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Abstract
A tuned liquid damper (TLD) is a passive control device that transfers kinetic energy from the main structure to a liquid 
sloshing in a tank. The mechanical description of a sloshing liquid contained in a tank requires an intricate mathematical 
formulation. An alternative technique describes the TLD dynamic behavior as an equivalent mechanical model comprising 
a series of pendulums or mass–spring systems attached to the tank walls. To validate this approach, this paper compares 
the discrete model to experimental results and an analytical solution for a rectangular container attached to a pendulum 
(pendulum-slosh problem). At first, the fundamental oscillation period of the discrete model, representing a rectangular 
tank, is compared to experimental data and a classic analytical solution. Finally, we compare the pendulum-slosh problem 
modeled as a discrete model with the analytical solution and experimental results.

Keywords Sloshing · Continuous model · Discrete equivalent model · Experimental analysis · Video motion capture · 
Levenberg–Marquardt

1 Introduction

Light and flexible structures have been made possible with 
advancements in new materials and actual construction sys-
tems. When subjected to wind, waves and earthquakes, it 
is necessary to reduce the dynamic structural response to 

increase lifetime or comfort criteria. An economical way 
to control excessive vibration levels is to apply a passive 
control device, for example, a tuned liquid damper (TLD). 
A tuned liquid damper consists of a tank partially filled 
with liquid, usually water, properly tuned to absorber the 
vibrational excitation energy. Application examples can be 
found in buildings [1–4], wind turbines [5, 6], bridges [7, 8] 
and offshore structures [9]. Many tall structures have been 
effectively fitted with TLD devices, resulting in a significant 
decrease in structural motion [10, 11].

A TLD is a kind of tuned mass damper that transfers 
kinetic energy from the main structure to a liquid slosh-
ing in a tank. Although TLD construction is simple, the 
mechanical description of a sloshing liquid contained in a 
tank requires an intricate mathematical formulation, as seen 
in Abramson [12], Dodge [13] and Ibrahim [14].

As an alternative, Dodge [12, 13] described the dynamic 
responses of sloshing tanks for different geometries as 
an equivalent mechanical model composed of a sum of 
mass–spring systems attached to container walls. Dodge 
[13] summarized the equivalent mechanical model and 
presented an approach to describe the nonlinear effects and 
experimental derivation of a parameter model. Li et al. [15] 
developed a semianalytical/numerical method for equiva-
lent mechanical models of a sloshing fluid in an arbitrarily 
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shaped aqueduct. Only the first sloshing mode is considered 
for the analytical expressions of the equivalent models and 
their locations. A supplementary study [16] described an 
exact solution of an equivalent mechanical model of a slosh-
ing fluid in a rectangular tank. Tait et al. [17, 18] studied 
additional energy dissipation mechanisms such as damping 
screens and a sloping bottom. Kareem and Sun [19] pre-
sented an analysis of a sloshing fluid subject to stochastic 
excitation. The concepts of equivalent mass and damping 
can be used to experimentally determine the estimated val-
ues of an equivalent TMD by a shaking table test [20]. An 
equivalent fluid model is still the preferred choice for struc-
tural engineers.

The nonlinear dynamic characteristics of fluid sloshing 
are observed when external excitations develop high slosh-
ing amplitude (breaking waves) [13, 14]. Yu et al. [21] stud-
ied a numerical model of a TLD as an equivalent tuned mass 
damper with nonlinear stiffness and damping. The model 
incorporates the stiffness hardening property of the TLD 
under large amplitude excitation. In addition, semiempirical 
models of nonlinear TLD behavior were suggested by Sun 
et al. [22].

Equivalent mechanical models are also described by a 
series of pendulums to represent the oscillation of a sloshing 
fluid [13]. Nickawde et al. [23] and Yue [24] modeled the 
sloshing motion as a simple pendulum to study the stability 
of a coupled slosh-vehicle system. They employed pendular 
equivalent mechanical models to carry out studies on the 
modeling and control dynamics of spacecraft with fuel slosh. 
Cooker [25] presented a linear analytical approximation of 
a rectangular container attached to a pendulum, a rectangu-
lar container pendulum solution. De Langre [26] revisited 
Cooker’s problem as a one-degree-of-freedom slosh mode.

