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Interplay between activity, elasticity, and liquid transport in self-contractile biopolymer gels
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Active gels play an important role in biology and in inspiring biomimetic active materials, due to their ability
to change shape, size, and create their own morphology. We study a particular class of active gels, generated by
polymerizing actin in the presence of cross-linkers and clusters of myosin as molecular motors, which exhibit
large contractions. The relevant mechanics for these highly swollen gels is the result of the interplay between
activity and liquid flow: gel activity yields a structural reorganization of the gel network and produces a flow
of liquid that eventually exits from the gel boundary. This dynamics inherits lengthscales that are typical of the
liquid flow processes. The analyses we present provide insights into the contraction dynamics, and they focus on
the effects of the geometry on both gel velocity and fluid flow.
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I. INTRODUCTION

Self-contractile active gels are usually generated by poly-
merizing actin in the presence of cross-linkers and clusters
of myosin as molecular motors [1–7]. The mechanics of ac-
tive gels presents interesting characteristics: self-contractions
generate internal stresses and stiffen the material, thus driving
the network into a highly nonlinear, stiffened regime [2]; mor-
phing from flat to curved geometries can be expected when
thin disks of active elastic gels are considered [5]; boundaries
affect morphing [3].

A distinctive feature of active gels is the fact that the source
that drives the system out of equilibrium is local, rather than
at the system’s boundaries as in passive gels, where boundary
tractions and/or fluxes and changes in the chemical equilib-
rium of the external ambient are the driving forces [8]. From
that, we get the definition of active gels as soft materials in
which detailed balance is broken locally [9].

The first models of active gels are based on a description
of the contraction dynamics within the framework of active
generalized hydrodynamics, which deal with gel mechanics,
liquid transport, and gel activity [5,8–12]. The characteristics
of these model are as follows: (i) the liquid flow is described
through the mass conservation law and the Stokes equations;
(ii) the overall stress in the gel is decomposed in an elastic
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component, borrowed from the linear elasticity, and an active
component, which mimics the active contractile stress gener-
ated by the embedded motors; (iii) the overall stress satisfies
the balance of forces under a friction force resulting from
the relative velocity of the gel and liquid components. The
friction force and the active stress make gel mechanics, liquid
transport, and gel activity fully coupled.

Hydrodynamic models are very accurate in describing the
contraction dynamics at the network mesh scale, and less
interested in coupling that dynamics with the nonlinear me-
chanics of active gels, which is strongly affected by the liquid
flow and important when the description of shape transitions
in active gels is of interest [5]. More recently, the mechanics
of active gels has been at the center of a few theoretical
studies, set within the framework of nonlinear mechanics.
The interactions between elastic stresses and liquid flow have
been investigated in the presence of gel activity, which affects
the behavior of the material, and they have been included
through different approaches [13–15]. The common point of
view is that activity provides structural changes of the net-
work, which induce liquid motion within the gel. Differently
from generalized hydrodynamics, gel and liquid motion are
modeled using the stress-diffusion theory, a refined version
of nonlinear poroelasticity where liquid mass conservation
governs liquid transport, and Fick’s law takes the place of
Darcy’s law [16–18].

In [13], a dynamic cross-linking mechanism is introduced
that drives an evolution of the mechanical stiffness of the
polymeric network and brings the system out of thermody-
namic equilibrium. The consequent gradient in the chemical
potential of the liquid drives the liquid flow in the active gel.
In the approach exploited in [14,15] by some of the authors,
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gel activity acts as a local time-dependent source of strain,
driven by generalized forces, whose action breaks locally the
thermodynamic equilibrium of the system.

Here, we describe the active gel state in terms of the liq-
uid density, the large displacement of the gel, and the active
strain, as in [14,15]. In addition, we introduce the relationships
between active strains and changes in the natural mesh size
of the polymer, defined as the distance between cross-links
at zero free-energy; we solve the transient problem for gel
disks of different aspect ratio; with reference to those disks,
we discuss the regimes of fast and slow liquid transport; we
identify the characteristic times of the contraction dynamics;
and we study the changes in the overall stress state in gel disks
of different aspect ratio.

The characteristics of this model are as follows: (i) the
liquid flow is described through the mass conservation law,
which prescribes the change in liquid concentration in the
gel and delivers the liquid velocity relative to the gel; (ii)
the total large deformation of the gel is the product of an
active component, which mimics the contraction generated by
the embedded motors, and an elastic component, following
the active strain approach, which has already been success-
fully exploited to describe morphing and growth in active
materials [19–21]; (iii) the overall stress depends on the elastic
component through a nonlinear constitutive equation and sat-
isfies the balance of forces under zero external force; (iv) the
generalized forces driving gel activity satisfy a balance equa-
tion, equivalent to a flow rule for the local time-dependent
active strain.

Finally, it is worth noting that, in the limit of small
deformations, the active strain approach yields an overall
stress that is the sum of a passive and an active component,
as in generalized hydrodynamics [19].

The goal of the model is describing the interactions
between activity, elasticity, and liquid transport through a
boundary value problems with initial conditions. Changes in
boundary and initial conditions allow us to model a variety
of dynamical phenomena and, hopefully, to inspire further
experiments to improve the design of the active characteristics
of the gel and of its relevant mechanics.

Specifically, we aim to reproduce qualitatively the ex-
perimental findings presented in [5], where the contraction
dynamics of an active gel disk has been followed and de-
scribed in great detail. In doing so, the analysis of the
competitive role of gel contractility and liquid flow in driving
the mechanics of the active gel is exploited. It is shown that the
shortest lengthscale is relevant for the contraction dynamics,
whereas the aspect ratio of the disk (diameter to thickness
ratio) affects the evolution of the disk size and the stress
distribution.

In Sec. II, the basic characteristics of the active gel model
are presented and contrasted with those of standard passive
gels. In Sec. III, liquid flow, stresses, and gel contractions are
introduced, and the equations driving the transient behavior
of the disks are presented under the cylindrical symmetry
hypotheses. In Sec. IV, the steady states of the active gel
are presented. In Sec. V, the regimes of fast and slow liquid
transport are identified, and the contraction dynamics of active
gel disks of different aspect ratios is studied through a set of
numerical experiments.

II. POLYMER FRACTION AND ACTIVE VOLUME

Differently from passive polymer gels, active gels have the
ability to reorganize their mesh, that is, to reduce their natural
mesh size by means of motor-induced filaments sliding. A
few characteristics of the active and passive gel mechanics are
contrasted here through a simple analysis to highlight the key
elements that can be described by the macroscopic models of
passive and active gels [15,17,18,22–24].

