ0 by Example 5.4. Thus we have found a
gauge such that (A,�) = k(A0,�0) + (a, ψ) with π∗a − π∗(h−1ψ)⊗ θ0 = g Âg−1.
Computing norms using the expression (5.1) for the Euclidean metric, we find

h−1
(
|a|2 + |ψ |2

)
= |g Âg−1|2 = | Â|2 ≤ C |z|2 = 2Ch−1.

��

Finally, we observe that via the Hopf map the deformation theory of monopoles with
a Dirac type singularity on B3\{0} corresponds to the one of S1-invariant instantons on
B4. More precisely, the deformation theory of instantons is governed by the Dirac-type
operator

D̂ := 2d+
Â
⊕ d∗

Â
: �1
(
B4;π∗V

)
→ �+

(
B4;π∗V

)
⊕�0
(
B4;π∗V

)
, (5.8)

where�+ denotes the space of self-dual forms. Use the Hopf map to define lifts of forms
as follows:

(i) If u ∈ �0(B∗; V ) and α ∈ �1(B∗; V ) set û = π∗u and α̂ = π∗(∗hα) + π∗α ∧ θ0.
Observe that |u| = |û| and |α̂| = |α|.

(ii) If ξ = (a, ψ) ∈ �(B∗; V ) define a 1-form ξ̂ with values in π∗V by:

ξ̂ = π∗a − π∗(h−1ψ)⊗ θ0 (5.9)

We have already observed that |ξ̂ |2 = h−1
(|a|2 + |ψ |2).

Under these identifications the Dirac operator D̂ and its adjoint D̂∗ correspond to h−1D
and D∗, respectively.
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5.2. Function spaces for Gauge theory. It is therefore possible to study the deformation
theory of monopoles with a Dirac type singularity by studying the deformation theory
of S1-invariant instantons. This is the approach adopted by Pauly [34] to study singular
monopoles on compact 3-manifolds. On the other hand, it also makes sense to work
directly in 3-dimensions using weighted Sobolev spaces and a Dirac monopole as a
background for the analysis. Some advantages of the latter approach are that one can
work with stronger norms in terms of decay at the puncture and with L2-spaces, because
W 2,2 ↪→ C0 in 3 dimensions.

The theory of weighted Sobolev spaces is by now a fairly standard tool in many
geometric problems. Classical references are Lockhart–McOwen’s paper [31] and Mel-
rose’s book [32]. Our analysis is modelled on the work of Biquard [4,5] on singular
connections on punctured Riemann surfaces and the work of Kronheimer–Mrowka [28]
and Råde [36–38] on ASD connections with codimension 2 singularities.

The exposition is standard except for aminor technical difficulty. The choice ofweight
function is dictated by two requirements: on one side, we want certain multiplicative
properties to hold; on the other, we have to show that the Dirichlet problem for DD∗
can be solved for every appropriate boundary data. At first sight it seems that no choice
of weighted spaces can satisfy both conditions. However, one can exploit the fact that
we work on a reducible SO(3)-bundle V = R ⊕ H to resolve this issue. First, one
defines weighted spaces so that the necessary multiplicative properties hold. The lack
of surjectivity of the operator DD∗ acting between these spaces is easy to understand:
it is necessary to enlarge the domain by adding constant diagonal sections. After this
modification, it is crucial that the product on sections of V is induced by the Lie bracket
on su2 to guarantee that the multiplicative properties are not destroyed.

Definition 5.10. Let B∗ be the punctured unit ball inR2×S
1 and V → B∗ a Riemannian

vector bundle endowed with a metric connection A. Given δ ∈ R define the spaceWm,p
ρ,δ

as the closure of the space of sections u ∈ C∞(B∗; V ) vanishing in a neighbourhood of
the origin with respect to the norm:

‖u‖p
Wm,p

ρ,δ

=
m∑
j=0

∫ ∣∣∣ρ−δ− 3
p + j∇ j

Au
∣∣∣p dvR3

We will use the notation L p
ρ,δ for W

0,p
ρ,δ .

Remark 5.11. (i) ρβ ∈ L p
ρ,δ if and only if β > δ.

(ii) Pass to the conformal cylinder (0,+∞)× S
2 with metric

gcyl = dτ 2 + gS2 =
dρ2

ρ2 + gS2 ,

where we set τ = − log ρ. Then u ∈ Wm,p
ρ,δ if and only if eδτu ∈ Wm,p

cyl , where
the last symbol denotes the standard Sobolev space defined with respect to the
cylindrical metric.

The latter observation and the lemmas below are useful tools to work with these
weighted spaces.

Lemma 5.12 (cf. [28, Lemma 3.1]). If u ∈ Wm,p
loc (B∗) and ‖u‖Wm,p

ρ,δ
< ∞ then u ∈

Wm,p
ρ,δ .
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Lemma 5.13 (cf. [4, Theorem 1.2]). For all δ �= 0 and u ∈ C∞0 (B∗)

‖u‖
W 1,p

ρ,δ

≤ 1

|δ| ‖∇Au‖L p
ρ,δ−1

.

If δ > 0 it is not necessary to require that u ≡ 0 on ∂B.

We will now define spaces for gauge theory on the punctured ball modelled on the
spaces Wm,2

ρ,δ . Let V be the reducible SO(3)-bundle V = R⊕ Hk → B∗ endowed with
a pair c = k(A0,�0) σ̂ induced by an Euclidean Dirac monopole of charge k, mass 0
and singularity at the origin. For a V -valued form u we will write u = uD + uT in the
decomposition into diagonal and off-diagonal part. We use covariant weighted Wm,2

ρ,δ -
norms for sections of V . Norms of V -valued differential forms are defined similarly by
taking the Wm,2

ρ,δ norm of each component of the form.

Definition 5.14. Let c = k(A0,�0) σ̂ be a Dirac monopole on V = R⊕Hk → B∗ and
fix δ > 0.

(i) Define the gauge group G0
δ as the set of automorphisms g of V such that (d1g)g−1 ∈

L2
ρ,δ−1 and ∇2

Ag ∈ L2
ρ,δ−2.

(ii) Define C0δ as the space of configurations c + (a, ψ) on V with (a, ψ) ∈ W 1,2
ρ,δ−1.

(iii) Define a space W̃ 2,2
ρ,δ of infinitesimal gauge transformations as

W̃ 2,2
ρ,δ =

{
(uD, uT ) ∈ L2

ρ,−δ ⊕ L2
ρ,δ | ∇Au ∈ L2

ρ,δ−1,∇2
Au ∈ L2

ρ,δ−2
}

,

endowed with the norm

‖u‖2
W̃ 2,2

ρ,δ

= ‖uD‖2L2
ρ,−δ

+ ‖uT ‖2L2
ρ,δ

+ ‖∇Au‖2W 1,2
ρ,δ−1

.

The fact that G0
δ is a group, at the moment unjustified, is Proposition 5.19.(a) below.

Remark 5.15. Since � acts by −i k
2ρ on the off-diagonal component uT and trivially on

the diagonal uD , W̃
2,2
ρ,δ can be defined using the equivalent norm

‖u‖W̃ 2,2
ρ,δ
∼ ‖u‖L2

ρ,−δ
+ ‖∇Au‖L2

ρ,δ−1
+ ‖[�, u]‖L2

ρ,δ−1
+ ‖∇2

Au‖L2
ρ,δ−2

.

Similarly, the W̃ 2,2
ρ,δ -norm of a V -valued form u ∈ �(B∗; V ) is defined by

‖u‖2
W̃ 2,2

ρ,δ

= ‖u‖2
L2

ρ,−δ

+ ‖∇Au‖2L2
ρ,δ−1

+ ‖[�, u]‖2
L2

ρ,δ−1
+ ‖∇A(D∗u)|2

L2
ρ,δ−2

+‖[�, D∗u]‖2
L2

ρ,δ−2
.

If u ∈ �0(B∗; V ), D∗(0, u) = −(dAu, [�, u]) and this coincides with Definition 5.14.
(iii).

The following lemma helps to understand the definition of the space W̃ 2,2
ρ,δ .
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Lemma 5.16. Fix 0 < δ ≤ 1
2 . There are continuous embeddings W̃ 2,2

ρ,δ ↪→ C0 and

W 2,2
ρ,δ ↪→ ρδC0. Moreover, ‖u − u(0)‖W 2,2

ρ,δ
≤ C‖u‖W̃ 2,2

ρ,δ
for all u ∈ W̃ 2,2

ρ,δ .

Proof. The first claim is proved in three steps:

(1) Since δ > 0 and ρ ≤ 1 if u ∈ W̃ 2,2
ρ,δ then ρ−δ+ 1

2∇Au ∈ W 1,2. The Sobolev

Embedding Theorem in 3 dimensions implies that ρ−δ+ 1
2∇Au ∈ L p for all 2 ≤

p ≤ 6.

(2) Given 2 ≤ p ≤ 6 set q = 2p

p
(
1
2−δ
)
+1+2δ

and α = p
(
1
2−δ
)

p
(
1
2−δ
)
+1+2δ

. Then by Hölder’s

Inequality

‖∇Au‖qLq ≤ ‖ρ−δ− 1
2∇Au‖2αL2 ‖ρ−δ+ 1

2∇Au‖p(1−α)
L p .

Observe that q is an increasing function of p, with q = 2 if p = 2 and q = 3
1−δ

if p = 6. Thus ∇Au ∈ Lq for all 2 ≤ q ≤ 3
1−δ

.
(3) Kato’s inequality and Morrey’s estimate [19, Theorem 4, §5.6.2] imply that u ∈

C0,δ(B).

The second claim follows fromRemark 5.11.(ii) and the Sobolev embeddingwith respect
to the cylindrical metric.

In order to prove the last claim we use Lemma 5.13 and Step (3) above. Choose a
sequence of radii εi → 0 and a sequence of radial cut-off functions with χi (ρ) = 1 for

ρ ≥ 2εi , χi (ρ) = 0 for ρ ≤ εi and |∇χi | = O
(
1
ρ

)
on the annulus {εi ≤ ρ ≤ 2εi }.

Lemma 5.13 applied to the sections χi (u − u(0)) yields

∫
B

χ2
i |u − u(0)|2ρ−2δ−3 dvR3 ≤ C

∫
B
|∇Au|2ρ−2δ−1 dvR3

+ C
∫
B2εi \Bεi

|∇χi |2|u − u(0)|2ρ−2δ−1 dvR3

≤ C
∫
B
|∇Au|2ρ−2δ−1 dvR3

+ C‖u‖2C0,δ

∫
B2εi \Bεi

|∇χi |2ρ−1 dvR3

≤ C

(
‖∇Au‖2L2

ρ,δ−1
+ ‖u‖2C0,δ

)
.

By Step (3) above ‖u‖2
C0,δ ≤ C‖u‖W̃ 2,2

ρ,δ
and the proof is complete. ��

Thus for every 0 < δ ≤ 1
2 we have an extension

0→ W 2,2
ρ,δ → W̃ 2,2

ρ,δ → Rσ̂ → 0,

where σ̂ is a unit-norm section of the trivial factor in the decomposition V = R⊕ Hk .
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Remark 5.17. By the definition of d1, g ∈ G0
δ satisfies ∇Ag ∈ L2

ρ,δ−1, (g�g−1 −�) ∈
L2

ρ,δ−1 and∇2
Ag ∈ L2

ρ,δ−2. By Lemma 5.16 g is continuous and has a well-defined limit

over 0 ∈ B; the condition (g�g−1−�) ∈ L2
ρ,δ−1 forces this limiting value to lie in the

stabiliser of �.

