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A B S T R A C T

The objective of our study is to predict the financial losses that may result from natural disasters,
along with their level of volatility, over a period of 1 to 15 years. Volatility can lead to
significant fluctuations in Profit and Loss (P&L) for companies that are affected by unexpected
events. To achieve this goal, we created a novel two-factor square-root model that allows us
to establish a correlation between the frequency of occurrences and volatility, using correlated
Brownian motions. Moreover, we utilized a Generalized Pareto Distribution (GPD) to estimate
the maximum potential loss in terms of Value at Risk (VaR) for each specific type of natural
disaster. To ensure the reliability of our predictions, we compared our results to those of four
reference models and conducted a backtesting analysis. This approach is particularly suitable
for insurance companies seeking to maintain stable reserves, but it can also be adapted for any
other type of business that is vulnerable to extreme events and aims to safeguard a consistent
cash flow for their stakeholders.

. Introduction

Natural catastrophe modeling emerged in the late 1980s, and gained greater prominence following major events such as
urricane Andrew in 1992 and the Northridge earthquake in 1994. These disasters highlighted the need for companies to more
ffectively analyze, underwrite, and price the risks associated with natural catastrophes. However, with the ongoing effects of global
arming, the frequency and severity of certain climate-related events (such as floods, droughts, and storms) have exceeded the
redictions of some catastrophe models. This has highlighted the limitations of traditional modeling approaches, and has necessitated
he development of new techniques that can more accurately capture the potential losses from natural disasters.

The concern regarding climate change and premiums stems from the fact that, while premiums can be renegotiated annually,
he estimation of reserves and actual losses is subject to uncertainties. The delay in assessing actual losses, influenced by legal
nd operational factors, contributes to an increase in initial losses over time. Actuarial techniques such as the chain-ladder or
evelopment are employed in loss reserving for property and casualty insurance. These techniques aim to estimate incurred but not
eported claims and project ultimate loss amounts, addressing the unknown nature of actual losses, which follows a pattern known
s a loss development pattern. Previously, estimates for natural catastrophe losses were based on long-term trends. However, with
he advent of record-breaking hurricane seasons and predictions of increased storm activity, modelers began to incorporate near-
erm projections of loss into their models. This resulted in the development of models that could forecast losses up to five years in
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the future. Despite these advances, in some cases, the predictions generated by these models were not sufficient. As a result, new
methods were developed to forecast the potential severity of the next major insured loss caused by natural catastrophes, as outlined
by Hsieh (2004). This is the approach we plan to take in our research.

Traditional techniques used to model the cost of natural disasters for insurance purposes are based on geographically located
ssets (houses, infrastructure, activities, population density, etc.) on damage estimates that are reflected in economic losses for
he insurer, type of risks (landslides, eruptions, floods, earthquakes, etc.); and adaptation measures (improved building codes,
eawalls, etc.). However, this poses a great strain in terms of data requirement in terms of depth, breadth, and quality (e.g. Morton

Levy, 2011, Lythe, Shah, & Grossi, 2008 Mitchell-Wallace, Jones, Hillier, & Foote, 2017). Therefore, is not uncommon that rough
pproximations and strong assumptions are taken (see Calder, Couper, Lo, & Aspen, 2012).

Econometric analysis might be preferred over traditional techniques for modeling natural disaster costs in insurance due to its
fficiency with reduced data requirements. Traditional methods heavily depend on detailed data about geographically located assets,
isk types, and adaptation measures, leading to challenges in data depth and quality. These challenges often result in the use of rough
pproximations and strong assumptions, compromising model accuracy. Time series analysis offers a more streamlined approach,
voiding the data-intensive demands of traditional methods. This shift is motivated by the need for more effective modeling, given
he persistent data issues and compromises associated with traditional approaches. The proposed approach would benefit insurance
ompanies by streamlining risk modeling with reduced data requirements. Data analytics firms could conduct quicker and more
ost-effective predictive modeling for natural disasters. Insurtech startups would gain innovative solutions for assessing disaster risks
ith fewer data demands. Government agencies might improve data processing efficiency for faster decision-making during and after
isasters. Reinsurance companies might enhance risk assessment accuracy, supporting risk-sharing agreements with reduced data
eeds. Companies in vulnerable industries could benefit from more accessible and cost-effective risk assessments, enabling better
ontingency planning.

In this work, we propose a novel approach based on econometric analysis and on a stochastic model specifically designed to
se a given time series of losses. The goal is not only to predict the impact of natural catastrophes (NaCat) but also their volatility.
his model is suitable for NatCat since the distributions of losses are not Gaussian. In fact, in the presence of such distributions,
ery sophisticated models are sometimes superseded by simpler models, such as autoregressive or moving averages. In addition,
egarding losses that could jeopardize an insurance company, we estimate the maximum expected loss according to the General
areto Distribution (GPD). This estimate represents the value at risk (VaR) and is called VaRGPD. The accuracy of our results and
he validity of the model are tested using Kupec (POF), Christofferson (CC) and TUFF/TBFI tests.

Furthermore, as pointed out by Anggraeni, Supian, Sukono, and Halim (2022), the application of extreme value theory (EVT)
n Catastrophe Bond Pricing Models (CBPM) has uncovered deficiencies. These encompass challenges related to the application
f generalized extreme value (GEV), potentially eliminating other extreme data within a period, intricacies in the trigger model,
imitations associated with ARIMA allowing negative values, and the inefficacy of CIR due to its assumption of constant volatility. In
esponse, this study addresses these gaps by employing a Generalized Pareto Distribution (GPD) to estimate the maximum potential
oss, specifically in terms of Value at Risk (VaR), for each type of natural disaster. These insights underscore the significance
f the proposed approach in addressing these issues and mitigating moral hazard to investors (Götze & Gürtler, 2020; Kiohos &
aspati, 2021) as sponsors face the burden of disaster losses when nearing the trigger specified to eliminate the law pliers. In such
ircumstances, investors may be deterred from purchasing the bonds. Hence, the market demands an earthquake catastrophe bond
ricing model that is both accurate and transparent (Gürtler, Hibbeln, & Winkelvos, 2016).

To start off, we forecast the financial losses caused by some natural catastrophes as well as their volatility from short-term
1 year) to the long-term horizon (up to 15 years). In particular, we want to predict the expected value of the above-mentioned
uantities which are of high importance, since it is their great variability and non-Gaussian behavior that makes any sophisticated
odel fallacious to the point that simple models, such as autoregressive or moving average, are more successful. Here we propose a
ew two-factor model with correlated stochastic volatility. This novel approach is not without its challenges, as it requires significant
ffort to implement and does not have readily available closed-form solutions. However, based on our model, we are able to derive
n upper bound that follows a Pareto distribution and serves as a Value at Risk (VaR) estimate for backtesting purposes. This is
valuable contribution to the literature and provides an innovative tool for risk management in various industries. Being able to

orecast the interaction between losses and volatility is very important for stabilizing the P&L. The proposed methodology is on the
dge between banking and insurance. It has been expressly designed for insurers and reinsurers but applies as well to banks and
ther companies when exposed to dramatic changes in a given line of business (LOB) due to unexpected events.

As detailed in the next section, there are many stochastic models able to describe persistent jumps and high levels of volatility.
ue to the high variability previously illustrated, we decided to adopt a two-factor model. Hence, in this work, we intend to show

hat our model is not only able to predict the average losses and their volatility but, also, can calculate a proper upper bound. The
atter, in our framework, follows a Pareto distribution and represents our Value at Risk (VaR).

This paper is organized as follows. The next Section resumes the existing literature and gives an account of the reasons we have
elected the suggested model. Section 3 is about materials, methods and techniques. In there, we start by describing the data source
hich is by the explanation of the proposed model. Backtesting analysis for model validation concludes the Section. Numerical results
re illustrated in Section 4. Section 5 briefly explains the relevance in terms of premia calculation. Finally, Section 6 contains the
2

onclusions and the Appendix contains graphical and statistical evidence of the validity of the proposed model.
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2. Literature review and model selection

Natural disasters are complex and dynamic systems that can have catastrophic impacts on both the environment and human
opulations. The frequency and severity of these events are on the rise due to climate change and the expanding human population.
hese events are characterized by nonlinearity, high intermittency and low correlation, as noted by Jin, Cheng, and Wei (2008).
his means that predicting the occurrence and severity of natural disasters is a challenging task, and requires sophisticated modeling
echniques that can capture the complex interactions between the various factors at play. Typical tools for time series analysis are
ot of easy application because of discontinuity and different cycles mutually nested (Jin et al., 2008). For instance, a large set
f models and tests are not applicable because they are based on Gaussian behavior. The same applies to nonlinear techniques
uch as ARIMA that rely on assumptions such as ‘‘stationarity, invertibility and independence of residuals’’ (Povinelli, 2000). More
uccessful applications have ARCH/GARCH models because, on long-term horizons, they display weak persistency as ‘‘the time
orrelation disappears and a simple uncorrelated Itô process is recovered’’ (Carbone, Castelli, & Stanley, 2004). The squared form of
he lagged shocks, however, disables the ability to deal with asymmetric volatility due to different effects that positive or negative
erturbations may have (Zivot, 2009).

A different kind of model, but explicitly designed for earthquakes, is based on the Utsu (1970) framework in which a combination
f a strong main shock and after-shocks is considered to assess the total damage (see for example Cai, Wan, and Ozel (2020)).

Point processes such as the Hawkes process are widespread in finance as they are able of modeling temporal events characterized
y self-exciting properties (for a survey see Bacry, Mastromatteo, & Muzy, 2015 and Hawkes, 2018). They have been used for mod-
ling order-book events, risk contagion modeling, optimal execution strategies, etc. In insurance, they can be employed for modeling
arthquake swarms (Ogata, 1988) or mortality risk (Cox, Lin, & Pedersen, 2010). Multivariate Hawkes processes (Embrechts, Liniger,
Lin, 2011) are expressly designed to model multiple correlated sequences, where the occurrence of an event in a sequence may

nfluence the occurrence of new events in another sequence. However, those processes may either fail in capturing the mutual
nfluence between processes or may become computational prohibitive (Eichler, Dahlhaus, & Dueck, 2017; Hall & Willett, 2016;
hang & Sun, 2019). For this reason, in our quest for jointly modeling expected losses and volatility for any kind of natural disaster,
e decided to not pursue this pathway.