The mechanics of passive polymer gels is commonly
studied within the Flory-Rehner model [25,26]. The model
assumes the free energy to be the sum of an elastic energy
of the network and a mixing energy for the interactions
solvent/network. The elastic energy depends on the stretch
of the polymer chains from the dry conditions through a
nonlinear spring model. The mixing energy depends on the
polymer fraction φ, that is, the ratio between the volume Vp

occupied by the polymer and the current volume v of the gel:

φ = Vp

v
with v = Vp + vl , (1)

where vl is the volume of solvent content. Formula (1) is based
on the assumption that a given mass of polymer occupies a
constant volume Vp, and any change of the current volume v

must be entirely due to the solvent volume vl . The zero-energy
state, that is, the natural state of the gel, corresponds to the
dry state (φ = 1). Any change in the solvent content, driven
by changes in the chemical potential, stretches the chains,
mixes solvent and polymer, and increases the free energy. The
balance between the mixing energy, which favors swelling,
and the elastic energy, which hampers swelling, yields the
thermodynamic equilibrium state.

Our active gel model uses the same assumptions for the
free energy, but relieves the constraint of a constant polymer
volume. The volume of the polymer can vary because of a
change of the natural length of the mesh size due to the pulling
of molecular motors, and this new volume va is named active
volume. It is worth noting that Vp and va correspond to the
same mass of dry polymer; thus, activity, by changing only
the gel volume v, varies the ratio between the polymer mass
and the overall gel volume, that is, the effective gel density.
Moreover, as liquid is expelled during contraction, gel density
increases, a phenomenon called densification. For the active
gel model, the polymer fraction is given by

φ = va

v
with v = va + vl . (2)

Thus, we may have the same polymer fraction φ with different
pairs va, vl :

φ = vao

vao + vlo
= va1

va1 + vl1
⇒ va1

vao
= vl1

vlo
(3)

as 1/φ = 1 + vl0/va0 = 1 + vl1/va1. From (3), it follows that
a contraction of the polymer network yields a proportional
reduction of its solvent content, that is, for va1 < va0 it holds
that vl1 < vl0. For example, if we have va0 = 1 mm3 and
vl0 = 1000 mm3, we have φ = 1/1001. We may have the
same polymer fraction φ, with a contraction that halves
the polymer volume, that is, va1 = 0.5 mm3, and reduces
the solvent content to vl1 = 500 mm3.
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FIG. 1. The disk is dry at the reference configuration Bd , and
swollen at the initial one Bo. The volume of Bo is much larger than
that of Bd due to liquid content: Ho and 2Ro are the thickness and
diameter of Bo, which are λo times larger than the corresponding
reference lengths. The initial configuration is given by xo = λo X ,
where the stretch λo is determined by the bath’s chemical potential.

The natural state of the active gel corresponds to φ = 1,
and changes in the solvent content can be driven also at con-
stant chemical potential of the bath: liquid flow is generated by
active contraction. We anticipate a key feature of the model: to
maintain a steady gel volume, that is, a volume that remains
constant in time, motor activity is required. This latter is a
distinctive feature of active gels compared to passive ones.
Indeed, passive gels under external loads stay in their equi-
librium state until a change at the system’s boundaries occurs.
On the contrary, active gels are brought out of thermodynamic
equilibrium by the action of local molecular motors [8].

This key point inspired us. The model presents a new
evolution equation, which describes gel activity; it is driven
by a source term representing the local magnitude of motor
activity, which brings the system out of equilibrium [9]. This
activity in turn generates a solvent flow in the gel: contraction
of the polymer mesh, driven by the motors, yields solvent flow
towards the boundary of the body, favoring its release.

We conclude this section by writing the relations between
the average mesh sizes of the gel and its volumes. Continuing
with the example above, the current mesh size ξ is related
to the current gel volume v by v ∼ ξ 3; likewise, the natural
mesh size ξa is related to the active volume va by va ∼ ξ 3

a .
Thus, the ratio between the two active volumes va0 and va1 =
vao/2 would scale as ξa1/ξao = (1/2)1/3 � 0.8. Both ξa and ξ

may be very different from the reference mesh size ξd of the
dry polymer (before contraction acts), i.e., the passive one,
due to activity and liquid flow, as it has been shown in [5]
by fluorescence micrographs of a polymerizing and actively
contracting actomyosin network (see the cartoon in Fig. 2).

III. LIQUID FLOWS, STRESSES, AND GEL
CONTRACTIONS

The active gel model is formulated in the framework of
three-dimensional (3D) continuum mechanics (see [14,15]

FIG. 2. Schematics of the gel: (a) Dry-reference mesh (red) of
size ξd with cross-links (blue dots). (b) Dry-contracted mesh: mesh
size ξa is reduced with respect to ξd , and cross-link density is higher.
(c) Swollen mesh: liquid molecules (light blue dots) swell the dry-
contracted mesh: the free energy is proportional to the stretch ξ/ξa

between the contracted mesh and the swollen one.

for details), which allows us to set up initial-boundary value
problems relevant to describe real experiments. Here, inspired
by the experiments in [5], we consider a disklike continuum
body. At the initial time, the swollen, flat gel disk Bo has
radius Ro and thickness Ho. Both Ro and Ho are λo times larger
than the radius and thickness of the corresponding dry disk
Bd assumed as a reference configuration of the active gel
disk (see Fig. 1). The model describes the state of the gel
at any material point X ∈ Bd and time τ ∈ T , with T the
time interval, by using the following three state variables: the
solvent concentration cd (X, τ ) per unit of dry volume ([cd ] =
mol/m3), the mechanical displacement ud (X, τ ) ([ud ] = m),
and the active strain tensor Fa(X, τ ) ([Fa] = 1). To these three
state variables of the model, there correspond three balance
equations, which control liquid flow, stress state, and active
contractions.

The current position x of the point X of the gel is given
by x = X + ud (X, τ ) and the deformation gradient ∂x/∂X is
Fd = I + ∇ud . We denote with Bτ the current configuration
of the gel at time τ ; the initial configuration Bo is thus given by
xo = X + ud (X, 0) = λo X , where the stretch λo is determined
by the bath’s chemical potential.

Solvent concentration cd and displacement ud are the stan-
dard state variables of the Flory-Rehner model; the active
strain Fa is the new variable used to describe the gel contrac-
tion, that is, the local change of the natural shape of the mesh
due to motor activity (see Fig. 2). The tensor Fa is the 3D local
equivalent of the volume va mentioned in the previous section:
given the reference volume element dVd , the correspond-
ing contracted and current volume elements dva and dv are
given by

dva = Ja dVd and dv = Jd dVd , (4)

with Ja = det Fa and Jd = det Fd . The deformation between
the current and the contracted state is measured by the elastic
deformation Fe = Fd F−1

a ; see [19,27]. It is worth noting that
no contraction corresponds to Fa = I, Ja = 1, and we recover
the standard stress-diffusion model of passive gels. Moreover,
the time-dependent symmetric tensor Ca = FT

a Fa corresponds
to the target or natural metric used in [20,21], and the symmet-
ric tensor Ce = FT

e Fe describes the so-called elastic metric,
which affects stress distribution in the network [19].
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At any point X ∈ Bd and time τ ∈ T , the solvent content
of a volume element is dvl = � cd dVd , with � the molar
volume of the liquid ([�] = m3/mol). The requirement that
the current volume element dv is the sum of the active volume
dva plus the liquid volume dvl , that is, dv = dva + dvl , yields
an important relation that couples the three state variables of
the problem,

Jd (X, τ ) = Ja(X, τ ) + � cd (X, τ ). (5)

Looking at the mesh size, we have the same scaling as in the
previous 1D example: dv ∼ ξ 3, dva ∼ ξ 3

a , ξa/ξd � J1/3
a , and

ξ/ξd � J1/3
d .