In this paper, an equivalent mechanical model is com-
pared to experimental results and an analytical solution of 
a rectangular container sloshing and a coupled pendulum-
slosh problem (Cooker’s sloshing experiment). The experi-
mental data of the fundamental period are obtained by a 
simple experimental procedure based on a floating element 
sensor and motion capture by video. First, the fundamental 
period of the rectangular tank is compared to the equiva-
lent mechanical model analytical solution and experimental 
results. The equivalent discrete models could correctly simu-
late the surface wave’s natural period in the tank. Finally, 
we compare the pendulum-slosh problem modeled as a dis-
crete equivalent model for the coupled system of a rectan-
gular container attached to a pendulum. In this example, we 
observe better agreement when the equivalent model com-
prises a series of pendulums.

Using a simplified experimental procedure, the pro-
posed modeling of a coupled pendulum-slosh problem by 
an equivalent mechanical model was validated by experi-
mental results and analytical solutions. In the literature, 

experimental investigations [3, 27–35] use intricate and 
costly techniques with lasers, video capture and/or capaci-
tive wave sensors to acquire wave motion. For an analytical 
comparison, Love and Tait [34, 35] compared a 2D pendu-
lum-slosh system using an equivalent mechanical technique 
with experimental results.

In Sect. 2, we present a mathematical description of fluid 
sloshing in a rectangular reservoir-suspended pendulum. 
This section presents an analytical solution and the pro-
posed discrete model of Cooker’s sloshing experiment. The 
experimental apparatus and the procedure of modal param-
eter identification are described in Sect. 3. Finally, in Sect. 4, 
the discrete equivalent model is compared to the analyti-
cal solution and experimental results of Cooker’s sloshing 
experiment.

2  Sloshing in a rectangular tank‑suspended 
pendulum

It is important to differentiate shallow water tanks from 
deep water tanks. Some authors may model water tanks 
differently depending on this condition. Le Méhauté [36] 
defined, for a first approximation of linear theory, that there 
are three different classifications for describing a standing 
wave, which are deep water (H∕L > 0.5) , intermediate water 
depth (0.5 > H∕L > 0.05) and shallow water (H∕L < 0.05).

Motivated by the observation of the interaction of the 
pendulum movement coupled to a tank filled with liquid at 
different levels and how the walls of the tank generate waves 
that affect the motion of the pendulum, Cooker [25], based 
on the assumption of small displacement of the tank, used 
linearized shallow water equations to model the motion and 
derive time-periodic solutions for the system whose periods 
are governed by a transcendental relation.

2.1  Cooker’s sloshing experiment

The isolated tank (Fig. 1), as the first system to be analyzed, 
is defined in an inertial reference frame (x, y) , where the 
horizontal coordinate is x , and x = 0 is halfway along the 
tank when the tank is in the equilibrium position. The y axis 
is directed vertically upward, and y = 0 is the level of water 
depth. The tank has a length L and a displacement X(t) so 
that the end walls lie at x = ±d + X(t) , where d = L∕2.

The empty container has mass m . The contained liq-
uid has mass M = �LHW  , where � is the density and W  is 
the container width. The tank is acted upon by two forces. 
The first is the horizontal tension component in the sup-
ports, which together give a restoring force on the tank 
(M + m)gX∕l , where g is local gravity acceleration, directed 
toward x = 0.
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The second force is the wave loading on the end 
walls, which is approximated by the hydrostatic pres-
sure �g(� − y) at a position with coordinate y ≤ � . Con-
sequently, if �∕H is small, the equation of motion of the 
pendulum-container system is written as

where �2 = (1 + 1∕R)g∕l and R = m∕M.
If we apply linearized shallow water theory [12–14], 

the free-surface displacement �(x, t) is calculated by the 
following expression [25]:

where X0 = |X|(x = ±d, t) is the absolute horizontal dis-
placement water level at the container walls, H is the con-
tainer depth, � is the circular frequency, k = �∕

√
gH is the 

dispersion relation if we assume kH is small, vn = n�∕d , 
�n = vn

√
gH , �n = (n − 1∕2)�∕d , and �n = �n

√
gH . If the 

tank is held rigid so that X0 = 0 , then usual standing waves 
occur. The symmetric and antisymmetric free-surface modes 
have wavenumbers vn = 2n�∕L and �n = (2n − 1)�∕L , 
respectively, where n is an integer. The term n = 1 gives the 
fundamental mode with period Ts = L∕

√
gH.

