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Summary

Recent space projects are designed by satellite constellations with a large number of

spacecraft, a global character (i.e., from equatorial to high inclination orbits), and the

possibility to transfer information to different satellites of the constellation (inter sat-

ellite link) in order to deliver the information to the ground as soon as possible. To

cope with a large number of parameters, a fast tool for constellation design, perfor-

mance evaluation and networking strategies is needed. The aim of this paper is to

obtain the performance of any constellation in less than 1 s, even when the number

of satellites in the constellation and the duration of the analysis is large (e.g., more

than 200 satellites in a period of some days). The proposed algorithm is based on

analytical formulae obtained by using the stereographic projection on the equatorial

plane of the satellite orbits and the projection of the target and ground station orbits.

It is believed that the two-dimensional projection proposed here can offer some

advantages with respect to the spatial analysis of satellite orbits and their ground

tracks, such as the reduction in time required to calculate station/satellite and satel-

lite/satellite encounter conditions, and the clear and simple representation of the

motion of the satellite of the constellation and of the ground stations of interest.

1 | INTRODUCTION

The need for data from space, including Earth observation, dedicated telecommunications, Internet Of Things, and ELINT services, is becoming

very demanding since the target of the acquisition can be anywhere on Earth and must be delivered to a specific ground station in short time. This

task can be realized by satellite constellations having: (i) a large number of spacecraft, (ii) global character (that is high values of orbit inclinations),

and (iii) the possibility to transfer the information to different satellites of the constellation (ISL); see references.1–4

The design of the constellation must be optimized with respect to different requirements such as minimizing the revisit time over a target,

maximizing the duration of the service over a region, and minimizing the delivery time to a ground station.5,6

The number of parameters to be considered in the design and evaluation of such constellations is high, for instance, the requirement of data

collection and transmission (from and to specific geographical areas) within a given revisit period implies a number N (hundreds) of satellites—

corresponding to a total of N(N � 1) possible links for each orbit among the satellites of the constellation—and for each satellite, six orbital param-

eters shall be chosen for ensuring a desired (minimum) number of passages on a specific target area or ground station.
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To cope with such a large number of parameters, a fast tool for constellation design, performance evaluation and networking strategies is

needed.

In fact, by some general design principles, the number of orbital parameters can be reduced, and the possible use of algebraic, rather than dif-

ferential, equations contributes to a significant reduction of the computation time for coverage and ISL analysis.

Namely, to avoid differential action of the J2 perturbation on the orbit planes, the satellites (or families of satellites) composing the

constellation must have the same semiaxis a, eccentricity, and inclination i. Eccentricity is generally zero and circular orbits of radius a = R are

assumed. The length of R is an input dictated by the payload, that can be slightly modified to produce orbits having closed ground track, that is

the satellite ground track repeats after m days corresponding to n orbits. Moreover, the inclination i is chosen according to the maximum latitude

of interest.

Then just two orbit parameters remain: the right ascension of the ascending node (RAAN) Ω and the argument of latitude u0 (measured from

the ascending node, that is from the ascending passage at the equator). These free orbit parameters can be selected to optimize the service

according to one of the requirements listed before. These considerations drive the design of a large constellation: to test selected configurations

and/or to implement iterative schemes to optimize the results a fast algorithm is needed.

The present paper is devoted to obtaining in less than 1 s the performance of any given constellation, even if the number of satellites of the

constellation and the duration of the analysis are large (say more than 200 satellites in a period of time of some days).

The algorithm proposed is based on analytical formulas obtained by the use of the stereographic projection onto the equatorial plane of the

satellite orbits and the projection of the target and ground station paths.

It is believed that the two-dimensional projection proposed here can offer some advantages with respect to spatial analysis of the

satellite orbits and their ground tracks. The advantages are the time reduction of the computation of the station/satellite and satellite/satellite

encounter conditions and the clear and easy planar representation of the motion of a constellation of the satellites and of the ground stations

of interest.

2 | STEREOGRAPHIC PROJECTIONS

Points on a sphere of radius r are projected into the equatorial plane by the formula:

S¼ X,Y,Zð Þ s:t: X2þY2þZ2 ¼ r2
n o

,

φ : S� North Polef g!ℝ2,

X

Y

Z

264
375!

r
r�Z

X

r
r�Z

Y

264
375¼ x

y

� �
:

It shall be noted that, because the transformation is singular at the poles, the projection of polar orbits shall be treated differently, as detailed

in Section 5. The inverse transformation is

φ�1 : ℝ2 ! S� North Polef g,

x

y

� �
!

X

Y

Z

264
375¼ 1

x2þy2þ r2

2r2x

2r2y

r x2þy2� r2
� �

264
375:

In the present applications, r is the radius of the Earth RE when the motion of ground stations and targets at latitude L and geographic longi-

tude λg are considered, as well as satellite ground tracks of satellites; r is the radius R of satellite orbits in a constellation having all circular orbits

of equal radius and inclination i Figure 1.
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2.1 | Ground stations stereographic projection

Any point on Earth at latitude L0 and geographic longitude λg is defined in the Earth-centered inertial (ECI) frame*,7 by its initial (i.e., at time t=0)

absolute longitude λ0, determined by the absolute longitude of the Greenwich meridian at initial time λG0:

λ0 ¼ λG0þλg:

During time we have the variation of (absolute) longitude:

λ¼ λ tð Þ¼ λ0þωEt,

(with ωE angular velocity of the Earth), while the latitude is constant: L(t)= L0.

The ECI coordinates of the target or ground station are

XE ¼RE cos Lcos λ,

YE ¼RE cos Lsin λ,

ZE ¼RE sin L,

then the stereographic projection is

xE
yE

� �
¼ RE

RE�ZE

XE

YE

� �
¼

cos L
1� sin L

RE cos λ

cos L
1� sin L

RE sin λ

2664
3775:

That is, the target and ground station motion are projected on the equatorial plane into the circle of radius RπS ¼ cos L
1�sin L RE followed by con-

stant angular velocity ωE .

Note that from the definition of RπS, stations in the North hemisphere (L>0) are circles external to the equator, and stations in the South

hemisphere (L< 0) are inside the equator.

*A frame with origin in the Earth center, bc1,bc2 axes in the equatorial plane with bc1 inertially fixed along the intersection between the equatorial and the ecliptic plane and bc3 axis orthogonal to the

equatorial plane and pointing from the South to the North pole.

F IGURE 1 Stereographic projection.

CARLETTA ET AL. 3
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Figure 2 shows the equatorial projection of the motion of a ground station located at the latitude of 30�.

The inverse transformation of the ground station projection map is

x

y

� �
!

