Received: 19 April 2024

Revised: 24 June 2024

Accepted: 26 June 2024

DOI: 10.1002/pro.5111

RESEARCH ARTICLE

WILEY

THE
@ PROTEIN
SOCIETY

Ferritin-based disruptor nanoparticles: A novel strategy
to enhance LDL cholesterol clearance via multivalent
inhibition of PCSK9-LDL receptor interaction

Alessio Incocciati’ © |
Francesca Liccardo? |
Lucia Bertuccini® |
Alessandra Bonamore"

'Department of Biochemical Sciences
“Alessandro Rossi Fanelli”, Sapienza
University of Rome, Rome, Italy

2Department of Anatomical, Histological,
Forensic & Orthopaedic Sciences,
Section of Histology and Medical
Embryology, Laboratory Affiliated to
Istituto Pasteur Italia-Fondazione Cenci
Bolognetti, Sapienza University of Rome,
Rome, Italy

3Center for Life Nano Science at Sapienza,
Istituto Italiano di Tecnologia, Rome, Italy

“Core Facilities, Microscopy Area, Istituto
Superiore di Sanita, Rome, Italy

*National Center for Innovative
Technologies in Public Health, Istituto
Superiore di Sanita, Rome, Italy

Correspondence

Alessandra Bonamore, Department of
Biochemical Sciences “Alessandro Rossi
Fanelli”, Sapienza University of Rome,
Piazzale Aldo Moro 5, 00185 Rome, Italy.
Email: alessandra.bonamore@uniromal.it

Review Editor: Aitziber L. Cortajarena

Chiara Cappelletti' |

Barbara De Berardis®

Silvia Masciarelli® |

Roberta Piacentini'® | Alessandra Giorgi' |

| Francesco Fazi’ | Alberto Boffi' |

Alberto Macone’

Abstract

Hypercholesterolemia, characterized by elevated low-density lipoprotein
(LDL) cholesterol levels, is a significant risk factor for cardiovascular disease.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in
cholesterol metabolism by regulating LDL receptor degradation, making it a
therapeutic target for mitigating hypercholesterolemia-associated risks. In this
context, we aimed to engineer human H ferritin as a scaffold to present 24 cop-
ies of a PCSK9-targeting domain. The rationale behind this protein nanoparti-
cle design was to disrupt the PCSK9-LDL receptor interaction, thereby
attenuating the PCSK9-mediated impairment of LDL cholesterol clearance.
The N-terminal sequence of human H ferritin was engineered to incorporate a
13-amino acid linear peptide (Pep2-8), which was previously identified as the
smallest PCSK9 inhibitor. Exploiting the quaternary structure of ferritin, engi-
neered nanoparticles were designed to display 24 copies of the targeting pep-
tide on their surface, enabling a multivalent binding effect. Extensive
biochemical characterization confirmed precise control over nanoparticle size
and morphology, alongside robust PCSK9-binding affinity (Kp in the high
picomolar range). Subsequent efficacy assessments employing the HepG2 liver
cell line demonstrated the ability of engineered ferritin's ability to disrupt
PCSK9-LDL receptor interaction, thereby promoting LDL receptor recycling
on cell surfaces and consequently enhancing LDL uptake. Our findings high-
light the potential of ferritin-based platforms as versatile tools for targeting
PCSKD9 in the management of hypercholesterolemia. This study not only con-
tributes to the advancement of ferritin-based therapeutics but also offers valu-
able insights into novel strategies for treating cardiovascular diseases.
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1 | INTRODUCTION

Ferritin, a widely distributed iron-storage protein, plays a
pivotal role in the regulation of iron homeostasis by form-
ing a protective shell composed of 24 units that sequester
this metal ion preventing its toxic accumulation. This
unique structure, combined with its biocompatibility, bio-
degradability, and low immunogenicity, makes it an
attractive platform for developing therapeutic nanoparti-
cles (Lee et al., 2022; Song et al., 2021). Indeed, its hollow,
spherical shape can be used in its native form or custom-
ized through chemical or genetic modification to encapsu-
late a wide range of therapeutic agents, including drugs
(Huang et al., 2021; Incocciati et al., 2023), proteins
(Macone et al., 2019; Tetter & Hilvert, 2017), nucleic acids
(Li et al., 2016; Palombarini et al.,, 2021), and imaging
agents (Calisti et al., 2018; Sitia et al., 2020). Ferritin can
also be modified on its external surface to selectively target
specific cells or tissues, thereby improving drug delivery
efficiency and reducing off-target effects (Ma, Dong,
et al., 2021; Ma, Li, et al., 2021; Sevieri et al., 2023). This
can be achieved through N-terminal modifications, as they
do not significantly affect the assembly of the nanoparticle,
within certain limits. The N-terminus sequence can also
be engineered to present antigens, eliciting an immune
response and offering potential for the development of
ferritin-based vaccines against various diseases (Houser
et al., 2022; Joyce et al., 2022; Vu et al., 2023). Hence, ferri-
tin can be modified to specifically recognize a wide range
of molecular targets with strong affinity, and as it displays
multiple copies (up to 24) of a specific peptide sequence
on its surface, the likelihood of target recognition and
binding can be very high.

