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Abstract: This papers introduces an analytic method to define multistage launcher trajectories to
determine the payload mass that can be inserted in orbits of different semimajor axes and inclinations.
This method can evaluate the gravity loss, which is the main term to be subtracted to the Tziolkowski
evaluation of the velocity provided by the thrust of a launcher. In the method, the trajectories are
dependent on two parameters only: the final flight-path angle γ f at the end of the gravity-turn arc
of the launcher trajectory and the duration tc of the coasting arc following the gravity-turn phase.
The analytic formulas for the gravity-turn phase, being solutions of differential equations with a
singularity, allow us to identify the trajectory with a required final flight-path angle γ f in infinite
solutions with the same initial vertical launch condition. This can also drive the selection of the
parameters of the pitch manoeuvre needed to turn the launcher from the initial vertical arc. For any
pair γ f and tc, a launcher trajectory is determined. A numerical solver is used to identify the values
γ f and tc, allowing for the insertion of the payload mass into the required orbit. The analytic method
is compared with a numerical code including the drag effect, which is the only effect overlooked in
the analytic formulas. The analytical method is proven to predict the payload mass with an error
never exceeding the 10% of the actual payload mass, found through numerical propagation.

Keywords: multistage launch vehicles; ascent trajectory optimization; analytical performance
evaluation; rocket staging

1. Introduction

The number of microsatellites to be orbited is increasing rapidly, in particular for the
delivery and replacement of microsatellites as part of mega constellation programs. This is
stimulating a new wave of dedicated launch vehicles capable of offering responsive, flexible
and cost-effective services to this huge and new market. Some of these “micro-launchers”
are listed in Table 1. The mass of payload mpay to be inserted into LEO is below 1000 kg.
In fact, mpay is the driving element of a space rocket and it is important to define it at the
first step of a launcher design. A very popular method of computation of mpay is offered by
the Tziolkowski formula. However, the results obtained using this method are not accurate
since the space environment (gravity and aerdoynamic forces) and the guidance (direction
of thrust) are not taken into account. On the other hand, the accurate computation of a
launcher trajectory and the evaluation of launcher performances is a typical and complex
problem in the optimization of aerospace trajectories. Launcher performances are evaluated
maximizing the final mass that can be set into orbits with different parameters (semimajor
axis, eccentricity, inclination). The problem has initial- and final-state variable constraints,
path constraints and discontinuities in the mass variation, due to stage separation. This
optimization problem can be approached in different ways: all the approaches require
educated guesses to initialize some iterative algorithm able to refine the initial guesses and
to achieve the optimal solution.
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Table 1. Listof Micro-Launchers.

Launcher Total Mass Number of Stages Max Payload to LEO Maiden Flight

Simorgh, Iran 78,926 kg 3 350 kg 2021

Unha, North Korea 68,039 kg 3 200 kg 2012

LongMarc11, China 58,000 kg 4 700 kg 2015

Spectrum, Germany 50,000 kg 2 950 kg 2022 (planned)

Minotaur1, USA 36,200 kg 4 580 kg 2000

Zhu-Que1, China 24,600 kg 3 300 kg 2018

LauncherOne, USA 23,410 kg 2 500 kg 2000

Quased, Iran 22,700 kg 3 50 kg 2020

Kuoizhou1A, China 15,100 kg 3 300 kg 2017

Electron, USA 11,400 kg 2 225 kg 2017

Astra R3, USA 9980 kg 2 150 kg 2020

In the scientific literature, some papers [1–7] address the problem of optimizing
the ascent trajectory of launch vehicles through indirect approaches. Examples are the
multiple-subarc gradient restoration algorithm, proposed by Miele, and multiple shooting
techniques [5–7]. The previously cited works [2–7] require a considerable deal of effort for
deriving the analytical conditions for optimality and for the subsequent programming and
debugging. Furthermore, these methods can suffer from a slow rate of convergence and
an excessive dependence on the starting guess. Alternative approaches [8,9] are direct in
nature, often are more robust, but require discretization of the problem (e.g., through colloca-
tion [8,9]) and the use of dedicated algorithms for nonlinear programming, without avoid-
ing the need of a starting guess. Most recently, the indirect heuristic method [10] was
proposed as an effective approach for trajectory optimization of ascent vehicles, with the
remarkable feature of not requiring any starting guess. For the purpose of preliminary
analysis of the performance of new ascent vehicles, fast, approximate approaches that
are exempt from convergence issues and minimize the computational effort are desirable.
With this intent, Pontani and Teofilatto [11] and Pallone et al. [12,13] propose two numerical
approaches for performance evaluation of multistage launch vehicles that aim at obtaining
accurate predictions of the performance attainable from a launch vehicle.