X

Y

Z

264
375¼ 1

x2þy2þR2
E

2R2
Ex

2R2
Ey

RE x2þy2�R2
E

� �
2664

3775:

2.2 | Stereographic projection of non-polar circular orbits

Consider now non-polar circular orbits with initial parameters semiaxis, eccentricity, inclination, RAAN, and argument of the node:

a0 ¼R,e0 ¼0, i0,Ω0,u0. These parameters change in time according to the Kepler law and J2 gravitational (average) perturbation

a¼ a0, e¼ e0, i¼ i0, Ω¼Ω0þωJ2t, u¼ u0þ ω0þω0j2

� �
t,

where ωJ2 ¼ωJ2 a0, i0ð Þ, ω0j2 ¼ω0j2 a0, i0ð Þ, ω0 ¼
ffiffiffiffi
μ
a3

q
are angular velocities of Kepler orbits perturbed by the J2 effect (see, for instance, Prussing

and Conway 8).

The satellite position r
!
is defined in the ECI frame and on the orbital frame obtained by the three rotations:

brbθbh
0B@

1CA¼R3
uR

1
i R

3
Ω

bc1bc2bc3
0B@

1CA,

r
!¼ R00½ � R3

uR
1
i R

3
Ω

bc1bc2bc3
0B@

1CA,

X Y Z½ � ¼ R00½ � R3
uR

1
i R

3
Ω,

XY Z½ � ¼R cos ucos Ω� sin usin Ω cos i, cos usin Ωþ sin ucos Ω cos i, sin usin i½ �, ð1Þ

F IGURE 2 Stereographic projection of a ground station @ latitude 30�.
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where Ri
x indicates a rotation around the i-th reference axis of an angle x, XY Z½ � are the ECI coordinates of the satellite along its circular orbit.

The stereographic projection of the orbit on the equatorial plane is

X

Y

Z

264
375!

R
R�Z

X

R
R�Z

Y

2664
3775¼ x

y

� �
:

Figure 3 shows the stereographic projection of a circular orbit with parameters R = 6896 km, i = 50�, Ω = 10�

It is important to note that the stereographic projection of a circular orbit on the equatorial plane is itself a circular orbit with center and

radius depending on the orbit inclination i and RAAN Ω.

Namely, let us consider two points on the orbit: the points at maximum and minimum latitude, corresponding to the values u¼ π
2 ,

3
2 π respec-

tively (recall that u=0 corresponds to the point on the equator of the ascending node). The three-dimensional coordinates (ECI coordinates) of

these two points are

Xa Ya Za½ � ¼R �sin Ω cos i, cos Ω cos i, sin i½ �,
Xp Yp Zp½ � ¼R sin Ω cos i,�cos Ω cos i,�sin i½ �,

having the projections:

xa
ya

� �
¼

R
R�Za

Xa

R
R�Za

Ya

2664
3775, xp

yp

� �
¼

R
R�Zp

Xp

R
R�Zp

Yp

2664
3775:

These stereographic projections correspond to the most distant point xa,yað Þ from the Earth center O and to the closest point xp,yp
� �

. The

Euclidean distances

da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2a þy2a

q
, dp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p þy2p

q

are here used to define the parameters a and e of the projected orbit:

a¼ daþdp
2

¼ R
cos ij j , e¼

da�dp
daþdp

¼ sin i:

F IGURE 3 Stereographic projection of a circular orbit of inclination of 50�.

CARLETTA ET AL. 5
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In fact, a is the radius of the projected orbit and the product ae is the distance between the center of the Earth O and the center C of the pro-

jected orbit. The direction of the center C is determined by the angle Ωþ π
2 measured from bc1. The orbit of Figure 3 has the projection of Figure 4,

showing the center C of the circle of radius a=10,728 km and its vector distance from O, having an orientation angle from bc1 equal to 100� and

distance ae=8218 km.

Namely, we have the coordinates of the center C

C¼ xC ,yCð Þ¼ aecos Ωþ π

2

� �
,aesin Ωþ π

2

� �� �
¼ �ae sinΩ,aecosΩð Þ

and the planar coordinates of the projected orbit are as follows:

x τð Þ¼ xCþacos τ, ð2Þ

y τð Þ¼ yCþasin τ, ð3Þ

where

• a¼ R
cos ij j ,

• ae¼R tan ij j,
• τ is the phase of the projected circle starting from axis ξ of the ξ,ηð Þ frame parallel to bc1,bc2; see Figure 5.

The initial phase τ0 in the projected orbit can be derived by the stereographic projection of the initial position of the satellite X0,Y0,Z0ð Þ
obtained by Equation 1 with u¼ u0. Then, the stereographic projection is used to get the initial point on the projected orbit x0,y0ð Þ, hence, the ini-

tial phase τ0 from

cos τ0 ¼ x0�xC
a

,

sin τ0 ¼ y0�yC
a

:

F IGURE 4 The circle on the equatorial projection of the orbit of Figure 3.

6 CARLETTA ET AL.
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The satellites of the constellation differ in RAAN only, then their orbits are projected onto circles of equal radius a rotated around the com-

mon point O (center of the Earth) by different angles Ωþ π
2 with respect to the bc1 direction. In Figure 6, we see the stereographic projection of a

constellation of eight satellites with equally spaced RAAN, inclination of 50�, and initial phases corresponding to maximum and minimum latitude.

The 3D orbits of the constellation with the satellite initial positions (two sats for each orbit) are on the left of Figure 6, showing also the equatorial

projections with the projected initial positions. On the right side of the figure, we see also Earth's center at the origin of the picture (yellow “dot”)
and the center points of the projected orbits (“diamonds” of different color). These points have an equal distance ae from the Earth's center and

are rotated around the Earth's center according to the equally spaced RAAN angles.

F IGURE 5 The phase angle τ of the projection into the equatorial plane.

F IGURE 6 Constellation of eight satellites and its planar projection. Black markers in the right figure show the initial point of the satellites on
each projected orbit and their motion for some minutes.

CARLETTA ET AL. 7
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Each of the N = 8 satellites of the constellation has two intersections with any other orbit: the number of possible pairs of satellites is given

by the sum:

N�1ð Þþ N�2ð Þþ…þ N� N�1ð Þð Þ¼N2�ΣN�1
k¼1 k¼N2� N�1ð ÞN

2
¼N2�N

2

Since the number of intersections for each pair is equal to 2, the total number of intersections is: N2�N:

The 56 intersections of the N = 8 constellation are clearly visible in the projection of Figure 6. In fact, the use of the stereographic projection

simplifies the identification of intersections between the orbit of the satellites, this feature is used, as detailed in Section 3, to rapidly identify ISL

among the satellites of the constellation.