Lemma 5.18. Assume that all weighted spaces below are spaces of V -valued forms and
the product on V � ad(PV ) is induced by the Lie bracket of su2. If 0 < δ ≤ 1

2 the
following are continuous maps:

(1) W 1,2
ρ,δ−1 ↪→ L6

ρ,δ−1
(2) W̃ 2,2

ρ,δ ↪→ C0(B)

(3) W 1,2
ρ,δ−1 ×W 1,2

ρ,δ−1 → L2
ρ,δ−2

(4) W̃ 2,2
ρ,δ × L2

ρ,δ−2 → L2
ρ,δ−2

(5) W̃ 2,2
ρ,δ × W̃ 2,2

ρ,δ → W̃ 2,2
ρ,δ

(6) W̃ 2,2
ρ,δ ×W 1,2

ρ,δ−1 → W 1,2
ρ,δ−1

In cases (3) and (6) the maps W 1,2
ρ,δ−1 → L2

ρ,δ−2 and W̃ 2,2
ρ,δ → W 1,2

ρ,δ−1 obtained by
fixing the second factor are compact.

Proof. The embeddings (1) and (2) follow from the Sobolev embedding theorem with
respect the cylindrical metric and Lemma 5.16, respectively. The continuity of the prod-
ucts in (3)–(6) then follows easily using the embeddings (1)–(2), Hölder’s inequality
and the assumption δ > 0, as we now briefly explain.

In order to prove (3) observe that by Hölder’s inequality

‖ξ · η‖L2
ρ,δ−2

= ‖ρ−δ+ 1
2 (ξ · η)‖L2 ≤ ‖ρ−δ+ 1

2 ξ‖L6‖η‖L3 = ‖ξ‖L6
ρ,δ−1

‖η‖L3

and similarly

‖η‖L3 ≤ diam(B)δ‖η‖
1
2

L6
ρ,δ−1

‖η‖
1
2

L2
ρ,δ−1

.

The continuity of the product W 1,2
ρ,δ−1 × W 1,2

ρ,δ−1 → L2
ρ,δ−2 now follows from (1). The

compactness of the induced map W 1,2
ρ,δ−1 → L2

ρ,δ−2 is deduced by writing

‖ξ · (ηi − ηi ′)‖L2
ρ,δ−2

≤ ‖ξ‖L6
ρ,δ−1(Bσ )‖ηi − ηi ′ ‖L3(Bσ )

+‖ξ‖L6
ρ,δ−1(B\Bσ )‖ηi − ηi ′ ‖L3(B\Bσ )

and using the fact that ‖ξ‖L6
ρ,δ−1(Bσ ) → 0 as σ → 0 together with the compactness of

the embedding W 1,2 ↪→ L3.
In view of the embedding in (2), the continuity of the map in (4) is immediate. For

the statement in (5), observe that in the decomposition u = uD + uT the product takes
the form:

(uD + uT ) · (vD + vT ) = (uT · vT ) + (uD · vT + uT · vD)

Therefore ‖(u · v)D‖L2
ρ,−δ

≤ ‖u‖L∞‖v‖L2
ρ,−δ

and

‖(u · v)T ‖L2
ρ,δ
≤ √

2‖uD‖L∞‖vT ‖L2
ρ,δ

+
√
2‖vD‖L∞‖uT ‖L2

ρ,δ
.

The rest of the proof of (5) and (6) follows easily making use of (3). ��
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Proposition 5.19. For all 0 < δ ≤ 1
2

(a) G0
δ is a Banach Lie group which acts smoothly on C0δ .

(b) The map � : W 1,2
ρ,δ−1 −→ L2

δ−2 defined by �(ξ) = ∗FA − dA� + d2ξ + ξ · ξ is
smooth.

5.3. Elliptic theory. The proposition above shows that the spaces C0δ and G0
δ are well-

suited to study gauge theory. The next task is to find a range of values for δ > 0 such
that the Laplacian DD∗ (coupled to Dirichlet boundary conditions) is an isomorphism
DD∗ : W̃ 2,2

ρ,δ → L2
ρ,δ−2.

We continue to work with the reducible pair (A,�) = k(A0,�0) σ̂ given by an
Euclidean Dirac monopole of charge k, zero mass and singularity at the origin. By
changing variables to τ = − log ρ the punctured ball B∗ = Bσ \{0} becomes the half
cylinder Q = (T,+∞)× S

2, where T = − log σ . The operator ρ2DD∗ has the form

ρ2DD∗u = −ü + u̇ + Lu =: Lu (5.20)

where the dots denote derivatives with respect to τ . L is the positive self-adjoint operator

on S
2 L =

(
�S2 ,∇∗A∇A + k2

4

)
in the decomposition V = R⊕ Hk . Here ∇∗A∇A is the

Laplacian of the connection A = k A0 on Hk → S
2.

L is a translation-invariant operator on the cylinder Q. In view ofRemark 5.11.(ii), we
want to study itsmapping properties betweenweighted Sobolev spacesL : e−δτW 2,2

cyl →
e−δτ L2

cyl . Lockhart–McOwen’s theory [31] deals precisely with this kind of elliptic
operators and their perturbations on cylinders and asymptotically cylindrical manifolds.
Since we will study a boundary value problem, we introduce the appropriate spaces for
the boundary data:

Definition 5.21. Let ∂W̃ 2,2
ρ,δ be the closure of C∞(∂B; V |∂B) with respect to the norm

‖ϕ‖
∂W̃ 2,2

ρ,δ
= inf ‖ϕ̃‖W̃ 2,2

ρ,δ
,

where the infimum is taken over all ϕ̃ ∈ C∞(B∗; V ) such that ϕ̃|∂B ≡ ϕ.

We associate to the operator L of (5.20) a discrete set of weights, called excep-
tional, as follows. Since L is a self-adjoint positive operator its eigenvalues form a
discrete sequence 0 ≤ λ1 ≤ λ2 ≤ . . . Moreover, we can select an orthonormal basis
of L2(S2;R ⊕ Hk) given by eigensections φ j of L . Every solution to Lu = 0 can be
written

u =
∞∑
j=1

(
A+
j e
−γ +

j τ + A−j e
−γ−j τ
)

φ j

where γ±j are the two solutions of γ 2 + γ − λ j , i.e. γ
±
j = − 1

2 ±
√

1
4 + λ j . Define the

set of exceptional weights of the operator L to be the collection D(L) of all γ±j , j ≥ 0.
The relevance of the exceptional weights is that the operator

e−δτW 2,2
cyl −→ e−δτ L2

cyl ⊕ ∂W 2,2
cyl ,

defined by u 	−→ Lu ⊕ u|∂Q is Fredholm for all δ /∈ D(L), cf. [31, Theorem 6.3] and
[32, Theorems 5.60 and 6.5]. Here ∂W 2,2

cyl is defined similarly to Definition 5.21.
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Lemma 5.22. The exceptional weights γ±j ∈ D(L) are:

⎧⎪⎨
⎪⎩

γ +
j = j +

|m|
2

γ−j = − j − 1− |m|
2

for j = 0, 1, 2, 3, . . . each with multiplicity 2 j + |m| + 1. Here we take m = 0 for the
operator restricted to the diagonal component and m = k when we restrict L to forms
with values in Hk.

Proof. The eigenvalues of the Laplacian∇∗A∇A of the SO(3)-invariant connectionmA0
on Hm have been calculated by Kuwabara [30, Theorem 5.1]. They are

l(l + 2)− m2

4
, l = |m| + 2 j, for j = 0, 1, 2, . . .

each with multiplicity l +1. Hence the eigenvalues of L are l(l+2)
4 , where we take m = 0

on the diagonal component and m = k on the off-diagonal part. The Lemma follows.
��
In particular, 0 is an exceptional weight with multiplicity 1 (the constant functions) for
the operator L restricted to the diagonal part, while none of the weights in the interval
(−1− |k|

2 ,
|k|
2 ) is exceptional for the operator restricted to the off-diagonal part.

Proposition 5.23. Fix 0 < δ < min {1, |k|2 }. The Dirichlet problem{
∇∗A∇Au − ad2(�)u = f

u|∂B = ϕ

has a unique solution u ∈ W̃ 2,2
ρ,δ for all f ∈ L2

ρ,δ−2 and ϕ ∈ ∂W̃ 2,2
ρ,δ . Moreover there

exists a constant C independent of u, f, ϕ such that

‖u‖W̃ 2,2
ρ,δ
≤ C

(
‖ f ‖L2

ρ,δ−2
+ ‖ϕ‖

∂W̃ 2,2
ρ,δ

)
.

The proposition is proved by separation of variables, see for example [33, Proposition
6.2.1]. Notice that introducing W̃ 2,2

ρ,δ , which is an extension ofW
2,2
ρ,δ by constant diagonal

sections, is necessary to be able to solve the Dirichlet problem for arbitrary boundary
data.

6. Analysis on the Big End of R2 × S
1

We move on to discuss the framework to tackle the analysis on the big end of R2 × S
1.

The local model is provided in this case by a periodic Dirac monopole, or better its
asymptotic form analysed in Lemmas 3.4 and 3.6: we work on the SO(3)-bundle V =
R ⊕ (Lv,b ⊗ Lk∞

q ) endowed with the reducible pair (A∞,�∞) induced by a periodic
Dirac monopole of centre q, charge k∞ and vacuum asymptotic parameters v, b. We
will drop the subscript ∞ for most of the section.
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Fix R > 0 so that for r ≥ R we can write |�| = v + k∞
2π log r + O(r−1). Hence we

can find a constant c = c(R, v, q) > 0 such that

|�| ≥ c |dA�| ≤ c

r
(6.1)

if r ≥ R (recall that we assume v > 0 if k∞ = 0). Let UR be the open exterior domain
R
2\BR ; we will drop the subscript R when it is not essential in the discussion. If u is a

section of V we write u = uD + uT in the decomposition into diagonal and off-diagonal
part. Then in the region U × S

1

|[�, u]|2 ≥ c|uT |2. (6.2)

By Fourier analysis with respect to the circle variable t we can further decompose
uD = �0uD +�⊥uD into S1-invariant and oscillatory part. On each circle {z} × S

1
t the

following Poincaré inequality holds

∫
S1
|∇(�⊥uD)|2 ≥

∫
S1
|�⊥uD|2. (6.3)

The inequalities (6.2) and (6.3) suggest that, via theWeitzenböck formulaLemma2.8,
we have extremely good control of the off-diagonal and oscillatory piece of u in terms
of DD∗u. In order to control the S1-invariant diagonal piece �0uD we introduce appro-
priate weighted spaces. An issue similar to the one encountered in Sect. 5 arises here
when trying to define weighted spaces for which good multiplication properties and the
surjectivity of DD∗ hold at the same time.

6.1. Function spaces for Gauge theory. Models for our analysis are the paper [7], where
Biquard and Jardim study doubly periodic instantons with quadratic curvature decay.

Fix R > 0 and work on the exterior domainU = UR ⊂ R
2. Define a weight function

ω(z) =
√
1 + r2 (6.4)

Notice that

|∇ω| ≤ 1, − ω�ω + |∇ω|2 = 2 (6.5)

An important consequence of introducing theweight functionω is the followingPoincaré
inequality.