The aim of this paper is to derive formulas, possibly as simple as the Tziolkowski one,
able to obtain in a few seconds the performance of a multistage space rockets and also able
to offer trajectory parameters useful as input for the convergence of complex numerical
programs with accurate representation of the rocket system and its space environment.

The formulas originate from previous work [14], which has been generalized to
multistage rockets in [15]; all the rocket state variables are derived in [16]. In the present
paper, the method is extended to include the optimal choice of a cost arc and the guidance
of the last stage of the launcher till the injection into the selected orbit, so the performance
of a space launcher is obtained. The method is based on simple mathematics and physics
principles and only a few seconds are needed to determine the payload mass that can
be set into orbits of different altitude and inclinations, starting from any location of the
launch pad.

The major simplification made in order to obtain these results is that the aerodynamic
drag is neglected, and this produces an error in the computation of the launcher trajectories.
It is rather difficult to treat the aerodynamic effect analytically due to its highly non-linear
dependence on velocity and altitude. Some analytic formulas including aerodynamics are
derived in [17]; these however are restricted to the vertical arc of the trajectory. To evaluate
the impact of drag, the method presented was compared to numerical results obtained by a
high-fidelity level of representation of the launcher dynamics. It is shown that the error in
the estimate of the optimal payload mass to be inserted into orbit is relevant only for orbits
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of altitude below 600 km, and in these cases the error does not exceed 10% Moreover, it is
proved that the analytic approach proposed here can provide good guesses for numerical
solvers of the optimal control problem.

The paper is organized as follows: in Section 2, a first sizing of a space launcher is
given based on the Tziolkowski formula. Assuming a payload mass to be delivered in LEO
orbit and assuming a fixed percentage of losses, a method is derived to size the staging of
a multistage rocket in an optimal way. In Section 3, analytical formulas for the launcher
gravity-turn phase are developed in detail for the case of multiple stage rockets. These
formulas provide the launcher trajectory of the first stages and allow for the evaluation of
the so-called gravity loss. Sections 4 and 5 describe the method of computation of the full
launcher trajectory till the injection into orbit. Section 6 is dedicated to testing the method
with respect to numerical computations.

2. First Sizing of a Launch Vehicle

Achieving a single stage to orbit is still an infeasible task and space launchers have a
number N of stages ranging from 2 to 4. Each stage has a total mass mi

mi = mpi + msi

where mpi is the propellant contained within the tank of each stage and the structural mass
coefficient of each stage is defined as

εi =
msi
mi

(1)

The total mass at lift off is

M1 = Σi=1
N mi +

(
mhs + mpay

)
with mhs the mass of the heat shields (here released at the end of the gravity-turn phase)
and mpay is the satellite mass to be injected into orbit. At the time tb1 of the end of the first
stage boost (burn time), the propellant mass mp1 is consumed and the mass of the space
rocket is

M1 f = M1 −mp1

The velocity reached at burn time tb1 can be computed integrating the acceleration

V̇ =
T
m

cos α− µ

r2 sin γ− 1
2

ρV2 CD S
m

(2)

here T is the thrust intensity with a direction determined by the angle α taken from the
velocity ~V. The velocity direction is determined by the flight-path angle γ taken from
the local horizon direction θ̂, see Figure 1. The variable r is the radius distance from the
centre of the Earth to the launcher centre of mass and µ is the Earth gravitational constant.
The atmospheric density is denoted by ρ and CD is the launcher drag coefficient computed
with respect to the reference surface S.

To underline the thrust’s contribution to the variation in velocity and consider all the
other terms as “losses”, let us write (2) as

V̇ =
T
m
− µ

r2 sin γ− 1
2

ρV2 CD S
m
− T

m
(1− cos α)

Integrating the above acceleration between time zero and tb1, one obtains the velocity
after the first-stage boost

∆V1 =
∫

t0

tb1 T
m

dt−
∫

t0

tb1 µ

r2 sin γ dt−
∫

t0

tb1 1
2

ρV2 CD S
m

dt−
∫

t0

tb1 T
m

(1− cos α) dt (3)
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Figure 1. The state variable of the launch trajectory. The inertial frame (r̂0, θ̂0) has origin on the centre
of the Earth (in dark blue). The orbit frame (r̂, θ̂) has origin on the launcher centre of mass. The red
arrow defines the velocity and the blue arrow the thrust direction

Equation (3) is called the “equation of losses”

∆V1 = ∆VTz − ∆Vgrav − ∆Vdrag − ∆Vmis

where the first variation of velocity due to the engine boost is called the Tziolkowski
variation of velocity and the other velocities subtracted to ∆VTz are called gravity, drag
and misalignment losses, respectively. Average thrust is defined by T = gIsp ṁ, where ṁ is
equal to the mass rate ṁ = − dm

dt . Inserting T = −gIsp dm
dt in (3), we obtain the Tziolkowski

velocity variation provided by the first-stage engine

∆VTz = gIsp log(
M1

M1 f
)