3 | INTER SATELLITE LINK

It is supposed that the satellite of the constellation can communicate data with the other satellites within a fixed distance D. When the relative

distance of two satellites is less than D, the transmission of data between is possible and the ISL duration can be determined with the following

steps:

a. determine the points of intersections among the orbits of the constellation

b. determine the area of possible link (“link area”) which is located around these intersections

c. determine the entry times within the link area of each pair of satellites

d. if two satellites are both inside the link area, determine the duration of their link

Step (a)

The determination of the intersection points can be restricted within one orbit period: the J2 perturbation will move rigidly to the inter-

section points and the duration of the ISL will be obtained just by updating the passage to the node period.

For example, let us consider the two orbits in Figure 7 (orbit 1 and orbit 2) with Ω1 ¼10deg, Ω2 ¼20�.

The projected orbit 1 with planar coordinates x1,y1ð Þ has the two intersection points P1 and P2 with the projected orbit 2, having planar coor-

dinates x2,y2ð Þ. Let τ121,τ122 be the two phases in the projected orbit 1 corresponding to the points P1 and P2, respectively, and τ211,τ212 be the

two phases in the projected orbit 2 corresponding to the same intersection points P1 and P2. In general, the angles τk1k2s denote the phase in orbit

k1 of the intersection point s=1,2 with the orbit k2.

The condition on the coordinates of any intersection point P1 or P2 between the projections of orbits 1 and 2 is (neglecting index s):

x1 τ12ð Þ¼�aesin Ω1þacos τ12 ¼ x2 τ21ð Þ¼�aesin Ω2þacos τ21, ð4Þ

y1 τ12ð Þ¼ aecos Ω1þasin τ12 ¼ y2 τ21ð Þ¼ aecos Ω2þasin τ21: ð5Þ

F IGURE 7 Two orbits with different RAAN angles.

8 CARLETTA ET AL.
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In Appendix A, the following two solutions for the angle τ21 are derived:

τ211 ¼ asin �cð Þ�ϕ ð6Þ

and

τ212 ¼ π�asin �cð Þ�ϕ ð7Þ

with

c¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ω1�Ω2ð Þð Þ

p
=
ffiffiffi
2

p
,

cos ϕ¼ cos Ω2� cos Ω1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ω2�Ω1ð Þp ,

sin ϕ¼ sin Ω1� sin Ω2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ω2�Ω1ð Þp :

To obtain the phases on orbit 1, insert the value τ211 in Equations (4) and (5) to determine the phase τ121 in the projected orbit 1 of the inter-

section point P1 then insert the value τ212 to determine the phase τ122 of the intersection point P2. In general, we have the phases τk1k2s for any

pair k1,k2 of projected orbits k1,k2 ¼1, ::,N,s¼1,2ð Þ. It is easy to derive the corresponding phases in the 3D representation. This is done by intro-

ducing the coordinates of the intersection points between the projected orbits: xk1k2s ¼ xk1 τk1k2s
� �

, yk1k2s ¼ yk1 τk1k2s
� �

(s=1,2) then, by the inverse

of the stereographic projection, the ECI coordinates of the intersection points between orbit k1 and orbit k2 are found:

Xk1k2s ¼
2R2xk1k2s

x2k1k2sþy2k1k2sþR2
,

Yk1k2s ¼
2R2yk1k2s

x2k1k2sþy2k1k2sþR2
,

Zk1k2s ¼R
x212sþy212s�R2

x2k1k2sþy2k1k2sþR2
:

From the three ECI coordinates of the intersection points, the corresponding phases of the 3D representation are derived according to the

equations relating orbit parameters to ECI coordinates. For orbit k1,

cos uk1k2s ¼
Yk1k2s sin Ωk1 þXk1k2s cos Ωk1

R
,

sin uk1k2s ¼
Zk1k2s

R sin ið Þ ,

and similar formulas for the phases uk2k1s on orbit k2:

Step (b): “link area”

The region of possible interlink between two satellites is around the intersection points between the two orbits and depends on the maxi-

mum distance D of the possible link, see Figure 8.

Considering D≤ 1000 km, we are going to approximate the encounter region between the two satellites as the region in the tangent space of

the orbits at the intersection point as in Figure 9. If angle Δu between the two satellite orbits is lower than π
2, the area of possible link between

the two satellites is inside the two triangles of Figure 9, since outside this region the distance between the two satellites is bigger than D.

If angle Δu between the two satellite orbits is bigger than π
2, the area of possible link between the two satellites is inside the two triangles of

Figure 10.

CARLETTA ET AL. 9
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It is important to know that the stereographic projection is a conformal transformation, that is the angles are preserved. It follows that the

angle Δu between the two 3D orbits is equal to the angle Δτ between the two projected orbits: Δu¼Δτ. From the geometry in the projected

plane, see Figure 11, such an angle Δτ is equal to the difference between the two phases:

Δτ¼ τk2k1s� τk1k2s:

Step (c): Link area entry and exit times

Let the satellite in orbit k2 have the initial phase u0k2 and let the phase of one intersection point between this orbit and the orbit k1 be uk2k1s.

If u0k2 < uk2k1s, the time needed to Sat k2 to arrive at the intersection point with the orbit k1 is

tintk2k1s ¼
uk2k1s�u0k2

n
, n¼

ffiffiffiffiffiffi
μ

R3

r
: ð8Þ

If u0k2 > uk2k1s, the time needed to Sat k2 to arrive at the intersection point with orbit k1 is

tintk2k1s ¼
2πþuk2k1s�u0k2

n
, n¼

ffiffiffiffiffiffi
μ

R3

r
: ð9Þ

F IGURE 8 ISL distance and Sat1, Sat2 in proximity of the intersection point.

F IGURE 9 The link region for satellites with encounter angle Δu< π
2.

10 CARLETTA ET AL.
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To have the time of arrival to the link region, we have to compute the time to arrive at boundary point A2 of Figure 9, that is the time needed

to move along the distance ℓ between the boundary point A2 and the intersection point I. Such a time is equal to ΔT¼ l
V0
¼ l

nR, then the Sat k2

arrives to the link region at time

tinik2k1s ¼ tintk2k1s�ΔT ð10Þ

and leaves the region at time tintk2k1sþΔT.

Similar formulas give the arrival time of the Sat k1, tinik1k2s, and the exit time tintk1k2sþΔT.