The polymer fraction φ, that is, the ratio between dva and
dv, is now a function of X and τ , and is given by

φ(X, τ ) = Ja(X, τ )

Jd (X, τ )
= 1

Je(X, τ )
with Je = det Fe. (6)

In the following, we shall study highly swollen active gels
whose polymer fraction φ � 10−3, while Jd ranges between
1000 and 50. Thus, most of the gel volume is due to liquid
content, and given the assumption that the mass of the solid
matrix remains constant, the gel densification can be measured
by the ratio dvo/dv = Jdo/Jd , where dvo = Jdo dVd is the
volume element of the initial configuration Bo. During the
contraction, this ratio becomes much larger than 1, as a large
volume of liquid is expelled from the gel. This phenomenon
has been observed in experiments [5] and is reproduced by our
physical model.

A. Liquid flows

Any gel contraction deforms the gel and drives liquid flow
through it; thus, liquid flows within a moving medium. In
the spatial frame, the liquid content dvl of a volume ele-
ment is described by the current concentration c, defined by
dvl = � cd dVd = � c dv. From (4), it follows that cd = c Jd .
Analogously, the gel velocity u̇d is described by the spatial
velocity v. The local liquid mass conservation in the current
configuration is

ċ + div (h + c v) = 0 in Bt , (7)

and it shows that the solvent flux is the sum of a diffusive
component h and a convective component c v, due to gel
velocity v, ([h] = [c v] = mol/m2 1/s). Equation (7) can be
rewritten as follows:

ċ + div (c vl ) = 0 with vl = h
c

+ v, (8)

where vl represent the liquid velocity. Hence, the liquid flux h
depends on the relative liquid velocity to the gel as h = c(vl −
v). The cartoon in Fig. 3 shows the consequences of Eq. (8)
for some values of the relative liquid/gel velocity vl − v. The
liquid volume-rate d v̇l through the boundary da of a volume
element dv is given by

d v̇l = −� h · n da = −� c (vl − v) · n da. (9)

It holds that d v̇l > 0 when liquid is uptaken and d v̇l < 0 when
it is expelled. The same volume-rate d v̇l can be written in the
material frame by using a standard pull-back map; we have

d v̇l = −� h · n da = −� hd · m dAd , (10)

FIG. 3. Given a point (circle) on the boundary (vertical thick
line), the current flux h through the boundary (blue arrow) depends
on the relative velocity (vl − v). The cartoon shows four cases with
different vl (red arrow), whose outcome ranges from zero flux (top)
to a very large flux (bottom).

with n and m the unit normals to the area elements da and
dAd , respectively. Equation (10) yields the definition of the
reference flux hd = J F−1h.

Also, the local liquid mass conservation (7), written in the
current configuration, can be pulled back from Bt to Bd : the
corresponding liquid mass conservation written in the material
frame Bd is given by

ċd + div hd = 0 in Bd . (11)

Equation (11) is the one we shall use and solve in our model. It
is worth noting that by writing the liquid mass conservation in
the material frame, it could not be noticed at a glance that the
liquid flux hd is the sum of a diffusive term plus a convective
one.

B. Stresses and active contractions

The overall stress in the current configuration is measured
by the Cauchy stress tensor T, which gives the force Tn
per unit current area da. To T there corresponds a nominal
stress Sd = TF�

d/J , which gives the force Sd m per unit refer-
ence area dA [therein, F�

d = (FT
d )−1]. The balance equation of

forces in the reference configuration Bd is written in terms of
Sd as

div Sd = 0 in Bd and Sd m = 0 on ∂Bd . (12)

The right side of (12) is zero because we are neglecting inertial
forces (as timescales associated with diffusion and activity are
considerably longer than those associated with inertia). The
right side of (12) is zero because we are assuming that the
boundary pressure exerted by the liquid in the bath on the gel
is negligible, and we do not have any other external boundary
tractions.

Balance of forces holds at any time t and, when the liq-
uid flux h = 0, characterizes the thermodynamic equilibrium
in passive gels. In active gels we have one more balance
equation describing the contraction dynamics. It produces a
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dissipative dynamics in the form of a flow rule for the local
time-dependent active strain Fa as

Ḟa = M−1{[B − Esh(F, cd )]}Fa, (13)

where the generalized force B mimics the action of the molec-
ular motors, and the Eshelby tensor Esh brings in the model the
effect of the chemomechanical state of the body. Finally, the
power density dissipated in the system due to active contrac-
tion is MḞa · Ḟa, and the dissipation tensor M is assumed to be
positive-definite (to get a positive dissipation power density)
and diagonal.

C. Model equations under cylindrical symmetry

We exploit the cylindrical symmetry that greatly simplifies
the evolution equations of the problem; thus, the reference
disk Bd is represented by its vertical cross section Sd spanned
by the radial coordinate r ∈ (0, Rd ) and the vertical one z ∈
(0, Hd ). With this, the displacement ud has two nonzero com-
ponents: the radial u and the vertical w component; within
the class of tensors Fa, which are cylindrically symmetric,
we choose a diagonal one and write Fa = diag(γr, γθ , γz ).
The consequence of this choice is that our active contraction
provides a change in the natural mesh size that acts as a
local time-dependent source of volumetric and linear strains,
whereas shear strains are neglected.

The state variables of the problem are reduced to the fol-
lowing six scalar fields: the solvent concentration cd , the two
displacements (u,w), and the three contractions (γr, γθ , γz );
each field is a function of the coordinates (r, z) and the time τ .
Moreover, we assume that the derivatives u,z and w,r are zero,
that is, we neglect any possible small shearing between the
vertical and radial directions. It follows that the deformation
gradient Fd reduces to Fd = diag(λr, λθ , λz ) with the radial,
hoop, and vertical deformations defined as

λr = 1 + u,r , λθ = 1 + u/r, λz = 1 + w,z , (14)

respectively. Under the symmetry assumption, the volumetric
constraint (5) takes the form

λrλθλz = 1 + � cd . (15)

The state of the active gel is ruled by the set of balance
equations introduced above. Under the cylindrical symmetry
hypotheses, Eq. (11) reduces to

−ċd = hr,r + hr

r
+ hz,z, [3mm] (16)

where hr and hz are the radial and vertical components of
the solvent flux. So, the liquid volume rate through the
lateral surface of the disk is 2πRd � hr (Rd , z) dz, whereas
the liquid volume rate through the top face of the disk is
2π r � hz(r, Hd ) dr. Equations (12) reduce to

sr,r + sr − sθ

r
= 0 and sz,z = 0, (17)

where sr , sθ , and sz are the radial, hoop, and vertical com-
ponents of the nominal stress (also called symmetric Piola
stress), that is, the stress components on an area element dAd

orthogonal to the radial direction, to the azimuthal direction,
and to the vertical direction.