Other traditional approaches based on geographically located assets and adaptation measures, are subject to data issues and
equire strong compromise (see Morton & Levy, 2011, Lythe et al., 2008 Mitchell-Wallace et al., 2017). For example, Calder et al.
2012) mention that there ‘‘may also be systemic data issue: the data for the region may not be granular or detailed enough
or the component models to use the appropriate vulnerability or financial parameters, leading to potentially systemic over- or
nderestimation of losses. Moreover, the phenomenon of demand surge – where building costs increase due to high demand for
econstruction – would be exacerbated by multiple events from the same region. If this is deemed necessary, the most conservative
ay would be to assume full correlation of the SUPercentiles from events from the same peril and region’’.

As just mentioned, there is a wide range of models available in financial literature. As we need to model levels, volatilities
nd their interdependencies, we exclude unifactorial models such as those developed to deal with regime changes and cluster
olatility (see Orlando, Mininni, & Bufalo, 2018, 2019a, 2019b, 2019c, Orlando & Bufalo, 2021, 2023) or based on time-varying
kew Brownian motion (Ascione, Bufalo, & Orlando, 2024). In addition, as there is a trade-off between the increased benefit of
aving a large number of state variables and issues caused by estimations, overfitting and so on, we limit ourselves to the class of
wo-factor models. On those models literature is abundant (Rouah, 2013), (Tsuchiya, 2019), (Ewald, Zhang, & Zong, 2019).

The Heston model 1993, for example, may suit well because it describes the evolution of an asset jointly with its volatility.
owever, as Heston himself noted, an increase in volatility can capture the kurtosis of spot returns but not the skewness. Therefore,

‘in order to capture the skewness, it is crucial to also include the properly specified correlation between the volatility and the spot
xchange rate of returns’’ (Ahlip, Park, & Prodan, 2017). As in our time series, kurtosis is much higher than skewness (see Table 2)
his shortfall is crucial.

The so-called two-factor Gaussian models were introduced by Hull and White (1994) and then extended by Brigo and Mercurio
ith the G2++ model 2006. They start by defining a time-homogeneous two-factor short-term rate model to describe the dynamics
f interest rates. They then add a deterministic shift function to the model to match the initial term structure of interest rates.
owever, ‘‘the obtained results are rather clumsy and not intuitive, which means that special care has to be taken for their correct
umerical implementation’’ (Acar & Natcheva-Acar, 2009).

Another class of two-factor models is the one introduced by Longstaff and Schwartz (1992), which belongs to the class of
tochastic mean and stochastic volatility models. Within the proposed framework, Longstaff and Schwartz approached interest
ate volatility and term structure modeling by linking up yields to volatility. This framework performs better than the GARCH
odel (Bollerslev, 1986) because the addition of the volatility as a second state variable allows more freedom in modeling humps,

roughs, and interconnectedness between levels and volatility. Empirical evidence found that the short rate exhibits volatility clusters
hich can be well approximated by stochastic volatility (Faff & Treepongkaruna, 2013). More recently, Christoffersen, Heston,
nd Jacobs (2009) modeled levels by a stochastic high mean reversion factor and correlations between returns and variance by a
econd factor with lower mean reversion. Similarly, Recchioni and Sun (2016) modeled asset price dynamics by a two-factor model
here the first factor represents stochastic interest rates and the second one stochastic volatility. On pricing and risk in natural gas
arkets, Kohrs, Mühlichen, Auer, and Schuhmacher (2019) proposed a multidimensional variant of the Longstaff–Schwartz model

or deriving options’ properties under realistic price dynamics.
Other models, commonly used for studying the tail behavior of distribution, are based on the extreme value theory (EVT). Within
3

he EVT framework, we consider the generalized Pareto distribution (GPD) introduced by Pickands III (1975). A classical reference
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Fig. 1. Sum of deaths, occurrences and total damages (US$) of natural disasters (1900–2020).

is Coles, Bawa, Trenner, and Dorazio (2001) who introduces the theoretical framework of extreme value models and the statistical
inferential techniques. GPD has applications in a number of fields, including epidemiology (Chen, Lei, Zhang, & Peng, 2015), non-
life insurance (Hanafy et al., 2020), environmental extreme events (Chavas, Yonekura, Karamperidou, Cavanaugh, & Serafin, 2013;
Martins, Liska, Beijo, de Menezes, & Cirillo, 2020; Orlando & Bufalo, 2022), etc. For this reason, we include it between the baseline
models against which we intend to run our analysis.

The last class of models we consider as a baseline is the generalized linear model (GLM) (Nelder & Wedderburn, 1972) which
allows for response variables to have error distribution models other than a normal distribution. GLM has extensive applications
in insurance. For example claim sizes, frequencies and occurrences of claims do not have normal outcomes. Furthermore, the link
between outcomes and risk drivers is multiplicative rather than additive (De Jong & Heller, 2008). Thus the distribution of the
response is chosen from the exponential family so that the response can be heteroskedastic.

In this work, in a quite different context, we draw inspiration from the above-mentioned literature when dealing with natural
disasters.

3. Materials, methods and techniques

This Section is partitioned as follows. After mentioning the dataset used for numerical results in Section 3.1, we introduce our
two-factor square-root model to describe the dynamics of log-losses and their volatility in Section 3.2. Further, two baseline models
for comparison and benchmarking are considered in Section 3.3. The numerical simulation and the parameter calibration of the
proposed model are explained in Section 3.4. Expected value predictions of log losses and their volatility are obtained by providing,
via a Generalized Pareto Distribution (GPD), a maximum threshold estimate of log losses in terms of Value at Risk (VaR). Next,
measures of forecasting accuracy are defined in Section 3.5, and, finally, the most popular backtests used by financial institutions
are considered in Section 3.6 to validate our model based on VaR exceedances.

3.1. Dataset

Our dataset is sourced from the Emergency Events Database (EM-DAT) hosted at the Centre for Research on the Epidemiology
of Disasters (CRED). The EM-DAT database encompasses the ‘‘world’s most comprehensive data on the occurrence and effects of
more than 23,000 technological and natural disasters from 1900 to the present day’’ (CRED, 2020) worldwide. The data frequency
is on an annual basis.

For our convenience, we have chosen to concentrate on the losses (adjusted for inflation) attributed to five natural disasters
with a higher impact, namely earthquake, storm, flood, drought, and extreme temperature, as categorized by the data source. Fig. 1
depicts the sum of deaths, occurrences, and total damages (US$) of natural disasters from 1900 to 2020 as recorded in EM-DAT.
4
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Table 1
Maximum of the percentage change of 𝐶𝑡 and 𝑥𝑡, i.e., 𝐶𝑡∕𝐶𝑡−1 − 1 and 𝑥𝑡∕𝑥𝑡−1 − 1, respectively,
due to natural disaster (annual data from 1900 to 2020).

Maximum of percentage change

Earthquake Storm Flood Drought Ext. Temp.

Perc. change of 𝐶𝑡 (⋅104) 1.97% 0.04% 1.01% 0.03% 0.26%
Perc. change of 𝑥𝑡 3.65% 12.56 22.25% 23.25% 9.72%

Table 2
Four indices of log-losses empirical distribution (annual data from 1900 to 2020).

Earthquake Storm Flood Drought Ext. Temp.

Mean 11.50 12.07 11.30 9.08 4.88
Std. Dev. 3.38 5.03 7.01 7.80 5.15
Skewness −0.92 −0.78 −0.49 −0.07 0.81
Kurtosis 3.80 2.57 1.61 1.13 2.23

Fig. 2. Log-losses due to natural disasters (annual data from 1900 to 2020).

3.1.1. Description of data
Regarding losses, to begin with, we denote by 𝐶𝑡 the cumulative amount of the losses at time 𝑡, i.e.,

𝐶𝑡 =
𝑡

∑

ℎ=1
𝐿ℎ,

where 𝐿ℎ denotes the single loss at the time ℎ. To reduce the variability of the losses time series we compute the logarithmic return
defined as

𝑥𝑡 = ln
(

𝐶𝑡
𝐶𝑡−1

)

. (1)

For the sake of notation, we call the log-returns of the amount of the losses as ‘‘log-losses’’.
Natural catastrophes (often abbreviated as NatCat) encompass property policies such as earthquake and landslide failure, primary

and excess storm and flood insurance, etc. Table 1 shows the magnitude of the (percentage) change of 𝐶𝑡 and 𝑥𝑡, respectively, over
five natural disasters with higher impact (the dataset is described in Section 3.1). Note that, in the case of 𝐶𝑡, volatilities are of the
order of magnitude between 103 and 104 which makes complicates any forecasting attempt. Therefore, due to the high variability
of time series and as commonly done in finance, we are going to consider the log-losses 𝑥𝑡 only.

Further, in Fig. 2 the log returns are plotted for the five chosen natural disasters, whereas Table 2 reports the sample mean and
standard deviation of 𝑥𝑡 as well as the skewness and kurtosis of their empirical distribution. Note that the logarithms shown in Fig. 2
are always positive as the amount of losses 𝐶𝑡 increases over time. Obviously, this is different from the Gaussian distribution.

Finally, Fig. 3 illustrates the shifts in the five selected perils, indicating potential changes attributable to climate change—
specifically, highlighting those cases where increases in severity are expected compared to changes in frequency.

3.1.2. Hurst exponent
As explained in the introduction, the first step in our approach is to understand the dynamics of natural disasters in terms of

persistence and randomness. Persistence refers to the tendency of a time series to follow a trend, while randomness refers to the
degree to which the series deviates from a trend. To quantify this, we use the Hurst exponent (𝐻𝑒) (Hurst, 1956), which ranges from
0 to 1. A low 𝐻𝑒 value suggests that the series is anti-persistent and anti-correlated, an 𝐻𝑒 value around 0.5 indicates randomness,
and high values suggest persistent and correlated dynamics.
5
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a
d

Fig. 3. The ratio between the variables 𝑓𝑡 and 𝑥𝑡 (as defined in Eq. (1)), with 𝑓𝑡 computed similarly to 𝑥𝑡, replacing losses with occurrences. Notice that the
most significant impact of climate change relates to floods, droughts, and extreme temperatures.