Lemma 6.6. For all δ �= 0 there exists a constant C = C(c, R, δ) such that

‖ω−(δ+1) u‖L2 ≤ C
(‖ω−δ ∇Au‖L2 + ‖ω−δ [�, u]‖L2

)

for every u ∈ C∞0
(
U
)
subject to the additional restriction �0uD|∂U = 0 when δ > 0.
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Proof. Decompose u = �0uD + �⊥uD + uT . (6.2) and (6.3) imply that if �0uD = 0
we have

‖ω−(δ+1) u‖L2 ≤ C√
1 + R2

(‖ω−δ ∇u‖L2 + ‖ω−δ [�, u]‖L2
)

Therefore suppose that u = �0uD . The estimate is analogous to Lemma 5.13 and is
proved by integration by parts, cf. [4, Theorem 1.2]: in polar coordinates (r, θ) on R

2

∫
ω−2(δ+1)u2 = − 1

2δ

∫
d

(
1

ω2δ

)
∧ u2dθ ≤ 1

δ

∫
u(∂r u)

rω2δ

≤ C |δ|−1
(∫

ω−2(δ+1)u2
)1/2 (∫

ω−2δ|∇u|2
)1/2

.

The first inequality follows because under the hypothesis on u the boundary term is
always non-positive and the second one follows from Hölder’s inequality with C =√

2+R2

R . ��
Definition 6.7. For a smooth V -valued form u ∈ �

(
U × S

1; V ) and δ ∈ R we define
norms:

(i) ‖u‖L2
ω,δ
= ‖ω−(δ+1)u‖L2

(ii) ‖u‖2
W 1,2

ω,δ

= ∫ ω−2δ−2|u|2 + ∫ ω−2δ
(|∇Au|2 + |[�, u]|2)

(iii) ‖u‖2
W 2,2

ω,δ

= ‖u‖2
L2

ω,δ

+ ‖∇Au‖2L2
ω,δ−1

+ ‖[�, u]‖2
L2

ω,δ−1
+ ‖∇A(D∗u)‖2

L2
ω,δ−2

+ ‖[�, D∗u]‖2
L2

ω,δ−2
(iv) ‖u‖2

W̃ 2,2
ω,δ

= ‖u‖2
L2

ω,−δ

+ ‖∇Au‖2L2
ω,δ−1

+ ‖[�, u]‖2
L2

ω,δ−1
+ ‖∇A(D∗u)‖2

L2
ω,δ−2

+ ‖[�, D∗u]‖2
L2

ω,δ−2
The corresponding weighted Sobolev spaces are defined as the closure of the space of
smooth compactly supported forms with respect to these norms.

Remark 6.8. (i) Since (A,�) is a solution to the Bogomolny equation, theW 1,2
ω,δ-norm of

a compactly supported form u ∈ C∞0 (U×S
1) is equivalent to ‖u‖L2

ω,δ
+‖D∗u‖L2

ω,δ−1
by the Weitzenböck formula Lemma 2.8 for DD∗.

(ii) In view of (6.2) and (6.3), if u ∈ W 1,2
ω,δ then �⊥uD, uT ∈ L2

ω,δ−1. In particular, the
only difference between the spaces W 2,2

ω,δ and W̃ 2,2
ω,δ consists in the chosen weighted

L2-norm of �0uD . It follows from the proof of Lemma 6.10 below that when δ < 0
we have an extension

0→ W 2,2
ω,δ → W̃ 2,2

ω,δ → R σ̂ → 0.

Definition 6.9. Fix δ < 0.

(i) G∞δ is the space of sections g of Aut(V ) overU ×S
1 such that (d1g)g−1 ∈ W 1,2

ω,δ−1.
(ii) C∞δ is the space of pairs (A,�) on V of the form (A∞,�∞) + (a, ψ), where

ξ = (a, ψ) is a section of (�1 ⊕�0)⊗ V of class W 1,2
ω,δ−1.

(iii) Infinitesimal gauge transformations are elements of W̃ 2,2
ω,δ−2(U × S

1; V ).
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Lemma 6.10. Fix δ ∈ (−1, 0).
(i) If ξ = �0ξD + �⊥ξD + ξT ∈ W 1,2

ω,δ−1 is a V -valued differential form then

ω−δ�0ξD, ω−δ+1�⊥ξD, ω−δ+1ξT ∈ L p

for all 2 ≤ p ≤ 6 and the inclusions are continuous.
(ii) W̃ 2,2

ω,δ ↪→ C0 is a continuous embedding.

The following products are continuous:

(iii) W̃ 2,2
ω,δ × W̃ 2,2

ω,δ → W̃ 2,2
ω,δ

(iv) W̃ 2,2
ω,δ ×Wm,2

ω,δ−2+m → Wm,2
ω,δ−2+m for m = 0, 1

(v) W 1,2
ω,δ−1 ×W 1,2

ω,δ−1 → L2
ω,δ−2

Moreover, the maps W̃ 2,2
δ → Wm,2

δ−2+m and W 1,2
ω,δ−1 → L2

ω,δ−2 induced by (iv) and (v)
by fixing the second argument are compact. Here the products are those induced by the
Lie bracket on su(2) under the identification V � ad P.

Proof. (i) It is a consequence of the Sobolev embedding theorem W 1,2 ↪→ L6 in 3
dimensions and the fact that if ξ ∈ W 1,2

ω,δ−1 then ω−δ+1�⊥ξD, ω−δ+1ξT ∈ L2.
(ii) For the oscillatory andoff-diagonal part this is a consequence of the standardSobolev

embeddingW 2,2 ↪→ C0. In fact we have more: if�0uD = 0 thenω−(δ−1)u ∈ W 2,2

and therefore u ∈ ωδ−1C0.
Suppose instead that u = �0uD , so that we can work on U ⊂ R

2. First of all
we can replace ω with r because the two weights are equivalent (with a constant
depending on R) on U . If ∇u ∈ W 1,2

ω,δ−1, r−δ+1∇u ∈ W 1,2
cyl , where the latter is

the standard Sobolev space with respect to the cylindrical metric r−2gR2 . Thus
r−δ+1∇u ∈ L p

cyl for all p ∈ [2,∞) by the standard Sobolev embedding. By an

inversion r = 1
ρ
we consider the function ũ(ρeiθ ) = u(ρ−1eiθ ) defined on a

punctured ball B1/R ⊂ R
2. It is integrable because u ∈ L2

ω,−δ and δ > −1 (δ > −2
would be enough). Moreover, ũ has gradient in L p for all p < 2

1+δ
. Since δ < 0

we can choose p > 2 and apply Morrey’s estimate [19, Theorem 4, §5.6.2] to show
that ũ, and therefore u, is continuous. In particular there exists a well-defined limit
of u∞ = limr→∞ u(reiθ ) and, by Lemma 6.6, u − u∞ ∈ W 2,2

ω,δ .
The rest of the Lemma now follows easily in a way similar to Lemma 5.18. It is

crucial to observe that terms of the form uD · vD do not appear in the products. ��
Proposition 6.11. For all δ ∈ (−1, 0), G∞δ is a Banach Lie group acting smoothly on
C∞δ .

Moreover, the map � : C∞δ → L2
ω,δ−2(U × S

1;�1⊗ V ); (A,�) 	→ ∗FA − dA� is
smooth.

6.2. Elliptic theory. We continue to work with the model configuration (A,�) =
(A∞,�∞) on the exterior domainUR . We now study the equation DD∗u = ∇∗A∇Au−
ad(�)2u = f for f ∈ L2

ω,δ−2 and u ∈ W̃ 2,2
ω,δ with δ < 0 sufficiently close to 0. We will

need the following elliptic regularity result.
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Lemma 6.12. For all δ ∈ R there exists a constantC > 0 such that if ξ ∈ C∞0
(
UR × S

1
)

then

‖∇Aξ‖L2
ω,δ−2

+ ‖[�, ξ ]‖L2
ω,δ−2

≤ C
(
‖Dξ‖L2

ω,δ−2
+ ‖ξ‖L2

ω,δ−1

)
(6.13)

Proof. The Weitzenböck formula for D∗D in Lemma 2.8 implies

1

2
d∗d
(
|ξ |2
)
= −|∇Aξ |2 − |[�, ξ ]|2 + 〈D∗Dξ, ξ 〉 − 2〈dA� · ξ, ξ 〉. (6.14)

Integrate this Bochner-type identity against ω−2δ+2 and integrate by parts:

∫
ω−2δ+2

(
|∇Aξ |2 + |[�, ξ ]|2

)
≤
∫

ω−2δ+2|Dξ |2 − 2
∫

ω−2δ+2〈dA� · ξ, ξ 〉

+ 2(1− δ)

∫
ω−2δ+1〈Dξ, dω · ξ 〉

+ 2(1− δ)

∫
ω−2δ+1〈∇Aξ, dω ⊗ ξ 〉

+ 2(1− δ)2
∫

ω−2δ|ξ |2 (6.15)

Consider the term
∫

ω−2δ+2〈dA� · ξ, ξ 〉. Since (A,�) is reducible this term only
involve ξT . Moreover, by (6.1) ω|dA�| ≤ c. Then Hölder’s and Young’s inequality with
ε > 0 imply

∣∣∣∣
∫

ω−2δ+2〈dA� · ξT , ξT 〉
∣∣∣∣ ≤ c

ε1

∫
ω−2δ|ξT |2 + cε1

∫
ω−2δ+2|ξT |2

for any ε1 > 0. Moreover, by (6.1)

cε1

∫
ω−2δ+2|ξT |2 ≤ ε1

∫
ω−2δ+2|[�, ξ ]|2.

Secondly, by Hölder’s inequality

∣∣∣∣
∫

ω−2δ+1〈Dξ, dω · ξ 〉
∣∣∣∣ ≤ ‖ω−δ+1Dξ‖L2‖ω−δξ‖L2 ≤ 1

2
‖ω−δ+1Dξ‖2L2 +

1

2
‖ω−δξ‖2L2

because |dω| ≤ 1 by (6.5). Similarly, for any ε2 > 0:

∣∣∣∣
∫

ω−2δ+1〈∇Aξ, dω · ξ 〉
∣∣∣∣ ≤ ‖ω−δ+1∇Aξ‖L2‖ω−δξ‖L2

≤ ε2‖ω−δ+1∇Aξ‖2L2 +
1

ε2
‖ω−δξ‖2L2

Now choose ε1, ε2 < 1 so that the appropriate terms can be absorbed in the LHS of
(6.15) to obtain (6.13). ��
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Proposition 6.16. There exists −1 < δ0 < 0 such that if δ ∈ (δ0, 0) then the following
holds. For all f ∈ L2

ω,δ−2 and ϕ ∈ ∂W̃ 2,2
ω,δ there exists a unique solution u ∈ W̃ 2,2

ω,δ to
the Dirichlet problem {

DD∗u = f in UR × S
1

u = ϕ on ∂UR × S
1

Moreover for every κ > 1 there exists a constant C = C(κ, δ) > 0 independent of u, f
and R such that

‖u|UκR×S1‖W̃ 2,2
ω,δ
≤ C
(
‖ f ‖L2

ω,δ−2
+ ‖ϕ‖

∂W̃ 2,2
ω,δ

)
. (6.17)

Proof. Observe that we can always reduce to the case of vanishing boundary datum
ϕ = 0 by extending ϕ to ϕ̃ ∈ W̃ 2,2

ω,δ such that ‖ϕ̃‖W̃ 2,2
ω,δ
≤ ‖ϕ‖

∂W̃ 2,2
ω,δ

and replacing u with

u − ϕ̃ and f with f − DD∗ϕ̃.
First suppose that f = �0 fD so that we work on the exterior domain UR ⊂ R

2.
In this case, one can take δ ∈ (−1, 0) and R ≥ 1 arbitrary and the estimate holds with
κ = 1. The proof is by separation of variables as for Proposition 5.23. It is necessary
to consider the extension W̃ 2,2

ω,δ of W
2,2
ω,δ by the constant functions to be able to solve the

Dirichlet problem for arbitrary boundary data.
Assume instead that �0 fD = 0. Then (6.2) and (6.3) imply

c
∫
S1
|u|2 ≤

∫
S1
|∇Au|2 + |[�, u]|2. (6.18)

Since L2
ω,δ−2 ⊂ L2 we obtain a unique weak solution u to the Dirichlet problem by

direct minimisation of the functional 1
2

∫ |∇Au|2 + |[�, u]|2− ∫ 〈u, f 〉. Moreover there
exists a uniform constant C > 0 such that

‖u‖L2 + ‖∇Au‖L2 + ‖[�, u]‖L2 ≤ C
(
‖ f ‖L2

ω,δ−2
+ ‖ϕ‖

∂W̃ 2,2
ω,δ

)
.