Using (2) to describe the surface elevation � , we have 
the following:

(1)d2X

dt2
= −�2 +

�gWH

m
[�(+d, t) − �(−d, t)]

(2)

�(t) = HkXo exp (i�t)
sin (kx)

cos (kd)

+ i
√
H∕g

∞�

n=1

�
an sin

�
�nt

�
exp

�
��nt

�
+ bn sin

�
�nx

�
exp

�
��nt

��

(3)

d2X

dt2
= −�2 +

XoHkg

Rd
tan (kd) exp (i�t)

+ 2i
�WH

√
gH

m

∞�

n=1

bn(−1)
n exp

�
i�nt

�

The temporal solution of Eq. (3) is as follows:

where C is an arbitrary constant and R = m∕M = m∕�WHL.

By considering X(t) = X0 exp (i�t) as the periodic solu-
tions of Eq. (3), then we must have C = 0 and Dn = 0 . We 
arrive at a condition for the wavenumber, for which the peri-
ods are governed by roots of the transcendental equation as 
follows:

where s = kd and G = (1 + R)d2∕Hl.
Equation (6) has an infinite set of positive solutions for 

s , which in order of increasing size are s1, s2, s3,… , where 
for strictly positive G and R , the roots lie in the interval 
0 < s1 < 𝜋∕2 , and for n ≥ 2 , (n − 3∕2)𝜋 < sn < (n − 1∕2)𝜋 . 
Root s1 corresponds to the longest wavelength, for which the 
tank and wave motions are in phase.

As shown by the left- and right-hand sides of Eq. (6), 
s = kd represents the points of intersection of the two curves 
that give the roots s1, s2,… The smallest s1 corresponds to 
the fundamental mode.

Root s2 corresponds to a range of surface shapes with 
between one and three nodes: If there is one node, then the 
surface oscillates in antiphase with the tank. The higher 
modes are less important and correspond to short wave-
lengths that are not appropriately modeled under the 
assumption that kH ≪ 1 . The fundamental period T  corre-
sponds to T = �L∕

�
s
√
Hg

�
.

(4)X(t) = B exp (i�t) + C exp (i�t) +

∞∑

n=1

Dn exp
(
i�nt

)

(5)B =
XokgH tan (kd)

Rd
�
�2 − �2

� and Dn =
ibn

√
gH(−1)n

Rd
�
�2 − �2

n

�

(6)
G

s
− Rs = tan (s)

Fig. 1  Schematic representa-
tion of a suspended container 
with sloshing liquid swings like 
a pendulum [modification of 
Cooker [25] ]
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Comparing the coupled period T  with the natural period 
of an empty tank Tp = 2�

√
l∕g of length l (moving as a sim-

ple pendulum) and the fundamental period of the standing 
wave Ts = 2L∕

√
Hg (for the tank held fixed), we can con-

clude as an important general result that when the coupled 
system oscillates, its period T  is greater than Tp and Ts

2.2  Equivalent mechanical models

The dynamic effect of lateral sloshing can be equally well 
represented by an equivalent (spring–mass) mechanical 
model. A filled tank may be considered an element of only 
one mass since the water does not have a free surface to 
oscillate. When there is a free oscillating surface, the tank 
can be considered an element with two different masses. 
The first is called the impulsive mass mo (rigidly attached 
to the tank), and the second is called the convective mass 
m1 (the oscillating water portion inside the container), as 
shown in Fig. 2. In Graham and Rodriguez’s model [13], m1 
is connected to the tank through stiffness springs k1∕2 (when 
we consider one spring–mass, we consider the fundamental 
mode of sloshing). Higher modes (n > 1) have low impor-
tance for vibration control. The model parameters such as 
m1 , k1 , and mo are determined as a function of the tank shape 
ratio f (H∕L).