Table 3
Hurst exponent for log-losses of natural disasters.
Earthquake Storm Flood Drought Ext. Temp.

0.0887 0.2026 0.1287 0.1528 0.0964

The Hurst exponent ‘‘is robust with few assumptions about the underlying system, it has broad applicability for time series
nalysis’’ (Qian & Rasheed, 2004) moreover is a ‘‘robust statistic for testing the presence of noncyclic long-run statistical
ependence’’ (Mandelbrot & Wallis, 1969). For those reasons, the 𝐻𝑒 has been employed in various fields. For instance, Mandelbrot

and Van Ness (1968) applied it when modeling, through fractional Brownian motions, strong interdependence between distant
samples in natural time series.

In finance the Hurst exponent is around 0.5 (Nawrocki, 1995), (Qian & Rasheed, 2004), but it varies a lot depending on the
market sentiments leading to ‘‘some episodes alternating low and high persistent behavior’’ (Alvarez-Ramirez, Alvarez, Rodriguez,
& Fernandez-Anaya, 2008) occurring in correspondence of downturns.

Concerning natural disasters, the 𝐻𝑒 is around 0.24, which ‘‘indicates that these time series are fractal and relatively long-term’’
anti-persistent (Jin et al., 2008). On our end, we confirm what has been reported in the literature (see Table 3).

A low level of the Hurst exponent indicates that the strength of mean-reverting does increase. For this reason, we selected a
generalized two-factor square-root model that, in our opinion, matches the above-specified features. By doing that we take some
inspiration from observing electricity spot prices. In that context, for example, an Ornstein–Uhlenbeck process, i.e. a mean-reverting
drift damping model, has been used for modeling volatility persistence and anti-correlation (Rypdal & Løvsletten, 2013). By drawing
this parallel, for forecasting losses due to natural disasters, we link up with the set of tools available for financial analysis and risk
management.

3.2. A generalized two-factor square-root model

To introduce our generalized two-factor square-root model, let us start by denoting with {𝑥𝑡}𝑡≥0 and {𝜎𝑡}𝑡≥0, respectively, the
log-losses process due to natural disasters and the corresponding volatility. Assume that the dynamics of these processes, defined
on a given a filtered probability space (𝛺, , {𝑡}𝑡≥0,P), endowed with the filtration {𝑡}𝑡≥0 satisfying the usual hypothesis, evolves
like a generalized two-factor square-root model defined as follows

{

𝑑𝑥𝑡 = 𝑘(𝜃 − 𝑥𝑡)𝑑𝑡 + 𝛼
√

|𝑥𝑡𝜎𝑡| 𝑑𝑊 𝑥
𝑡 𝑥0 > 0

𝑑𝜎𝑡 = 𝛿(𝛾 − 𝜎𝑡)𝑑𝑡 + 𝜂
√

𝜎𝑡 𝑑𝑊 𝜎
𝑡 𝜎0 > 0,

(2)

where 𝑘, 𝜃, 𝛼, 𝛿, 𝛾, 𝜂 are strictly positive constants {𝑊 𝑥
𝑡 }𝑡≥0 and {𝑊 𝜎

𝑡 }𝑡≥0 are two correlated Brownian motions, i.e.

𝑑𝑊 𝑥
𝑡 𝑑𝑊

𝜎
𝑡 = 𝜌 𝑑𝑡 𝑡 ≥ 0,

and 𝜌 ∈ (−1, 1). We can write
𝑥 𝜎

√

1 − 𝜌2 𝐵 , (3)
6

𝑊𝑡 = 𝜌𝑊𝑡 + 𝑡
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e

T

where {𝐵𝑡}𝑡≥0 is a standard Brownian motion independent of {𝑊 𝜎
𝑡 }𝑡≥0. Thus system (2) reads as

{

𝑑𝑥𝑡 = 𝑘(𝜃 − 𝑥𝑡)𝑑𝑡 + 𝛼
√

|𝑥𝑡𝜎𝑡| (
√

1 − 𝜌2 𝑑𝐵𝑡 + 𝜌𝑑𝑊 𝜎
𝑡 ) 𝑥0 > 0

𝑑𝜎𝑡 = 𝛿(𝛾 − 𝜎𝑡)𝑑𝑡 + 𝜂
√

𝜎𝑡 𝑑𝑊 𝜎
𝑡 𝜎0 > 0,

(4)

Assume from now on the Feller condition

2𝛿𝛾 ≥ 𝜂2. (5)

Proposition 3.1. Under condition (5) there exists a unique strong solution, {𝑥𝑡, 𝜎𝑡}𝑡≥0, to system (2) with state space [0,+∞) × (0,+∞).
Moreover, there exists a random time 𝑇 > 0 P-a.s. such that the solution over the interval [0, 𝑇 ] takes values in (0,+∞)2.

Proof. (i) existence and uniqueness of solution
For any initial condition 𝜎0 > 0 the second equation in system (2) defines the dynamic of a CIR process, {𝜎𝑡}𝑡≥0, which is strictly

positive (see, for instance Section 6.3.1 in Jeanblanc, Yor, and Chesney (2009)).
Define for any 𝑁 natural number greater than 𝜎0

𝜏𝑁 = inf{𝑡 ≥ 0 ∶ 𝜎𝑡 > 𝑁},

and observe that the sequence of stopping times {𝜏𝑁}𝑁>𝜎0 is increasing and 𝜏𝑁 goes to +∞ as 𝑁 → +∞ (because {𝜎𝑡}𝑡≥0 does not
xplode).

Let 𝜎𝑥(𝑡, 𝑥, 𝜔) ∶= 𝛼
√

𝜎𝑡(𝜔)
√

|𝑥| the stochastic diffusion coefficient of the first equation in system (2). Observe that ∀𝑡 ∈
[0, 𝜏𝑁 (𝜔)], 𝜔 ∈ 𝛺

|𝜎𝑥(𝑡, 𝑥, 𝜔) − 𝜎𝑥(𝑡, 𝑥′, 𝜔)|2 ≤ 𝛼2𝑁|𝑥 − 𝑥′|.

We can now apply Theorem 1.5.5.1 (ii) in Jeanblanc et al. (2009), in fact, denoting 𝜑𝑁 (𝑥) = 𝛼2𝑁𝑥, the conditions required in
Theorem 1.5.5.1 are satisfied, that is

∫

+∞

0

1
𝜑𝑁 (𝑥)

𝑑𝑥 = +∞,

and 𝑏(𝑥) = 𝑘(𝜃−𝑥) is Lipschitz continuous in 𝑥 ∈ R. Thus for every 𝑁 natural number such that 𝑁 > 𝜎0, there exists a unique strong
solution, {𝑥𝑁𝑡 }0≤𝑡≤𝜏𝑁 , to the first SDE in system (2) over the stochastic interval [0, 𝜏𝑁 ].

Finally, notice that 𝑥𝑁+1
𝑡 = 𝑥𝑁𝑡 , 𝑡 ∈ [0, 𝜏𝑁 ] and letting 𝑁 → +∞ we obtain existence and uniqueness of the solution to the first

SDE in system (2) {𝑥𝑡}𝑡≥0, such that 𝑥𝑡 = 𝑥𝑁𝑡 , 𝑡 ∈ [0, 𝜏𝑁 ].
(ii) Positivity of solution
By a comparison result (see Theorem 1.5.5.9 in Jeanblanc et al. (2009)), since 𝑘(𝜃 − 𝑥) ≥ −𝑘𝑥 and the solution to the following

SDE

𝑑𝑋𝑡 = −𝑘𝑋𝑡𝑑𝑡 + 𝛼
√

|𝑋𝑡𝜎𝑡| 𝑑𝑊
𝑥
𝑡 , 𝑋0 = 0

is 𝑋𝑡 = 0, ∀𝑡 ≥ 0, we get that the process {𝑥𝑡}𝑡≥0 takes values in [0,+∞).
Finally, since 𝑥0 > 0 and {𝑥𝑡}𝑡≥0 has continuous trajectories there exists a random time 𝑇 > 0 such that

P(𝑥𝑡 > 0, ∀𝑡 ∈ [0, 𝑇 ]) = 1

and this concludes the proof. □

Two-factor models like the one in Eq. (2) have advantages and disadvantages that should be considered in terms of the intended
use before selecting one of them. For example, to preserve the analytical tractability, the CIR2++ (the shifted additive two-factor
CIR model, see Eqs. (4.1), (4.3), Chapter 4. in Brigo and Mercurio (2006)) has set 𝜌 = 0. Without that, starting from the short-rate
factors, it is not possible to compute analytically bond prices and rates. This is because the square-root non-central chi-square
processes ’’do not work as well as linear-Gaussian processes when adding nonzero instantaneous correlations’’ (Brigo & Mercurio,
2006). The CIR2++ model has some advantages over the G2++ model, including its ability to maintain positive rates with reasonable
parameter restrictions and its fatter tails. However, the G2++ model is more analytically tractable and easier to implement, making
it more suitable for practical applications.

In our setting, a possible way to reduce the negative impact of the non-zero correlation 𝜌 on the numerical tractability is given
by the following results.