In this study, we developed a variant of human H ferri-
tin (HFn) that contains multiple copies of a domain, capa-
ble of binding to proprotein convertase subtilisin/kexin
type 9 (PCSK9) on its surface. PCSK9 is a critical protein
involved in the posttranslational regulation of cholesterol
metabolism and is primarily synthesized in the liver
(Seidah & Prat, 2022). It functions to modulate circulating
levels of low-density lipoprotein cholesterol (LDL-C). Ele-
vated levels of PCSK9, or “gain of function” variants, have
been associated with an increased risk of cardiovascular
disease and familial hypercholesterolemia (Libby &
Tokgozoglu, 2022; Shapiro et al., 2018), while “loss of
function” mutations are associated with low LDL-C levels,
a decreased risk of cardiovascular events and, notably, no

associated adverse consequences (Cohen et al., 2006; Zhao
et al., 2006). Consequently, PCSK9 has emerged as a key
therapeutic target for lowering circulating LDL-C and pre-
venting atherosclerotic cardiovascular diseases.

The mechanism of action of PCSK9 in hypercholes-
terolemia involves its binding to the LDL receptor
(LDLR) on the surface of liver cells (Kwon et al., 2008).
This interaction occurs at a specific domain of LDLR
called the EGF-A (epidermal growth factor precursor
homology domain A). Under normal conditions, LDLR
removes LDL-C from the bloodstream by binding to it
and facilitating its uptake into the liver for degradation
and excretion. Upon internalization, both LDL-C and
LDLR are separated within the cell: LDL-C is transported
to the lysosome for degradation, while LDLR is recycled
back to the cell surface to continue its role in removing
LDL-C from the bloodstream. The LDLR undergoes recy-
cling approximately every 10 min and has a lifespan of
approximately 20 h, allowing it to effectively internalize
multiple LDL particles during its lifetime. However,
when PCSK9 binds to LDLR, it promotes its degradation
into lysosomes and reduces the ability of LDLR to be
recycled on the cell surface. This disrupts the normal pro-
cess of LDL-C clearance, leading to LDL-C accumulation
in the bloodstream, which is a significant risk factor for
the development of cardiovascular diseases (Shapiro
et al., 2018). Experimental and clinical research indicates
that hypercholesterolemia is influenced not only by
PCSK9 “gain-of-function” variants but also by the overex-
pression of the wild-type protein. This overexpression,
which can be correlated with multiple metabolic vari-
ables and systemic inflammation, may accelerate the
development of atherosclerotic plaques (Bao et al., 2024).

Our engineered HFn variant aims to interfere with the
interaction between PCSK9 and LDLR by presenting mul-
tiple copies of a PCSK9-binding domain on the surface of
ferritin, with the goal of mitigating the detrimental effects
of PCSK9 on LDL-C clearance and potentially offering a
novel approach for the treatment of hypercholesterolemia
(Jiang et al.,, 2018). Our approach involves displaying
24 copies of a 13-amino acid linear peptide (Pep2-8) on the
surface of ferritin, with the objective of optimizing its solu-
bility and effectiveness, leveraging the multivalence effect
of ferritin. Accordingly, we addressed the genetic engineer-
ing of the N-terminal sequence of the HFn subunits to
incorporate Pep2-8, which has been previously identified
as the smallest peptide able to inhibit PCSK9 (Zhang
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et al.,, 2014). Given the promising potential of Pep2-8 in
the development of small peptide-based PCSK9 inhibitors
(Tombling et al., 2021), we aimed to address its limitations
in terms of solubility and efficacy by genetically fusing it
to human ferritin, a protein that naturally targets the liver,
an organ that plays a crucial role in maintaining whole-
body cholesterol homeostasis. The resulting HFn-Pep2-8
nanoparticles were characterized using size exclusion
chromatography, dynamic light scattering, and electron
microscopy to determine their size and morphology. The
binding properties of the nanoparticles to PCSK9 were
evaluated using biolayer interferometry in order to assess
the kinetics and affinity of the interaction. In addition to
biochemical characterization, we assessed the efficacy of
the engineered ferritin by examining its ability to bind and
inhibit PCSK9 activity in HepG2 cells.

2 | MATERIALS AND METHODS

2.1 | Protein expression and purification
A sequence encoding the Pep2-8 peptide followed by a
four-glycine flexible linker (TVFTSWEEYLDWVGGGG)
was added to the 5'-terminus of a synthetic gene
encoding for human H ferritin (HFn). Both the HFn and
HFn-Pep2-8 genes were optimized for the expression in
Escherichia coli cells and subcloned into the pET22b vec-
tor. Protein expression was induced with 1 mM IPTG (iso-
propyl-B-p-1-thiogalactopyranoside) at an ODggy = 0.6 for
16 h at 37°C and 22°C for HFn and HFn-Pep2-8, respec-
tively, and the cells were harvested by centrifugation.