The coefficient mliq corresponds to the total liquid mass in 
the tank, h0 is the height of the impulsive mass, and h1 is the 
height of the convective mass. The fundamental frequency 
of the container �1 , considering only the convective mass, 
is equal to �1 =

√
k1∕m1 for rectangular tanks with length 

L and water height H.
Considering bidimensional sloshing modes excited by 

an imposed x-direction translation of a container, the fluid 

force amplitudes exerted on the container’s lateral surface 
are expressed as:

where Fx0 = FR
x0
− FL

x0
 , as represented in Fig. 1, is the hydro-

static resultant force. Equation (7) is compared with the fol-
lowing expression for force due to a spring–mass model:

Then, the inertial mass mn is expressed as

The natural frequencies of rectangular containers are

Then, the equivalent stiffness parameter kn is calcu-
lated as a function of the spring–mass natural frequency 
(�2

n
= kn∕mn) as follows:

According to the continuity equation m0 +
∑

mn = mliq , 
impulsive mass mo is calculated by:

(7)
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−�2X0mliq

= 1 + 8
L

H

N∑

n=1

tanh ((2n − 1)�H∕L)

(2n − 1)3
�2

�2
n
−�2

(8)
Famp

−�2Xomliq
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N∑

n=1

mn

mliq

�2
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n
−�2
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8
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H

tanh ((2n − 1)�H∕L)

(2n − 1)3
mliq

(10)�2
n
= (2n − 1)�(g∕L) tanh ((2n − 1)�H∕L)

(11)kn = �2
n
mn =

8

�2

g

H

tanh2 ((2n − 1)�H∕L)

(2n − 1)2
mliq

(12)m0 =

[
1 −

8

�3

L

H

N∑

n=1

tanh ((2n − 1)�H∕L)

(2n − 1)3

]
mliq

Fig. 2  Lateral sloshing in a rec-
tangular container (a) described 
as an equivalent mechani-
cal model composed of an 
additional inertial mass m

o
 and 

inertial masses m
i(i = 1… n) 

coupled to spring dashpots 
k
i(i = 1… n) (b)

(a) (b) 
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2.2.1  Proposed equivalent model for Cooker’s pendulum

Cooker’s pendulum (Fig. 1) can be described as an equiva-
lent spring–mass mechanical system coupled to a pendulum. 
Figure 3 models the container’s sloshing liquid as only one 
equivalent spring–mass system to describe the fundamental 
sloshing mode (n = 1).

The equation of motion for the pendulum, representing 
the main system reduced to a degree of freedom, is presented 
as a matrix as follows:

3  Experimental procedure

In this section, we briefly describe the experimental proce-
dure used to identify the sloshing oscillation frequency of a 
rectangular container (filled with water) put over a pendu-
lum. In Sect. 3.1, a description of the experimental apparatus 
presents how the dynamic level of the liquid free surface was 
measured. In Sect. 3.2, temporal responses are fitted using 
a damped harmonic function to characterize the experimen-
tal modal parameters. The Levenberg–Marquardt nonlinear 
least-squares technique in the Curve Fitting Toolbox/MAT-
LAB was used to fit the time responses of the free surface. 
The determination of the experimental modal parameters 
of natural frequency and damping ratio as a function of the 
fitted coefficients was carried out using a damped harmonic 
function, as described in Sect. 3.2.

3.1  Description of experimental apparatus

To accomplish the free surface experimental setup, a liq-
uid volume is contained in a rectangular reservoir (glass 

(13)

[ (
m + mliq

)
l2 m1l

m1l m1

]{
�̈�

ẍ1

}
+

[ (
m + mliq

)
gl 0

0 k1

]{
𝜃

x1

}
=

{
0

0

}

aquarium) relative to various liquid depths. The dimensions 
of the reservoir are width L = 294 mm , depth W = 150 mm 
and height H = 196 mm (max). The mass of the empty 
reservoir is Mr = 808 g . In the laboratory of vibration 
and dynamic metrology (latitude −15.7633◦ , longitude 
−47.8731◦ and altitude 1020 m ), in Brasilia, Brazil, the 
local gravity acceleration is g = 9.7808 m/s2 (measured by 
a LaCoste & Romberg gravity meter, model G no. 613). In 
addition, in these experiments, the liquid was potable water 
with density � ≃ 997 kg/m3.

The free surface movement was captured using a digital 
camera (of a Galaxy S3 cell phone) at 30 frames per second 
(fps) and the motion capture shareware program CvMob [37]. 
To address the difficulty in capturing the free surface level due 
to the fluid meniscus, a floating element (fishing buoy) was 
used as a tracker. The buoy travels vertically along a nylon wire 
suspended from the bottom and upper sides of the reservoir. 
Figure 4 presents a schematic representation of the floating 
element disposition to experimentally track (using a digital 
camera and a motion capture program) the liquid’s dynamic 
level at a specific point on the free surface of a rectangular 
reservoir. Figure 5 shows an example of the liquid’s dynamic 
level by motion capture using CvMob and the digital video 
camera. At the left, we observe the motion capture of the float-
ing element represented by green points. At the right, the hori-
zontal motion of the floating element is plotted against time.