Lemma 3.2. Let {𝑥𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ] the unique strong solution to system (4) which takes values in (0,+∞)2. Consider the functions

𝑔(𝑦) = ∫

𝑦

0

1
√

𝑢
𝑑𝑢 = 2

√

𝑦, 𝑓 (𝑦) = 𝛼
𝜂
𝑦 𝑦 ∈ R+.

hen, the process

𝑝𝑡 = 𝑔(𝑥𝑡) − 𝜌𝑓 (𝜎𝑡) = 2
√

𝑥𝑡 −
𝛼𝜌
𝜎𝑡 (6)
7

𝜂
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solves the following SDE, ∀𝑡 ∈ [0, 𝑇 ]

𝑑𝑝𝑡 = ℎ(𝑥𝑡, 𝜎𝑡)𝑑𝑡 + 𝛼
√

𝜎𝑡(1 − 𝜌2) 𝑑𝐵𝑡 𝑝0 = 2
√

𝑥0 −
𝛼𝜌
𝜂
𝜎0, (7)

where

ℎ(𝑥, 𝜎) =
𝑘(𝜃 − 𝑥)
√

𝑥
−
𝛼2𝜎𝑡
4
√

𝑥
−
𝜌𝛼𝛿(𝛾 − 𝜎)

𝜂
. (8)

Proof. By virtue of the Itô’s formula (see, e.g., Shreve, 2004, Section 4.4.2) we get

𝑑𝑔(𝑥𝑡) =
1

√

𝑥𝑡
𝑑𝑥𝑡 −

𝛼2𝑥𝑡𝜎𝑡
4𝑥𝑡

√

𝑥𝑡
𝑑𝑡 =

(

𝑘(𝜃 − 𝑥𝑡)
√

𝑥𝑡
−
𝛼2𝜎𝑡
4
√

𝑥𝑡

)

𝑑𝑡 + 𝛼
√

𝜎𝑡 𝑑𝑊
𝑥
𝑡 , (9)

and

𝑑𝑓 (𝜎𝑡) =
𝛼
𝜂
𝑑𝜎𝑡 =

𝛼𝛿(𝛾 − 𝜎𝑡)
𝜂

𝑑𝑡 + 𝛼
√

𝜎𝑡 𝑑𝑊
𝜎
𝑡 . (10)

If substitute (3) and (10) in (9), obtain

𝑑𝑔(𝑥𝑡) =
(

𝑘(𝜃 − 𝑥𝑡)
√

𝑥𝑡
−
𝛼2𝜎𝑡
4
√

𝑥𝑡

)

𝑑𝑡 + 𝛼
√

𝜎𝑡 (𝜌𝑑𝑊 𝜎
𝑡 +

√

1 − 𝜌2 𝑑𝐵𝑡) =

(

𝑘(𝜃 − 𝑥𝑡)
√

𝑥𝑡
−
𝛼2𝜎𝑡
4
√

𝑥𝑡
−
𝜌𝛼𝛿(𝛾 − 𝜎𝑡)

𝜂

)

𝑑𝑡 + 𝜌𝑑𝑓 (𝜎𝑡) + 𝛼
√

𝜎𝑡(1 − 𝜌2) 𝑑𝐵𝑡,

.e.,

𝑑𝑝𝑡 = 𝑑
(

𝑔(𝑥𝑡) − 𝜌𝑓 (𝜎𝑡)
)

= ℎ(𝑥𝑡, 𝜎𝑡)𝑑𝑡 + 𝛼
√

𝜎𝑡(1 − 𝜌2) 𝑑𝐵𝑡. □

We are now in the position to restate system (4).

Theorem 3.3. System (4) is equivalent to the following
{

𝑑𝑝𝑡 = ℎ̃(𝑝𝑡, 𝜎𝑡)𝑑𝑡 + 𝛼
√

𝜎𝑡(1 − 𝜌2) 𝑑𝐵𝑡 𝑝0 ∈ R
𝑑𝜎𝑡 = 𝛿(𝛾 − 𝜎𝑡)𝑑𝑡 + 𝜂

√

𝜎𝑡 𝑑𝑊 𝜎
𝑡 , 𝜎0 > 0

(11)

where

ℎ̃(𝑝, 𝜎) = ℎ
( 1
4
(

𝑝 + 𝜌𝛼
𝜂
𝜎
)2, 𝜎

)

(12)

nd ℎ given in (8).

(i) Let {𝑥𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ] be a strong solution to (4) with initial condition (𝑥0, 𝜎0) ∈ (0,+∞)2 and with state-space (0,+∞)2. Then there exists
0 < 𝑇 ′ ≤ 𝑇 such that {𝑝𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ′], with 𝑝𝑡 defined in (6), solves system (11) with initial condition (𝑝0 = 2

√

𝑥0 −
𝛼𝜌
𝜂 𝜎0, 𝜎0).

(ii) Let {𝑝𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ] be a strong solution to (11) with initial condition (𝑝0, 𝜎0) ∈ (0,+∞)2 and such that 𝑝𝑡 + 𝜌
𝛼
𝜂 𝜎𝑡 > 0, ∀𝑡 ∈ [0, 𝑇 ]. Then

{𝑥𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ], with 𝑥𝑡 =
1
4

(

𝑝𝑡 + 𝜌
𝛼
𝜂 𝜎𝑡

)2, solves system (4) with initial condition (𝑥0 =
1
4

(

𝑝0 + 𝜌
𝛼
𝜂 𝜎0

)2, 𝜎0). Moreover {𝑥𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ] has
state-space in (0,+∞)2.

roof. (𝑖). By Proposition 3.1 the process {𝑝𝑡}𝑡∈[0,𝑇 ], defined in (6), solves the SDE in (7) over the stochastic interval [0, 𝑇 ]. Since
0+

𝛼𝜌
𝜂 𝜎0 = 2

√

𝑥0 > 0 and the processes, {𝑝𝑡}𝑡∈[0,𝑇 ] and {𝜎𝑡}𝑡∈[0,𝑇 ] have continuous sample paths there exists ar random time 𝑇 ′, such
that 0 < 𝑇 ′ ≤ 𝑇 and 𝑝𝑡 +

𝛼𝜌
𝜂 𝜎𝑡 > 0, ∀𝑡 ∈ [0, 𝑇 ′]. Hence by (6) we get that 2

√

𝑥𝑡 = 𝑝𝑡 +
𝛼𝜌
𝜂 𝜎𝑡 and 𝑥𝑡 =

1
4

(

𝑝𝑡 + 𝜌
𝛼
𝜂 𝜎𝑡

)2 which inserted in
Eq. (8) leads to Eq. (12).

(𝑖𝑖). Let {𝑝𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ] be a strong solution to (11) with initial condition (𝑝0, 𝜎0) ∈ (0,+∞)2 and such that 𝑝𝑡 + 𝜌
𝛼
𝜂 𝜎𝑡 > 0, ∀𝑡 ∈ [0, 𝑇 ].

et us define 𝑥𝑡 =
1
4

(

𝑝𝑡 + 𝜌 𝛼𝜂 𝜎𝑡
)2, ∀𝑡 ∈ [0, 𝑇 ]. From Itô’s formula we get that the pair {𝑥𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ] solves system (4) with initial

condition (𝑥0 =
1
4

(

𝑝0 + 𝜌
𝛼
𝜂 𝜎0

)2, 𝜎0). By construction 𝑥𝑡 > 0 ∀𝑡 ∈ [0, 𝑇 ], hence the state space of {𝑥𝑡, 𝜎𝑡}𝑡∈[0,𝑇 ] is (0,+∞)2. □

Remark 3.4. Notice that as consequence of Proposition 3.1 by strong existence and uniqueness of solution to system (4), over a
stochastic interval [0, 𝑇 ] and with state-space (0,+∞)2, we get strong existence and uniqueness of solution to system (11) over a
stochastic interval [0, 𝑇 ′] (𝑇 ′ ≤ 𝑇 ), such that 𝑝𝑡 + 𝜌

𝛼
𝜂 𝜎𝑡 > 0, ∀𝑡 ∈ [0, 𝑇 ′].

The above function 𝑔 in (6) represents the so-called Lamperti’s transformation. Theorem 3.3 introduces a new auxiliary process,
{𝑝𝑡}𝑡∈[0,𝑇 ], which is not correlated with {𝜎𝑡}𝑡≥0. This fact allows a fast and independent simulation of the process {𝑥𝑡}𝑡≥0; indeed,
one can simulate {𝜎𝑡}𝑡≥0 and {𝑝𝑡}𝑡≥0 separately and finally may compute {𝑥𝑡}𝑡≥0 as

𝑥𝑡 = 𝑔−1(𝑝𝑡 + 𝜌𝑓 (𝜎𝑡)) =
1
(

𝑝𝑡 +
𝛼𝜌
𝜎𝑡

)2
. (13)
8
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3.3. Baseline models

In this Section four baseline models for comparison and benchmarking are considered as alternative candidates to system (2)
or modeling log-losses of natural disasters. Namely, the first-order autoregressive AR(1) model, the two-factor Gaussian model
2++, the extreme value distribution model (EVM) and the generalized linear regression model (GLM). The AR(1) is pretty good
t predicting the average loss and volatility of the stochastic process when more sophisticated models fail. The other three models
re often used in insurance and finance for modeling and forecasting stochastic processes as mentioned in Section 2.

.3.1. The first-order autoregressive AR(1) model
The AR(1) model is a representation of a short-memory random process satisfying the following equation:

𝑌𝑡+1 = 𝑐 +𝛷𝑌𝑡 + 𝜀𝑡+1,

ith 𝑐 a given constant. The output random variable 𝑌𝑡+1 is assumed to depend linearly only on its previous value 𝑌𝑡 and on the
current value of a white noise process 𝜀𝑡 with zero mean and constant variance 𝜎2𝜀 > 0. The process is stationary if the parameter
𝛷 ∈ (0, 1).

The AR(1) model has been already used in modeling and understanding the persistence of climate variability (Vyushin, Kushner,
& Zwiers, 2012). Moreover, it can be considered as the discrete-time analogue of the mean-reverting Ornstein–Uhlenbeck (OU)
process

𝑑𝑌𝑡 = 𝜒(𝜇 − 𝑌𝑡)𝑑𝑡 + 𝜆𝑑𝑊𝑡,

where 𝜒 > 0, 𝜇 and 𝜆 are constants. Indeed, when the Ornstein–Uhlenbeck process is sampled at equally spaced time intervals
[𝑡, 𝑡 + 𝛥], we get

𝑌𝑡+𝛥 = 𝑐 +𝛷𝑌𝑡 + 𝜀𝑡+𝛥,

with

𝛷 = 𝑒−𝜒𝛥, 𝑐 = (1 −𝛷)𝜇, 𝜀𝑡+𝛥 ∼ 𝑁
(

0, 𝜆
2

2𝜒
(1 −𝛷2)

)

.

The conditional distribution of the OU process is normal with parameters

E[𝑌𝑡+𝑛𝛥|𝑌𝑡] = 𝜇(1 −𝛷𝑛) + 𝑌𝑡𝛷𝑛

and

Var (𝑌𝑡+𝑛𝛥|𝑌𝑡) =
𝜆2

2𝜒
(1 −𝛷2𝑛).