2.1.1 | HFn purification protocol

Bacterial paste from a 1L culture of HFn was resus-
pended in 50 mL of 20 mM sodium phosphate buffer,
pH 7.4, containing 150 mM NacCl and protease inhibitors
(Roche®©) disrupted by sonication. The soluble fraction
was treated with 50% and 70% (NH,4),SO,. The 70%
(NH,4),SO, pellet was resuspended in 20 mM sodium
phosphate buffer, pH 7.4, containing 150 mM NaCl and
extensively dialyzed against the same buffer overnight at
4°C. After dialysis, the protein sample was subjected to
heat treatment at 75°C for 10 min. The resulting soluble
fraction was digested with 50 pg/mL deoxyribonuclease I
(Merck) for 1 h at 37°C with the addition of 2 mM MgCl,.
After digestion, the protein sample was loaded onto a
HiLoad 26/600 Superdex 200 pg column previously equil-
ibrated with 20 mM sodium phosphate buffer (pH 7.4)
containing 150 mM NacCl using an AKTA-Pure apparatus
(Cytiva). The protein fractions eluted at the retention
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time of ferritin were pooled, concentrated using Amicon
Ultral5 centrifugal filter devices (100 kDa cutoff), sterile
filtered, and stored at 4°C (50 mg of purified protein per
liter of culture medium). The protein concentration was
calculated by measuring the UV absorption at 280 nm
(€250 = 19,000 M ' cm™!, extimated by ProtParam,
Expasy), and the protein purity was checked by SDS-
PAGE and high-performance size exclusion chromatogra-
phy (HP-SEC).

2.1.2 | HFn-Pep2-8 purification protocol
Bacterial paste from a 1L culture of HFn-Pep2-8 was
resuspended in 100 mL of 20 mM sodium phosphate
buffer, pH 7.4, containing 150 mM NacCl, 0.5 mM TCEP,
and protease inhibitors (Roche®). After sonication, HFn-
Pep2-8 was recovered from the insoluble fraction and
subjected to further sonication treatment
(Neerathilingam et al., 2014): inclusion bodies were
resuspended in 100 mL of 20 mM Tris buffer, pH 8.5,
containing 0.5 mM TCEP and 1 M urea, and sonicated
for 10 cycles (30 s pulse and 30 s pause) at 40% ampli-
tude. The soluble fraction was recovered and diluted
fourfold in 20 mM phosphate buffer containing 150 mM
NaCl without urea to induce protein precipitation. The
precipitate was resuspended in 8 mL of 20 mM sodium
phosphate buffer (pH 7.4) containing 50 mM NaCl and
loaded onto a HiLoad 26/600 Superdex 200 pg column
equilibrated with the same buffer using an AKTA-Pure
apparatus (Cytiva). The protein fractions eluted at the
retention time of ferritin were pooled, concentrated using
Amicon Ultral5 centrifugal filter devices (100 kDa cut-
off), sterile filtered, and stored at 4°C. The protein con-
centration was calculated by measuring the UV
absorption at 280 nm (g,50 = 31,400 M~ ' cm ™, estimated
by ProtParam, Expasy), and the protein purity was
checked by SDS-PAGE and HP-SEC.

2.2 | High-performance size exclusion
chromatography

HFn and HFn-Pep2-8 purity, aggregation state, and sta-
bility were analyzed by high-performance size exclusion
chromatography (HP-SEC). HP-SEC analyses were per-
formed by means of an Agilent Infinity 1260 HPLC appa-
ratus equipped with UV detectors using an Agilent
AdvanceBio SEC 300 A 2.7 ym 4.6 x 150 mm column.
Isocratic analysis was carried out with 20 mM sodium
phosphate buffer (pH 7.4) containing 50 mM NaCl, as
the mobile phase. The flow rate was 0.7 mL/min over an
elution window of 10 min. Ferritin elution was followed
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by UV detection at 220 and 280 nm. HFn-Pep2-8 stability
was analyzed by HP-SEC by recording the area of the
protein peak for 8 h at 37°C in MEM.

2.3 | Native polyacrylamide gel
electrophoresis (PAGE)

Native polyacrylamide gel electrophoresis was performed
with a 4%-15% nondenaturing acrylamide gel (Mini-
PROTEAN TGX stain-free) in Tris-glycine pH 8.3 run-
ning buffer at room temperature for 30-40 min at 150-
200 V in a Bio-Rad Mini-Protean tetra-cell electrophore-
sis apparatus.

2.4 | MALDI TOF/TOF analysis

The interesting bands, corresponding to HFn and HFn-
Pep2-8, were excised from SDS-PAGE and subjected to
tryptic proteolysis. After two steps for destaining and
dehydrating with aqueous solutions of 50 mM ammo-
nium bicarbonate with or without acetonitrile, the bands
were reduced and alkylated with iodoacetamide. Proteol-
ysis was carried out with Trypsin Gold (Mass Spectrome-
try Grade, Promega) at 37°C overnight. The tryptic
mixtures were analyzed by an ultrafleXtreme MALDI
ToFToF (Bruker, Bremen, Germany) instrument
equipped with a Smartbeam-II laser in positive and
reflector modes. Tandem mass analyses in LIFT mode
were performed to confirm protein identities.