Introducing the subrocket structural mass ratios

Uk =
Mk f

Mk
, Mk = Σi=k

N mi +
(
mpay + mhs

)
, Mk f = Mk −mpk , k = 1, N

the variation of the velocity provided by the engines of a multistage rocket is

∆VTz = ΣN
k=1 g Ispk log(

1
Uk

) (4)

The values of the specific impulses Ispk depend on the kind of propellant, for instance
liquid or solid. Figure 2 shows the specific impulses for stages with solid propellant: these
values are taken from the database [18] and we have average values

Isp1 = 280 s , Isp2 = 290 s , Isp3 = 270 s (5)

Other parameters defined by technical constraints are the structural mass ratio of each
stage (1): Figure 3 shows these values for a number of stages taken from the database [18],
and we have average values

ε1 = 0.11 , ε2 = 0.13 , ε3 = 0.3 (6)
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Figure 2. The specific impulse of different stages taken from the database ©Mark Wade [18].

Figure 3. The structural mass ratio of different stages taken from the database ©Mark Wade [18].

It is important to know that if the total mass M1, the payload mass mpay and the values
εkith the five unknow, Ispk are given, there is an optimal selection of Uk, maximizing the
Tziolkowski velocity (4). The procedure to identify the optimal subrocket mass ratios U∗k is in
Appendix A.

The parameters εk, Ispk can be easily guessed at the first step of the rocket design,
and the maximum payload mass mpay to be inserted into a specific reference orbit is the
performance characterizing a space launcher.

With εk, Ispk, and mpay fixed, the total mass M1 determines the optimal mass distribu-
tion U∗k (staging) and the maximum Tziolkowski velocity, according to Appendix A. If this
velocity is equal to the velocity required to inject the payload mass mpay into the reference
orbit, M1 is the launcher lift-off mass achieving this performance.

One point to underline is that the velocity to be provided by the thrust is not equal

to the orbital velocity of a spacecraft on a circular orbit of altitude h: Va =
√

µ
h+RE

. In fact,
we must consider the losses: these depend on each phase of the ascent trajectory. In the
present Section it is assumed that the launcher velocity due to thrust must be overcome
by 30% the required value for orbit injection. The orbit velocity relative to the Earth ~VR
depends on the latitude L of the launch site and on the azimuth ψ

VR =
√

V2
a + V2

E − 2Va VE sin ψ
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where VE = ωE RE cos(L) is the velocity of the launch site and the azimuth angle ψ is
related to the launch site latitude and orbit inclination by the equation: sin ψ = cos i

cos L .
Then, the required velocity is here defined as

Vreq = VR(1 + 30%)

Figure 4 shows the relative (in blue) and required (in red) velocities to achieve a
reference circular orbit of altitude h = 650 km with different inclinations from a launch site
at L = 30 deg N. Table 2 shows the minimum mass at lift off for a micro-launcher having
parameters (5) and (6) for different payload masses (from 100 to 1000 kg) to be injected into
the reference orbit (Vreq = 9805 m/s). The ratio M1

mpay
is constant.

Table 2. Minimumlift-off mass to inject the payload mass into circular polar orbit of altitude
h = 650 km (average parameters (5) and (6), and launch site L = 30 deg).

Initial Mass M1 Payload Mass mpay

18,000 kg 100 kg

36,000 kg 200 kg

54,000 kg 300 kg

72,000 kg 400 kg

90,000 kg 500 kg

Figure 4. Therelative (dotted) and required (solid line) velocities to achieve circular orbits of altitude
h = 800 km (black), 700 km (green), 600 km (blue), 500 km (red) and different inclinations

3. A Second Step (Gravity Losses)

At lift off, the launcher performs a vertical trajectory followed by a pitch manoeuvre to
select the required orbit plane. Then, to limit the aerodynamic loads on the structure, any
launcher is forced to follow a zero angle of attack trajectory (α = 0) during the atmospheric
flight. This trajectory is called the gravity-turn trajectory, and it is performed by the first
stages of space launchers. The trajectory is basically planar and the state variables can
be the relative velocity, flight-path angle, altitude and range (V, γ, h, s). The equations of
motion are 

V̇ = T
m −

µ

r2 sin γ− 1
2 ρV2 CD S

m
γ̇ = ṡ

RE
− µ

r2 V cos γ + 1
2 ρV CL S

m
ḣ = V sin γ

ṡ = RE
r V cos γ

(7)
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In fact, these equations are singular under the lift-off condition; V = 0, γ0 = pi
2 .

As observed in [14], this singularity generates an infinite number of solutions corre-
sponding to the same lift-off condition: one can use this singularity to select among the
different solutions the one with a prescribed final value, for instance a fixed flight-path
angle γ f [15].