.3.2. The G2++ model
The G2++ model is a two-factor Gaussian model where the state process is the sum of two correlated Gaussian factors plus a

deterministic function chosen to fit the observed real data exactly. Due to its analytic tractability, explicit formulas for its distribution
and moments can be easily derived. Gaussian models, such as the G2++, are widely used in practice due to their practical usefulness.
For more details see Brigo and Mercurio (2006, Chapter IV).

Under this model, the principal process 𝑌𝑡 is expressed as the sum

𝑌𝑡 = 𝑟𝑡 + 𝑞𝑡 + 𝜑(𝑡),

where the processes {𝑟𝑡}𝑡≥0 and {𝑞𝑡}𝑡≥0 satisfy
{

𝑑𝑟𝑡 = −𝑎 𝑟𝑡𝑑𝑡 + 𝜓 𝑑𝑊 𝑟
𝑡 𝑟0 > 0

𝑑𝑞𝑡 = −𝑏 𝑞𝑡 𝑑𝑡 + 𝜁 𝑑𝑊
𝑞
𝑡 , 𝑞0 > 0

(14)

with {𝑊 𝑟
𝑡 }𝑡≥0, {𝑊

𝑞
𝑡 }𝑡≥0 correlated Brownian motion such that 𝑑𝑊 𝑟

𝑡 𝑑𝑊
𝑞
𝑡 = 𝜌 𝑑𝑡, 𝜌 ∈ (−1, 1) and 𝑎, 𝜓, 𝑏, 𝜁 are positive constants. In

particular, the model fits the observed data if and only if (Brigo & Mercurio, 2006, Corollary 4.2.1)

𝜑(𝑡) = 𝑓𝑠(𝑡) +
(

𝜓
2𝑎

(

1 − 𝑒−𝑎𝑡−𝑠
)

)2
+
(

𝜁
2𝑏

(

1 − 𝑒−𝑏(𝑡−𝑠)
)

)2

+𝜌
𝜓𝜁
𝑎 𝑏

(

1 − 𝑒−𝑎(𝑡−𝑠)
)(

1 − 𝑒𝑏(𝑡−𝑠)
)

,

where 𝑓𝑠(𝑡) denotes the instantaneous forward value of 𝑌𝑡 evaluated from 𝑠 and 𝑡. Notice that we ignore such term 𝑓𝑠(𝑡), according
to Brigo and Mercurio (2006, Remark 4.2.1).

Denoted by {𝑡}𝑡≥0 the filtration generated by the Brownian motions {𝑊 𝑟
𝑡 }𝑡≥0, {𝑊

𝑞
𝑡 }𝑡≥0, it can be shown that for any 0 ≤ 𝑠 < 𝑡,

𝑡 conditional on 𝑠 is normally distributed with mean
−𝑎(𝑡−𝑠) −𝑏(𝑡−𝑠)
9

E[𝑌𝑡|𝑠] = 𝑟𝑠𝑒 + 𝑞𝑠𝑒 + 𝜑(𝑡), (15)
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and variance

Var (𝑌𝑡|𝑠) =
𝜓2

2𝑎
(

1 − 𝑒−2𝑎(𝑡−𝑠)
)

+
𝜁2

2𝑏
(

1 − 𝑒−2𝑏(𝑡−𝑠)
)

+2𝜌
(

𝜓 𝜁
𝑎 + 𝑏

)

(

1 − 𝑒−(𝑎+𝑏)(𝑡−𝑠)
)

. (16)

3.3.3. The extreme value distribution model (EVM)
Extreme value distributions are widely used in finance because they can effectively model extreme events that cannot be

represented by other distributions such as the Gaussian, which has tails that decay exponentially quickly.
Given the location parameter 𝑎1 and scale parameter 𝑎2, the probability density function for the extreme value distribution is

given by

𝑦 = 𝑓 (𝑥|𝑎1, 𝑎2) =
1
𝑎2
𝑒(𝑥−𝑎1)∕𝑎2−𝑒

(𝑥−𝑎1)∕𝑎2 .

It can be observed that if 𝑋 has a Weibull distribution with parameters 𝑏1 > 0 and 𝑏2 > 0, then log𝑋 has an extreme value
istribution with parameters 𝑎1 = log 𝑏1 and 𝑎2 = 1∕𝑏2.

.3.4. Generalized linear model (GLM)
The last baseline model that we introduce for comparison is the generalized linear model (GLM) that we use for nonlinear

rediction (NLP)

𝑦 = 𝑐1 + 𝑐2𝑒−𝑐3𝑥 (17)

here 𝑐1, 𝑐2 and 𝑐3 are some parameters we calibrate by means of a nonlinear least squares regression. Eq. (17) is consistent with
he G2++, is an industry standard (see De Jong & Heller, 2008; Goldburd, Khare, & Tevet, 2016; Ohlsson & Johansson, 2010)
nd, in our tests, performed well in fitting data. We have run a robust estimation with the iteratively reweighted least squares
lgorithm (Holland & Welsch, 1977) which, at each iteration, recalculates the weights based on the residual from the previous
teration. This process progressively downweights outliers and iterations continue until the weights converge.

.4. Numerical implementation

.4.1. Forecasting the expected value
As explained in Section 2, many candidate models have been tested, but we found that a two-factor model to describe the

ynamics of financial log-losses and their volatility is the best compromise between tractability and efficiency. In particular, the
ovelty of the proposed model (2) consists in a nonzero correlation 𝜌 between the two processes 𝑥𝑡 and 𝜎𝑡. Indeed, in contrast
ith a two-factor Gaussian model, which is more analytically tractable, the two-factor square-root model becomes analytically
nmanageable if 𝜌 ≠ 0 (see, for instance, the G2, G2++, CIR2 and CIR2++ models described in Brigo and Mercurio (2006)).

Having said that, if 𝜌 ≠ 0, no closed formula is known for the transition density of 𝑥𝑡. As a consequence, the conditional expected
alues of 𝑥𝑡 and 𝜎𝑡 cannot be computed explicitly. This implies the necessity of resorting to numerical methods to generate forecasts
ithin the framework of model (2).

Denote by 𝑋𝑠 = {𝑋𝑠+1,… ...𝑋𝑠+𝑁}, 𝑠 > 0, a time series of 𝑁 observed realizations of the process {𝑥𝑡}𝑡≥0. Moreover, consider
window, 𝑡, of fixed size 𝐿, that is rolled through time 𝑡 ≥ 0. The length of this window is the historical period over which we

alibrate our parameter vectors 𝜈𝑥𝑡 ∶= (𝑘𝑡, 𝜃𝑡, 𝛼𝑡) and 𝜈𝜎𝑡 ∶= (𝛿𝑡, 𝛾𝑡, 𝜂𝑡), for any time 𝑡.
In order to simulate the volatility process 𝜎𝑡, we construct a time series, 𝑉𝑠, of ‘‘pointwise’’ volatilities, obtained as the pointwise

ifference in absolute value between 𝑋𝑠 and the corresponding exponential moving average (EWMA) 𝐸𝑠, that is

𝑉𝑠+𝑢 = |𝑋𝑠+𝑢 − 𝐸𝑠+𝑢|, 1 ≤ 𝑢 ≤ 𝑁. (18)

he aforementioned time series provides a more precise measure of variability in the process 𝑥𝑡 compared to other statistics, such
s the sample standard deviation, since it takes into account the temporal aspect of the data.

We use the time series 𝑉𝑠 to calibrate the parameter vector 𝜈𝜎𝑡 on the rolling window 𝑡 by applying the maximum likelihood
ML) estimation method, implemented in Matlab, to estimate the parameters of the CIR process (see Kladıvko, 2007). In financial
iterature, there exist different and more sophisticated methodologies to estimate the parameter of ergodic diffusion processes (see,
.g., Orlando et al., 2019c, Section 4.4) but they require rolling windows of size greater than 𝐿 to be efficient.

Following the algorithm proposed in Kladıvko (2007), the ML estimate 𝜈𝜎𝑡 = (𝛿𝑡, 𝛾̂𝑡, 𝜂𝑡) is obtained by solving the following
ptimization problem

𝜈𝜎𝑡 = arg
(

max
𝜈𝜎𝑡

ln(𝜈𝜎𝑡 )
)

. (19)

otice that ln(𝜈𝜎𝑡 ) denotes the log-likelihood function of the CIR process

ln(𝜈𝜎𝑡 ) =
𝐿−1
∑

(𝑉𝑠+ℎ+𝑢+1|𝑉𝑠+ℎ+𝑢) (ℎ ≥ 1),
10

𝑢=1
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computed on the window 𝑡 = {𝑉𝑠+ℎ+1,… , 𝑉𝑠+ℎ+𝐿}, 𝑡 = 𝑠 + ℎ + 𝐿, and  is the transition density of the CIR process (see Jeanblanc
et al., 2009, Proposition 6.3.2.1). To ensure the convergence to the ML estimates, the ordinary least-squares (OLS) regression method
is used to determine the initial parameter estimates.

The predicted future volatility value 𝜎𝐹𝑡+𝑢, 𝑢 ≥ 1, may be computed by the CIR conditional expectation

𝜎𝐹𝑡+𝑢 = E[𝜎𝑡+𝑢|𝜎𝑡] = 𝛾̂𝑡 + (𝑉𝑡 − 𝛾̂𝑡)𝑒−𝛿𝑡𝑢 (𝑢 ≥ 1), (20)

where 𝑉𝑡 is the observed volatility corresponding to 𝜎𝑡.
The estimate of the parameter vector 𝜈𝑥𝑡 on the rolling window 𝑡 is obtained using the same procedure above described by using

the time series 𝑋𝑠. The sample autocorrelation of 𝑋𝑠 on 𝑡, 𝜌𝑡, with lag equal to −1, is considered as an estimate of the correlation
coefficient 𝜌𝑡. It is important to note that, in this context, the correlation is time-dependent, as it changes with each new calibration.