2.5 | Transmission electron microscopy
(TEM) analysis

Ferritin solutions (15 pg/mL) were diluted 1:10 in buffer
and analyzed by the drop-on-grid method: 5 pL of each
sample was deposited on Formvar carbon-coated grids,
blotted gently with filter paper after 5 min, stained with
4% ammonium molybdate for 30 s, blotted again with fil-
ter paper, and air-dried. The grids were analyzed at
100 kV by an EM208S transmission electron microscope
(FEI—Thermo Fisher Scientific; Eindhoven—The
Netherlands) equipped with a Megaview II SIS camera
(Olympus-SIS Milan, Italy). The free software Imagel]
(version 1.29; NIH, Bethesda, MD) was used to analyze
high-magnification micrographs for calculating the diam-
eter size distribution of the ferritin globulins. In particu-
lar, manual measurements of more than 100 particles
were conducted for each sample and the diameter size
distributions were calculated through Excel 2016
software.

HFn-Pep2-8/PCSK9 complex was analyzed as
described above after incubating HFn-Pep2-8 with
10 molar excess of PCSK9 (Merck, code: SRP6285) for 2 h
at room temperature.

2.6 | Dynamic light scattering (DLS)
characterization and zeta potential

Protein suspensions in PBS at 0.1 mg/mL were character-
ized by a Zetasizer Ultra instrument (Malvern Instru-
ment, UK) equipped with two technologies, noninvasive
back scattering (NIBS) and multi-angle dynamic light
scattering (MADLS), to determine the hydrodynamic
diameter, size distribution, and particle number concen-
tration. DLS measurements were performed on 1 mL of
the suspensions. The equilibration step at 25°C was set at
2 min. Three determinations were performed on each
sample. The instrument software automatically
determined the number read and duration of each deter-
mination. To determine the hydrodynamic diameter (Z-
average) and polydispersity index, data related to distri-
butions by intensity were analyzed. The intensity-
weighted size distribution was determined by ZS Xplorer
Software (Malvern Instruments, UK).

For the evaluation of the particle number concentra-
tion, the particle size distribution obtained by MADLS
was determined by ZS Xplorer software to calculate the
scattering cross-section and the amount of scattering per
particle and then to convert the total scattering detected
from the sample into the number of particles per
mL. The surface charge of 0.1 mg/mL protein suspen-
sions in PBS was assessed via electrokinetic measure-
ments by Zetasizer Ultra Instrument (Malvern
Instrument, UK) incorporating an electrophoretic light
scattering system. The electrophoretic mobility values,
obtained by the 3 M-PALS technique in constant current
mode, were converted to zeta potentials using an auto-
matic instrument measurement protocol. The measure-
ments were conducted in triplicate on 750 pL of
nanoparticle suspensions.

2.7 | Biolayer interferometry

Biolayer interferometry (BLI) assays were employed to
evaluate the affinity of HFn-Pep2-8 for both PCSK9 and
the transferrin receptor 1 (CD71) using the Octet N1 sys-
tem (Sartorius). His-tagged PCSK9 or His-tagged CD71
was immobilized on a biosensor tip (Ni-NTA), and vari-
ous concentrations of HFn-Pep2-8 were assessed within
the ranges of 25-800 nM for PCSK9 and 2.5-1580 nM for
CD71. Before each analysis, biosensors underwent a
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10-min equilibration period in 1x kinetic buffer (PBS
containing 0.02% Tween 20, 0.1% BSA, and 0.05% NaN3).
Following equilibration, the biosensor tip was placed in
the HFn-Pep2-8 solution, and the duration of each mea-
surement was optimized to ensure maximal binding
capacity. The recorded data were subsequently analyzed
using Octet software to determine the kinetic parameters.
All association/dissociation curves were fitted using sin-
gle exponential growth and decay functions. The plateau
value derived from the single exponential growth func-
tion was utilized to calculate Kp, values by employing the
following equation: response = (Rya*C)/K + C, where
Riax = maximum response, C = concentration of HFn-
Pep2-8, and K = dissociation constant. The reported Kp
values represent the average and standard deviation of
three independent experiments.

2.8 | Invitro PCSK9/LDL receptor
binding assay

The ability of HFn-Pep2-8 to interfere with the PCSK9-
LDL receptor interaction was assessed using a CircuLex
PCSK9-LDLR in vitro binding assay kit (MBL, Japan) fol-
lowing the manufacturer's instructions. His-tagged
PCSK9 (at a final concentration of 70 ng/mL) or His-
tagged PCSK9 preincubated with  HFn-Pep2-8
(at concentrations ranging from 1 to 280 nM) was added
to each well of the microplate containing the immobi-
lized LDLR-AB domain. After a 2-h incubation period,
the wells were thoroughly washed, and biotinylated anti-
His-tag monoclonal antibody was added and incubated
for 1h under shaking. Subsequently,
HRP-conjugated streptavidin was added, and the plate
was further incubated for 20 min. After the final wash,
the chromogenic substrate tetra-methylbenzidine was
added, and the reaction was halted with 2.0 N sulfuric
acid. The absorbance at 450 nm was then measured using
an Appliskan® multimode microplate reader (Thermo
Scientific). The percent inhibition of the test compounds
was calculated relative to that of the vehicle control
(PCSK9 only), which was considered 100% binding.
GraphPad Prism 10.0 software was used to fit the
obtained measurements. The reported ICs, value repre-
sents the average and standard deviation of three inde-
pendent experiments.