An analytic formula for the velocity V, due to Culler and Fried, was obtained under
the following hypotheses:

• Constant gravity;
• Negligible drag and lift effect;
• Constant thrust-over-mass ratio n = T

g m .

The last of these is the strongest assumption, and is handled considering an average
value n of the thrust-to-weight ratio. This average value can be computed using the
formulas for the variation of mass m = m0 −md t = m0(1− q t) and the definition of the
mass ratio U = ms

m0
, which verifies U = 1− q tb.

Then

n̄ =
1
tb

∫ tb

0

T
mg

(t) dt =
T

g tb m0

∫ tb

0

dt
1− qt

=

=
n0

tb

1
−q

[ln(1− qt)]tb
0 =

n0

−q tb
ln(1− qtb) =

= − n0

1−U
ln(U) =

n0

1−U
ln
(

1
U

)
where n0 = T

gm0
is the initial thrust-to-weight ratio.

Now two transformations are defined:

1. From the flight-path angle variable γ to the kick angle χ = π
2 − γ.

2. From the kick angle χ to the variable z = tan χ
2 .

By the transformation in Equation (1) we have the following differential equations for
the velocity and kick angle {

V̇ = −g cos χ + gn
χ̇ = g

V sin χ
(8)

Now the following trigonometrical equations are recalled

cos χ =
1− tan2 χ

2
1 + tan2 χ

2
=

1− z2

1 + z2

sin χ = sin
(

2
χ

2

)
= 2 sin

χ

2
cos

χ

2
= 2 tan

χ

2
cos2 χ

2
=

2z
1 + z2

showing that the transformation to the z-variable allows us to transform the trigonometric
function in rational functions. Then, Equation (8) becomes V̇ = −g n̄− g

1− z2

1 + z2

ż =
g
V

z
(9)

Dividing the first by the second equation of the system (9), one has

dV
dz

= n̄
V
z
− V

z
1− z2

1 + z2

that is
dV
V

=

(
n̄
z
− 1

z
1− z2

1 + z2

)
dz
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By integration
V = A zn̄−1(1 + z2) (10)

The velocity in (10) is a function of the variable z. The time dependence can be obtained
deriving the relation between time and z. Substitution of (10) in the second equation of the
system (9) gives

ż =
dz
dt

= − g
A

1
zn̄−2(1 + z2)

by separation of variables and integrating from t0 = 0 to t

t =
A
g

(
zn̄−1

n̄− 1
+

zn̄+1

n̄ + 1

)
(11)

The launch initial conditions are in the given hypothesis
V0 = 0
γ0 = π

2
χ0 = 0⇒ z0 = 0

Imposing these initial conditions in the solution (10), one has

V0 = A zn̄−1
0 (1 + z2

0) = 0 ∀A

Then, the initial conditions are verified for any value of the constant A. That is, there
are infinite (gravity-turn) solutions for the velocity, parameterized by A, corresponding to
the same initial condition. This violation of the Chauchy theorem on uniqueness of the
solution of a differential equation is due to the singularity of ż for V = 0 in the system (9).

One can take advantage of this multiplicity of solutions to select for instance the
solution that achieves a chosen flight-path angle γ f at the burn-out time tb. The chosen γ f

defines a value z f = tan(
π/2−γ f

2 ). By Equation (11), one obtains

A = g tb

(
zn̄−1

f

n̄− 1
+

zn̄+1
f

n̄ + 1

)−1

(12)

and the related velocity is obtained inserting this value of A into Equation (10).
In particular, the velocity at burn out is

Vf = A zn̄−1
f (1 + z2

f ) (13)

In addition, the altitude h and range s can be easily derived [16]. For the altitude

ḣ = V sin γ = V cos χ = V
1− z2

1 + z2

Then
dh
dz

=
ḣ
ż
=

V2

g z
1− z2

1 + z2

By Equation (10), one has

dh
dz

=
A2

g

(
z2n̄−3 − z2n̄+1

)
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The elementary integration of the above equation between current z and initial z0
gives the formula for the altitude

h(z) = h(z0) +
A2

g

[
z2n̄−2

2n̄− 2
− z2n̄+2

n̄ + 2

]z f

z0

(14)

For the range s
ṡ = V cos γ = V sin χ = 2 V

z
1 + z2

then
ds
dz

=
ṡ
ż
= 2

A2

g

(
z2n̄−1 + z2n̄+1

)
The integration gives the formula for the range

s(z) = s(z0) + 2
A2

g

[
z2n̄

2n̄
+

z2n̄+2

2n̄ + 2

]z f

z0

(15)

Equations (10), (12), (14) and (15), together with (11), provide the state variables of the
gravity-turn trajectory of a single-stage rocket with flight-path angle γ f at burn-out time tb.