Step (d): Link condition and duration

To have a link between Sat k1 and Sat k2, it is necessary that both are within the link region. Suppose that Sat k2 arrives at time

tinik2k1s < tinik1k2s at point A2, then Sat k1 will be distant from the boundary point A1 for a length equal to V0 dtini , where dtini is the difference in

arrival time of the two satellites at the link region and V0 is the orbital velocity:

dtini ¼ tinik1k2s� tinik2k1s, ð11Þ

F IGURE 10 The link region for satellites with encounter angle Δu> π
2.

CARLETTA ET AL. 11
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It is proved in Appendix A that the minimum distance between the two satellites within the link area is given by the formula:

dmin ¼ ¼V0 dtini cos
Δu
2

: ð12Þ

Then, the condition for the link is

dmin <D,

and the time duration of the inter satellite link is equal to (see Appendix A):

ISLtime ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2�d2min

q
V0 sin Δu

2

: ð13Þ

Note that this is a simple analytic formula depending only on the input data V0 and D and the encounter angle Δu defined by the stereo-

graphic projection.

4 | SATELLITE–GROUND STATION VISIBILITY

Encounters between satellite orbits and stations are determined by the intersections between two circles on the equatorial plane: the circle cen-

tered on the Earth performed by the ground station motion and the circle given by the stereographic projection of the satellite ground track (sub-

satellite points on the Earth surface).

F IGURE 11 The angle Δu generated by the tangent of the two projected orbits on the intersection is equal to the angle α of the picture and
this is equal to the difference of phases τ and σ in the two orbits.

12 CARLETTA ET AL.
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The subsatellite points are the nadir projection of the points of the orbit on the Earth's surface:

X Y Z½ � ¼RE cos ucos Ω� sin usin Ωcos i, cos usin Ωþ sin ucos Ωcos i, sin usin i½ �,

with stereographic projection:

X

Y

Z

264
375!

RE

RE�Z
X

RE

RE�Z
Y

2664
3775¼ x

y

� �
:

Figure 12 represents the stereographic projection of the motion of a ground station at a latitude of 20� and of an orbit with an inclination of

30� and RAAN 20�. The projection of the ground station motion is a circle in the equatorial plane with center equal to Earth's center. This circle

intersects the orbit projection in two points.

The steps to identify the visibility between Station and Sat and its duration are similar to the ones performed in the ISL analysis:

a. determine the points of intersections between the ground station and the subsat points belonging to the orbits of the constellation

b. determine the area of possible visibility (“visibility area”) which is located around these intersections

c. determine the entry and departure times within the visibility area of each pair ground station/satellite

d. if ground station and satellite are both inside the visibility area, determine the duration of visibility

Step a): Station/subsatellite intersections

The conditions of the intersection of the projected trajectories are

xS ¼ x,

yS ¼ y,

F IGURE 12 Stereographic projection of a ground station and of a circular orbit.

CARLETTA ET AL. 13
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with xS,ySð Þ projected ground station coordinates and x,yð Þ are the projected subsat coordinates. By definition of the stereographic projection,

the above equalities give

RE cos L0
1� sin L0

cos λ¼ RE

RE�Z
X, ð14Þ

RE cos L0
1� sin L0

sin λ¼ RE

RE�Z
Y, ð15Þ

where L0 and λ are the latitude and absolute longitude of the ground station and the coordinates (X, Y, and Z) are the ECI coordinates of the sub-

satellite points.

Then, squaring and summing Equations (14) and (15), we get:

CL0 ¼ cos2L0

1� sin L0ð Þ2
¼1þ sin L0
1� sin L0

¼
X2þY2
� �
RE�Zð Þ2

¼ cos2uþ sin2u cos2i

1� sin usin ið Þ2
¼1þ sin usin i
1� sin usin i

, ð16Þ

that is,

1� sin usin ið ÞCL0 ¼1þ sin usin i: ð17Þ

That is,

u-intersection condition

sin u¼ CL0�1
CL0þ1

1
sin i

: ð18Þ

This equation has two solutions: u1 and u2 ¼ π�u1, corresponding to the argument of latitude of the intersection points between the orbit

and the ground station. In other words, these are the nodal angles of the satellite when it meets the latitude L0:

For each of the two solutions uk ,k¼1,2, we get the ECI coordinates

X ukð Þ¼RE cos ukcos Ω� sin uksin Ω cos ið Þ,

Y ukð Þ¼RE cos uksin Ωþ sin ukcos Ω cos ið Þ,

Z ukð Þ¼RE sin uksin i:

Then, the relationships (14) and (15) define the trigonometric functions cos and sin of the nodal angle for each intersection uk :

λ-intersection condition

RE cos L0
1� sin L0

cos λk ¼ RE

RE�Z ukð ÞX ukð Þ ð19Þ

RE cos L0
1� sin L0

sin λk ¼ RE

RE�Z ukð ÞY ukð Þ ð20Þ

By the function atan2, the above equations provide the absolute longitudes λk k=1,2 of the station/subsat intersection points.

Step (b): area of possible visibility (“visibility area”)

The swath of the satellite sensor (or the elevation angle of the ground station) generates the time and duration of the visibility passage con-

sidering the intersection of the swath area with the station point.

14 CARLETTA ET AL.
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Suppose that the satellite has a sensor with aperture angle α corresponding to the minimum elevation angle from the station ε and central

angle σ :

σ¼ π

2
�α� ε:

This angle defines the Swath diameter

Sw ¼2 σ RE

and radius RSw ¼ Sw=2:

Let C1 be the intersection point between the subsat orbit and the ground station. In Figure 13, a small arc of the subsat orbit is shown in blue

intersecting on C1 the ground station latitude, which is the straight line passing through the points C3C1C4. A satellite moving from A1 to C1 is able

to observe objects on the ground within a strip generated by circles with center in orbit blue and radius RSw . The first possible link is when one of

the circles touches the station latitude, that is when the satellite is at distance c from the intersection point C1 and the greatest distance of the

Station from the intersection is d.

Then the region of possible visibility is the arch C3C1C4 of length 2d for the ground station and the arc A1C1A2 of length 2c for the subsat

points.

Step (c) Visibility area: Arrival times

Let us determine the arrival time of the ground station to the ground station/sat intersection points defined by the absolute longitudes λ1,λ2

defined in Step (a).

Let λ1 < λ2 and be λ0 the absolute longitude of the ground station at time t0.

if λ0 < λ1 (see Figure 14) then the arrival time of the ground station at the two intersection points are equal to:

t�1 ¼ t0þλ1�λ0
ωE

, t�2 ¼ t0þλ2�λ0
ωE

, ð21Þ

if λ1 < λ0 < λ2, then

t�1 ¼ t0þ2πþλ1�λ0
ωE

, t�2 ¼ t0þλ2�λ0
ωE

;

if λ1 < λ2 < λ0, then

t�1 ¼ t0þ2πþλ1�λ0
ωE

, t�2 ¼ t0þ2πþλ2�λ0
ωE

:

F IGURE 13 Visibility: Arches of possible visibility d and c.