Fluxes hr and hz, chemical potential μ, and stresses sr ,
sθ , and sz are related to the stretches λi and the contractions
γi (i = r, θ, z) by constitutive equations, whose derivation is
fully described in several texts and papers (see [16,18,27]).
Shortly, liquid transport in the gel is described by a kinetic
law, based on the assumption that the liquid molecules move
across the gel pores following Fick’s law (linear dependence
on the chemical potential gradient):

hr = − D cd

R T λ2
r

μ,r and hz = − D cd

R T λ2
z

μ,z , (18)

where D is the diffusion coefficient, which has been assumed
to be the same in the radial and vertical directions, R and T are
the gas constant and the temperature, respectively, and μ =
μ(Je, p) is the chemical potential of the solvent in the gel:

μ = R T g(Je) + � p, Je = det Fe = Jd

Ja
, (19)

with

g(Je) =
[

log

(
Je − 1

Je

)
+ 1

Je
+ χ

J2
e

]
. (20)

Therein, the parameter χ is the nondimensional disaffinity
parameter, which controls the attraction between liquid and
network, and the pressure field p is the Lagrangian mul-
tiplier of the constraint Jd = Ja + � cd [Eq. (5)] [22]. The
characteristic time l2/D = τd of the liquid transport, with l
a characteristic length of the problem, will be compared with
the characteristic times brought in the model by contraction
dynamics to identify different regimes.

Finally, the overall stresses are given by constitutive equa-
tions of the form

sr = G λr
γθγz

γr
− pλθλz,

sθ = G λθ

γrγz

γθ

− pλr λz,

sz = G λz
γrγθ

γz
− pλr λθ , (21)

where G is the shear modulus of the dry polymer network
([G] =J/m3). The corresponding Cauchy stresses are σr =
sr/λθλz, σθ = sθ /λrλz, and σz = sz/λθλr .

Finally, Eq. (13) specializes to three scalar equations,
which deliver the flow rules for the active contractions γi

(i = r, θ, z) [28]:

γ̇r = 1

ηr
(βr − Er )γr,

γ̇θ = 1

ηθ

(βθ − Eθ )γθ ,

γ̇z = 1

ηz
(βz − Ez )γz. (22)

These equations show that flow rules are driven by (βi − Ei )
(i = r, θ, z), that is, by the difference between the generalized
forces βi and the components Ei of the Eshelby tensor, which
depends constitutively on the chemomechanical state of the
gel. We assume βi(X, τ ) = β(τ ), corresponding to assuming
an isotropic and homogeneous distribution of motors in the
gel, and we view it as the control parameter of the contraction
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process. On the contrary, we cannot control the components
Ei, which are in general neither homogeneous nor constant
and, within the Flory-Rehner thermodynamics, depend on the
state of the gel as

Ei = ey − Jd σi (i = r, θ, z) (23)

with

ey = R T

�
Ja F (Ce) − cd μ(Je, p). (24)

The function F (Ce) is the dimensionless free-energy den-
sity per unit natural volume, and it reads F (Ce) = fc(Je) +
m fe(Ce), with fc and fe the dimensionless mixing and elas-
tic free-energy, where m = G�/R T is the ratio between the
elastic energy and the mixing energy:

fc(Je) = (Je − 1)log

(
1 − 1

Je

)
+ χ

(
1 − 1

Je

)
,

fe(Ce) = 1

2
(trCe − 3). (25)

Equations (22)–(25) show that the interplay between activity,
elasticity, and liquid transport depends on the effective con-
trols (β − Ei ); in general, the dissipation constants ηi can be
different in the three directions and can bring in the model
more than one characteristic time τηi = ηi/RT/�; large dissi-
pation constants yield small contraction time rates (γ̇r, γ̇ϑ , γ̇z ),
under the same effective input.

We assume that the disk is not constrained, nor loaded, the
entire disk boundary is permeable, and chemical equilibrium
holds at the boundary, that is,

μ = μe on ∂Sd , (26)

where μe is the difference between the chemical potential
of the bath and that of pure water (μe = 0 corresponds to a
pure water bath). Finally, the initial conditions for the dis-
placements u,w, the concentration cd , and the contractions
γi (i = r, θ, z) are the following:

u = (λo − 1) r, w = (λo − 1) z, cd = cdo, γi = 1,

(27)

corresponding to the deformation fo(X ) = λo X for any X ∈
Bd from Bd to B0 (see Fig. 1).

IV. INITIAL AND FINAL EQUILIBRIUM STATES

The controls μe and β trigger contraction-liquid transport
dynamics between the initial and the final state (see Fig. 4).
We assume that both μe and β have a characteristic evolution
dynamics from their initial values (μ0, β0) to their final values
(μ1, β1), described by the following time laws:

μe = μe(τ ) = μ0 + (μ1 − μ0) s(τ/τμ),

β = β(τ ) = β0 + (β1 − β0) s(τ/τβ ), (28)

where s(·) is a smoothed step function [29] running from 0
to 1 in the interval (0,1), and τμ and τβ are characteristic
times [30], which have been tuned to match the results pre-
sented in [5]; see Table I. For the motors, the characteristic
time depends on the binding/unbinding kinetics of the motors
to the actin filaments, whereas for the chemical potential, the

FIG. 4. β goes from β0 to β1 in τβ = 20 s (dashed and solid red
lines); μ stays constant in scenario (a) and goes from μ0 = 0 to μ1

in τμ = 100 s (solid blue). β axis at left, μ axis at right.

characteristic time reflects the mixing kinetic of possibly free
biopolymer chains and the liquid in the bath.

The initial state and the final one are equilibrium states,
that is, hd = 0, which implies ċd = 0 and γ̇i = 0 (i = r, θ, z).

We assume that at the initial and final equilibrium states,
Fd and Fa are uniform and spherical, that is, Fd = λ I, Fa =
γ I, and that the overall stress is null. With this, and with
Eqs. (21), (19), and (23), we can represent the chemical po-
tential and the Eshelby components at those equilibrium states
as functions of Ja = γ 3 and Jd = λ3:

μ = μ(Jd/Ja) = μ(Je) and Ei = ey(Ja, Je). (29)

Moreover, the equilibrium states are guaranteed by constant
and homogeneous chemical potential μe and bulk source β

such that

μe = μ and β = Ei. (30)

Equations (29) and (30) deliver the relation between the pair
(Ja, Jd ) and the pair (μe, β) which must hold at the equilib-
rium states:

μe = μ(Je) and β = ey(Ja, Je). (31)

TABLE I. Material and geometrical parameters.

Shear modulus G = 135 Pa
Flory parameter χ = 0.4
Water molar volume � = 1.8 × 10−5 m3/mol
Temperature T = 293 K
Energy ratio m = G �/R T = 1 × 10−6

Diffusivity D = 1 × 10−3 m2/s
Dissipation η = 1 × 105 Pa s
Initial radius Ro = 1500 μm
Initial swollen volume and stretch ratio Jo = 1000, λo = 10
Initial aspect ratio AR = 2 Ro/Ho = 20–40
Initial thickness Ho = 150–75 μm
Final volume/initial volume Ja1 = 0.05
Control time for β τβ = 20 s
Control time for μ τμ = 100 s
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We label (Jd0, Ja0) the pair corresponding to the initial equi-
librium state and (Jd1, Ja1) the pair corresponding to the final
state; the same labels hold for all the other quantities.