For instance, let us consider initial lift off condition (V0 = 0, χ0 = 0, h0 = 0, s0 = 0)
and choose the final condition γ f = 0 this condition corresponds to z f = 1. Then
Equation (12) gives

A = g tb
n̄2 − 1

2n̄
By Equations (10), (14) and (15), the velocity, altitude and range at burn out are equal to

Vf = 2A = g tb
n̄2 − 1

n̄
(16)

h f =
A2

g
1

n̄− 1
=

gt2
b

2
n̄2 − 1

n̄2

s f =
A2

g

(
1
n̄
+

1
n̄ + 1

)
=

gt2
b

2

(
n̄2 − 1

n̄

)2 [ 1
2n̄

+
1

2n̄ + 2

]
Note that the final velocity formula of a rocket is generally obtained by the Tziolkowski

formula that takes into account only the thrust acceleration. In the present setting, the Tzi-
olkowski formula gives the final velocity

VTz = g n̄tb

The final velocity obtained here, which includes gravity effect, is given by (16): the
difference among the two is the gravity loss and it is equal to

∆Vg = VTz −Vf =
g tb
n̄

(17)

The above results can be generalized to multistage launchers.

4. Analytic Derivation of Launcher Trajectories

The above analytic formulas can be generalized to multistage launchers. Let us start
with two stages with the following average parameters (n1, Isp1, u1) and (n2, Isp2, u2).

The first stage has variables z1, V1 = A1 zn̄1−1
1 (1 + z2

1) in the time interval
[t10 = 0, t1 f = tb1 ]. The second stage has variables z2, V2 = A2 zn̄2−1

2 (1 + z2
2) in the

time interval [t20 = tb1 , t2 f = tb2 + tb1 ] and the final value z2 f is fixed (see Figure 5).
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Figure 5. Two stages.

Of course the two solutionsz1, V1 and z2, V2 must match at the boundary point

z1 f = z20

V1 f = V1(z1 f ) = V2(z20) = V20

The two matching conditions imply

A1

A2
= zn̄2−n̄1

20 (18)

Equation (11) gives at first-stage burn out

tb1 =
A1

g

(
zn̄1−1

20
n̄1 − 1

+
zn̄1+1

20
n̄1 + 1

)
=de f f1(z20) (19)

At the burn out of the second stage, one has z2 f and

tb2 =
A2

g

 zn̄2−1
2 f

n̄2 − 1
+

zn̄2+1
2 f

n̄1 + 1
−

zn̄2−1
20

n̄2 − 1
+

zn̄2+1
20

n̄1 + 1

 =de f f2(z20) (20)

We have a system of three Equations (18)–(20) in the three unknowns A1, A2 and z20.
To solve it, let us consider the ratio

tb2
tb1

=
f1

f2

Because of (18), this ratio is a function of z20 only

f (z20) =
tb2
tb1
− f1

f2
= 0

The solution z20 of f (z20) = 0 (in the range [0,1]) provides the value of the flight-
path angle at the end of the first stage. Moreover, by Equation (20), one finds A2 and by
Equation (19) one finds A1. Hence, the velocity profile of the two-stage launcher with a
prescribed flight-path angle z2 f at second-stage burn out is equal to

V(z) = A1 zn̄1−1
1 (1 + z2

1) f or z ∈ [0, z20]

V(z) = A2 zn̄2−1
2 (1 + z2

2) f or z ∈ [z20, z2 f ]
(21)
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With same arguments, we obtain the altitude and range

h(z) =
A2

1
g

[
z2n̄1−2

1
2n̄1 − 2

−
z2n̄1+2

1
n̄1 + 2

]
, f or z ∈ [0, z20]

h(z) = h(z20) +
A2

2
g

[
z2n̄2−2

2
2n̄2 − 2

−
z2n̄2+2

2
n̄2 + 2

]z

z20

, f or z ∈ [z20, z2 f ]

(22)

s(z) = 2
A2

1
g

[
z2n̄1

2n̄1
+

z2n̄1+2

2n̄1 + 2

]
, f or z ∈ [0, z20]

s(z) = R(z20) + 2
A2

2
g

[
z2n̄2

2n̄2
+

z2n̄2+2

2n̄2 + 2

]z

z20

, f or z ∈ [z20, z2 f ]
(23)

Note that the gravity loss of the two-stage launcher is

∆Vg = gIsp1log(
1

U1
) + gIsp2log(

1
U2

)−V(z2 f )

Any number of stage N can be handled: of course, more numerical work is needed
to find out the unknown variables. The N-1-matching conditions on the flight-path angle
generate the following N-1-matching conditions on the velocity

V1(z20, A1) = V2(z20, A2)

V2(z30, A2) = V3(z30, A3)

...