2.9 | Cell culture and cell viability assay

The human hepatocellular carcinoma cell line HepG2
(NB-19-0060) was obtained from Neo Biotech (Seoul,
Seoul-t'ukpyolsi, South Korea) and cultured in MEM
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with Earle's Salts with Stable Glutamine (MEM-STA)
medium from Capricorn Scientific (Ebsdorfergrund,
Germany) supplemented with 1% penicillin/streptomycin
and 10% heat-inactivated FBS (Gibco, Thermo Fisher Sci-
entific, Waltham, MA, USA). The culture was maintained
at 37°C in a humidified atmosphere containing 5% CO,.
For the experiments, the cells were cultured in 24-well
plates (Corning Incorporated, NY, USA). When the cells
reached 70% confluence, the growth medium was
replaced with MEM supplemented with lipoprotein-
deficient serum from the fetal calves from Sigma-Aldrich
(St. Louis, MO, USA). After 24 h, the cells were treated
with 0.1 pM or 1pM HFn-Pep2-8 or with the same
amount of the buffer in which HFn-Pep2-8 was solubi-
lized. After 8 h, cell viability was tested by performing a
propidium iodide exclusion assay (Sigma-Aldrich,
St. Louis, MO, USA). The percentages of cell death
obtained by flow cytometry (Cytoflex Beckman Coulter,
Life Sciences, Brea, CA, USA) were analyzed by CytEx-
pert v2.2 software (Beckman Coulter).

2.10 | LDL-R membrane levels

HepG2 cells at 70% confluency, seeded on IBIDI p-Slide
8 Well high ibiTreat slides (IBIDI, Grifelfing, Germany),
were incubated for 24 h before starting the experiment
with MEM supplemented with lipoprotein-deficient
serum from fetal calf and then treated with 7 pg/mL
PCSK9 alone or in combination with HFn-Pep2-8 0.1 pM
and HFn-Pep2-8 1 pM in serum-free medium. After 8 h,
the treated cells were washed with DPBS, fixed with 4%
paraformaldehyde for 10 min (Sigma-Aldrich St. Louis,
MO, USA), washed twice with PBS/1% BSA, and stained
overnight with an anti-LDL receptor rabbit polyclonal
antibody (Abcam, Cambridge, UK) diluted 1:400 in
PBS/1% BSA. The cells were washed twice with PBS/1%
BSA and then incubated with an Alexa-Fluor
488-conjugated goat anti-rabbit secondary antibody
diluted 1:500 in PBS/1% BSA (Thermo Fisher Scientific
Waltham, MA, USA). Nuclei were counterstained with
Hoechst 3342 (Thermo Fisher Scientific). Confocal
microscopy analysis was performed using a Zeiss LSM
900 confocal microscope equipped with ZEN 3.2 Blue
Edition software.

211 | Dil-LDL uptake assay

HepG2 cells were seeded on 24-well plates by Corning
Incorporated (Corning, NY, USA). At 70% confluency,
cells were incubated for 24 h before the experiment with
MEM supplemented with lipoprotein-deficient serum
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from fetal calf, and then treated with 7 pg/mL PCSK9
alone or in combination with 0.1 pM HFn-Pep2-8 and
1 uM HFn-Pep2-8 in serum-free medium. After 6 h, the
treated cells were washed with DPBS before the addition
of fresh serum-free MEM containing purified human
plasma low-density lipoprotein (LDL) Dil-labeled, by
Alpha Diagnostic International (San Antonio, TX, USA)
at a final concentration of 20 pg/mL. After 2 h of incuba-
tion, the cells were fixed with 4% paraformaldehyde for
10 min, washed with DPBS, and analyzed by confocal
microscopy using a Zeiss LSM 900 confocal microscope
equipped with ZEN 3.2 Blue Edition software. Twelve
fields from each well were examined, and Dil-LDL
uptake was measured as the MFIL.

3 | RESULTS AND DISCUSSION

This study aimed to genetically modify a human H ferri-
tin nanoparticle to recognize PCSK9, a protein involved
in cholesterol metabolism (Seidah & Prat, 2022), by add-
ing a peptide sequence at the N-terminus of each subunit
of the protein (Figure 1). The peptide sequence was
selected based on previously reported PCSK9-targeting

peptide sequences obtained through combinatorial
(il) Pep2-8
LDLR EGF-A

binding site

FIGURE 1

Interactions of Pep2-8 and HFn-Pep2-8 with
PCSKO9. (a) Pep2-8 (red), fused to the N-terminal region of HFn
(blue) (PDB entry 2FHA) binds to the PCSKO9 catalytic domain in
the region involved in LDLR recognition (yellow) (PDB entry
4NMX). (b) Alphafold-generated 3D model of the interaction of
HFn-Pep2-8 with PCSK9.

library screening of randomized peptide sequences
(Zhang et al., 2014). From the pool of screened peptides,
we selected Pep2-8 (TVFTSWEEYLDWYV), which forms a
3-strand-turn-helix motif that binds to an exposed,
slightly convex region on the PCSK9 catalytic domain
(Kwon et al., 2008). This region is a potentially druggable
site, suitable for the binding of antibodies and peptides
aimed at preventing PCSK9's interaction with the EGF-A
domain of LDLR. (Figure 1).