1. Material parameters

The values assigned to the initial thickness and aspect
ratio (AR) have been prompted by [5], and the successive
parametric analyses always consider values of AR and Ho not
too far from the initial ones. The discrepancy between our
value for the shear modulus G and the value reported in [5]
is due to the fact that the former is the shear modulus at dry
conditions, while the latter is the effective shear modulus Geff

measured at the swollen state, with Geff � G/J1/3
d0 . We set the

diffusivity constant D and the dissipation ηr = ηθ = ηz = η in
order to get a time evolution from Bo to B1 similar to that taken
by the real disk to reach a mechanically stable state (steady
state), that is, ∼200 s. With this, we set the characteristic time
τη, leaving τd free to get different values, depending on Ho,
which are in any case always higher than τη (see Table I for
the complete list of material parameters).

2. Initial state

We assume a fully swollen state as the initial state of the
gel, characterized by a not contracted mesh size ξa equal to the
reference mesh size ξd . From an experimental point of view, it
means that self-contraction and liquid release are going to be
initiated; from the modeling point of view, it means that the
active gel is still not contracted and is in its thermodynamic
equilibrium, that is,

μe(0) = μ0 = 0 J/mol and Ja0 = 1. (32)

By putting these values in Eqs. (31), we find the initial change
in volume Jd0 = Je0 = λ3

0 of the gel and the initial value β0

of the generalized force which maintains that initial state.
Specifically, Eqs. (31) take the form

0 = μ(Jd0/Ja0) and β0 = ey(Ja0, Je0). (33)

The zero stress condition at the initial time delivers p0 =
G/λo. With this, the constitutive Eqs. (19) and (20) for the
chemical potential and Eq. (33) deliver

0 =
[

log

(
1 − 1

λ3
0

)
+ 1

λ3
0

+ χ

λ6
0

]
+ m

λ0
. (34)

Equation (34) can be solved for λ0, and Eq. (33) determines
the initial value β0 which the control has to get to guarantee
null contraction (ξa = ξd ) and the free swelling stretch λ0:

�

R T
β0 = (λ3

0 − 1)

(
λ3

0 − 1

λ6
0

χ − 1

λ3
0

)
+ m

(
1

λ0
+ λ2

0

2
− 3

2

)
.

(35)

It is worth noting that Eq. (34) is standard in stress-diffusion
theories based on Flory-Rehner thermodynamics [25,26]; it
is easy to verify that, given μ0, the free-swelling stretch λ0

increases as m decreases. On the contrary, Eq. (35) does not
belong to standard stress-diffusion theory, and it is peculiar to
the present augmented model.

The initial values of Jd , Je, cd , p, and β, corresponding to
the material parameter in Table I, can be easily evaluated. In
particular, we get Jd0 = 1000.

3. Final states

We consider two different scenarios: (a) where only a
change in the generalized force drives the active contractions
and liquid transport, that is, β1 �= β0 and μ1 = μ0; (b) where
also a change in the chemical potential of the bath drives the
active contractions and liquid transport, that is, β1 �= β0 and
μ1 �= μ0.

The differences between the two scenarios are noteworthy.
Indeed, in passive gels the input that drives the system out
of equilibrium is at the system’s boundaries, that is, a change
of the chemical potential in the bath starts liquid transport.
On the contrary, a distinctive feature of active gels is the fact
that the input that drives the system out of equilibrium is
local. Through the analysis of the two scenarios, we compare
dynamics due to only local input, that is, a change in the
generalized force, and to both local and boundary input, that
is, a change in both the generalized force and the chemical
potential of the bath.

In both the scenarios, however, and in accordance with the
experiments in [5], we assume that at the final state the mesh
is contracted by ξa/ξd = J1/3

a1 � 0.38 with respect to the dry
mesh size, that is, Ja1 = (ξa/ξd )3 = 0.05. The estimation of
the final value Ja1 allows us, within the model, to estimate the
final value β1 of the generalized force, as is shown below by
describing step-by-step the procedure to infer those data from
the equations of the model.

Scenario a (fluid flow induced by active contractility). We
assume

μ1 = μ0 = 0 J/mol, Ja1 = 0.05, (36)

and we put these values in Eqs. (31) to obtain the final
swelling ratio Jd1 and the generalized force β1. Specifically,
the two equations take the form

0 = μ(Jd1/Ja1) and β1 = ey(Ja1, Je1). (37)

With our data, we find Jd1 = 50. Comparing this value with
the change in volume delivered under the same chemical
conditions, that is, Jd0 = 1000, we can conclude that, due to
self-contraction, an effective bulk stiffening is predicted by
the model, as has already been recognized as crucial in other
works [10].

Scenario b (fluid flow generated by the active contractility
and changes in the chemical potential of the liquid bath).
Typically, in the experiments, the chemical potential of the
bath is not controlled. While previously assumed constant
[see (a)], it is possible that chains, small fragments, and even
monomers can be broken from the gel and released into the
solution upon contraction of the gel, by changing the chemical
potential of the bath [31]. This motivated our choice to study
the impact of a change in μe on the contraction dynamics.

We assume that at the final equilibrium state, Jd1 is half the
value of case (a), while Ja1 is the same as before, that is,

Jd1 = 25, Ja1 = 0.05. (38)
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TABLE II. Data about the aspect ratios; values of Ro and Ho are
in mm.

Constant Ro Constant Ho

Ho(Ro = 1.5) Ro(Ho = 0.1) AR

0.15 1.0 20
0.12 1.25 25
0.1 1.50 30
0.086 1.75 35
0.075 2.0 40
0.066 2.25 45

By putting these values in Eqs. (31), we obtain the pair
(μ1, β1). Specifically, the two equations take the form

μ1 = μ(Jd1/Ja1) and β1 = ey(Ja1, Je1). (39)

Of course, other choices would be possible; for example, apart
from setting different values for Jd1, we could first set μ1 and
then determine Jd1 from Eqs. (31). What we aimed to remark
is that the same value of β1 can deliver a quite different value
of the final change in volume Jd1 of the disk (25 versus 50)
when liquid transport and release is driven by both the mesh
contraction and the change in the chemical conditions of the
bath.

V. CONTRACTION DYNAMICS

Gel activity does not have any characteristic lengths, since
motor activity is assumed to be homogeneous across the sys-
tem. However, contraction dynamics inherits the characteristic
length of the dynamic of liquid transport. The disks built and
tested in [5] represent a good basis for a pilot study aimed to
discuss the relations between the two dynamics in terms of
the key geometrical parameter, which is the aspect ratio of the
disks.