Observe also that ‖u‖L2
ω,−δ

≤ ‖u‖L2 since δ < 0 and ω ≥ 1. It remains to show that

u ∈ W̃ 2,2
ω,δ .

Step 1. Since u vanishes on the boundary, an integration by parts yields (all integrals
are taken over UR × S

1):∫
ω−2δ〈∇∗A∇Au − ad2(�)u, u〉 =

∫
ω−2δ
(
|∇Au|2 + |[�, u]|2

)

−2δ
∫

ω−2δ−1〈∇Au, u ⊗ dω〉
To control the last term, use Hölder’s inequality, (6.5) and (6.18):∣∣∣∣2δ
∫

ω−2δ−1〈∇Au, u ⊗ dω〉
∣∣∣∣ ≤ C |δ|‖ω−1‖L∞

∫
ω−2δ
(
|∇Au|2 + |[�, u]|2

)

Since ω ≥ 1 if |δ| is sufficiently small we deduce

‖∇Au‖L2
ω,δ−1

+ ‖[�, u]‖L2
ω,δ−1

≤ C‖DD∗u‖L2
ω,δ−2

.

In other words, in view of (6.18) and the definition of D∗, we proved
‖u‖L2

ω,δ−1
+ ‖D∗u‖L2

ω,δ−1
≤ C‖D∗u‖L2

ω,δ−1
≤ C‖DD∗u‖L2

ω,δ−2
.
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Step 2. Set ξ = D∗u. Given κ > 1, fix a radial cut-off function χ vanishing in a
neighbourhood of ∂UR with χ = 1 on UκR × S

1 and |dχ | = O(R−1). In
particular, using Step 1,

‖D(χξ)‖2
L2

ω,δ−2
≤ ‖ω dχ‖2L∞‖ξ‖2L2

ω,δ−1
+ ‖DD∗u‖L2

ω,δ−2
≤ C‖Dξ‖L2

ω,δ−2
.

By applying (6.13) to χξ we obtain the estimate

‖u|UκR×S1‖W̃ 2,2
ω,δ
≤ C
(
‖ f ‖L2

ω,δ−2
+ ‖ϕ‖

∂W̃ 2,2
ω,δ

)
.

Finally, combining the latter with standard elliptic regularity close to the bound-
ary (cf. for example [24, Theorem 8.12]) guarantees that u ∈ W̃ 2,2

ω,δ on the whole
of UR × S

1. ��
Remark. The estimate (6.17) continues to hold with κ = 1, but the constant will depend
on R, for example through ‖�‖L∞ on the annulus {R ≤ r ≤ κR} when appealing to
[24, Theorem 8.12].

7. Construction of the Moduli Spaces

In this section the local analysis of Sects. 5 and 6 is used to prove that moduli spaces
of SO(3) periodic monopoles (with singularities) are, when non-empty, smooth hyper-
kähler manifolds for generic choices of the parameters defining the boundary conditions
of Definition 4.1. Before proceeding with the proof, we make precise definitions of
the spaces of connections, Higgs fields and gauge transformations combining Defini-
tions 5.14 and 6.9.

Fix a collection S of n distinct points p1, . . . , pn ∈ R
2× S

1. Let V → (R2× S
1)\S

be an SO(3)-bundle such that w2(V ) · [S2pi ] = 1. Denote by P the associated principal
SO(3)-bundle. Choose parameters k∞ ∈ Z≥0 with k∞ ≡ n (mod 2) and v, b ∈ R×R/Z,
q ∈ R

2 × S
1, with v > 0 if k∞ = 0. Let C = C(p1, . . . , pn, k∞, v, b, q) be the space

of smooth pairs of a connection and a Higgs field on V as in Definition 4.1.
Fix a smooth pair c = (A,�) ∈ C, which we will refer to as the background pair.

One such pair will be constructed in Sect. 8. We can always assume that there exist
preferred gauges over Bσ (pi )\{pi } andUR×S

1, for small σ > 0 and large R > 0, such
that c coincides with the asymptotic models over these regions. Given c, we use it as a
background to define spaces Wm,2

ρ,δ1
and Wm,2

ω,δ2
of forms with values in V |Bσ (pi )\{pi } and

V |UR×S1 as in Definitions 5.10 and 6.7.

Definition 7.1. Given σ, R > 0, set Kσ,R =
(
BR × S

1
) \⋃n

i=1 Bσ (pi ).

(i) A V -valued form u ∈ L2
loc on (R2×S

1)\S belongs to the global weighted Sobolev
space L2

(δ1,δ2)
if, in the preferred gauges around each singularity and at infinity,

u|Bσ (pi )\{pi } ∈ L2
ρ,δ1

and u|UR×S1 ∈ L2
ω,δ2

. We define a norm on L2
(δ1,δ2)

by
taking the maximum of the semi-norms ‖u|Bσ (pi )\{pi }‖L2

ρ,δ1
, ‖u|UR×S1‖L2

ω,δ2
and

‖u|K σ
2 ,2R

‖L2 .

The spaces W̃ 2,2
(δ1,δ2)

,W 2,2
(δ1,δ2)

and W 1,2
(δ1,δ2)

are defined in a similar way.
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(ii) Given δ > 0 with δ < min{ 12 , δ0}, where δ0 is given by Proposition 6.16, denote
with δ the pair (δ,−δ) and set δ−m = (δ−m,−δ−m) for any integer m. Define
Cδ as the space of pairs of a connection and a Higgs field on V of the form c + ξ

with ξ ∈ W 1,2
δ−1.

(iii) The group Gδ of gauge transformations is defined as the space of sections g of
P ×Ad SO(3) such that c + (d1g)g−1 ∈ Cδ .

The fact thatGδ is a group of continuous gauge transformations acting smoothly on Cδ

follows fromPropositions 5.19 and6.11. Infinitesimal gauge transformations are sections
of V of class W̃ 2,2

δ . Finally, by Propositions 5.19 and 6.11, (A,�) 	→ ∗FA−dA� defines

a smooth map � : Cδ → L2
δ−2.

Themoduli spaceMn,k is�−1(0)/Gδ .Wewill see below that the only singularities of
Mn,k arise from reducible monopoles in Cδ . Here a pair (A,�) is said to be reducible if
V � R⊕M for an SO(2)-bundleM → (R2×S

1)\S and (A,�) is induced by an abelian
monopole onM . It is therefore important to understandwhen reducible monopoles exist.
Denote by cv,b the abelian flat monopole (d + ib dt, v) and with cp the periodic Dirac
monopole of charge 1 with singularity at p ∈ R

2 × S
1, cf. Definition 3.2. Recall that

we defined k = k∞+n
2 ∈ Z≥0 as the non-abelian charge of the SO(3)-pair (A,�) ∈ Cδ .

Lemma 7.2. If n < k every monopole in Cδ is irreducible.
If n ≥ k, reducible monopoles in Cδ are in one to one correspondence with subsets

{pi1 , . . . , pik } of S = {p1, . . . , pn} of cardinality k and such that pi1 + · · · + pik =
1
2

(∑n
i=1 pi + k∞q

)
in R2 × R/2πZ.

After reordering the pi ’s if necessary, assume that {p1, . . . , pk} satisfies this condi-
tion. Then the unique reducible monopole corresponding to this choice is

cv,b +
k∑

i=1
cpi −

n∑
i=k+1

cpi .

Proof. If (A,�) ∈ Cδ is a reducible monopole then � = ϕ σ̂ for a harmonic function
ϕ on (R2 × S

1)\S with prescribed behaviour at the punctures and at infinity. Here σ̂ is
the trivialising unit-norm section of the first factor in the decomposition V � R ⊕ M .
After possibly reordering the pi ’s, ϕ is of the form ϕ = v +

∑n′
i=1 Gpi −

∑n
i=n′+1 Gpi

for some 0 ≤ n′ ≤ n.
To conclude, use Lemmas 3.4, 3.6 and 3.7 to compare the asymptotics of the sum

of Dirac monopoles cv,b +
∑n′

i=1 cpi −
∑n

i=n′+1 cpi with the boundary conditions of
Definition 4.1: n′ = k because the charge at infinity has to be 2k − n = k∞ and
p1 + . . . + pk = 1

2

(∑n
i=1 pi + k∞q

)
for the terms of order 1

r to coincide. ��

7.1. The deformation complex. Let (A,�) = c + ξ ∈ �−1(0) ⊂ Cδ be a solution to
the Bogomolny equation (1.2). In order to prove that Mn,k is a smooth manifold in a
neighbourhood of (A,�) we have to show that:

(i) The deformation complex (2.5) defines a Fredholm complex W̃ 2,2
δ → W 1,2

δ−1 →
L2

δ−2.
(ii) If (A,�) is irreducible, i.e. d1 is injective, then d2 is surjective.
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We will need the following elliptic regularity result for the Laplacians of the defor-
mation complex.

Lemma 7.3. Let (A,�) = c + ξ ∈ Cδ . Then there exists σ, R and C depending on ξ

such that

‖u‖W̃ 2,2
δ
≤ C
(
‖DD∗u‖L2

δ−2
+ ‖u‖L2(Kσ,R)

)

for all u ∈ �
(
(R2 × S

1)\S; V ).
Proof. Denote with D0 the Dirac operator (2.4) twisted by the background pair c. By
Lemmas 5.18 and 6.10

‖DD∗u − D0D
∗
0u‖L2

δ−2
≤ C‖ξ‖W 1,2

δ−1
‖u‖W̃ 2,2

δ
. (7.4)

Choose σ and R so that ‖ξ |Bσ (pi )\{pi }‖W 1,2
δ−1

and ‖ξ |UR×S1‖W 1,2
δ−1

are sufficiently small.

From the estimates in Propositions 5.23 and 6.16 we deduce

‖u‖W̃ 2,2
δ
≤ C

(
‖DD∗u‖L2

δ−2
+ ‖u|Kσ,R‖W̃ 2,2

δ

)
.

Therefore to prove the Lemma it is enough to show that for all compact sets K ′ ⊂ K ⊂
(R2 × S

1) \ S, there exists C = C(K , K ′, ξ) such that

‖u‖W 2,2(K ′) ≤ C
(‖DD∗u‖L2(K ) + ‖u‖L2(K )

)
. (7.5)

Here W 2,2 is the unweighted covariant Sobolev norm

‖u‖2W 2,2 = ‖u‖2L2 + ‖∇Au‖2L2 + ‖[�, u]‖2L2 + ‖∇A(D∗u)‖2L2 + ‖[�, D∗u]‖2L2 .