CARLETTA ET AL. 15
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The satellite arrival times to the two intersection points are defined by the two arguments of latitude on the orbit u1 and u2

Determined in Step a). If u0 is the argument of the satellite at time t0, the arrival times of the satellite to the intersection points are:

if u0 < u1 then t��1 ¼ t0þu1�u0
n

, else t��1 ¼ t0þ2 πþu1�u0
n

,

ifu0 < u2 then t��2 ¼ t0þu2�u0
n

, else t��2 ¼ t0þ2 πþu2�u0
n

:

ð22Þ

By the arrival times at the intersection point, we can derive the arrival times at the boundary of the visibility area, the points C3 and A1 for

the ground station and subsat, respectively.

For the ground station, this time is equal to the time t�1 (or t�2) minus the time needed to the ground station to cover the arch d.

Approximating the arches with the straight lines in the tangent plane, we have from the triangle of vertices C1C2C3 that

d¼ RSw

sin i
:

So, the time needed to the ground station to cover this distance is

ΔTGS ¼ d
ωERE

:

Therefore, the times of arrival of the ground station to the ground station/Sat regions are

tiniGS1 ¼ t�1�ΔTGS, tiniGS2 ¼ t�2�ΔTGS:

Setting c¼ d, we get the arrival times of the subsat to the ground station/sat regions:

tiniS1 ¼ t��1 �ΔTS, tiniS2 ¼ t��2 �ΔTS

with

ΔTS ¼ c
nR

:

F IGURE 14 Stereographic projection of the ground station path with red marked initial longitude.

16 CARLETTA ET AL.
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Step (d) Visibility duration

To have visibility, the ground station must be on the arch C3C4 of length 2d before the arrival of the satellite on the arch A1A2 of length 2c,

that is, a necessary condition for visibility is

tiniGSs < tiniSs,s¼1,2:

Since the satellite moves faster than the ground station, the position x of the ground station at the time tiniSs

is kept fixed during the subsat motion from A1 to A2.

If the position x, counted from C3, coincides with C1 then we have the maximum duration of visibility, which is equal to the time needed to

the subsat point to run across the entire diameter 2RSw , that is,

Vistime ¼2RSw

nR
:

If the position x is different from C1, the visibility time will be lower and equal to the time needed to run the chord B1B2 of Figure 15 having a

length 2RSw cosδ xð Þ, where the angle δ xð Þ is the angle between the line A1B2 and the orbit c. In such a case the visibility is equal to the ratio

between the chord distance and the Sat velocity, that is,

Vistime ¼2RSw cosδ xð Þ
nR

: ð23Þ

Analytic formulas for the ground station position x and the related angle δ xð Þ are derived in Appendix A.

5 | POLAR ORBITS

The arguments of Sections 3 and 4 can be applied to polar orbits; note however that if polar orbits pass through the North Pole, which is singular

in the stereographic projection, then some peculiarities must be underlined.

F IGURE 15 Derivation of the angle δ xð Þ.

CARLETTA ET AL. 17

 15420981, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sat.1504 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Note that ECI coordinates of polar circular orbits with radius R are as follows:

X¼Rcos ucos Ω,

Y¼Rcos usin Ω,

Z¼Rsin u:

The stereographic projections of these orbits are as follows:

x

y

� �
¼ R
R�Rsin u

Rcos ucos Ω
Rcos usin Ω

� �
¼ Rcos u
1� sin u

cos Ω
sin Ω

� �
:

The subsatellites points of polar orbits have ECI and projected coordinates defined by

X¼RE cos ucos Ω,

Y¼RE cos usin Ω,

Z¼RE sin u,

x

y

� �
¼ RE

RE�RE sin u

RE cos ucos Ω
RE cos usin Ω

� �
¼ RE cos u
1� sin u

cos Ω
sin Ω

� �
:

As the angle u changes in time, the polar orbits define a sheaf of straight lines through the origin (Earth's center) with parametric angle Ω; see

Figure 16, for one of these orbits.

In the stereographic projection, the polar orbits intersect at the center O of the equatorial plane, corresponding to the South Pole, and at

infinity, corresponding to the North Pole.

For the intersections stations/polar orbits, let us consider an initial date, corresponding to t0 ¼0, defining the absolute longitude and latitude

of the ground station: λ0,L0:

The orbit is defined by parameters a0,e0 ¼0,Ω0, i0 ¼ π
2. Intersection between the orbit and the station occurs when the coordinates xS,ySð Þ of

the station are equal to the coordinates of the subsatellite points

x,yð Þ :
xS ¼ x,

yS ¼ y,

F IGURE 16 The stereographic projection of a polar orbit into the straight line on the equatorial plane.

18 CARLETTA ET AL.

 15420981, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sat.1504 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [04/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



that is,

RE cos L0
1� sin L0

cos λ¼ RE cos u
1� sin u

cos Ω,

RE cos L0
1� sin L0

sin λ¼ RE cos u
1� sin u

sin Ω:

Dividing the second by the first equation we have the first intersection condition:

tan λ¼ tan Ω:

Squaring and summing, we get

cos L0
2

1� sin L0ð Þ2
¼ cos u2

1� sin uð Þ2
:

Since cos x2

1�sin xð Þ2 ¼
1�sin x2

1 �sin xð Þ2 ¼
1�sin xð Þ 1�sin xð Þ

1:�sin xð Þ2 = 1þsin x
1�sin x, we get

1þsin L0
1�sin L0

¼ 1þsin u
1�sin u.

This is equivalent to

sin L0 ¼ sin u,

and generates the second intersection condition

u¼ L0þ2 k2π:

The first condition determines the time t� when the station reaches the intersection:

λ¼ λ0þωEt
� ¼Ωþk1π,

that is,

t� ¼Ω�λ0þk1π
ωE

:

The second condition determines the time needed for the satellite to reach the intersection point t��:

t�� ¼ u�u0
n

:

For the ISL between inclined and polar orbit, the same arguments of Section 3 apply, with the observation that the angle between the orbit

with inclination i and the polar orbit intersect with angle Δu¼ π
2� i, and this is independent on the relative RAAN angle.

6 | PRINCIPLES OF CONSTELLATION DESIGN

Basic principles of constellation design are here briefly recalled, more details can be found for instance in.5,6 A constellation of N satellite in circu-

lar Low Earth Orbits is considered, To keep the covering properties of the constellation invariant under the action of the J2 gravitational

perturbative term, the satellites of the constellation will have a common value of radius R and inclination i.