VN−2(zN−2 0, AN−2) = VN−1(zN−1 0, AN−1)

These, together with the N relationships related to each burn time

tb1 = tb1(A1, z20)

tb2 = tb2(A2, z20, z30)

...

tbN = tbN (AN , z20, . . . , zN 0)

generate 2N − 1 equations to be solved with respect to the 2N − 1 unknowns z20, z30, . . . zN 0,
A1, . . . AN.

By these solutions, the velocity, altitude and range profiles can be computed using
Equations (13)–(15) in the ranges [0, z20], . . . [zN 0, z f ].

For instance, for a three-stage launcher, one has

tb1 =
A1

g

(
zn1−1

20
n1 − 1

+
zn1+1

20
n1 + 1

)
(24)

tb2 =
A2

g

[(
zn2−1

30
n2 − 1

+
zn2+1

30
n2 + 1

)
−
(

zn2−1
20

n2 − 1
+

zn2+1
20

n2 + 1

)]
(25)

tb3 =
A3

g

[(
zn3−1

3
n3 − 1

+
zn3+1

3
n3 + 1

)]z3 f

z30

(26)

A1 = A2zn2−n1
20 (27)

A2 = A3 zn3−n2
30 (28)

(these five Equations (24)–(28) with the five unknowns A1, A2, A3, z20, z30).
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One solution is to write the variables A1 and A2 as function of A3 using

Equations (27) and (28). Then, the ratios
tb2
tb1

,
tb3
tb1

are obtained dividing (25) and (26) by the

Equation (24). The two ratios give two equations on the two unknown z20, z30. The solu-
tions can be found numerically within the interval [0,1], and they determine the values
of the flight-path angles at the end of the first and second stages. The values A1, A2, A3
are derived by Equations (24) and (26) and and the velocities at the end of each stage
are obtained.

For a four-stage launcher, there are seven equations in the seven unknowns A1, A2,
A3, A4, z20, z30, z40

A1 = A2zn2−n1
20 (29)

A2 = A3 zn3−n2
30 (30)

A3 = A4 zn4−n3
40 (31)

tb1 =
A1

g

(
zn1−1

20
n1 − 1

+
zn1+1

20
n1 + 1

)
(32)

tb2 =
A2

g

[(
zn2−1

30
n2 − 1

+
zn2+1

30
n2 + 1

)
−
(

zn2−1
20

n2 − 1
+

zn2+1
20

n2 + 1

)]
(33)

tb3 =
A3

g

[(
zn3−1

40
n3 − 1

+
zn3+1

40
n3 + 1

)
−
(

zn3−1
30

n3 − 1
+

zn3+1
30

n3 + 1

)]
(34)

tb4 =
A4

g

[
2 n4

n2
4 − 1

−
(

zn4−1
40

n4 − 1
+

zn4+1
40

n4 + 1

)]
(35)

The first three equations allow us to write A1, A2, A3 as function of A4 only. Then,

the three ratios
tb2
tb1

,
tb3
tb1

,
tb4
tb1

are functions of the three unknowns z20, z30, z40. The solution is

used then to derive A1 − A4.
Note that the above formulas for three- or four-stage launchers provide the values of

the flight-path angles and the velocities at the end of each stage for the launcher trajectory
with a fixed value of the final flight-path angle.

5. Guidance

The gravity-turn trajectory constrains the guidance and should be abandoned if possi-
ble; the relevant condition is the factor q α, where q = 1

2 ρ V2 is the dynamical pressure and
α is the angle of attack. This factor must be below a limit [q α]max which is peculiar to any
launcher and can be satisfied by the gravity-turn (α = 0) trajectory. As the altitude increases,
the atmospheric density ρ decreases exponentially, so at a certain point of the flight the
condition of q α disappears and a different guidance can be applied. The guidance applied
here is based on: (A) a possible coasting arc, and (B) thrust along the horizontal direction.

Generally, a coasting arc is performed after the burn out of the stage N− 1 of an N stage
launcher to increase the altitude at the cost of a moderate decrease in velocity. After the
coasting arc, the launcher is close to the target altitude h f , whereas the required velocity Vreq

must be gained. This velocity basically has the horizontal direction θ̂ = cos γ V̂ + sin γ l̂,
then the thrust direction is along θ̂ during the N-stage boost.

With the above guidance scheme, the full launcher trajectory depends on two parame-
ters: the flight-path angle γ f at the end of the gravity-turn phase and the duration tc of the
coasting arc. The two parameters (γ f , tc) are introduced into an iterative routine (such as
the Matlab routine fsolve.m) and updated to set the errors on the final altitude and velocity
(h(tb)− h f , V(tb)−Vreq) to zero, where tb is the N-stage burn-out time.