Modeled as a mass–spring, the floating element is described 
by the dynamic equation ü + 𝜔2

nb
u = 𝜔2

nb
𝜂 , where the buoy’s 

oscillation natural frequency is �2
nb

= �g�R2
b
∕mb , the floating 

element rayon Rb = 5.5 mm , and the floating element mass 
mb = 0.20 g . The floating element’s estimated natural fre-
quency is �nb = 68 rad/s , which is several times superior as 
the higher frequency (< 2𝜋rad/s) . Supposing that the free sur-
face follows a harmonic function (e.g., �(t) = �o sin�t ), the 

Fig. 3  Lateral pendulum coupled to an impulsive mass m
o
 and one 

spring–mass 
(
k1,m1

)
 equivalent model

floating element

wire

support

free surface

graduated
reference

Fig. 4  Schematic of the floating element disposition to track the liq-
uid dynamic level at a specific point on the free surface of the rectan-
gular reservoir
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ratio between the float movement and free surface is near unity 
( u∕� ∼ 1 ) for this experiment’s frequency range, in which the 
dynamic response of the floating element is not amplified, gen-
erating measurement error.

3.2  Identification of modal parameters

The Curve Fitting Toolbox (CFTOOL/MATLAB) was used 
to carry out the adjustment of a damped harmonic motion 
function g(x) = a1 exp

(
−a2t

)
sin

(
a3t + a4

)
+ a5 compared 

to an experimental trajectory obtained by the motion capture 
software CvMob. The Levenberg–Marquardt residual sum 
minimization method was chosen.

For the adjustment of experimental data, the fitting function 
(written as a damped harmonic motion) is described as follows:

In this case, function g(t) is a function with five adjust-
ment parameters: a1 = A , a2 = ��n , a3 = �d , a4 = � , and 
a5 = B , where A is the amplitude constant, ��n is the product 
of the viscous damping coefficient � and natural frequency 
�n , �d is the damped frequency, � is the phase angle, and 
B is the experimental offset due to the definition of the ori-
gin. For the nonlinear adjustment, we look for minimiza-
tion of nonlinear temporal functions g

(
t, a1, a2,… , a5

)
 used 

to adjust the signal dataset 
[
y1, y2,… , ym

]
 , where m ≫ 5 . 

Appendix A: Curve Fitting Toolbox shows an example of 
the identification of modal parameters obtained by capture 
of the liquid’s dynamic level, as shown in Fig. 5.

(14)g(t) = A exp
(
−��nt

)
sin

(
�dt + �

)
+ B

Therefore, to obtain the parameters ai(i = 1,… , 5) that 
minimize Eq. (14), which approximates the trajectories of 
the float, for each level that the tank is filled, we proceed to 
obtain the studied parameters, experimental natural fre-
quency 

(
�n

)
exp

 and experimental damped frequency 
(
�d

)
exp

 . 
The damped frequency �d is a function of the damping ratio 
� and natural frequency �n of a dynamic system as follows:

By algebraic manipulation, we can transform Eq. (15) as 
a function of the experimental parameters as follows:

where 
(
�d

)
exp

 and 
(
��n

)
exp

 are provided by functions for 
damped harmonic vibration that best fit the experimental 
trajectories. By this procedure, the modal parameters of 
natural frequency 

(
�n

)
exp

 and damping ratio (�)exp can be 
estimated with reasonable precision.

4  Results and discussion

In this section, we carry out the modal parameter identi-
fication of (a) rectangular container slosh motion and (b) 
coupled slosh motion and a suspended rectangular container 
(Cooker’s sloshing experiment) [25, 38]. The obtained 
experimental results (by the presented experimental 

(15)�d = �n

√
1 − �2

(16)
(
�n

)2
exp

=
(
�d

)2
exp

+
(
�n�

)2
exp

Fig. 5  Example of the liquid’s dynamic level by motion capture software CvMob
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methodology) are compared with the analytical solution and 
mechanical equivalent model.