We carried on the analysis by either changing the disk ini-
tial thickness Ho, for a fixed initial disk radius Ro = 1.5 mm,
or by varying the disk initial radius at a fixed thickness Ho =
0.10 mm. The investigated range of parameter AR is described
in Table II: it goes from disks of initial aspect ratio 20 (thick
disks) to disks of initial aspect ratio 45 (thin disks).

We show the results obtained for gel disks that contract due
to motor only [so-called scenario (a)]. All the experiments
start with Jd0 = 1000, i.e., at a highly swollen initial state,
and Ja0 = 1, and they evolve towards their final steady values
Jd1 = 50 and Ja1 = 0.05. As stated above, these values corre-
spond to a reduction in mesh size = ξa1/ξao = 0.051/3 = 0.38,
where ξa1 represents the final mesh size, and, as stated above,
we consider the final state to be stress-free.

In the regime under study, the system reaches its final
steady state after τ1 � 200 s, that is, we have τβ << τ1 and
the dynamics is ruled by the redistribution of water across
the gel mesh until its eventual expulsion through the disk
boundary.

A. Diffusion-limited regime

Given the equations of the model, there are different
characteristic times whose values have an influence on the

FIG. 5. Plot of J̄d (solid) and J̄a (dashed) vs time for different
values of AR; disk geometry is given in the first column of Table II.
Being τη � τβ , all the J̄a curves (dashed) are superimposed, as J̄a

evolves at the same pace of β, and this evolution is not affected by
AR. The J̄d curves (solid) depends strongly on AR, and the thicker
the disk, the slower the volume change. This is a consequence of the
fact that the liquid must exit through the boundary, and the thickness
is the important geometric parameter within our range of AR.

different solution regimes. In particular, the characteristic time
τη which governs mesh contraction is not size-dependent,
being τη ∝ η �/RT , while the characteristic time τd which
governs liquid transport has a length scale, which for our
geometries is the current height H , that is, τd ∝ H2/D. Given
our choice of η, we have τη � 10−3 s; the estimation of a value
for τd is much more difficult because of the large size-change
experienced by the disks during contraction.

Our experiments shows that, for our choice of parameters
and geometry, the contraction dynamics is diffusion-limited,
as is affected by the lengthscale. The opposite regime, the so-
called motor-limited regime, can be realized when τd � τη.
The simplest way to discuss the different regimes is through
the analysis of the flow rule for Ja, which can be easily derived
from Eqs. (22)–(24). Cylindrical symmetry implies

Ja = γrγθγz and J̇a = Ja

(
γ̇r

γr
+ γ̇θ

γθ

+ γ̇z

γz

)
. (40)

With this, the flow rule for Ja can be derived from those for γi

by Eqs. (22), and it takes the form

J̇a = 1

η
[3(β − ey) + Jd tr T]Ja. (41)

Equation (41) and the equation governing the dynamics of
diffusion allow us to discuss some of the evidences of our
numerical experiments.

To discuss contraction dynamics, we define the averages
J̄d (τ ) and J̄a(τ ) of Jd (r, z, τ ) and Ja(r, z, τ ), respectively,
which well represent the main features of the phenomenon
under study, and give a global glance at the contraction dy-
namics. Due to the cylindrical symmetry of the system, both
averages are evaluated on the two-dimensional domain Sd of
area Rd · Hd .

In Fig. 5, we plot J̄a (dashed) and J̄d (solid) versus time for
different values of AR; the figure shows two major findings.
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FIG. 6. Plane (J̄d , J̄a): evolution path at constant radius Ro =
1.5 mm for different values of AR; disk geometry is given in the
first column of Table II. Lower AR correspond to the evolution path
far from equilibrium; higher AR corresponds to paths that tend to the
quasistatic stress (dashed line).

First, all the curves for J̄a are superimposed, as τη � τβ , that
is, the evolution of β is slow with respect to the characteristic
time τη, and J̄a(τ ) has the same dynamics of β(τ ); in partic-
ular, the evolution of J̄a can be approximated as a sequence
of equilibrium problems, which depend on β. Moreover, as
contraction is a local mechanism, this dynamics is much faster
than diffusion, and it is not affected by AR.

Secondly, the curves for J̄d , representing the volume
change, strongly depend on AR, and the thicker the disk, the
slower the volume change. This is a consequence of the fact
that the liquid must exit through the boundary, and for the
range of AR under investigation, the thickness is the important
geometric parameter.

B. Dynamics in the plane (J̄d, J̄a)

We now focus on the evolution paths in the plane (J̄d , J̄a)
for scenario (a), that is, μe = μo = const. In this plane, a
quasistatic stress-free path is represented by a straight line at
constant J̄e = J̄d/J̄a, and the dashed line in Figs. 6 and 7. This
path corresponds to a sequence of equilibrium states where
the current swollen volume J̄d corresponds to a free swelling
for a dry mesh whose current natural volume is J̄a.

Due to the choices made in Table I, which yields a
diffusion-limited regime, liquid transport is affected by the
lengthscale. Thus, thinner disks (higher AR) show an evo-
lution in the plane that is closer to the stress-free path, that
is, under the same contraction dynamics, liquid transport is
faster for these disks, which can quickly recover the original
stress-free state. On the contrary, for thicker disks (lower AR),
the evolution path is very far from the quasistatic regime:
namely, motor-induced contraction is faster than the water
transport across the gel mesh, which makes the thick gels
highly stressed during their evolution.

We investigated the evolution paths for different AR for
varying Ho at constant Ro (Fig. 6) and varying Ro at constant
Ho (Fig. 7). In the first case, Fig. 6 shows that by increasing
the thickness Ho, that is, the characteristic lengthscale across

FIG. 7. Plane (J̄d , J̄a ): evolution path at constant thickness Ho =
0.1 mm for different values of AR; disk geometry is given in the
second column of Table II. All the paths are superimposed and the
master curve is the one corresponding to AR = 30 in Fig. 6.

which water flows, it increases the characteristic timescale of
water transport (from yellow to blue solid lines). As τη 
 τd

for any values of Ho, the quasistatic path is never realized;
however, the thinner the disk is, the closer is the evolution
path to the quasistatic one.

To confirm our expectations that the important lengthscale
for water exit is Ho, we also studied disk geometries having
constant thickness and varying radius. Figure 7 shows the
results for the same range of AR: it might be noticed that all
the curves are now superimposed as, being that the shortest
lengthscale Ho is constant, AR has no effect on the dynamics.

C. Gel contraction velocity

We studied the contraction velocity of the lateral boundary
of the disk, i.e., the radial velocity and the effects of AR on it.
To do so, we evaluate the average radial stretch �r as follows:

�r (τ ) = 1 + 1

Hd

∫ Hd

0

u(Rd , z, τ )

Rd
dz ; (42)

it is easy to verify that the average stretch �r also corresponds
to the average λ̄r (τ ) of the radial deformation λr (r, z, τ ) on the
cross section Sd of area Rd · Hd .