The inclination is related to the maximum latitude of interest of the service Lmax. If Lmax < π
2 and ε is the semi-aperture angle of the satellite

payload, the inclination is equal to

i¼ Lmaxþasin
R
RE

sinε

	 

� ε:

CARLETTA ET AL. 19
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The radius R has to be selected within a range of values according to the payload requirement. Within such a range of values, a further

request is to have a periodic ground track, so that the analysis of the covering properties and the planning of the missions can be limited to the

fixed and pre-selected period of the ground track. The periodic ground track condition is

NtTn ¼mDn,

that is, Nt nodal orbital period is elapsed in exactly m nodal days. The following Table 1 shows the intervals of altitude corresponding to the

choices Nt,mð Þ. For instance, Lmax ¼60�, ε¼20� and Nt,mð Þ¼ 44,3ð Þ imply that

R¼6991km, i¼60:21�

The periodic ground track has different symmetry properties depending on: Ntþmð Þ even or odd, see.5 This suggests the choice of RAAN

and argument of latitude angles.

A simple strategy is to select a reference geographical longitude and consider equally spaced geographical longitudes θkt,0 as for instance in

Figure 17.

Then, the initial values of the RAAN for each satellite are derived by

Ωk t0ð Þ¼ λ kð Þ
g t kð Þ

asc

� �
þθg0þ t kð Þ

asc ωE� _Ω
� �

:

This configuration will be taken in the next example with N = 128.

7 | EXAMPLE

The analytic formulas provided by the stereographic projection are now used to evaluate the performance of the constellation of N = 128 satel-

lites in Section 5. Input data are:

1. Initial RAAN and argument of the ascending node of each satellite

2. Latitude and geographic longitude of the target and the ground station

3. Year, month, day, hour, minute, second of the initial time

4. Swath radius of the payload

5. Max distance D for the ISL

An algorithm, based upon the analytic formulas of Sections 3 and 4, generates within 1 second the following output, valid for a duration equal

to Np = 44 Keplerian periods:

a. Number and time of occurrence of the visibility passages of each satellite over each station/target

b. Duration of each visibility passage (in seconds)

c. Number and time of occurrence of ISL

d. Duration of each ISL (in seconds)

TABLE 1 Range of altitudes depending on the choice of the pair Nt,mð Þ.

Minimum and maximum altitude, Hmin and Hmax, depending on (Nt,m)

Nt m rt Hmin (km) Hmax (km)

14 1 14 812.4 874.5

43 3 14.333 696.1 761.4

29 2 14.5 639.6 706.5

44 3 14.667 584.1 652.6

15 1 15 476.0 547.9

20 CARLETTA ET AL.
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The data used for the target are latitude = 50� and geographic longitude 105�. The target has a longitude different by 90� with respect to

the longitude of the Ground station (15�). The ground station latitude is equal to 42�. The initial time t0 corresponds to the first day of 2023 at

00.00 GMT. The payload swath diameter is equal to 1044 km and the ISL maximum distance is equal to D =1000 km.

Figure 18 shows the passages over the target within the first orbital period (1.6 h). Five of the 128 satellites of the constellation have a pas-

sage over the target: the first passage occurs 32 s from t0: the satellite number 15 of the constellation is in link with the target for 50 seconds.

The second passage is operated after 37min by satellite number 121, the duration is equal to 56 s. The third passage is after 47min, duration of

58 s, by satellite number 24, satellite number 120 reaches the target after 86min with a passage of duration of 60 s, and finally, satellite number

25 has a passage of 36 s after 95min. To achieve the transfer of the target data to the ground station within the required time (about 1 hour) the

candidate “collector” satellites are Sat15, Sat121, and Sat24.

Figure 19 shows the passages over the ground station within the first orbital period: four satellites pass over the station, satellite numbers

125, 76, 124, and 85. In particular, satellite number 124 meets the station after 64 minutes.

The satellite Sat15 is as collector of the target data and satellite Sat124 is the deliverer.

F IGURE 17 A choice of the phases of the satellites of a constellation.

F IGURE 18 The passages over the target within the first orbital period.

CARLETTA ET AL. 21
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These two satellites have data:

Sat15 :Ω¼161:62deg, u0 ¼39:37�,

Sat124 :Ω¼99:55 deg, u0 ¼165:94�:

If the data can be transferred from Sat15 to Sat124 before the delivery to the ground station, the task will be achieved. The analytic algorithm

defined in Sections 2 and 3 is used to identify all the possible ISL transfer of data among the satellites of the constellation.

The Sat15 encounters the satellites with numbers 58, 83, and 104, within the times indicated in Figure 20. Figure 21 shows the “tree” of sat-
ellite encounters starting from Sat15, and we see that there is the possibility to perform up to three transfers of data from Sat15 to other satellites

but this the process runs out of time before possible connections with Sat124.

F IGURE 19 The passages over the ground station within the first orbital period.

F IGURE 20 Links between Sat15 and the other satellites of the constellation during the first orbital period.

22 CARLETTA ET AL.
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Then, to accomplish the task of data transmission within 1 h, it is necessary to augment the system by other satellites. Polar or near polar

orbits are a good choice: Suppose to select near polar satellites (e.g., i¼89�) having equally spaced RAAN. If they have the same initial argument

from the node, they arrive at the poles at the same time, and the maximum distance between when they are at the maximum latitude is

Rcos i¼122 km

As a consequence, the data delivered by one satellite can be transferred to any other: As a result, the direction of flight of the data to be

delivered can be changed at will from 0 to 360� at each North or South Pole arrival.

To test this approach, let us consider nine near polar satellites having a common value of the nodal angle.

Within 1 s, the algorithm generates the following Table 2 and Table 3 reporting the time to arrive at the two intersections of Sat15 and

Sat124 with the nine satellites of the polar constellation.

One of the satellites of the polar constellation must receive the data from Sat15 and arrive at Pole to transmit the data to another polar satel-

lite (when needed), which will transmit the data to Sat124. This latter will deliver the data to the ground station at time 3840 s. It follows that all

the cases of Table 3 with time to arrival greater than 3840 must be discarded. Moreover, all the combinations where the time to arrival of Sat124

is lower than the time of arrival of Sat15 must be discarded.

This excludes from any combination the polar satellites: PSat1 and PSat9 as well as all the intersections at P2 for Sat15.