Biolayer interferometry studies showed that Pep2-8
had moderate affinity for PCSK9 (Kp = 0.6610 pM)
(Zhang et al., 2014). Despite this, Pep2-8 was selected for
this study due to its shorter length (13 amino acids) and
the lack of cysteine residues, ensuring structural stability
and reducing oxidation risks within the chimeric system.
Pep2-8 was fused to the N-terminus of the protein using a
flexible linker composed of four glycine residues
(Figure S1).

3.1 | HFn-Pep2-8 characterization

The synthetic gene encoding for HFn-Pep2-8 was opti-
mized for the expression in E. coli cells, and the recombi-
nant protein was expressed at a high level (20 mg of
purified protein per liter of culture). The purified protein
was obtained from the inclusion bodies, as described in
Figure S2. HP-SEC, electrophoresis, CD, DLS, TEM, BLI,
and MALDI TOF/TOF analyses were utilized to compre-
hensively characterize HFn-Pep2-8 (Figure 2, Figures S3
and S4).

HP-SEC analysis (Figure 2a) revealed that the protein
was highly pure and properly assembled and eluted as a
single peak with a lower retention volume than that of
unmodified ferritin due to its higher molecular weight.
This finding provides strong evidence of an extra sequence
added at each ferritin subunit. MALDI TOF/TOF analysis
confirmed the presence of the Pep2-8 peptide and the
linker at the N-terminus, providing information on the
identity and location of the modification (Figure S4). Nota-
bly, the PCSK9-recognizing domain did not alter the sec-
ondary structure of ferritin, as revealed by CD analysis
(double minima at 210 and 222 nm), suggesting that the
modification did not cause any significant changes in the
alpha helix content of the protein (Figure 2b). TEM analy-
sis revealed a homogenous distribution of the modified fer-
ritin nanoparticles in the sample, with a typical donut
shape morphology, characterized by a diameter size distri-
bution ranging from 11 to 13.5nm (average of 12.12
+ 0.6 nm), which is consistent with previous reports on
unmodified ferritins (Lawson et al., 1991) (Figure 2c).
These results are in agreement with the DLS data. The size
distributions showed narrow peaks at approximately 15.1
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+ 0.1 nm and 15.8 + 0.6 nm for the HFn and HFn-Pep2-8
suspensions, respectively (Figure 2d). The slight increase
in the hydrodynamic diameter is probably due to the
Pep2-8 peptide being linked to the HFn surface. The
hydrodynamic diameters (Z-average values) were 15.1
+ 0.1 nm for HFn and 15.8 + 0.6 nm for HFn-Pep2-8. The
polydispersity index values obtained by DLS analysis
(0.166 + 0.008 and 0.179 + 0.007 for the HFn and HFn-
Pep2-8 nanoparticles, respectively) highlighted monodis-
perse suspensions, as also confirmed by multi-angle DLS
(MADLS). This technique, which combines the scattering
angle information from Mie theory and the particle size
distribution analysis from a DLS measurement, shows a
single population for both nanoparticles. The HFn suspen-
sions consisted of 1.15 x 10"** + 0.08 x 10*'* nanoparti-
cles with a hydrodynamic diameter of 14.0 nm, and the
HFn-Pep2-8 suspension consisted of 7.06 x 10™" +
0.49 x 10" nanoparticles with a hydrodynamic diameter
of 14.5 + 0.7 nm.

The values of the zeta potential (—12.9 + 2.7 mV for
HFn and — 6.8 £ 1.5 mV for HFn-Pep2-8) indicated a
negative surface charge for both nanoparticles. While the

Concentration (nM)

net negative charge of HFn-Pep2-8 is indeed higher com-
pared to HFn, the difference in zeta potential may stem
from variations in the compactness of the counter-ion
layer, differences in charge distribution, surface rough-
ness, and the hydration layer. These factors contribute to
distinct electrical potentials at the slipping plane, which
separates mobile fluid from fluid that remains attached
to the surface.

Overall, these findings suggest that the modified ferri-
tin retains the ability to self-assemble properly, a critical
factor in maintaining stability and preventing aggrega-
tion in solution. The accuracy of the assembly was fur-
ther confirmed by its capacity to recognize the CD71
receptor, as demonstrated through biolayer interferome-
try (Figure 2e and Figure S5), a powerful tool for real-
time measurement of biomolecular interactions. BLI
experiments were conducted using the His-tagged CD71
receptor immobilized on the biosensor tip, revealing a Kp,
value of 9 nM for human ferritin, which is consistent
with values reported in other publications (Montemiglio
et al., 2019). In contrast, HFn-Pep2-8 exhibited a slightly
lower affinity, with a Kp value of 27 nM.
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HFn-Pep2-8 interaction with PCSK9. (a) Native PAGE of HFn (0.36 pM) and HFn-Pep2-8 (0.36 pM) alone or incubated

overnight at 4°C with a sevenfold excess of PCSK9 (2.6 pM). PCSK9 was also run as a reference. The yellow dotted line highlights the
mobility shift of ferritin nanoparticles. (b) Equilibrium dissociation constants (Kp) of the interactions of HFn-Pep2-8 with immobilized
PCSK9 obtained by BLI experiments. The Ky, value presented in the graph represents the result of binding assays performed in duplicate.
(c) Determination of the in vitro median inhibitory concentration (ICs,) of HFn-Pep2-8 in the assay of PCSK9-binding to LDLR. The results
are presented as the mean + SD (n = 3). (d) Negative TEM staining of HFn-Pep2-8 (1.5 pg/mL) alone or preincubated for 1 h at 37°C with a
10-molar excess of PCSK9 (scale bar: 0.1 pm). The inset shows a 3D model of HFn-Pep2-8 (blue) interacting with PCSK9 (red).