We also defined an average current radius R(τ ) and a radial
contraction velocity Ṙ(τ ) with the formulas

R(τ ) = �r (τ )Rd and Ṙ(τ ) = �̇r (τ ) Rd . (43)

It follows from (43) and the definition of AR that the radial
velocity can also be rewritten as Ṙ(τ ) = �̇r (τ ) Hd

2 AR. The
radial velocity Ṙ(τ ) is always negative, as the gel disk is
contracting and negative is also the generalized force β that
produces a contraction. So, in both Figs. 8 and 9 we repre-
sented −Ṙ(τ ) and −β/β0.

Figure 8 shows that, for a constant radius, the radial veloc-
ity Ṙ(τ ) is characterized by two timescales, one for the time
interval during which the velocity increases, and the second
for the following interval where the velocity decreases. In
the first time interval, the curves fit to a linear law, that
is, Ṙ(τ ) ∝ τ/τr , with τr the characteristic time of rising.
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FIG. 8. The time evolution of β (dashed) and corresponding
radial contraction velocity Ṙ of the lateral boundary of the disk
at constant radius Ro = 1.5 mm for different values of AR; disk
geometry is given in the first column of Table II. The color code
is the same as in Figs. 6 and 7. The small wiggle in the blue line at
τ � 17 s is due to a mechanical buckling: the disk departs from the
flat shape; see Fig. 12, panel (c). Velocity ranges over the left vertical
axis and β/βo over the right vertical axis.

During the decreasing time interval, curves fit to an ex-
ponential law Ṙ(τ ) ∝ vmax exp(− τ/τdecay), with τdecay the
characteristic time of decay. The characteristic times of rising
and decay have been estimated for any aspect ratio and are
listed in Table III.

The inset in Fig. 8 shows that the maximum radial veloc-
ity vmax, attained at peak time τp, depends on the geometric
parameter AR [32].

Actually, the analysis of Eqs. (42) and (43) shows that
when AR changes with Hd (or, equivalently, with Ho as the

FIG. 9. The time evolution of β (dashed) and corresponding
radial contraction velocity Ṙ of the lateral boundary of the disk at
constant thickness Ho = 0.1 mm for different values of AR; disk
geometry is given in the second column of Table II. Color code is
the same as in Figs. 6 and 7. Velocity ranges over the left vertical
axis and β/βo over the right vertical axis.

TABLE III. Max velocity vmax, peak time τp, rising time τr , and
decay time τdecay for different values of aspect ratio AR.

AR vmax (μm/s) τp (s) τr (s) τdecay (s)

20 44 � 16 0.22 13
25 52 � 16 0.22 13
30 74 � 17 0.18 8
35 84 � 17 0.14 3
40 104 � 17 0.12 2
45 111 � 17 0.11 1.5

initial free-swelling is homogeneous), with Ro constant, the
dependence of Ṙ on AR is also affected by Hd and cannot
be linear. The same equations show that, for Hd constant, the
dependence of Ṙ on AR is simply linear. This is what the inset
in Fig. 9 shows for the maximum velocity vmax relative to the
study at varying radius.

We can split the average stretch �r into an elastic compo-
nent �e and an active component �a, related to the analogous
decomposition of the deformation gradient F = FeFa and of
the radial deformation λr . Thus, the stretching velocity �̇r can
be written as the sum of two terms, and the radial velocity Ṙ
is represented by

Ṙ = (�̇a �e + �a �̇e) Rd , (44)

where �a is the average of the active radial deformation γr ,
and it depends on self-contraction, while �e is the average of
the elastic radial deformation λr/γr , and it depends on liquid
transport.

Equation (44) highlights the existence of two timescales
for Ṙ: for τ < τβ the stretching velocity is dominated by the
time evolution of β(τ ), while for τ > τβ it is dominated by
liquid transport, that is,

Ṙ � �̇a �e Rd τ < τβ, (45a)

Ṙ � �a �̇e Rd τ > τβ. (45b)

Equation (45a) shows that for t < τβ = 20 s, the radial veloc-
ity Ṙ changes with the same rate of �a, which in turns depends
on β, as Figs. 8 and 9 show (compare the colored lines with
the dashed black line in both figures).

On the other side, Eq. (45b) shows that for t > τβ = 20 s,
the radial velocity Ṙ changes with the rate of �e, which
depends on liquid transport and on the smallest lengthscale
of the disk, which in our case is Ho, as a comparison between
Figs. 8 and 9 shows. The same pair of figures also show clearly
that the maximal velocity is reached when τ approaches τβ ,
that is, when contraction is near to its maximum value—as
was suggested in [5] [see Fig. 4(f) in [5]].

Finally, it is worth noting that the active control β, needed
to change the target mesh size, does not change further once it
has taken its maximal value. Beyond that, the system evolves
towards its steady state by releasing liquid until a new free
swollen configuration is reached; at this final state, the effects
of the network elasticity balance the active control.

We conclude this section by showing a comparison with
experimental results obtained for a very thin disk with
AR = 50. By properly tuning the diffusivity D and the dis-
sipation η, our theoretical model is able to reproduce quite
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FIG. 10. Radial contraction velocities vs time. Radial Ṙ (solid
blue) contraction velocity of the disk compared with experimental
data (dashed with markers). Disk geometry: Ro = 1.5 mm, AR = 50;
material parameters: D = 0.951 × 10−4 m2/s, η = 1.51 × 105 Pa s.

well the time course of the radial contraction velocity Ṙ.
Figure 10 compares the predicted results (solid-blue) with the
experimental ones (dashed-black, circle markers).

D. Densification and stress distribution

As observed in [5], the network starts contracting from the
boundary, and the actual mesh size starts decreasing from the
boundary to the center of the gel disk. This contraction mode
yields boundary effects, which are detected on the gel density,
defined as the ratio between the polymer mass and the overall
gel volume, and on the overall stress state in the disk.

In [5], a gel densification was observed, that is, an increase
of the gel density starting at the periphery and propagating
into the gel interior.

Within the model, we use the ratio Jd0/Jd to measure the
densification from the initial state. Figure 11 shows the den-

FIG. 11. Densification at the middle cross section of the disk.
Ratio Jdo/Jd in the plane (R, τ ); color map: blue is more wet, red is
more dry. Densification (red color) starts at the boundary and then
propagates inward; disk radius contracts from Ro = 1.5 mm to R1 �
0.55 mm.

sification at the middle cross section of the disk by plotting
the ratio Jd0/Jd in the plane (R, τ ), with R = r + u the cur-
rent radial position. It is noted that, when τ ≡ τβ = 20 s and
contraction is fully developed, a narrow red strip of densifica-
tion appears at the periphery; then, it propagates towards the
interior until the whole cross section is more dense. The repre-
sentation in the current domain determines the peculiar “boot”
shape of the profile: as time goes on, the disk contracts and its
radius contracts from Ro = 1.5 mm to R1 � 0.55 mm. On the
other hand, stress analysis in the active disk can be relevant, as
overall stress distribution might drive mechanical instability,
which leads to a variety of different shapes at the end of
the contraction [5,20,33,34]. The analysis of instabilities is
beyond the scope of the present work, and it will mark our
future efforts. However, through the aforementioned studies,
we might have interesting clues about shape transitions by
investigating the effects of AR on the evolution of radial stress
σr and the hoop one σθ in the disk, which may drive further
experiments.