The time to arrival of the polar satellites to the Pole TPole depends on the initial common phase uP of the polar constellation:

TPole ¼
π
2�uP
�� ��

n
ifuP<

π

2
andTPole ¼

3
2π�uP
�� ��

n
ifuP>

π

2
:

F IGURE 21 The “tree” of satellites that can receive and transmit the data of Sat15 in the first orbital period.

TABLE 2 ISL Sat15—Polar constellation: Times of arrival.

Polar satellites PSat1 (s) PSat2 (s) PSat3 (s) PSat4 (s) PSat5 (s) PSat6 (s) PSat7 (s) PSat8 (s) PSat9 (s)

Sat15@1 5726 543 885 1290 2219 299 723 1060 1649

Sat15@2 2818 3451 3794 4198 5128 3208 3632 3969 4557

TABLE 3 ISL Sat124 – polar constellation: times of arrival.

Polar satellites PSat1 (s) PSat2 (s) PSat3 (s) PSat4 (s) PSat5 (s) PSat6 (s) PSat7 (s) PSat8 (s) PSat9 (s)

Sat124@1 4512 4853 5469 3732 4336 4674 5091 3150 4101

Sat124@2 1604 1944 2561 823 1427 1766 2383 242 1193

CARLETTA ET AL. 23
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Inserting a value of uP, the algorithm provides in the same run the above data plus the times of arrival of the satellites of the polar constella-

tion to the intersection points with Sat15 and Sat124 and the duration of the ISL (if any) around these points.

It turns out that with the choice uP¼98� , PSat2 is able to communicate with Sat15 after 500 s from t0 and transfer the data to PSat7 at the

South Pole around time 2500 s. The satellite PSat7 will transfer the data to Sat124 at around time 2900 s and the latter will transmit the data at

the ground station at time 3840 s.

Figure 22 shows the geometry of the mission in the equatorial projection and in the three-dimensional representation.

Although the configuration chosen is successful in the current (and difficult) example, there are too many constraints for the existence of a

single phase uP accomplishing the mission, and sometimes, the delivery time constraint is violated.

F IGURE 22 The mission in the projected coordinates (left) and in the 3D representation.

F IGURE 23 The sharing of information within a single orbit.

24 CARLETTA ET AL.
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An alternative approach is to reduce the number of planes of the polar constellation and add satellites in the same polar orbit so that they

can share the information by an almost immediate sequence of data transfers, see Figure 23.

Of course, this implies a significant increment of the number of polar satellites: to ensure full sharing of data along the polar orbit, the number

NP of satellites on each orbit is equal to the nearest integer of NP¼ 2π
α ,α¼2asin D

2R. With D¼1000km and R¼6991km, we have 48 polar satel-

lites on each orbit. For service at the altitude considered, two polar planes with RAAN difference of 90� and 48 satellites on each of the two

orbits. That is 48�2 satellites are added to the previous constellation for a total number of satellites equal to 224. These are enough to accom-

plish the task of data delivery within 1 h from any site in the world with a latitude lower than 60�.

8 | FINAL COMMENT

In this paper, the stereographic projection onto the equatorial plane of satellite orbits and targets/ground stations motion is used to compute in a

very fast way the design and performance of large constellations, providing also a clear two-dimensional picture of the space dynamics of these

systems.

The effectiveness of the approach used is shown in the difficult task to deliver in about 1 h the information from a target on the ground to a

station having largely different latitudes and longitudes.

It is proved that the output of a constellation of 128 satellites can be generated in less than 1 s and proves that, even with the large number

of satellites, the constellation is unable to fulfill the task.

Then, the algorithm is used to augment the constellation with satellites in polar orbits to maximize the use of ISL. The cases where all the sat-

ellites of the polar constellation can share the information twice during the orbital period or at any point of the polar orbit are considered.

This research can be continued along two lines: the first line is to use this algorithm to optimize the constellation design using some iterative

routine to minimize the number N of satellites of the constellation (in the present example N = 224). The second line is to include this algorithm

in the optimization of the management of a selected constellation9–11 to minimize, for instance, the time of transfer of the information to the gro-

und station (at present fixed to about 1 h). In both the lines, the need for a fast computation tool to compare many different possible configura-

tions is even more stringent and the efficiency of the present algorithm appears rather useful.
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APPENDIX A: DERIVATION OF SOME ANALYTIC FORMULAS

Derivation of the phases of the intersection points between two orbits of the constellation, (Equations (6) and (7) of Section 3)

Consider two satellites in a circular orbit of equal radius R and inclination i and RAAN Ω1,Ω2.

If a¼ R
cos ij j and e= sin i, the phases of the satellites in the projected orbits must satisfy at the intersection points the two equations (see

Equations (4) and (5) of Section 3):

x1 τ12ð Þ¼�aesin Ω1þacos τ12 ¼ x2 τ21ð Þ¼�aesin Ω2þacos τ21

y1 τ12ð Þ¼ aecos Ω1þasin τ12 ¼ y2 τ21ð Þ¼ aecos Ω2þasin τ21

Let us solve the two equations with respect to the angle τ12:

cos τ12 ¼ e sin Ω1� sin Ω2ð Þþ cos τ21 ðA:1Þ

sin τ12 ¼ e cos Ω2� cos Ω1ð Þþ sin τ21 ðA:2Þ

26 CARLETTA ET AL.
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After squaring, the sum gives:

1¼1þe2 sin Ω1� sin Ω2ð Þ2þe2 cos Ω2� cos Ω1ð Þ2þ2e cos τ21 sin Ω1� sin Ω2ð Þþ þ2 e sin τ21 cos Ω2� cos Ω1ð Þ

and we look for the zeros τ21 of the function:

ff ¼ e 1� cos Ω1�Ω2ð Þð Þþ cos τ21 sin Ω1� sin Ω2ð Þþ sin τ21 cos Ω2� cos Ω1ð Þ¼0

Write the above equation as:

ff¼Asin τþBcos τþC¼0

where

A¼ cos Ω2� cos Ω1ð Þ

B¼ sin Ω1� sin Ω2ð Þ

C¼ e 1� cos Ω1�Ω2ð Þð Þ

and consider the equivalent equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

q
Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2þB2
p sin τþ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2þB2
p cos τþ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2þB2
p !