Choose a cut-off function χ supported on K and such that χ ≡ 1 on K ′. Using the
Weitzenböck formula for DD∗, we have∫

χ2
(
|∇Au|2 + [�, u]2

)
+ 2
∫

χ〈∇Au,∇χ ⊗ u〉 +
∫
〈� · u, χ2u〉

=
∫
〈DD∗u, χ2u〉 ≤ ‖DD∗u‖L2(K )‖u‖L2(K )

where � = ∗FA − dA�. Now use Young’s inequality with ε > 0 to estimate∫
χ〈∇Au,∇χ ⊗ u〉 ≤ ε2

∫
χ2|∇Au|2 + 1

ε2
‖u‖2L2(K )

.

and, together with Hölder’s inequality,∫
|�| |χu|2 ≤ ‖�‖L2(K )‖χu‖

1
2
L2‖χu‖

3
2
L6 ≤ ε2‖χu‖2L6 + Cε‖�‖4L2(K )

‖χu‖2L2 .

The Sobolev embedding W 1,2 ↪→ L6 now implies∫
|�| |χu|2 ≤ ε2‖χ∇Au‖2L2 + Cε(1 + ‖�‖4L2(K )

)‖u‖2L2(K )
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Choosing ε small enough we obtain

‖∇Au‖2L2(K ′) + ‖[�, u]‖2L2(K ′) ≤ C‖DD∗u‖2L2(K )
+ C(1 + ‖�‖4L2(K )

)‖u‖2L2(K )
.

The second order estimate is obtained in a similar way, restricting to an even smaller
compact set K ′′ ⊂ K ′ and using the Weitzenböck formula for the operator D∗D.

Thus we obtained (7.5) for a constantC depending on ‖dA�‖L2(K ) and ‖�‖L2(K ). To

conclude observe that, since (A,�) = c + ξ , with c smooth and ξ ∈ W 1,2
δ−1 (in particular

ξ ∈ W 1,2
loc ), ‖dA�‖L2(K ) and ‖�‖L2(K ) are bounded in terms of K , the background c

and ‖ξ‖W 1,2
δ−1

. ��

7.2. Slice to the action of the Gauge group.

Proposition 7.6. The operator DD∗ : W̃ 2,2
δ → L2

δ−2 is Fredholm. If (A,�) is irre-
ducible then DD∗ is an isomorphism.

Proof. Denote by D0 the Dirac operator associated with the background pair c. By
Propositions 5.23 and 6.16 we obtain inverses of D0D∗

0 in a neighbourhood of the
singularities and at infinity by solving Dirichlet problems with vanishing boundary con-
ditions. The fact that D0D∗

0 is a Fredholm operator follows by gluing these inverses
with a parametrix on the compact set Kσ,R , cf. for example Råde’s [36, Lemma 3.2].
Moreover, by the compactness statements in Lemmas 5.18 and 6.10 DD∗ differs from
D0D∗

0 by a compact operator and therefore DD∗ also is Fredholm.
To show that DD∗ is an isomorphism if (A,�) is irreducible, we proceed in three

steps.

(1) By the Weitzenböck formula Lemma 2.8, if (A,�) is irreducible then DD∗ is
injective. Indeed,

0 =
∫
〈∇∗A∇Au − ad2(�)u, u〉 =

∫
|∇Au|2 + |[�, u]|2

If δ is in the range specified the integration by parts can be justified using a sequence
of cut-off functions converging to 1. Observe also that, since DD∗ is injective,
Lemma 7.3 and a standard argument by contradiction using Rellich’s compactness
imply that there exists a constant C > 0 such that ‖u‖W̃ 2,2

δ
≤ C‖DD∗u‖L2

δ−2
. The

Proposition will follow from the fact that the index of DD∗ vanishes.
(2) Choosing σ sufficiently small and R sufficiently large we can deform (A,�) into a

newpair c′ = (A′,�′) = c+χξ which coincideswith the backgroundpair c outside
of Kσ,R . Here χ is a cut-off function with support in Kσ,R . By the compactness
of the products in Lemmas 5.18 and 6.10 the index of Dc′D∗

c′ and DD∗ coincide.
Moreover, since Dc′D∗

c′ is of the form DD∗ + T , where the operator norm of T is
controlled by ‖(1−χ)ξ‖W 1,2

δ−1
, it follows from Step 1 that Dc′D∗

c′ remains injective

provided σ and R are chosen so that ‖(1− χ)ξ‖W 1,2
δ−1

is sufficiently small.

(3) For notational convenience we drop the subscript c′ in the rest of the proof. It re-
mains to be shown that DD∗ is surjective. Start considering themapDD∗ : W 2,2

δ →
L2

δ−2. Since δ and−δ are non-exceptional weights for DD∗ close to the singulari-
ties and at infinity, standard theory ofweighted Sobolev spaces implies that the cok-
ernel of thismap is identifiedwith the kernel of DD∗ in L2

δ∗ , where δ∗ = (−δ−1, δ)
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(cf. for example [33, Theorem 10.2.1]). Denote this finite dimensional space by
ker (DD∗)δ∗ .We claim that there is an injectivemap ker (DD∗)δ∗ → R

4(n+1). This
can be shownby solving theDirichlet problemonballs Bσ (pi )\{pi } andonUR×S

1

(for some small σ and large R) to write any element u = u0+u1dx +u2dy+u3dt ∈
ker (DD∗)δ∗ as

uα|Bσ (pi ) =
λα,i

ρ
σ̂ + u′α,i u|UR×S1 = λα,∞(log r) σ̂ + u′α,∞

with u′α,i ∈ W̃ 2,2
ρ,δ and u′α,∞ ∈ W̃ 2,2

ω,−δ , α = 0, 1, 2, 3. Here σ̂ stands for the
trivialising section of the diagonal factor in the decomposition V � R⊕ M , with
M = Hpi over Bσ (pi )\{pi } and M = Lv,b ⊗ Lk∞

q on UR × S
1. Since W̃ 2,2

δ is

an extension of W 2,2
δ by a 4(n + 1)-dimensional space and DD∗ : W̃ 2,2

δ → L2
δ−2

remains injective by Step 2, we conclude that DD∗ is an isomorphism. ��
Remark 7.7. When (A,�) is reducible DD∗ has a 4-dimensional cokernel. This is a
consequence of the parabolicity of R2 × S

1 (i.e. the fact that every Green’s function
changes sign): a necessary condition to solve�u = f on R2× S

1 with ∇u ∈ L2 is that
f has mean value zero.

Observe that if (A,�) is a monopole DD∗ acting on �0 ⊕ {0} ⊂ � coincides with
d∗1d1. Hence standard theory [18, Chapter 4] now implies that

S(A,�),ε =
{
(A,�) + (a, ψ) | d∗1 (a, ψ) = 0, ‖(a, ψ)‖W 1,2

δ−1
< ε

}

is a local slice for the action of Gδ on Cδ .

7.3. Fredholm property of the Dirac operator D.

Proposition 7.8. Let (A,�) ∈ Cδ be a solution to the Bogomolny equation. Then

D : W 1,2
δ−1 → L2

δ−2 is a Fredholm operator, surjective when (A,�) is irreducible.

Proof. The cokernel of D : W 1,2
δ−1 → L2

δ−2 is identified with ker D∗∩L2
δ∗ ⊂ ker DD∗∩

L2
δ∗ , where δ∗ = (−δ− 1, δ). By Proposition 7.6 and Remark 7.7 we already know that

this vanishes when (A,�) is irreducible and is 4-dimensional otherwise.
It remains to show that the image of D : W 1,2

δ−1 → L2
δ−2 is closed and the kernel

finite dimensional. Both statements follow by standard arguments from the estimate (K
a compact subset of X )

‖ξ‖W 1,2
δ−1

≤ C
(
‖Dξ‖L2

δ−2
+ ‖ξ‖L2(K )

)
. (7.9)

From the estimates in Proposition 5.23 and Lemmas 6.12 and 7.3 we deduce

‖ξ‖W 1,2
δ−1

≤ C
(
‖Dξ‖L2

δ−2
+ ‖ξ‖L2

δ−1

)
. (7.10)

We can also fix σ, R > 0 as small, large as needed and deform (A,�) to (A′,�′)
so that it coincides with the model Dirac monopoles on B2σ (pi ) and UR × S

1. By
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Lemmas 5.18 and 6.10 such a modification changes D by a compact operator. Moreover,
(7.10) continues to hold.

We proceed with the proof of (7.9). Using a cut-off function we write ξ = ξ1 + ξ2
with ξ1 supported on B2σ (pi ) andUR × S

1 and ξ2 supported on Kσ,2R . Notice that if χ

is a compactly supported function, then

‖D(χξ)‖L2
δ−2

≤ C
(
‖Dξ‖L2

δ−2
+ ‖ξ‖L2(sptχ)

)
.

With ξ = ξ2, (7.10) is in fact equivalent to (7.9). Thus we reduced the problem to prove
(7.9) assuming that ξ is supported on B2σ (pi ) andUR × S

1. Since (A′,�′) is reducible
on the support of ξ , we decompose ξ = ξD + ξT and study separately the two terms.

(1) On the diagonal part we can appeal to standard theory for the Laplacian inweighted
Sobolev spaces. First, by Propositions 5.23 and 6.16 there exists a unique solution
u of ⎧⎪⎨

⎪⎩
�u = DξD on

n⋃
i=1

B2σ (pi ) ∪
(
UR × S

1
)

u = 0 on ∂Kσ,2R

with ‖D∗u‖W 1,2
δ−1

≤ C‖Dξ‖L2
δ−2

. Thus ξD = D∗u + η with Dη = 0. Fix a cut-off

function which vanishes in a neighbourhood of ∂Kσ,2R . Since δ − 1 and −δ − 1
are non-exceptional weights for the Laplacian and there are no harmonic functions
in W 1,2

δ−1 vanishing on ∂Kσ,2R

‖χη‖L2
δ−1

≤ C‖�(χη)‖L2
δ−2

≤ C‖η‖W 1,2(sptχ)

(cf. [33, Proposition 6.2.2]). Therefore by standard elliptic estimates

‖η‖L2
δ−1

≤ C‖η‖W 1,2(sptχ) ≤ C‖η‖L2(K )

with K =⋃n
i=1 B2σ (pi )\Bσ (pi ) ∪ (BR+1\BR)× S

1.
(2) In order to prove the estimate for the off-diagonal component on the exterior

domain UR × S
1, we exploit the Bochner formula (6.14). By Lemma 6.12∫

ω2δ+2
(
|∇AξT |2 + |[�, ξT ]|2

)
≤ C

(∫
ω2δ+2|DξT |2 +

∫
ω2δ|ξT |2

)
.

The integrations by parts are justified because ξ ∈ L2
ω,−δ−1. Since |[�, ξT ]| ≥

c|ξT | by (6.1), we can choose R large enough so that cR2 > C and therefore

(cR2 − C)

∫
ω2δ|ξT |2 ≤ C

∫
ω2δ+2|DξT |2.

(3) Since (A′,�′) coincides with an Euclidean Dirac monopole of mass 0 on the ball
B2σ (pi ), dA(ρ�) = 0 in this region. In particular, the Weitzenböck formulas of
Lemma 2.8 imply that D(ρD∗ξT ) = D∗(ρDξT ). An integration by parts (justified
because ξT ∈ W 1,2

ρ,δ−1) yields∫
ρ−2δ+1|D∗ξT |2 −

∫
ρ−2δ+1|DξT |2 = 2δ

∫
ρ−2δ〈D∗ξT − DξT , dρ · ξT 〉.
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Now use the algebraic identity 2[�, ξT ] = DξT − D∗ξT :

4|[�, ξT ]|2 = |D∗ξT |2 − |DξT |2 + 4〈DξT , [�, ξT ]〉
and therefore∫

ρ−2δ+1|[�, ξT ]|2 = −δ

∫
ρ−2δ〈[�, ξT ], dρ · ξT 〉 +

∫
ρ−2δ+1〈DξT , [�, ξT ]〉.