We only report results for the case of constant radius. We
compare the stress state in a thick (AR � 20) and a thin
(AR � 45) disk. Panels (a) and (b) of Fig. 12 show the ex-
istence of two stress patterns: in a core region (beige), the
stress is constant along the radius and spherical, that is, σr =
σθ ; in the periphery (cyan), the stress varies with the radius
and σr �= σθ . As the bulk contraction β is homogeneous and
isotropic in the whole disk, these two regions are determined
by the dynamics of liquid transport. In particular, the width of
the peripheral region is of the order of the thickness because
the solvent in this region can escape from both the lateral
boundary and the top and bottom surfaces. In contrast, for
the solvent in the core, the shortest path to exit the gel disk
is through the top and bottom surfaces. Corresponding to our
values of AR, we have Hthin � 0.04Rd and Hthick = 0.1Rd .

In particular, in Fig. 12, for AR = 20 we have essentially
σr < 0 along all the radius, and σθ varying from negative to
positive [see panel (a)]; for AR = 45 we have σr > 0 along
all the radius, and σθ varying from positive to negative [see
panel (b)]. The stress distribution for these two cases is typical
of that found in frustrated domelike or saddlelike disks [see
Fig. (12), panels (c) and (d)] [20,33,34].

That is a preliminary requirement for observing instability
patterns that can deliver domes or saddles, depending on other
key factors, which are not investigated in the present paper.

E. Evolution of the aspect ratio during contraction

Finally, the geometry of the gel body suggests that we in-
vestigate the possibility of having dissipations ηr and ηθ in the
plane, different from the vertical dissipation ηz. Dissipations
are related to the resistances of the mesh to reorganize, which
can be expected to be different. Our conjecture needs to be
validated, and the analysis may stimulate further experiments
in this direction.

As noted at the end of Sec. II, the system is controlled
by the pair (μe, β ), and here we also analyze the combined
effects of varying the chemical potential μe and active force β

(scenario b).
We always consider a homogeneous and isotropic general-

ized force β. Nevertheless, during gel contraction, the radial
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FIG. 12. Effect of AR on stress distribution for disks with constant radius. Panels (a) and (b) show the radial σr (red) and hoop σθ (blue)
overall stresses vs the nondimensional radius r/Rd at τ = 20 s, for AR = 20 and 45. (a) AR = 20: the hoop stress is negative in the core
(beige) and positive at the periphery (cyan), a typical pattern of frustrated domelike shape.

and vertical stretches might differ locally, and each one of
them can vary in time and space. We use the average values
R(τ ) and H (τ ) of radius and thickness to describe the change
in the aspect ratio of the disk, with R(τ ) defined by Eq. (43)
and H (τ ) defined as H (τ ) = �z(τ ) Hd with

�z(τ ) = 1 + 1

Rd

∫ Rd

0

w(r, Hd , τ )

Hd
dr. (46)

At any time τ , the ratio H (τ )/Ho can be plotted against the
ratio R(τ )/Ro to illustrate the evolution path of the radial and
vertical stretches, that is, the curve τ �→ (R(τ )/Ro, H (τ )/Ho),
plotted in the plane (R/Ro, H/Ho). In Fig. 13, the curve has
been represented for a disk with AR = 22 and Ro = 1.5 mm.
In that plot, the dashed line represents an isotropic evolution,
during which the aspect ratio remains constant during network
contraction.

For each of the two analyzed cases, corresponding to
scenario (a) (red) and (b) (blue), we show two curves, one
corresponding to equal dissipations (diamond markers), ηr =
ηθ = ηz, and the other with different horizontal and vertical
dissipations (asterisk markers), ηr = ηθ = 2 ηz. We note that
the evolution is very sensitive to dissipation, while the dif-
ferences between scenarios (a) and (b) are less noticeable.
For all simulations, the system evolves via a characteristic
path. It departs from the isotropic contraction path, but in
the case with equal dissipations the steady-state configuration
ends on the dashed line (i.e., on the isotropic path), while
the case with different dissipations ends far from it. In par-
ticular, when ηr = ηz, the contraction is almost isotropic until
H/Ho = R/Ro ∼ 0.8; then, the radial contraction is faster, and
eventually the vertical one becomes faster. When ηr = 2 ηz,
the vertical contraction is much faster than the radial one, and
the final state is not isotropic.

These first clues deserve to be investigated further both ex-
perimentally and numerically to stress the morphing chances
of active gel.

FIG. 13. Thickness ratio H/Ho vs radius ratio R/Ro during con-
traction for cases (a) (red) and (b) (blue) with equal friction ηr = ηz

(diamond) and differential friction ηr = 2 ηz (star); ηr = 105 Pa s.
The dashed line represents isotropic contractions; with different
frictions, the radial and vertical contractions are not isotropic. Disk
geometry: Ro = 1.5 mm, AR = 22.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

We discussed the interplay between elasticity, liquid trans-
port, and self-contractions in active gel disks from the
perspective of continuum mechanics. The transient problem
for gel disks of different aspect ratios has been solved, and dif-
ferent aspects of the problem have been discussed: the regimes
of fast and slow liquid transport, the characteristic times of the
contraction and liquid transport dynamics, and the changes in
the stress state in gel disks of different thickness. In doing so,
the analysis of the competitive role of gel contractility and
liquid flow in driving the mechanics of the active gel has been
exploited.

To keep the model easy, the numerical model has been de-
veloped under the hypothesis of cylindrical symmetry, which
excludes the challenge to observe disk morphings, which are
not compatible with the cylindrical symmetry. Actually, we
are planning to give up the symmetry hypothesis above and
investigate the blossom of stresses in the disk, which may
drive instability patterns and, consequently, a variety of steady
shapes of the gel. This was beyond the scope of the present
work, and it will mark our future efforts.

Giving up the symmetry hypothesis also makes more in-
teresting the identification of the determinants of possible
changes in shape, whose control would make it possible to
get actuators based on self-contractile gels, a promising field
that can be set within the framework here presented.
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APPENDIX

1. Details of finite-element analysis

Equations (15), (16), and (22), together with the bound-
ary (26) and initial (27) conditions, are rewritten in a weak
form and implemented in the software COMSOL MULTIPHY-
ISICS by using the Weak-Form physics interface. The calculus
domain is the rectangular domain Sd , which is meshed with
triangular elements whose maximum mesh size is Hd/10,
yielding about 200 K DOFs. Lagrangian polynomials are
used as shape functions: polynomials of order 4 for the dis-
placement and the solvent concentration, of order 3 for the
volumetric constraint, of order 2 for the boundary conditions
(also implemented in weak form), and of order 1 for the
remodeling variables. The whole set of coupled equations are
solved by using the Newton method with variable damping as
the nonlinear solver; the linear solver is the direct solver Par-
diso, while the time-dependent solver uses the BDF method
with order 1–2. The time-dependent analysis starts at the
initial state Bo and stops at a final equilibrium state B1, which
is preselected.
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