¼0

where ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cos Ω2�Ω1ð Þð

p
Þ

Then the previous equation is equivalent to:

asin τþbcos τþc¼0 ðA:3Þ

where

a¼ cos Ω2� cos Ω1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cos Ω2�Ω1ð Þð Þp

b¼ sin Ω1� sin Ω2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cos Ω2�Ω1ð Þð Þp

c¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ω1�Ω2ð Þð Þ

p
=
ffiffiffi
2

p

Since a,b< 1 e a2þb2 ¼1, let us write a¼ cos ϕ, b¼ sin ϕ:

cos ϕ¼ cos Ω2� cos Ω1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ω2�Ω1ð Þp

sin ϕ¼ sin Ω1� sin Ω2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ω2�Ω1ð Þp

Equation (A.3) becomes:

sin τþϕð Þ¼�c

CARLETTA ET AL. 27
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There are two solutions:

τþϕ¼ asin �cð Þ (Equation (6) of Section 3)

and

τþϕ¼ π�asin�cð Þ (Equation (7) of Section 3)

The two phases τ211,τ212 corresponding to the intersections between the projected orbits 1 and 2 are

τ211 ¼ asin �cð Þ�ϕ,

and

τ212 ¼ π�asin �cð Þ�ϕ:

Insert the value τ211 in the Equations (A.1) and (A.2) for cosτ121, sinτ121 to determine the phase of the intersection point P1 in the projected

orbit 1 and the value τ212 in the Equations (A.1) and (A.2) for cosτ122, sinτ122 to determine the phase of intersection P2.

For any of the N2�N
2 pair of projected orbits k1,k2, we get the phases of intersection points on the projected orbit k2:

τk2k11 ¼ asin �cð Þ�ϕ

and
τk2k12 ¼ π�asin �cð Þ�ϕ

with

c¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ωk2 �Ωk1

� �� �q
=
ffiffiffi
2

p

and

cos ϕ¼ cos Ωk2 � cos Ωk1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ωk2 �Ωk1

� �q ,

sin ϕ¼ sin Ωk1 � sin Ωk2

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos Ωk2 �Ωk1

� �q :

Finally, the phases of the intersection points (s = 1,2) on the projection orbit k1 are obtained by

cos τk1k2s ¼ e sin Ωk1 � sin Ωk2

� �þ cos τk2k1s,

sin τk1k2s ¼ e cos Ωk2 � cos Ωk1

� �þ sin τk2k1s,

Derivation of the minimum satellite distance (Equation (12)) and ISL time duration (Equation (13))

The motion of the two satellites around the link region is given respectively by the kinematic equations (see Figure A.1):

x2 tð Þ¼ x20þ _x2 t� t0ð Þ,

y2 tð Þ¼ y20þ _y2 t� t0ð Þ:

with x20 ¼�ℓcos Δu
2 ,y20 ¼�ℓsin Δu

2 , _x2 ¼V0 cos Δu
2 , _y2 ¼V0 sin Δu

2 ,

x1 tð Þ¼ x10þ _x1 t� t0ð Þ,

y1 tð Þ¼ y10þ _y1 t� t0ð Þ,

with x10 ¼� ℓþV0dtinið Þcos Δu
2 ,y10 ¼ ℓþV0dtinið Þsin Δu

2 , _x1 ¼V0 cos Δu
2 , _y1 ¼�V0 sin Δu

2 .
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These formulas allow to compute the change in time of the satellite distance between them:

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1�x2ð Þ2þ y1�y2ð Þ2

q
and its minimum found by the equation _d¼0, corresponding to the condition y1 t

� �¼ y2 t
� �

for a certain time t.

This time corresponds to the time of minimum distance between the two satellites and it is equal to t¼ t0þ y10�y20
2 _y2

, that is,

t¼ t0þ ℓ

Vo
þdtini

2
,

In this way, one gets the minimum distance between the satellites, that is, Equation (10) of Section 3:

dmin ¼ x1 t
� ��x2 t

� ��� ��=V0 dtini cos Δu
2 (Equation 10 of Section 3)

To have the possibility of link, we have to verify the condition

D>V0 dtini cos
Δu
2

:

In such a case, the situation is shown in Figure A.2. The duration of the ISL is the difference

t2� t1 between the two times where the satellite distance d is equal to D:

d t2
� �¼ d t2

� �¼D:

Using the kinematic equations, we get

d2 tð Þ¼ d2min þ y1�y2ð Þ2:

Then, the condition d2 ¼D2 implies

y1�y2j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2�d2min

q
:

F IGURE A .1 Motion of the satellites near the link region.
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The modulus has values

y1�y2j j ¼2ℓsin
Δu
2

þV0dtini sin
Δu
2

�2V0 sin
Δu
2

t� t0ð Þ,

y1�y2j j ¼�2ℓsin
Δu
2

�V0dtini sin
Δu
2

þ2V0 sin
Δu
2

t� t0ð Þ:

Corresponding to the two solutions in time:

t1,2 ¼ t0þ
2ℓsin Δu

2 þV0dtini sin Δu
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2�d2min

q
2V0 sin Δu

2

:

Then, the ISL duration is equal to

ISLtime ¼ t2� t1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2�d2min

p
V0 sinΔu

2
(Equation (11) of Section 3)

Derivation of x, δ xð Þ of Equation (23), Section 4

The position x of the ground station within the ground station/satellite visibility area and the related angle δ xð Þ are hereafter derived.

The position of the ground station at the satellite arrival time t��iniS (see Equation (22) of Section 4) is computed by the angle:

λx ¼ λ0þ t��iniS ωE:

In the case of visibility (see below), we compute

d�x¼RE cos L0 λk�λxj j:

So,

x¼ d�RE cos L0 λk�λxj j:

Now, the visibility condition is derived:

If λx is such that RE cos L0 λx�λkd e< d, then we have visibility at intersection point defined by the absolute longitude λk .

For the determination of δ¼ δ xð Þ, consider Figure 15 of Section 4, and the triangle of vertices A1C3x, its edge ℓ has length

ℓ2 ¼ x2þR2
sw,

F IGURE A .2 The distance d between the satellites and the ISL distance D.
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with x station position at visibility time. The angle α, within the triangle of edges ℓ,c e d–x, see Figure 21, verifies

ℓ2þc2�2ℓccos α¼ d�xð Þ2 ⟹ α:

Consider now the triangle of Figure 15 with vertices A1B2x having edges ℓ,Rsw ,y: The edge length y can be obtained by the formula:

y2�2yℓcos αþd2 ¼Rsw
2 ⟹ y,take the lower of the twosolutions:

The angle ϵ of the triangle ℓ,Rsw ,y of Figure 15 at the vertex A1 is defined by

l2þRsw
2�2lRsw cos ϵ¼ y2 ⟹ ϵ:

Then, finally, we get the angle δ:

δ¼ αþε,

Note that the station reaches each intersection point once a day; hence, in the period of ground track repetition, we get the arrival times

t��iniSþmNodal day,

where the nodal day takes into account the J2 effect.

CARLETTA ET AL. 31
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