Finally, by the Cauchy–Schwarz inequality∫
ρ−2δ+1|[�, ξT ]|2 ≤ δ2

∫
ρ−2δ−1|ξT |2 +

∫
ρ−2δ+1|DξT |2.

Conclude using δ < 1
2 and |[�, ξT ]| = 1

2ρ
−1|ξT |. ��

In view of Propositions 7.6 and 7.8 and the discussion of irreducibility in Lemma 7.2,
standard theory [18, Chapter 4] implies that the moduli space Mδ = �−1(0)/Gδ is a
smooth manifold for generic choices of p1, . . . , pn, q ∈ X whenever it is non-empty.

7.4. The L2-Metric. The final task is to show that the L2-metric is well-defined onMδ .
We will need the following lemma on the decay at infinity of monopoles in Cδ .

Lemma 7.11. Let (A,�) = c + ξ ∈ Cδ be an irreducible solution to the Bogomolny
equation. Then there exist R > 0 and g ∈ Gδ such that on the exterior region UR × S

1

we have g(A,�) = c + ξ ′ with ξ ′ ∈ W 1,2
ω,−δ−1 and ξ ′D = O(r−δ−1), ξ ′T = O(rμ) for all

μ ∈ R.

Proof. The line of proof follows [6, Lemma 5.3].

Step 1. First we put (A,�) in “Coulomb gauge” with respect to the background pair
c near infinity. Fix R0 > 0 and a cut-off function χR0 ≡ 1 on BR0 × S

1 and
χR0 ≡ 0 on U2R0 × S

1. Define a new pair c′ = (A′,�′) = c + χR0ξ . Then
c′ ≡ c onU2R0 ×S

1. As in Proposition 7.6, we can choose R0 sufficiently large
so that d∗1d1 : W̃ 2,2

δ → L2
δ−2 remains invertible.

For all R > R0 consider the pair c′ + ξR defined by ξR = (1− χR)ξ . Here
χR is a cut-off function with the same properties of χR0 but with R in place
of R0. The Implicit Function Theorem implies that, choosing R large so that
‖ξR‖W 1,2

δ−1
is sufficiently small, there exists g ∈ Gδ such that g(c′ + ξR) = c′ + ξ ′

with ξ ′ ∈ W 1,2
δ−1 and d∗1 ξ ′ = 0.

Since c′ + ξR = c + ξ on U2R × S
1, restricting to this exterior region ξ ′ is a

solution to Dξ ′ + ξ ′ · ξ ′ = 0. Here D is the Dirac operator (2.4) twisted by the
background pair c.

Step 2. Renaming ξ = ξ ′, we reduced the problem to study the decay of solutions
ξ ∈ W 1,2

ω,−δ−1 to Dξ = −ξ · ξ . We start by proving an initial decay ξ = O(r−δ)

and then improve to the required rate.
Apply D∗ to the equation and use the Weitzenböck formula Lemma 2.8 to

derive the differential inequality

d∗d(|ξ |) � |dA�| |ξ | + (|∇Aξ | + |[�, ξ ]|) |ξ |.
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Hence |ξ | ∈ W 1,2 is a subsolution to dd∗u ≤ (A1 + A2)u, where A1 = |dA�| ∈
L∞ and A2 = |∇Aξ | + |[�, ξ ]| ∈ L2. Then Moser iteration on a 3-ball B1(p)
centred at any point p ∈ U3R × S

1 as in [24, Theorem 8.17] yields

sup
B 1
2
(p)
|ξ | ≤ C‖ξ‖L2(B1(p)) ≤ Cr−δ‖ξ‖L2

ω,−δ−1

for a constant C depending on the L∞-norm of A1 and ‖A2‖L2 . Here we used
that ω ∼ ω(p) ∼ r in B1(p). Hence |ξ | ≤ Cr−δ on U3R × S

1 for a constant C
depending on the background c, R and ‖ξ‖W 1,2

δ−1
.

Step 3. Recall that the background pair c is abelian onUR×S
1.We decompose ξ = ξD+

ξT into diagonal and off-diagonal part and exploit the fact that ξ ∈ W 1,2
ω,−δ−1 ⇒

ω−δ+1ξT ∈ W 1,2 to improve the decay of ξT first in an integral sense, then as a
pointwise statement.

In order to justify the integrations by parts it is necessary to introduce a
sequence of cut-off functions χi vanishing in a neighbourhood of infinity, such
that |dχi | ≤ 2

r and converging to 1 as i → ∞. Set ξi = χi ξT ; then Dξi =
dχi · ξT − ξ · ξi .

If ξT ∈ W 1,2
ω,μ−1 then Dξi ∈ L2

ω,μ−2+δ since ω−μ+1ξi , ω
−μ+1ξT , ω−δξ ∈

W 1,2 and δ > −1. Moreover, ξi ∈ L2
ω,μ−1+δ because δ > −1. The a priori

estimate of Lemma 6.12 now implies ξi ∈ W 1,2
ω,μ−1−δ—an improvement. By

iterating and letting i → ∞, we conclude that ξT ∈ W 1,2
ω,μ−1 for all μ ∈

(−∞,−δ].
Step 4. We repeat the argument of Step 2 with the equation DξT = −ξ · ξT . We have a

differential inequality

d∗d(|ξT |) � |dA�| |ξT | + (|∇Aξ | + |[�, ξ ]|) |ξT | + (|∇AξT | + |[�, ξT ]|) |ξ |
of the form d∗du � A1u+A2u+ f , where u = |ξT | ∈ W 1,2, A1 = |dA�| ∈ L∞,
A2 = |∇Aξ | + |[�, ξ ]| ∈ L2 and f = (|∇AξT | + |[�, ξT ]|) |ξ | � |∇AξT | +
|[�, ξT ]| ∈ L2 by Step 2. Moser iteration and Step 3 yield |ξT | = O(rμ) on
U4R × S

1 for all μ ∈ R.
Step 5. The diagonal part ξD ∈ W 1,2

ω,−δ−1 is a solution to the equation

�ξD = D∗(ξT · ξT ) ∈ L2
ω,μ−2

for all μ ∈ R. By elliptic regularity ξD ∈ W 2,2
ω,−δ−1 and an argument analo-

gous to the proof of Lemma 6.10.(ii) yields the weighted Sobolev embedding
W 2,2

ω,−δ−1 ↪→ ω−δ−1C0. ��
Remark 7.12. (i) In fact we could say a bit more: |ξD| = O(r−2), the rate of decay of

L2
ω,−δ−1-harmonic functions on R

2 × S
1.

(ii) An analogous argument yields the same decay for solutions to Dξ = 0.

We summarise what we have proved so far in the following theorem.

Theorem 7.13. Choose data v, b, k∞, p1, . . . , pn, q defining the boundary conditions
of Definition 4.1. Fix δ > 0 sufficiently small and suppose that the parameters k∞,
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p1, . . . , pn, q are chosen so that every monopole (A,�) ∈ �−1(0) ⊂ Cδ is irreducible.
Then the moduli space Mn,k of SO(3) periodic monopoles with non-abelian charge
k = k∞+n

2 , centre q and singularities at p1, . . . , pn is a smooth manifold, provided it is
non-empty. Moreover, the tangent space of Mn,k at a point [(A,�)] is identified with
the L2-kernel of D and the L2-metric is a hyperkähler metric on Mn,k .

Proof. In view of Proposition 7.8, only the last two statements need justification.
For the first, by (7.10) it is enough to prove that if ξ ∈ L2 satisfies Dξ = 0 then

ξ ∈ L2
δ−1.

(i) On a small ball Bσ (pi ), let ξ̂ be the lift of ξ to a 4-ball as in Definition (5.9). Then
ξ̂ is a solution to D̂ξ̂ = 0, where D̂ is the Dirac operator twisted by the smooth
connection Â obtained from (A,�) as in (5.2). By elliptic regularity |ξ̂ | = √

ρ|ξ |
is bounded.

(ii) Near infinity we use Lemma 7.11 to write (A,�) = c+η with η = O(r−δ−1). Then
ξ is a solution to Dξ + η · ξ = 0, where D is the Dirac operator (2.4) twisted by
the background pair c. It follows that Dξ ∈ L2

ω,−δ−2 on UR × S
1 for some R large

enough. By Proposition 6.16 we can write ξ = ξ ′ + D∗u, where u ∈ W̃ 2,2
ω,−δ and

ξ ′ ∈ L2 with Dξ ′ = 0. Since c coincides with the model periodic Dirac monopole
onUR×S

1, the diagonal component of ξ ′ is an L2 harmonic function and therefore
ξ ′D = O(r−2). On the other hand, by Remark 7.12.(ii) ξ ′T = O(rμ) for all μ ∈ R.

Finally, the fact that the L2-metric is hyperkähler is an instance of a hyperkähler
quotient in infinite dimension, cf. [3, Chapter 4, pp. 28–33]. The only analytic point to
be checked is that the equality

〈ξ, d1u〉L2 = 〈d∗1 ξ, u〉L2

holds for ξ ∈ W 1,2
δ−1 and u ∈ W̃ 2,2

δ . This can be verified by using a sequence of cut-off

functions on R
2 × S

1 converging to 1. ��

8. The Dimension of the Moduli Spaces

In order to conclude the proof of Theorem 1.4 it remains to calculate the dimension of
the moduli space Mn,k . In this section we prove the following index theorem.

Theorem 8.1. Let (A,�) be a pair in Cδ . Then the index of D : W 1,2
δ−1 → L2

δ−2 is 4k−4.

The operator D = τ /DA + [�, ·] is of Callias-type, i.e.it is a Dirac operator plus a
potential. Index theorems for such operators on complete odd-dimensional manifolds
have been obtained by Callias [10], Anghel [1] and Råde [35]. The common requirement
of all these results is that the potential term is non-degenerate at infinity. For example,
if we assume that (A,�) is a periodic charge k SU (2)-monopole without singularities
and we let D act on sections of the associated rank 2 complex vector bundle E , Råde’s
result yields ind(D, E) = 2k.

When we couple D with the adjoint bundle, however, such non-degeneracy condition
doesn’t hold because [�, · ] has a 1-dimensional kernel. One approach to go round this
difficulty is given by Kottke [27] in the case of (smooth) monopoles on asymptotically
conical complete 3-manifolds. In our situation an additional complication arises from
the presence of singularities.
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We will give a direct computation of the index of D using the excision principle, very
much in the spirit of the calculation of the dimension of themoduli space of instantons on
a 4-manifold, cf. [18, §7.1]. By the compactness properties of Lemmas 5.18 and 6.10 the
index of D is independent of the pair (A,�) ∈ Cδ . Thuswewill carry out the computation
of the index for an explicit smooth pair (A,�). This is constructed patching together
a sum of periodic Dirac monopoles with an Euclidean charge k monopole. Comparing
the corresponding Dirac operators on R

2 × S
1 and R

3, the excision principle allows to
compute the index of D as a sum of contributions from the different pieces: on one side,
the index of the Dirac operator twisted by a (smooth) Euclidean monopole has been
calculated by Taubes in [39]; on the other, making the mass of the monopole very large,
one can understand the contribution of the sum of Dirac monopoles.

8.1. Construction of a background pair. As the first step in the proof of Theorem 8.1,
we give the explicit construction of a smooth pair (A,�). This can be taken to be the
background pair in the definition of the moduli spaceMn,k at the beginning of Sect. 7.