In order to forecast the future value 𝑥𝐹𝑡+𝑢, 𝑢 ≥ 1, we applied the second-order Milstein discretization scheme according to (Orlando
et al., 2019c, Section 4.5) to simulate the auxiliary process 𝑝𝑡 (see (6)) and 𝜎𝑡 observed at 𝑚 equidistant points in the interval [𝑡, 𝑡+𝑢]:

⎧

⎪

⎨

⎪

⎩

𝜎𝑆𝑡𝑖+1 = 𝜎𝑆𝑡𝑖 + 𝛿𝑡(𝛾̂𝑡 − 𝜎
𝑆
𝑡𝑖
)𝛥 + 𝜂𝑡

√

𝜎𝑆𝑡𝑖 𝛥 𝑊
𝜎
𝑡𝑖
+ 𝜂2𝑡

4

[(
√

𝛥 𝑊 𝜎
𝑡𝑖

)2 − 𝛥
]

,

𝑝𝑆𝑡𝑖+1 = 𝑝𝑆𝑡𝑖 + ℎ
(

𝑔−1(𝑝𝑆𝑡𝑖 + 𝜌𝑡𝑓 (𝜎
𝑆
𝑡𝑖
)), 𝜎𝑆𝑡𝑖

)

𝛥 + 𝜔̂𝑡
√

𝜎𝑆𝑡𝑖 (1 − 𝜌
2
𝑡 )𝛥 𝐵𝑡𝑖 +

(𝜔̂𝑡𝜎𝑆𝑡𝑖 (1−𝜌
2
𝑡 ))

2

4

[(
√

𝛥 𝐵𝑡𝑖
)2 − 𝛥

]

,
(21)

where 𝑓, 𝑔, ℎ are defined by (6), (8), respectively, and 𝛥 = 𝑡𝑖+1 − 𝑡𝑖 is the time-step, being 𝑡 = 𝑡1 < 𝑡2 < ⋯ ... < 𝑡𝑚 = 𝑡 + 𝑢. The initial
values of the simulated sample paths have been set (𝑝𝑆𝑡 , 𝜎

𝑆
𝑡 ) = (𝑃𝑡, 𝑉𝑡), where (𝑃𝑡, 𝑉𝑡) denote the corresponding observations in the

ime series 𝑃𝑠1 and 𝑉𝑠, respectively.
Following this procedure, we simulated ℎ = 100, 000 trajectories (𝑝𝑆 , 𝜎𝑆 ). Then, the predicted future value 𝑝𝐹𝑡+𝑢, is obtained

veraging over the 100,000 corresponding simulated values, that is

𝑝𝐹𝑡+𝑢 =
1
ℎ

ℎ
∑

𝑖=1
𝑝𝑆𝑡+𝑢,𝑖. (22)

inally, from relation (13), we get

𝑥𝐹𝑡+𝑢 = 𝑔−1
(

𝑝𝐹𝑡+𝑢 + 𝜌𝑡𝑓 (𝜎
𝐹
𝑡+𝑢)

)

. (23)

.4.2. Forecasting the extreme value (VaR)
As tested in Section 4, the forecasted future values provide a good approximation of the expected values of the financial log-losses

nd the corresponding volatility. To avoid future observation exceeding a given high level, an upper bound of predictions 𝑥𝐹𝑡+𝑢 is
needed to ensure the 99% confidence level Value at Risk (VaR).

For this reason, we define a correction term as the following random variable

𝑧𝑡+𝑢 ∶= 𝑥𝑡+𝑢 − (𝑥𝐹𝑡+𝑢 + 𝜎
𝐹
𝑡+𝑢), 𝑢 ≥ 1. (24)

In other terms, as the distribution of losses is not normal, the correction term 𝑧𝑡+𝑢 is what we require to get our VaR with a confidence
level of 99%. The realization of the random value 𝑧𝑡+𝑢 is denoted with 𝑍𝑡+𝑢 so that the upper bound 𝑉 𝑎𝑅𝐺𝑃𝐷 of the prediction 𝑥𝐹𝑡+𝑢
s

𝑉 𝑎𝑅𝐺𝑃𝐷 = 𝑥𝐹𝑡+𝑢 + 𝜎
𝐹
𝑡+𝑢 +𝑍𝑡+𝑢. (25)

s we intend to model the extreme values, we assume that 𝑍𝑡+𝑢 follows a Generalized Pareto Distribution (GPD), a probability
istribution introduced by Pickands III (1975) as a model for tails. The cumulative distribution function is given by, for all 𝑦 > 0

𝐺(𝑦) =

⎧

⎪

⎨

⎪

⎩

1 −
(

1 + 𝜉𝑦
𝛽

)−𝛾
, if 𝜉 > 0,

1 − 𝑒−
𝑦
𝛽 , if 𝜉 = 0,

(26)

where 𝜉, and 𝛽 > 0 are the so-called shape and scale parameters, respectively, and 𝛾 = 1∕𝜉 is the tail index parameter.
To estimate the unknown GPD parameters (𝜉, 𝛽) we adopted the following procedure. Given the initial rolling window 𝑡 =

{𝑋𝑠+1,… ...𝑋𝑠+𝐿}, where 𝑡 = 𝑠+𝐿, used to estimate the parameter vectors 𝜈𝜎𝑡 , 𝜈
𝑥
𝑡 as above-described, consider a second fixed window

′
𝑡 = {𝑋𝑠+𝐿+1,… ...𝑋𝑠+𝐿′} with initial size 𝐿′ > 𝐿 on which we compute the estimates (𝜉𝑡, 𝛽𝑡). Then a realization, 𝑍𝑡+𝑢, of the

correction term 𝑧𝑡+𝑢 is estimated by the sample mean computed over 100,000 simulated random variables with GPD and parameters
(𝜉𝑡, 𝛽𝑡). Note that in the next steps, while the window 𝑡 rolls through time, each year adding a new observation and taking off the
oldest one, a new observation is added each time to the window ′

𝑡 . As a consequence, the size 𝐿′ of ′
𝑡 increases each time by one

year. This is to avoid too large variations in the computation of the correction term that may cause a shortfall of capital for insurers.

1 𝑃 = 𝑔(𝑋 ) − 𝜌 𝑓 (𝑉 ).
11
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Fig. 4. Earthquake Forecasts. The (dotted) black line is the log-losses of the natural disaster 𝑋𝑡, the blue line is its SMA (ex post), the red line represents the
orresponding forecasts 𝑥𝐹𝑡 ; finally, the green line refers to the upper bound 𝑉 𝑎𝑅𝐺𝑃𝐷 computed as 𝑥𝐹𝑡 + 𝜎𝐹𝑡 + 𝑍𝑡 with 𝐿′ = 119. Out-of-sample forecasts. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Earthquake volatility Forecasts. The black (dotted) line is the (pointwise) volatility of the log-losses of disaster 𝑉𝑡, the blue line is its SMA (ex post), the
red line represents the corresponding forecasts 𝜎𝐹𝑡 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.4.3. Example on earthquake forecasts
In the figure shown in Fig. 4, the log losses of a natural disaster are represented by a dotted black line. This line exhibits erratic

and unpredictable behavior, which poses a challenge for insurers who aim to estimate the expected losses over time. To address
this challenge, a simple moving average (SMA) is calculated based on the realized occurrences of losses and is represented by the
blue line. Note that in our method, the SMA includes 20 points, as determined by the rolling window size set to 𝐿′ = 20. Initially
calibrated with L = 10 (equivalent to ten years), we progressively increase L by one each subsequent year (i.e., with each data
point) until it reaches 20. In addition, the forecasts calculated with Eq. (2) (red line) and upper bound (green line) are shown. The
upper bound represents the value at risk (VaR) for the model used (described in Section 3.4.2) and is obtained using the generalized
Pareto distribution (GPD) and the methodology outlined in Section 3.4. The graph illustrates that the model is very close to the
SMA and, except for one exception over 119 years, consistently predicts losses that are higher than the peaks of realized losses.

In addition to evaluating the logarithmic losses, we intend to estimate their average volatility. This is of particular importance
from a firm standpoint as the aim is not only to ensure solvency but, also, to deliver a regular stream of cash flow to the shareholders
by avoiding excessive variations due to reserves’ volatility. Fig. 5 presents a comparison between the average ex-post volatility of
logarithmic losses, represented by the simple moving average (SMA) in blue, and our ex-ante forecast in red. As can be observed,
our forecast is in good agreement with the realized volatility, which provides support to the accuracy of our model.

In this context, 𝑍𝑡 is a correction term that is added to both the occurrences and the volatility. The value of this term varies
based on the window size, and it can significantly impact the values presented in Tables 5, 6, 9 in Section 4. Fig. 6 illustrates how
the correction term can change drastically when the window size exceeds 50. To strike a balance between size and stability, we
chose a window size of 20.

Finally, while standard techniques based on extreme value theories produce 5-year forecasts, in Fig. 7 we demonstrate the
versatility of our model which can preserve its predicting power over longer horizons (e.g. 10 and 15 years).

3.5. Accuracy statistics for model predictions
12

As a measure of accuracy, we adopt the following statistics:
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Fig. 6. Percentage variation of 𝑍𝑡 for different initial window size 𝐿′ ≥ 20, for any 𝑡 ≥ 𝐿′.

Fig. 7. Earthquake log-losses forecasts for the next 5, 10 and 15 years.

Table 4
MAPE accuracy levels.
MAPE Forecasting level

< 10% High
10% − 20% Good
20% − 50% Resonable
> 50% Inaccurate

• The root mean squared error (RMSE), defined as

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

ℎ=1
𝑒2ℎ, (27)

with 𝑒ℎ representing the residuals between the observed data and their corresponding predictions, computed over 𝑁
observations. The residual term reflects how close the predicted values are to the actual observed data, where values close
to zero indicate a good match, and values close to one indicate poor performance. To mitigate the impact of outliers, the
normalized root mean squared error (NRMSE) is used instead. This is defined as follows

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

, (28)

where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the maximum and minimum values of the historical time series, respectively.
• The mean absolute percentage error (MAPE), defined below

𝑀𝐴𝑃𝐸 = 1
𝑁

𝑁
∑

ℎ=1

|

|

|

|

𝑒ℎ
𝑋ℎ

|

|

|

|

. (29)
13

Table 4 suggests the accuracy levels of the MAPE criterion.
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3.6. Backtesting on exceedances for model validation

To check if a model can meet the expected maximum allowed exceptions, we recur the range of tools available to risk
anagement. We said that the upper bound of the GPD represents the maximum loss. Therefore, similarly to what financial

nstitutions do to backtest their VaR, in the following we describe the most popular methods that we are going to use to validate
ur model.