When developing nanoparticles for potential therapeu-
tic applications, a crucial step involves evaluating their
storage stability and resilience across a spectrum of experi-
mental conditions. In the specific context of the HFn-
Pep2-8 construct, the incorporation of the Pep2-8 sequence
at the N-terminus via a flexible linker introduces potential
vulnerability to proteolytic cleavage. Consequently, it is
essential to investigate the likelihood of alterations occur-
ring over time in both the N-terminal region and the over-
all quaternary structure. SDS-PAGE analysis demonstrated
that HFn-Pep2-8 was not proteolyzed for up to 12 months
in phosphate buffer supplemented with sodium chloride,
sterile-filtered, and stored at 4°C (Figure S6). Additionally,
UV spectra confirmed that the protein is perfectly soluble
within the same timeframe. However, to evaluate its sta-
bility within the cell culture environment, HFn-Pep2-8
was incubated at 37°C in MEM, a culture medium com-
monly used to grow the HepG2 liver cell line, an estab-
lished model for studying cholesterol metabolism. Under
these conditions, the protein was stable for up to 8 h.

3.2 | HFn-Pep2-8 interaction with PCSK9
The first evidence of the interaction between HFn-Pep2-8
and PCSK9 was obtained through high-performance size
exclusion chromatography (Figure S7) and native gel elec-
trophoresis (Figure 3a). A distinct electrophoretic mobility
shift is observed when PCSK9 is incubated with either
HFn or HFn-Pep2-8. In the latter case, the formation of a
complex is evidenced by a shift in the ferritin band and a
reduction in the intensity of the PCSK9 band. Notably,
these changes are not observed when PCSK9 is incubated
with HFn, indicating specificity in the interaction.

The strength of HFn-Pep2-8-PCSK9 interaction was
evaluated through both biolayer interferometry and
ELISA measurements. In the BLI analysis (Figure 3b
and Figure S8), the His-tagged PCSK9 protein was immo-
bilized on a biosensor tip, and various concentrations of
ferritin were tested.

Our results show that HFn-Pep2-8 exhibits a high
affinity for the PCSK9 protein, with a dissociation



INCOCCIATI ET AL.

constant (Kp) of 0.64 + 0.19 nM, approximately 1000-fold
lower than that of the free Pep2-8 peptide (Zhang
et al., 2014).

This strong binding capacity to PCSK9 can be
explained through several synergistic effects. First, ferri-
tin acts as a multivalent scaffold, presenting 24 Pep2-8
peptides in a dense and highly symmetric manner. This
multivalency significantly enhances the overall binding
strength due to the cumulative effect of multiple simulta-
neous interactions between the Pep2-8 peptides and
PCSKO. In addition, the increased local concentration of
Pep2-8 peptides around the PCSK9 molecule also plays a
crucial role. When Pep2-8 peptides are linked to ferritin,
they are concentrated in close proximity to each other,
creating a high local concentration of binding sites. This
proximity effect increases the likelihood of the interac-
tion with PCSK9, leading to more frequent and robust
binding. Furthermore, in a multivalent system such as
HFn-Pep2-8, if PCSK9 dissociates from one of the
24 Pep2-8 peptides displayed on the nanoparticle surface,
the remaining peptides can still maintain the overall
binding interaction, resulting in a higher apparent affin-
ity and greater stability of the binding interaction.

Notably, while the Ky value reported in the literature
for evolocumab, an FDA-approved monoclonal antibody
used to treat hypercholesterolemia, is significantly lower
at 16 pM, alirocumab, another FDA-approved treatment,
has a K value of 0.52 nM, which is very similar to that
found for HFn-Pep2-8. However, it is important to inter-
pret any comparison between these values with caution,
as the Kp values for evolocumab and alirocumab were
obtained using different experimental setups.

Pep2-8 peptide acts as a competitive inhibitor as its
binding to PCSK9 hinders the interaction of PCSK9 with
the EGF-A domain of LDLR (Figure 1) (Zhang
et al., 2014). Thus, to evaluate the ability of HFn-Pep2-8
to disrupt the in vitro PCSK9-LDLR interaction, we
performed an ELISA test with the LDLR-AB domain pre-
coated onto plates. As shown in the Figure 3c, HFn-
Pep2-8 showed a dose-dependent inhibition with a half-
maximal inhibition (ICso) in the low nanomolar range
(80.29 + 4.91 nM).