Fix a collection of n distinct points S = {p1, . . . , pn} in R
2 × S

1 and set X =(
R
2 × S

1
) \S. Choose an additional point q ∈ X such that 2B = B2(q) is contained

with its closure in X and set X∗ = X\{q}. We write X = B ∪ Uext, where Uext =
X\ 12 B, and X∗ = B∗ ∪ Uext, where B∗ = B\{q}. Similarly, set Y = R

3 = B ∪ U ′
ext

and Y ∗ = R
3\{0} = B∗ ∪ U ′

ext, where B = B1(0) ⊂ R
3 and U ′

ext = R
3\ 12 B. The

notation suggests that we fix an identification of a neighbourhood of q in R2 × S
1 with

a neighbourhood of the origin in R3.
Next we define SO(3)-bundles with connection and Higgs field on X, X∗,Y and

Y ∗. Over B∗ and U ′
ext fix the reducible SO(3)-bundle R⊕ H2k , where H is the radial

extension of the Hopf line bundle. On this bundle we consider the reducible monopole
induced by an Euclidean Dirac monopole of charge 2k, singularity at the origin andmass
λ > 0. We denote by cB∗ and cU ′

ext
such pair regarded as a configuration on B∗ andU ′

ext,
respectively.

Over B consider the trivial bundle B × su2 and a pair cB defined as follows. Start
with an Euclidean SU (2) monopole of charge k, mass λ > 0 and centre at the origin
and the induced SO(3)-monopole on the adjoint bundle. Using a cut-off function χ with
χ ≡ 1 on 1

4 B and χ ≡ 0 outside of 1
2 B, we modify this initial configuration to define

cB so that it coincides with cB∗ on the annulus B\ 12 B. In order to carry out this step, it
is necessary to fix an isomorphism η : B∗ × su2 → R⊕ H2k .

Finally, over Uext consider the reducible bundle R⊕ M , where M = Lv,b ⊗ L2k
q ⊗⊗n

i=1 L−1pi is endowed with the corresponding sum of periodic Dirac monopoles. Here
we choose v so that v + ka0 −∑n

i=1 Gpi (q) = λ. Furthermore, using a cut-off function
one can modify this initial configuration to define a pair cUext that agrees with cB∗ on
B\ 12 B.

Using the isomorphism η, we can now define pairs cX , cY , cX∗ , cY ∗ . The former
two pairs are smooth configurations on X and Y , respectively; up to the modification
appearing in the definition of cUext , the latter two pairs are (sums of) Dirac monopoles
on X∗ and Y ∗, respectively.

8.2. Weighted spaces and the Fredholm property. To each of the pairs cX , cY , cX∗ , cY ∗
we associate the corresponding Dirac operator DX , DY , DX∗ , DY ∗ acting on section of
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the adjoint bundle. We now introduce weighted Sobolev spaces and prove that these
operators extend to Fredholm operators between these spaces. We begin with R3.

Definition 8.2. Let ρ be the distance from the origin in R
3.

(i) Define W 1,2(Y ) to be the closure of the space of smooth compactly supported
sections �(R3; su2) with respect to the norm

‖ξ‖2W 1,2(Y )
= ‖ξ‖2L2 +

∫
Y

(1 + ρ2)
(
|∇Aξ |2 + |[�, ξ ]|2

)
.

(ii) We say that a 1-form f with values in the trivial SO(3)-bundle over Y = R
3 is in

the space L2(Y ) if
√
1 + ρ2 f ∈ L2.

(iii) W 1,2(Y ∗) is the closure of the space of compactly supported smooth forms with
values in R⊕ H2k over Y ∗ with respect to the norm

‖ξ‖2W 1,2(Y ∗) = ‖ξ‖2L2 +
∫
Y

ρ2
(
|∇Aξ |2 + |[�, ξ ]|2

)
.

(iv) A 1-form f with values in R⊕ H2k is in L2(Y ∗) if and only if ρ f ∈ L2.

In (i) and (iii) (A,�) = cY and cY ∗ , respectively.

Proposition 8.3. The operator DY : W 1,2(Y ) → L2(Y ) is Fredholm.

Proof. This is essentially Proposition 7.2 in [39], but we give an overview of the proof
since, to be better suited to the presence of singularities, our spaces are slightly different
from the one used by Taubes.

First we show that DY has finite dimensional kernel and closed range. Both statement
follow once we show that there exists C > 0 and a compact set K ⊂ Y such that for all
ξ ∈ W 1,2(Y )

‖ξ‖W 1,2(Y ) ≤ C
(‖Dξ‖L2(Y ) + ‖ξ |K ‖L2

)
. (8.4)

As a preliminary, we claim that there exists C > 0 such that

‖ξ‖W 1,2(Y ) ≤ C
(‖Dξ‖L2(Y ) + ‖ξ‖L2

)
(8.5)

for all ξ ∈ C∞0 . Indeed, use the Weitzenböck formula for D∗D to derive the Bochner-
type identity

1

2
d∗d(|ξ |2) = 〈D∗Dξ, ξ 〉 − |∇Aξ |2 − |[�, ξ ]|2 − 〈(∗FA + dA�) · ξ, ξ 〉.

Integrating by parts against 1 + ρ2 yields∫
(1 + ρ2)

(
|∇Aξ |2 + |[�, ξ ]|2

)
= 2
∫

ρ〈Dξ, dρ · ξ 〉 +
∫

(1 + ρ2)|Dξ |2

+
∫

(1 + ρ2)〈(∗FA + dA�) · ξ, ξ 〉 + 3
∫
|ξ |2

≤ 2
∫

(1 + ρ2)|Dξ |2 + C1

∫
|ξ |2.

The constantC1 = 4+‖(1+ρ2) (∗FA + dA�) ‖L∞ is bounded because |dA�| = |FA| =
O(ρ−2).
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Thus (8.5) is proved and we proceed with the proof of (8.4). Let R > 0 be sufficiently
large and fix a cut-off function χ with χ ≡ 1 on Y\BR and χ ≡ 0 on BR−1. Write
ξ = ξ1 + ξ2 = χξ + (1 − χ)ξ . Applying (8.5) to ξ2 and observing that ‖Dξi‖L2(Y ) ≤
C
(‖ξ |BR‖L2 + ‖Dξ‖L2(Y )

)
, we reduce to prove

‖ξ1‖W 1,2(Y ) ≤ C
(‖Dξ1‖L2(Y ) + ‖ξ1|K ‖L2

)
for some C > 0 and compact set K ⊂ Y independent of ξ1.

Since the pair (A,�) is reducible on the support of ξ1 we decompose into diagonal
and off-diagonal part ξ1 = ξ1,D + ξ1,T . On the off-diagonal part the estimate follows
from (8.5) provided R is sufficiently large. Indeed, since limρ→∞ |�| = λ, we can
choose R so that ‖�‖ ≥ λ

2 when ρ ≥ R. Then
∫

(1 + ρ2)|[�, ξ1,T ]|2 ≥ (1 + R2)
λ

2

∫
|ξ1,T |2.

Choosing R even larger if necessary, the term ‖ξ‖L2 can be absorbed in the left-hand-
side of (8.5) to obtain (8.4). On the diagonal part we can appeal to standard theory
of weighted Sobolev spaces for the scalar Laplacian on R

3 as in (1) in the proof of
Proposition 7.8.

Finally, we claim that the cokernel of D = DY is finite dimensional. By duality in
weighted Sobolev spaces, this cokernel is identified with the kernel of D∗ in

√
1 + ρ2L2

and its finite dimensionality follows from the a priori estimate

‖(1 + ρ2)−
1
2 u‖2L2 + ‖∇Au‖2L2 + ‖[�, u]‖2L2 ≤ C

(
‖D∗u‖2L2 + ‖u|2B\B‖2L2

)
. (8.6)

by standard arguments. As (8.5), this estimate is obtained integrating by parts the
Weitzenböck formula for DD∗ in Lemma 2.8. The constant C depends on ‖ ∗ FA −
dA�‖L∞ which is supported on the annulus 2B\B. ��
Proposition 8.7. The operator DY ∗ : W 1,2(Y ∗) → L2(Y ∗) is Fredholm.

Proof. It is immediate to check that D = DY ∗ is surjective. Indeed, it follows from the
Weitzenböck formula for DD∗ and the fact that cY ∗ is a solution to the Bogomolny equa-
tion that elements in the kernel of D∗ are constant diagonal sections in the decomposition
R⊕ H2k and these are not in the space ρ−1L2 dual to L2(Y ∗).

As before, it remains to prove the existence of a constant C > 0 and a compact set
K ⊂ R

3\{0} such that for all ξ ∈ W 1,2(Y ∗)

‖ξ‖W 1,2(Y ∗) ≤ C
(‖Dξ‖L2(Y ∗) + ‖ξ |K ‖L2

)
.

This is obtained as in Proposition 8.3. First, observe that an estimate analogous to (8.5)
holds because ρ2|FA| = ρ2|dA�| = k everywhere on R

3\{0}. In view of the proof of
Proposition 8.3, we only have to explain why there exists σ > 0 sufficiently small and
C > 0 such that

‖ξ‖W 1,2(Y ∗) ≤ C
(‖Dξ‖L2(Y ∗) + ‖ξ |B\Bσ ‖L2

)
(8.8)

for all ξ ∈ C∞0 (B∗).
Since cY ∗ is reducible, we decompose into diagonal and off-diagonal part. On the

diagonal part one can argue as in (1) in the proof of Proposition 7.8 to deduce (8.8) from
the theory of weighted Sobolev spaces for the Laplacian onR3. On the off-diagonal part,
if λ vanished we could deduce (8.8) from the arguments of (3) in the proof of Proposition
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7.8. Since λ > 0 yields a lower order term in the equation, one can then show that there
exists σ = σ(λ) such that

‖ξ‖2L2(B∗σ )
≤ C
(
‖Dξ‖2L2 + ‖ξ‖2L2(B\Bσ )

)
.

��
Definition 8.9. Fix δ > 0 with δ < min { 12 , δ0} where δ0 is given by Proposition 6.16.

(i) Set W 1,2(X) = W 1,2
δ−1 and L2(X) = L2

δ−2, with W 1,2
δ−1 and L2

δ−2 defined in Defini-
tion 7.1.

(ii) On X∗ we define W 1,2(X∗) to be the closure of the smooth compactly supported
forms with values in R⊕ M with respect to the norm defined by the maximum of
the semi-norms:

‖ξ |Uext‖W 1,2(X) ‖ξ |B∗‖W 1,2(Y ∗)

L2(X∗) is defined similarly using the L2(X)-norm on Uext and the L2(Y ∗)-norm
on B∗.

By Proposition 7.8 DX : W 1,2(X) → L2(X) is a Fredholm operator. Combining the
proof of Propositions 7.8 and 8.7 we deduce the analogous statement for DX∗∗ .

8.3. Application of the excision principle. The next step in the proof of the index formula
Theorem 8.1 is an application of the excision principle for the index of Fredholm oper-
ators. A proof of the excision principle in the non-compact setting which immediately
applies to the operators DX , DY , DX∗ , DY ∗ is given by Charbonneau in [11, Appendix
B].

Lemma 8.10. ind (DX∗) + ind (DY ) = ind (DX ) + ind (DY ∗).

We apply the lemma to prove Theorem 8.1 by computing ind (DY ) and ind (DX∗)−
ind (DY ∗).