.6.1. Traffic light test (TLT)
The Traffic Light Test was proposed by the Basel Committee on Banking Supervision 1996, Balthazar (2006) for giving a green

ight on the adopted model and it is a variant of the binomial test. The TLT test, given a number of exceptions 𝐸, calculates the
probability of observing from 0 to 𝐸 exceptions.

3.6.2. Kupiec’s POF test
This test borrows its name from Kupiec (1995) and it is a variant on the binomial test. The Kupiec test is also named the

proportion of failures (POF) test because of how it is constructed. As well as the TLT test, the POF test is based on the binomial
distribution but, additionally, it uses a likelihood ratio. This is to check if the probability of exceptions is synchronized with the
probability 𝑝 defined by the VaR confidence level. In case the frequency of exceptions over the backtested time series is different
than 𝑝, the VaR is rejected.

.6.3. Kupiec’s TUFF tests
Kupiec proposed a second test called time until first failure (TUFF) (Jorion et al., 2009). The TUFF test examines the timing of

he first failure occurrence. If the first failure occurs too early from a probabilistic standpoint, the VaR is considered rejected by the
est. Since examining only the first failure can leave out important information regarding subsequent failures, the TUFF test was
esigned to consider all recorded failures.

.6.4. Christoffersen’s (CC) Interval Forecast Tests
The Interval Forecast Tests, also known as the CC tests, were introduced by Christoffersen (1998). The main concept behind

hese tests is to evaluate whether the probability of an exception occurring at a specific time is dependent on whether an exception
as occurred previously. Unlike the unconditional probability of observing an exception, the CC tests focus solely on the relationship
etween consecutive time intervals.

. Numerical results

.1. Results on 1-year horizon

In this section we apply the procedure described in Section 3.4 to the Dataset described in Section 3.1. Detailed figures are
eported in Appendix. We set the parameters 𝐿,𝐿′ and 𝛥 equal to

𝐿 = 10𝑌 , 𝐿′ = 20𝑌 , 𝛥 = 1
360

.

As a first step, we computed the NRMSE and MAPE statistics as a difference between the forecasted financial log losses due to
atural disasters and the corresponding simple moving averages (SMA) (Table 5), and between the forecasted volatility and the
orresponding simple moving averages (SMA) (Table 6). Further, we compare our results with the predictions given by the baseline
odels. As mentioned the AR(1) and the SMA are indicated to forecast smooth time series. Notice that the calibration of the G2++

model follows the techniques described in Section 3.4, where the processes 𝑟𝑡 and 𝑞𝑡 refer to 𝑋𝑡 and 𝑉𝑡, respectively. This is because
we focus on the variations instead of on the levels to keep them under control and, so, to avoid unexpected large losses for insurers.
Notice that the expected log-losses and their volatility are predicted by formula (15) and (16), respectively.

To verify if the correction term 𝑍𝑡 provides a VaR at a 99% confidence level, we examine the percentage variation of the
exceedances for all 𝑡 ≥ 𝐿′. By analyzing the percentage variation and exceedances for different sizes 𝐿′ of the window ′

𝑡 , with
𝐿′ ≥ 20, we can determine if smooth hedging is achieved without drastic jumps for insurance companies. Specifically, Table 8
presents the maximum percentage variation of 𝑍𝑡 and the minimum window size 𝐿′ required to achieve the 99% VaR for all 𝑡 ≥ 𝐿′.

Additionally, the Kupiec (POF), Christoffersen (CC), and TUFF tests do not reject their null hypotheses at a 99% significance
evel, with the corresponding 𝑝-values and L-ratios presented in Table 7. It is noteworthy that the 𝑝-values and L-ratios are the same

for each time series since they have the same number of observations, exceedances, and relative frequency. Moreover, the traffic
14

light test results in a ‘‘green’’ category with a cumulative probability of failures amounting to 1.6%.
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Table 5
NRMSE and MAPE between 1 year forecasts of log-losses and their SMA. The gray highlights
the results obtained with model in Eq. (2). Out-of-sample results.

Forecasting error of considered models - Returns

Horizon Model Error Earthquake Storm Flood Drought Ext. Temp.

1 Y

NRMSEEq. (2) 3.32% 4.80% 4.92% 4.54% 2.44%
NRMSE𝐴𝑅 24.14% 20.18% 14.30% 17.55% 9.10%
NRMSE𝐺2 19.30% 12.46% 15.98% 19.05% 11.21%
NRMSE𝐸𝑉𝑀 5.79% 4.48% 4.9% 19.05% 10.21%
NRMSE𝐺𝐿𝑀 17.12% 5.94% 5.36% 7.18% 2.99%

1 Y

MAPEEq. (2) 4.77% 3.02% 5.87% 6.67% 3.02%
MAPE𝐴𝑅 6.59% 7.14% 18.24% 20.77% 12.16%
MAPE𝐺2 7.66% 8.42% 22.78% 21.58% 14.34%
MAPE𝐸𝑉𝑀 5.23% 3.13% 9.01% 10.23% 6.57%
MAPE𝐺𝐿𝑀 8.01% 4.20% 13.35% 6.70% 2.91%

Table 6
NRMSE and MAPE between 1 year forecasts of the volatility of log-losses and their SMA. The
gray highlights the results obtained with model in Eq. (2). Out-of-sample results.

Forecasting error of considered models - Volatility

Horizon Model Error Earthquake Storm Flood Drought Ext. Temp.

1 Y

NRMSEEq. (2) 8.76% 9.24% 6.55% 9.85% 5.19%
NRMSE𝐴𝑅 53.10% 37.35% 18.77% 39.43% 44.56%
NRMSE𝐺2 24.73% 13.75% 25.48% 45.63% 20.61%
NRMSE𝐸𝑉𝑀 11.74% 8.49% 6.01% 9.6% 28.80%
NRMSE𝐺𝐿𝑀 30.12% 24.52% 23.07% 33.45% 23.16%

1 Y

MAPEEq. (2) 5.10% 3.62% 3.60% 7.25% 2.88%
MAPE𝐴𝑅 11.48% 12.07% 11.13% 20.98% 26.88%
MAPE𝐺2 12.13% 11.74% 20.68% 28.94% 10.50%
MAPE𝐸𝑉𝑀 12.04% 11.71% 8.91% 14.23% 16.72%
MAPE𝐺𝐿𝑀 35.27% 33.20% 31.31% 48.27% 38.19%

Table 7
99% VaR test response. Out-of-sample results.

POF CC TUFF, TBFI

Response ‘‘accept’’ ‘‘accept’’ ‘‘accept’’
p-value 0.1542 0.3623 0.4297
L-ratio 2.0301 2.0301 4.0964

Table 8
Maximum percentage variation of 𝑍𝑡 and minimum 𝐿′ giving the 99% confidence level VaR. Out-of-sample results.

Earthquake Storm Flood Drought Ext. Temp.

Max. Variation 3.70% 3.25% 4.15% 3.26% 3.55%

Min. 𝐿′ 61 20 20 23 55

4.2. Results on 5, 10 and 15-year horizon

In addition to 1-year forecasts, to highlight the power of our predictions, we apply the analysis to the next 5𝑌 , 10𝑌 and 15𝑌
orizons. As previously done, all forecasts are out-of-sample. We start with a window of ten data (from 𝑇 = 10𝑌 ) and the results
re listed in Table 9.

For the reason of space, graphs are in Appendix, where we show the forecasted series (relative to the next year or 5, 10 and
5 years) 𝑥𝐹𝑡+𝑢, 𝜎𝐹𝑡+𝑢 and the percentage variation of 𝑍𝑡 for any natural disaster considered.

Notice that, as well as illustrated in Tables 5 and 6, we obtained similar results with regard to the volatility and the NRMSE.
or the sake of readability, we do not show those results.

Finally, Table 10 shows the ML estimates with their confidence intervals.

. Relevance for premia calculations

As mentioned, natural phenomena such as earthquakes, hurricanes and floods can have serious consequences for insurance
ompanies, see eg. some empirical studies such as Born and Viscusi (2006), Benali and Feki (2017). Insurance companies offer their
15
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Table 9
Different MAPE for 5, 10 and 15 years predictions. The gray highlights the results obtained
with model in Eq. (2). Out-of-sample results.

Forecasting error of considered models - Returns

Horizon Model Error Earthquake Storm Flood Drought Ext. Temp.

5 Y

MAPEEq. (2) 5.10% 6.23% 12.68% 20.60% 20.01%
MAPE𝐴𝑅 15.46% 14.68% 29.75% 34.34% 22.52%
MAPE𝐺2 7.79% 8.45% 23.01% 26.70% 20.91%
MAPE𝐸𝑉𝑀 5.91% 8.03% 22.73% 22.12% 20.84%
MAPE𝐺𝐿𝑀 6.90% 7.88% 30.84% 24.37% 12.25%

10 Y

MAPEEq. (2) 5.32% 7.95% 17.60% 29.45% 21.45%
MAPE𝐴𝑅 16.46% 18.19% 28.75% 38.50% 54.05%
MAPE𝐺2 7.90% 10.15% 26.59% 29.70% 25.25%
MAPE𝐸𝑉𝑀 9.16% 12.85% 29.77% 36.91% 23.25%
MAPE𝐺𝐿𝑀 11.23% 14.49% 46.64% 34.14% 23.95%

15 Y

MAPEEq. (2) 6.72% 10.25% 19.69% 32.68% 25.15%
MAPE𝐴𝑅 18.46% 22.19% 29.84% 42.04% 56.27%
MAPE𝐺2 9.30% 10.92% 27.09% 39.70% 29.34%
MAPE𝐸𝑉𝑀 11.14% 16.63% 31.99% 38.31% 26.11%
MAPE𝐺𝐿𝑀 14.47% 28.97% 48.29% 35.42% 39.14%

Table 10
Earthquake simulations. Parameters estimations and their confidence intervals.
Parameter Estimation Confidence interval

𝛿 11.1052 [8.4354, 13.7750]
𝛾 1.9818 [1.6601, 2.3036]
𝜂 6.4060 [5.6240, 7.1880]
𝑘 1.0422 [0.9830, 1.1014]
𝜃 11.0976 [10.5315, 11.6637]
𝛼 4.2469 [3.7285, 4.7653]

customers risk insurance in exchange for a premium. Therefore, the main challenge for actuaries is to find an optimal compromise
between a reasonable premium aimed at guaranteeing profit margins and solvency to the insurance company and the need to offer
competitive rates on the market. To this end, the assessment of premiums related to claims caused by natural disasters has become
increasingly difficult due to global warming which increases both the probability and the severity of these phenomena.