The BLI and ELISA results were supported by TEM
negative stain analysis of HFn-Pep2-8 nanoparticles incu-
bated with PCSK9 (Figure 3d). The images clearly show
the presence of thickened material partially or completely
surrounding ferritin nanoparticles in the treated samples
(arrows), clearly indicating that the PCSK9 molecules
interact with HFn-Pep2-8. The observed heterogeneity is
likely due to the intrinsic variability of nanoparticle-
based systems, where multiple binding events can hap-
pen either simultaneously or in sequence, resulting in a
distribution of bound states. Indeed, Pep2-8 is connected
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to HFn via an unstructured glycine linker, which imparts
flexibility to the peptide exposed on the surface. This flex-
ibility is advantageous for molecular recognition but also
makes the interaction statistically variable, making it
challenging to establish the exact stoichiometry.
Although ferritin displays 24 binding sites for PCSK9, the
number of PCSK9 molecules bound to the nanoparticles
will likely be lower than the available binding sites due
to the dimensions of PCSK9 and steric hindrance. One of
the major challenges in determining the exact stoichiom-
etry is that high concentrations of PCSK9 (>50 pM) are
required. Under these conditions, far from the physiologi-
cal ones, PCSK9 tends to aggregate, limiting this kind of
investigation.

3.3 | Invitro cell experiments

Based on comprehensive biochemical characterization,
we conducted tests to assess the impact of HFn-Pep2-8 on
the HepG2 liver cell line. Given the role of high PCSK9
levels in diminishing LDLR expression on the surface of
liver cells (Kwon et al., 2008), our investigation aimed to
elucidate the potential of HFn-Pep2-8 treatment in mod-
ulating membrane receptor levels. PCSK9 is the main
therapeutic target of the most innovative biological thera-
pies for the treatment of hypercholesterolemia. The low-
ering of PCSK9 levels is currently being pursued through
the use of monoclonal antibodies (evolocumab and aliro-
cumab) and small interfering RNAs (inclisiran), with sig-
nificant improvements in the clinical picture, especially
for statin-resistant subjects. The present study fits into
this context by utilizing the smallest peptide known to
inhibit the activity of PCSK9, thereby increasing its effec-
tiveness by exploiting the multivalent effect of ferritin.
Indeed, when Pep2-8 is fused to each ferritin subunit, the
resulting nanoparticle has a Kp 1000 times lower than
the free peptide. This ferritin-based nanoparticle was
then tested on HepG2 liver cells, a model system for anti-
hypercholesterolemic drug screening. First, we deter-
mined that HFn-Pep2-8 had no toxic effects on HepG2
cells at the concentrations used (Figure S9). Then, we
added PCSK9 alone (7 pg/mL) or in combination with
different amounts of HFn-Pep2-8 (0.1 and 1 pM) to the
HepG2 culture medium for 8 h. Confocal microscopy was
used to visualize LDLR expression through immunofluo-
rescent labeling.

HepG2 cells incubated with PCSK9 alone exhibited
significantly lower levels of LDLR on the plasma mem-
brane compared to control cells (Figure 4a), consistent
with expectations. Specifically, exposure to 7 pg/mL
PCSKO resulted in a reduction of LDLR protein levels by
32.07% compared to the control cells. This finding is in
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line with previously published reports (Lammi
et al., 2019; Lipari et al., 2012). Notably, supplementation
of the culture medium with HFn-Pep2-8 reversed LDLR
expression in a dose-dependent manner, with a notable
restoration of 90% of the receptors on the HepG2 surface
observed at the highest concentration of HFn-Pep2-8
tested.

To assess HFn-Pep2-8's impact on the capacity of
HepG2 cells to uptake extracellular LDL, functional
experiments were performed utilizing Dil-labeled LDL.
Cells were treated with PCSK9 alone or in combination
with varying concentrations of HFn-Pep2-8. Consistent
with the reduction in LDLR expression, the uptake of
labeled LDL molecules was significantly diminished by
38.13% in the presence of PCSK9. However, supplementa-
tion with HFn-Pep2-8 (Figure 4b) notably enhanced the
uptake to 81.12% at 0.1 uM concentration, with complete

R
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restoration achieved at 1 uM concentration (+117.46%).
These results demonstrate the efficient interaction of
HFn-Pep2-8 with PCSK9, antagonizing its binding to
LDLR and thereby prolonging its half-life on the liver cell
surface, consequently facilitating LDL uptake.

4 | CONCLUSIONS

In conclusion, in this study, we successfully engineered
human H ferritin nanoparticles to incorporate a
PCSK9-targeting peptide, which demonstrated 1000-fold
stronger binding affinity compared to the free Pep2-8
peptide due to the synergistic effects of multivalency,
increased local concentration of peptides, reduced disso-
ciation rates and optimal spatial arrangement. We dem-
onstrate the efficacy of this nanoparticle in mitigating the
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PCSK9-mediated impairment of LDL cholesterol cellular
uptake by the HepG2 liver cell line.

The multivalent binding effect determined by the
24 Pep2-8 peptides displayed on the surface of the ferritin
shows its potential as a versatile scaffold for therapeutic
intervention, particularly in the context of cardiovascular
diseases. Furthermore, the broad implications of PCSK9
modulation across various physiological and pathological
conditions suggest promising therapeutic applications for
this innovative ferritin-based nanoparticle beyond cardio-
vascular disorders, extending its potential impact to
diverse medical fields such as liver and infectious dis-
eases, cancer, and autoimmune disorders.

Finally, the multifunctional nature of ferritin makes
it a versatile platform that can be easily engineered to dis-
play different peptides or proteins, offering the possibility
of creating multifunctional therapeutics that target multi-
ple pathways.
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