By [39, Proposition 9.1] ind (DY ) = 4k. Indeed, (8.6) shows that if (1+ρ2)− 1
2 ξ ∈ L2

and D∗ξ = 0, then ∇Aξ, [�, ξ ] ∈ L2, i.e.ξ ∈ Hc in Taubes’s notation. Then, by duality
in weighted Sobolev spaces, ind (DY ) = −i(D∗

c ) = 4k in the notation of [39].
As for the indices ind (DX∗), ind (DY ∗), since cX∗ and cY ∗ are both reducible, we

decompose the problem into diagonal and off-diagonal part. By Definitions 8.2 and 8.9,
it is easy to see that DX∗ acting on the diagonal component is injective but has a 4-
dimensional cokernel (dual to the subspace spanned by constant 0 and 1-forms) and that
DY ∗ is an isomorphism when acting on the diagonal components.

It does not seem immediate to calculate the index of DX∗ and DY ∗ acting on off-
diagonal components individually, even if one guesses that they both vanish. However,
we are only interested in the difference between the two indices and we are going to
prove that this is zero. More precisely, we will show that taking λ sufficiently large, we
can make sure that

(i) the two operators are surjective;
(ii) elements in their kernels are concentrated in a small neighbourhood of q and 0,

respectively. It follows that the kernels are isomorphic.
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Before embarking in the proof of (i) and (ii) we explain why the index of DX∗
and DY ∗ does not depend on the mass λ. On R

3 this is clear by scaling. On R
2 × S

1

we consider the continuous family of Fredholm operators Dv′ : W 1,2(X∗) → L2(X∗)
defined as follows. Fix positive constants C and R such that |�| ≥ C when r ≥ R.
If n < 2k we can take C arbitrarily large; if n = 2k we have to assume that C < v.
Define Dv′ = DX∗ + [ψv′ , ·], where ψv′ = χ(v′ − v)σ̂ . Here σ̂ = �

|�| and χ is a smooth

function χ ≡ 0 when r ≤ R and χ ≡ 1 if r ≥ 2R. Dv′ : W 1,2(X∗) → L2(X∗) is a
bounded Fredholm operator for all v′ ∈ (v − C, v + C). In particular, the index of DX∗
is independent of the mass v ∈ R, subject to the only constraint v > 0 when n = 2k.

8.4. The index of the Dirac operator D twisted by a Dirac monopole. In the rest
of the proof we will assume that λ is as large as needed. We want to prove that
DX∗ : W 1,2(X∗) → L2(X∗) and DY ∗ : W 1,2(Y ∗) → L2(Y ∗) acting on the off-diagonal
component (i) are surjective and (ii) have isomorphic kernel whenever λ is sufficiently
large. The proof is modelled on [18, §7.1.2] and the main technical ingredient is to
exhibit right inverses QX∗ : L2(X∗) → W 1,2(X∗) and QY ∗ : L2(Y ∗) → W 1,2(Y ∗) of
DX∗ and D∗

Y , respectively, which are bounded independently of λ.
We collect some important properties of cY ∗ and cX∗ .

(a) cY ∗ is an exact solution to the Bogomolny equation. On the other hand, if (A,�) =
cX∗ , � = ∗FA − dA� is supported in the region 2B\B and | ∗ FA − dA�| ≤ C for
a constant independent of λ.

(b) In both cases, there exists λ0 such that if λ > λ0 then |�| ≥ λ
2 outside of 1

2 B. On
Y ∗ this is clear because � = (λ − k

ρ

)
σ̂ . On X∗ the statement is true for the sum

of periodic Dirac monopoles provided λ is sufficiently large (this follows from the
maximum principle). In particular, |�| ≥ λ

2 on B and outside of 2B. In the annulus
2B\B, � = (λ − k

ρ

)
σ̂ + O(ρ) and therefore, taking λ even larger if necessary,

|�| ≥ λ
2 .

Lemma 8.11. There exists λ0 ≥ 2 and C > 0 such that if λ > λ0 then the following
holds. For all f = fT ∈ L2(X∗) there exists ξ ∈ W 1,2(X∗) such that DX∗ξ = f and
‖ξ‖W 1,2(X∗) ≤ C‖ f ‖L2(X∗).

Proof. We proceed in two steps. First we solve the equation Dξ = f for ξ of the
form ξ = D∗u by variational methods. Then we obtain the estimate integrating the
Weitzenböck formula for D∗D.

By the Weitzenböck formula DD∗ = ∇∗A∇A − ad(�)2 +� and the fact that u = uT
we deduce that ‖D∗u‖2

L2 is uniformly equivalent to ‖∇Au‖2L2 + ‖[�, u]‖2
L2 provided λ

is sufficiently large. Indeed, we integrate by parts the Weitzenböck formula and use the
inequality

∣∣∣∣
∫
〈� · u, u〉

∣∣∣∣ ≤ ‖�‖L∞‖u|supp(�)‖2L2 ≤ C

λ
‖[�, u]‖2L2

which follows from (a) and (b) above.
To show that ‖∇Au‖2L2 + ‖[�, u]‖2

L2 is a norm, fix a cut-off function χ with χ ≡ 1

on 1
2 B and vanishing outside of B. Then by the Poincaré inequality on B and the fact

that |�| ≥ 1 outside of 1
2 B, we deduce
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‖u‖2L2 ≤ ‖χu‖2L2 + ‖(1− χ)u‖2L2 ≤ C
(
‖∇Au‖2L2 + ‖[�, u]‖2L2

)
.

Define H to be closure of smooth compactly supported forms u with values in the
line bundle M with respect to the norm ‖∇Au‖2L2 + ‖[�, u]‖2

L2 . Hardy’s inequality

‖ρ−1u‖L2 ≤ 2‖∇Au‖L2 on B and the fact that |�| ≥ c1ρ
−2
i in a neighbourhood

of the singularity pi imply that 〈 f, u〉L2 defines a continuous functional on H for all
f ∈ L2(X∗). Then a weak solution ξ to Dξ = f with ‖ξ‖L2 ≤ C‖ f ‖L2(X∗) is found
by minimising the functional 1

2

∫ |D∗u|2 − 〈 f, u〉L2 on H .
It remains to show the existence of a uniform constant C > 0 such that

‖ξ‖W 1,2(X∗) ≤ C
(‖Dξ‖L2(X∗) + ‖ξ‖L2

)
. (8.12)

Fix σ > 0 such that 2B and B2σ (pi ) are all disjoint. Observe that given a smooth com-
pactly supported functionχ on X∗ then‖D(χξ)‖L2(X∗) ≤ C1(χ)‖ξ‖L2+C2‖Dξ‖L2(X∗).
Hence to prove (8.12) we can suppose that ξ is supported on either B, B2σ (pi ) or the
complement Uσ of 1

2 B ∪
⋃n

i=1 Bσ0(pi ).

(1) If ξ ∈ C∞0 (B), as in (8.5) we can find a constant C depending only on ‖ρ2(∗FA +
dA�)‖L∞ such that

∫
ρ2
(
|∇Aξ |2 + |[�, ξ ]|2

)
≤ C
(‖ρDξ‖L2 + ‖ξ‖L2

)
.

Since (A,�) is an Euclidean Dirac monopole up to terms of order O(ρ),
ρ2 (∗FA + dA�) is bounded independently of λ.

(2) If ξ ∈ C∞0 (Uσ ) the estimate is proved in Lemma 6.12 and Proposition 6.16. The
constant is uniform because ωdA� is bounded independently of λ.

(3) Finally,when ξ is compactly supported on B2σ (pi )\{pi }wehave to slightlymodify
the arguments of (3) in the proof of Proposition 7.8 to show that (8.12) holds with
a uniform constant C .
First, an integration by parts of the Weitzenböck formula yields

∫
ρ−2δ+1i

(
|∇Aξ |2 + |[�, ξ ]|2

)
≤ C

(
‖ρ−δ+ 1

2
i Dξ‖2L2 + ‖ρ−δ+ 1

2
i ξ‖2L2

)

for a constant C depending only on ‖ρ2
i dA�‖L∞ and therefore independent of λ.

It remains to control the weighted norm ‖ρ−δ+ 1
2

i ξ‖L2 .
Suppose first that (A,�) coincides with an Euclidean Dirac monopole with

|�| = λ + 1
2ρi

. Set h = |�| and observe that D(h−1D∗ξ) = D∗(h−1Dξ) because

dA(h−1�) = 0. Then the identities D∗ξ − Dξ = −2[�, ξ ] and 4|[�, ξ ]|2 =
|D∗ξ |2 − |Dξ |2 + 4〈Dξ, [�, ξ ]〉 imply

‖ρ−δ
i h−

1
2 [�, ξ ]‖L2 ≤ δ‖ρ−δ−1

i h−
1
2 ξ‖L2 + ‖ρ−δ

i h−
1
2 Dξ‖L2 .

Since ρ−2δi h−1|[�, ξ ]|2 ≥ 1
4ρ

−2δ−2
i h−1|ξ |2 and δ < 1

2 we deduce

‖ρ−δ− 1
2

i ξ‖L2 ≤ 2

1− 2δ
‖ρ−δ+ 1

2
i Dξ‖L2 .
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Now, the pair (A,�) agrees with an Euclidean Dirac monopole with |�| =
λ + 1

2ρ up to bounded terms which only depend on p1, . . . , pn and q. Therefore
we can find σ > σ ′ > 0 and C > 0 independent of λ such that∫

ρ−2δ+1i

(
|∇Aξ |2 + |[�, ξ ]|2

)
≤ C

(
‖ρ−δ+ 1

2
i Dξ‖2L2 + ‖ξ‖2L2(σ ′≤ρi≤σ)

)
.

Combining (1), (2) and (3) we obtain (8.12) and the Lemma is proved. ��
The analogous statement for DY ∗ is actually easier to prove: the existence of a week

solution follows immediately from the Hardy inequality, while the analogue of (8.12)
is (8.5) with ρ in place of

√
1 + ρ2. The existence of uniformly bounded right inverses

QX∗ and QY ∗ follows.
In order to conclude the proof of Theorem 8.1, we have to show that the kernels of

DX∗ and DY ∗ are isomorphic.
Fix a pair of cut-off functions γ and β with γ ≡ 1 on 1

2 B, γ = 0 outside of B,
β ≡ 1 outside of B, β ≡ 0 in 1

2 B and β ≡ 1 on the support of dγ . Notice that
‖(1− γ )ξ‖L2 ≤ c

λ0
‖ξ‖W 1,2(X∗) if λ > λ0. Therefore, taking λ0 larger if necessary, we

can improve the estimate in Lemma 8.11 to

‖ξ‖W 1,2(X∗) ≤ C
(‖Dξ‖L2(X∗) + ‖γ ξ‖L2

)
(and similarly on Y ∗).

Now, let ξ ∈ W 1,2(X∗) be such that DX∗ξ = 0. We define an element in the kernel
of DY ∗ by ξ ′ = γ ξ − QY ∗DY ∗(γ ξ). We want to show that the map ξ 	→ ξ ′ is injective.
By contradiction, suppose that there exists ξ such that γ ξ = QY ∗DY ∗(γ ξ). Then

‖γ ξ‖L2 ≤ ‖γ ξ‖W 1,2(Y ∗) ≤ C‖DY ∗(γ ξ)‖L2(Y ∗) ≤ C‖βξ‖L2

≤ C

λ
‖ξ‖W 1,2(X∗) ≤

C

λ
‖γ ξ‖L2 .

If λ is sufficiently large we get a contradiction. Exchanging the role of X∗ and Y ∗,
we construct injective maps between the kernel of DX∗ and DY ∗ , which are therefore
isomorphic.
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