The most popular premium calculation principles in the actuarial literature are the expected value principle and the variance
rinciples. Denoting by 𝐶 the insurance’s loss, under the expected value principle (EVP) the premium is calculated by 𝜆 = (1+𝛩)E[𝐶],
or some safety loading 𝛩 > 0. While under the variance principle (VP) the premium is 𝜆 = E[𝐶] + 𝛤 ⋅ Var (𝐶), for some 𝛤 > 0.

The company’s reserve process over time can be described as a stochastic process in which two cash flows, incoming premiums
nd outgoing claims:

𝑅𝑡 = 𝑅0 + 𝜆𝑡 − 𝐶𝑡

here 𝐶𝑡 and 𝜆𝑡 are cumulative losses and premia over [0, 𝑡], respectively, and 𝑅0 > 0 is the initial capital. Under the EVP and
P premia principles the reserve process satisfies the so-called net profit condition that is E[𝐶𝑡] < E[𝜆𝑡] or equivalently E[𝑅𝑡] > 𝑅0

or any time 𝑡 > 0. This condition can be interpreted as the average income strictly larger than the average outflow. For classical
odels, such as the Cramér–Lundberg model where the claim arrival intensity is assumed constant, the net profit condition implies

hat there is a positive probability for the company not to fail (see Grandell, 1991).
As we can see in our empirical analysis (see Section 1) frequency and severity of natural catastrophes have high variability and

lassical models are not suitable to describe such events. If we price premiums according to the classical premium principles (EVP,
P), but not with respect to how big fluctuations we can have, it could have major consequences in the most extreme cases.

As demonstrated in our empirical analysis, the frequency and severity of natural disasters have a high variability and classical
odels are ill suited for describing such events. Thus, an evaluation based on the classical premium principles (EVP, VP), which
oes not take into account large fluctuations, could have important consequences in case of extreme events. For this reason, the
esults shown could help insurance companies to manage their risks in the face of claims due to natural disasters by providing an
stimation of the maximal loss at 99%. Precisely, we have proved that log-cumulative losses are lower than 𝑥𝐹𝑡 + 𝜎𝐹𝑡 + 𝑍𝑡 with
robability 99% (e.g. see Fig. 4), hence apply the following cumulative premia

𝜆𝑡 =
𝑠=𝑡
∏

𝑠=1
𝑒𝑥

𝐹𝑠+𝜎𝐹𝑠+𝑍𝑠

mplies that P(𝑅 > 𝑅 ) = 0.99 for any time 𝑡 > 0.
16
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6. Conclusions

This work introduces an innovative model for predicting the expected value of losses resulting from natural disasters and
heir volatility over the course of 1, 5, 10, and 15 years. The proposed model is based on a generalized two-factor square-root
pproach, which incorporates stochastic correlation via a Brownian motion to link losses with volatility. The model we developed is
generalized two-factor square-root model that links losses with volatility through stochastic correlation following a Brownian
otion. However, it is worth noting that while generalized linear models are widely used in the pricing of non-life insurance

ontracts (Laudagé, Desmettre, & Wenzel, 2019), they are not suitable for extreme claims. Therefore, to determine the maximum
oss that could occur in terms of Value at Risk (VaR), we utilized the Generalized Pareto Distribution (GPD). The accuracy of our
odel was then compared with four baseline models, including AR, G2++, EVM, and GLM. We evaluated the model’s performance

by backtesting exceedances over the forecasted VaR, which serves as the upper bound of the GPD. Our model performed favorably
compared to the benchmarks in terms of forecasting efficiency and backtests provided further validation of the chosen VaR.

The study, responding to deficiencies in Catastrophe Bond Pricing Models (CBPM) highlighted by Anggraeni et al. (2022),
addresses challenges related to GEV, trigger model intricacies, ARIMA limitations, and CIR inefficacy. Using a Generalized Pareto
Distribution (GPD), the approach estimates maximum potential losses (VaR) for different natural disasters. The insights stress the
importance of mitigating moral hazard for investors near the trigger. The market demands an accurate and transparent earthquake
catastrophe bond pricing model (Götze & Gürtler, 2020; Gürtler et al., 2016; Kiohos & Paspati, 2021). Thus, this methodology applies
as well to dramatic changes in a given line of business (LOB) due to unexpected events such as COVID-19 (Babuna et al., 2020;
Farooq et al., 2021; Guerrero et al., 2023) and could be used for estimating the related insurance premia.
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Appendix. Graphical and statistical evidences

In this section, we report some figures showing the out-of-sample results we obtained with our model. For each type of natural
disaster first, we show the expected loss alongside the upper bound of our estimate (i.e. a sort of forecasted worst case). Then, as
the insurer needs to keep under control the volatility of the losses, we also display the pointwise volatility. See Figs. A.8, A.11, A.14,
A.17. After that we show the variation of 𝑧𝑡 and, finally, the forecasts with different time horizons (5, 10 and 15 years) jointly with
their related upper bounds. The latter with the usual intent to keep the exceedances under control. See Figs. A.9, A.10, A.12, A.13,
A.15, A.16, A.18, A.19. Tables A.11, A.12, A.13, A.14 show parameters estimations and their confidence intervals for all studied
natural disasters. As documented, both figures and tables support the validity of the proposed model.

A.1. Storm

Expected loss for storm alongside the upper bound of our estimate, representing a forecasted worst-case scenario and pointwise
volatility for different time horizons (5, 10, and 15 years) along with their corresponding upper bounds, aimed at controlling
17

exceedances. See Figs. A.8–A.10 and Table A.11 for the parameter estimation presented in the table.
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Fig. A.8. Storm and its (pointwise) volatility forecasts.

Fig. A.9. Percentage variation of 𝑍𝑡 for different initial window size 𝐿′ ≥ 20, for any 𝑡 ≥ 𝐿′.

Table A.11
Storm simulations. Parameters estimations and their confidence intervals.
Parameter Estimation Confidence interval

𝛿 8.8932 [6.5401, 11.2462]
𝛾 2.5350 [2.0964, 2.9737]
𝜂 7.0072 [6.1519 7.8626]
𝑘 0.9975 [0.9150, 1.0801]
𝜃 11.2355 [10.4381, 12.0330]
𝛼 5.3503 [4.6972, 6.0034]
18
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Fig. A.10. Storm log-losses forecasts for the next 5, 10 and 15 years.

Fig. A.11. Flood and its (pointwise) volatility forecasts.

.2. Flood

Expected loss for flood alongside the upper bound of our estimate, representing a forecasted worst-case scenario and pointwise
olatility for different time horizons (5, 10, and 15 years) along with their corresponding upper bounds, aimed at controlling
xceedances. See Figs. A.11–A.13 and Table A.12 for the parameter estimation presented in the table.

.3. Drought

Expected loss for drought alongside the upper bound of our estimate, representing a forecasted worst-case scenario and pointwise
olatility for different time horizons (5, 10, and 15 years) along with their corresponding upper bounds, aimed at controlling
xceedances. See Figs. A.14–A.16 and Table A.13 for the parameter estimation presented in the table.
19
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Fig. A.12. Percentage variation of 𝑍𝑡 for different initial window size 𝐿′ ≥ 20, for any 𝑡 ≥ 𝐿′.

Fig. A.13. Flood log-losses forecasts for the next 5, 10 and 15 years.

Table A.12
Flood simulations. Parameters estimations and their confidence intervals.
Parameter Estimation Confidence interval

𝛿 18.2315 [14.3643, 22.0987]
𝛾 2.8611 [2.4349, 3.2872]
𝜂 9.9978 [8.7774, 11.2182]
𝑘 1.8312 [1.5891, 2.0733]
𝜃 11.8324 [10.5950, 13.0698]
𝛼 9.5945 [8.4233, 10.7656]

Table A.13
Drought simulations. Parameters estimations and their confidence intervals.
Parameter Estimation Confidence interval

𝛿 4.7191 [3.7702, 5.6679]
𝛾 3.9016 [3.3422, 4.4611]
𝜂 5.9423 [5.2170, 6.6677]
𝑘 2.0527 [1.6437, 2.4617]
𝜃 8.8766 [7.6118, 10.1413]
𝛼 10.2872 [9.0314, 11.5429]
20
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Fig. A.14. Drought and its (pointwise) volatility forecasts.

Fig. A.15. Percentage variation of 𝑍𝑡 for different initial window size 𝐿′ ≥ 20, for any 𝑡 ≥ 𝐿′.
21
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Fig. A.16. Drought log-losses forecasts for the next 5, 10 and 15 years.

Fig. A.17. Extreme temperature and its (pointwise) volatility forecasts.
22
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Fig. A.18. Percentage variation of 𝑍𝑡 for different initial window size 𝐿′ ≥ 20, for any 𝑡 ≥ 𝐿′.

Fig. A.19. Extreme Temperature log-losses forecasts for the next 5, 10 and 15 years.

Table A.14
Extreme temperature simulations. Parameters estimations and their confidence
intervals.
Parameter Estimation Confidence interval

𝛿 3.0007 [2.2068, 3.7947]
𝛾 1.6104 [1.3318, 1.8891]
𝜂 5.3839 [4.7267, 6.0411]
𝑘 2.3014 [1.6742, 2.9285]
𝜃 5.0811 [4.1849, 5.9773]
𝛼 7.6339 [6.7020, 8.5657]

A.4. Extreme temperature

Expected loss for extreme temperature alongside the upper bound of our estimate, representing a forecasted worst-case scenario
nd pointwise volatility for different time horizons (5, 10, and 15 years) along with their corresponding upper bounds, aimed at
ontrolling exceedances. See Figs. A.17–A.19 and Table A.14 for the parameter estimation presented in the table.
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