Let us consider a three-stage rocket as an example. The first two stages are in grav-
ity turn with a prescribed final flight-path angle γ2 f , then a costing arc of duration tc
is performed. Finally the third-stage boost is applied with horizontal thrust direction.
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The Matlab routine fsolve.m is used to update the values (γ2 f , tc), for instance, to achieve
the polar circular orbit of altitude h f = 650 km from a launch site with a latitude of 30 deg
N. The required velocity is then equal to VR = 7542 m/s.

The launcher has the parameters reported in Table 3. The Tziolkowski velocity is
equal to ∆VTz = 9743 m/s. From the data of Table 3 it is possible to derive the mass
parameters of each stage ms1 , mp1 , ms2 , mp2 , ms3 , mp3 and the mass of each substage M2, M3,
see Equations (A1) and (A2) in Appendix A. From the values n01 , n02 , n03 and M1, M2,
M3, it is possible to derive the propellant mass rates ṁ1, ṁ2, ṁ3, hence the burn times
tbi

=
mpi
ṁi

, i = 1, 3. For any fixed γ2 f , the Equations (21)–(23) give the state of the launcher
at the end of the second stage where the gravity-turn phase ends. After a coasting of
duration tc, the third stages thrust the rocket up to the burn time tb3 ; the final altitude and
velocity are compared with the required (h f , VR). The parameters γ2 f , tc are updated in
order to match the required final orbit conditions. After few iterations, the routine finds the
following parameters to reach the required orbit: γ2 f = 26.5 deg, tc = 340 s.

Table 3. Dataof the three-stage launcher.

Total mass M1 55,500 kg

Payload mass mpay 405 kg

ε1, ε2, ε3 0.10, 0.11, 0.22

Isp1, Isp2, Isp3 294 s, 295 s, 300 s

U1, U2, U3 0.35, 0.32, 0.31

n01, n02, n03 2.40, 2.06, 2.32

n1, n2, n3 3.85, 3.45, 3.95

6. Numerical Comparison

The results obtained by the analytic formulas are now compared with a numerical
code simulating the launcher trajectory with better accuracy. The equations of motion are
the three-dimensional equations of flight in the relative velocity frame with state variables
(r, λ, L, VR, γR, ψR)

ṙ = VR sin γR

λ̇ = VR cos γR
cos ψR
r cos L

L̇ = VR cos γR sin ψR
r

V̇R = r ω2
E cos L(cos L sin γR − sin L cos γR sin ψR) +

fV
m

γ̇R =
VR
r

cos γR + 2ωE cos L cos ψR+

+r
ω2

E
VR

cos L(cos L cos γR + sin L sin γR sin ψR) +
fl

m V
ψ̇R = −VR

r
tan L cos γR cos ψR + 2ωE cos L tan γR sin ψR+

−r
ω2

E
VR cos γR

cos L sin L cos ψR − 2ωE sin L

(36)

with
fV
m

=
T
m

cos α− µ

r2 sin γR −
1
2

ρ CD
S
m

V2
R

.
fl
m

=
T

mV
sin α− µ

VR r2 cos γR +
1
2

ρ CL
S
m

VR

(37)

Equations (36) and (37) are used with α = 0 for the gravity-turn arc, with T = 0 for
the coasting arc and with α = γ for the third-stage boost. Lift off begins with an initial
vertical arc of small duration tV ; this is computed in the Cartesian frame with non-singular
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coordinates. After the vertical arc, to turn the trajectory from the vertical direction, a pitch
manoeuvre starts with a fixed direction of thrust α = θk and ends when γR = θk. At this
time (called pitch over), the gravity-turn trajectory starts. The pitch direction of thrust θk is
chosen so to have the prescribed value γ2 f at the second-stage burn out. Then, the coasting
arc duration is chosen to achieve the required orbit.

Figures 6–8 show the analytical and numerical graphs of the velocity, flight-path angle
and altitude during gravity turn. Note that at the end of the second stage the discrepancy
between analytic and numeric results is rather small for the velocity, whereas a reduction
of 15% occurs in the altitude due to the numerical integration of the drag force. In the
numerical calculation the atmospheric density is represented by the USATMO 76 model
and the drag coefficient is kept constant at an average value CD = 0.4. The reference surface
is S = π d2

4 , with a diameter of d = 2 m. The drag effect reduces the payload mass that can
be inserted into the reference orbit.

Figure 6. The velocity plot: analytic and numeric results during the gravity-turn arc. Numerical
velocity of the first and second stage is in black, analytic velocity of the first stage is in blue and
second stage in orange line.

Figure 7. The flight-path angle plot: analytic and numeric results during gravity-turn arc. Numerical
flight-path angle of the first and second stage is in black, analytic flight-path angle of the first stage is
in blue and second stage in orange line.

In fact, the numerical results give insertion in the polar circular orbit of altitude 650 km
of a payload of mass mpay = 390 kg, vertical flight duration tv = 5 s, and pitch angle
θk = 76 deg (generating γ2 f = 26.5 deg), and coasting time tc = 355 s. The payload mass
reduction with respect to the analytical results is about 4%. The evolution of the orbit
parameters during the launch is shown in Figures 9 and 10, and Figure 11 shows the
launcher ground track.
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Figure 8. The altitude plot: analytical and numerical results during gravity-turn arc. Numerical
altitude of the first and second stage is in black, analytical altitude of the first stage is in the blue line
and the second stage in the orange line.

Figure 9. Thein-plane orbit parameters during the ascent. First-stage parameters are the blue line;
coasting and second stage are the orange line.

Figure 10. Out–of-plane orbit parameters during the ascent. First-stage parameters are in the blue
line; coasting and second stage are in the orange line.
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Figure 11. Launcher ground track.

Figure 12 shows the payload mass evaluation for polar circular orbits of different
altitudes obtained by the analytic (blue curve) and numerical (orange curve) algorithms.
Of course, the bigger differences are for orbits of lower altitude; however, the reduction in
the payload mass does not exceed 10% of the value found analytically.

Figure 12. Payload mass of polar circular orbits of different altitudes, analytical (blue line) vs numeric
results (orange line).

7. Concluding Remarks

This research extends the preceding generalization of the Culler and Fried formulation
to ascent trajectories that include a coast arc and the guidance of the upper stage. The ana-
lytical developments related to the multistage formulation of the Culler and Fried analysis
are contained in Section 4, dedicated to closed-form expressions for some fundamental
parameters of multistage launch vehicles. Section 5 is focused on inclusion of the coast arc
and guidance of the upper stage. These steps lead to the defining of an analytical method-
ology for the preliminary evaluation of the performance and trajectory of a launch vehicle,
whose preliminary mass distribution is optimized through the solution of a polynomial
equation of the same order as the number of stages (cf. Appendix A). The comparison of
the analytical method at hand with the ascent path obtained through numerical integration
testifies its accuracy, particularly in terms of prediction of the final payload mass, especially
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for medium- and high-altitude final circular orbits, with the error never exceeding the 10%
of the actual payload mass.
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Appendix A

Let us recall the definitions of stage and subrocket structural mass ratios of an N-stage
launcher:

εk =
msk

mk
, Uk =

Mk−mpk

Mk
k = 1, . . . N

where mk = msk + mpk is the mass of each stage (structure plus propellant mass) and
Mk = ΣN

j=kmk + mpay is the mass of each subrocket.

msk =
Mk(1−Uk)

1− εk
, mpk = Mk(1−Uk) (A1)

Mk = Mk−1
(Uk−1 − εk−1)

1− εk−1
, k = 2, N − 1 , MN = mpay (A2)

Let the values M1 and mpay be given, then, by

mpay

M1
= ΠN

i=2
Mi

Mi−1
(A3)

The Tziolkowski velocity is equal to

∆VTz = −g
N

∑
i=1

Ispi log(Ui)

The problem is now: select the values U∗k to minimize

J = gΣN
i=1 Ispi log(Ui)

under the constraint (A3), which is equal to (see (A2)):

Φ =
mpay

M1
−ΠN

i=2
Ui − εi
1− εi

= 0 (A4)

To solve the constrained minimum problem, the Hamilton function is introduced with
Lagrangian multiplier λ:

H = J + λ Φ

and the solution for the N + 1 unknowns Ui, λ derives from the N + 1 equations

∂H
∂Ui

= 0

.
∂H
∂λ

= 0

(A5)
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These equations correspond to

gIspi
Ui
− λ

1− εi
ΠN

k=1,k 6=i
Uk − εk
1− εk

= 0 (A6)

and to Equation (A4). From (A6), the Lagrangian multiplier λ is derived:

λ =
gIspi(Ui − εi)

Ui
ΠN

k=1
1− εk

Uk − εk
(A7)

Equation (A7) holds true for any i = 1, N, and this corresponds to

gIsp1(U1 − ε1)

U1
= · · · · · · = gIspN(UN − εN)

UN

that is
gIspi(Ui − εi)

Ui
=

gIsp1(U1 − ε1)

U1
, i = 2, N (A8)

Equation (A8) corresponds to

Ui =
Ispi εi

U1(Ispi − Isp1) + Isp1 ε1
U1 , i = 2, N (A9)

Replacing the Formulas (A9) into (A4), one has the following algebraic equation of
order N in the unique unknown U1:

mpay

M1
ΠN

i=1[U1(Ispi − Isp1) + Isp1 ε1]−ΠN
i1

εi
1− εi

(Isp1(U1 − ε1))
N = 0 (A10)

The solution U∗1 of (A10) is used in (A9) to obtain all the subrocket structural mass
ratios

{
U∗i
}

i=1,N , maximizing the Tziolkowski variation of velocity ∆VTz.
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