4.1  Validation by rectangular container slosh 
motion

The free surface of the rectangular container partially filled 
with water was examined to validate the experimental pro-
cedure. After the reservoir is subjected to a perturbance (an 
impulse), the float element is filmed for more than 20 peri-
ods of oscillation to determine the free surface’s dynamic 
behavior. This approach seeks to experimentally identify the 
first sloshing oscillation period for different liquid heights.

Figure 6 compares the experimental sloshing period 
T(s) as a function of the aspect ratio H∕L compared to the 
analytical solution (10) and discrete model solution. The 
results present good agreement with the analytical solution. 
As expected, the solution based on the equivalent mechani-
cal model is identical to the analytical solution. The relative 
error between the analytical solution and equivalent model 
was less than 2%.

Figure 7 compares the slosh period of oscillation T(s) as a 
function of the aspect ratio H∕L to different water wave theo-
ries (shallow and deep waters). The uncertainty envelope cor-
responds to the combined standard uncertainty [39], where 
the sensitivity coefficients are determined from the analytical 
solution (10). The experimental results for the slosh period 
of oscillation in the rectangular container are preponderantly 
characterized in shallow and intermediate water.

However, the reduction in the movement of the liquid by 
an equivalent system composed of only one mass–spring or 
pendulum can be a very strong approximation. In the compari-
son, there is good agreement between the model pendulum 

structure, a sloshing pendulum, in the experimental results and 
the analytical solution for the coupled system. The equivalent 
model of the sloshing pendulum manages to achieve a greater 
approximation. Figure 8 shows an analysis of convergence for 
the higher modes; the equivalent pendulum model presents a 
faster convergence for the first two convective masses.

4.2  Validation of Cooker’s sloshing experiment

The present study consists of Cooker’s sloshing experi-
ment using the rectangular tank placed on a pendular plat-
form (base supported by inextensible wires). The pendular 
platform has different lengths L = [290;407;537] mm and 
a pendulum mass Mp = 2454.0 g . The experimental study 
performs free vibration analysis of Cooker’s pendulum using 
video motion capture. The experiments are carried out for an 
initial displacement of 106 mm for several water levels (vari-
able aspect ratio). The pendulum motion is video recorded 
by a digital camera and captured using CvMob software. 
Each experiment is repeated three times.

Figure 9 shows the evolution of the experimental funda-
mental period of oscillation of Cooker’s sloshing experi-
ment as a function of the aspect ratio for different pendulum 
lengths L . The analytical coupled solution (6) (continuous 
line) and equivalent mass model (13) (dotted line) (discre-
tized with 10 mass–spring models) show reasonable agree-
ment with the experimental results. The present experimen-
tal results support the hypothesis of kH < 1.

Figure 10 shows the experimental damping ratio �[%] 
results as a function of the aspect ratio for different pendu-
lum lengths l . These results are necessary to determine the 
optimum parameters for passive control applications [40]. 

aspect ratio (H/L)
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

pe
rio

d 
[s

]

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
intermediate waters
equivalent model
experimental

Fig. 6  Sloshing period T(s) versus aspect ratio H∕L . Comparison of 
experimental results (o) by report to analytical solution (10) (solid 
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The damping ratio is less influenced by the pendulum length 
l , contrarily observed in oscillatory period T  (Fig. 9).

5  Conclusions

The present work presents a description of sloshing prob-
lems by equivalent mass parameters. By comparison with 
experimental results and a classic solution for a rectangular 
tank uncoupled (first case) and coupled to a pendulum (sec-
ond case), equivalent discrete models are validated for the 

results of the fundamental period of oscillation as a function 
of the aspect ratio H∕L , where H is the liquid depth and L 
is the reservoir length.

In the first case study, a rectangular tank is modeled by an 
equivalent mass model. The fundamental oscillation period of 
the equivalent mass model is compared to experimental data 
and the classic analytical solution with reasonable agreement.

The last case study shows the fundamental oscillation 
period of a pendular system suspending a rectangular tank. 
The dynamic system is modeled as an equivalent model with a 
spring–mass. The numerical results are compared with respect 
to experimental results and the coupled analytical solution 
by Cooker (1994). A reasonable agreement for the results is 
found by equivalent parameters with respect to the experi-
ments and the analytical solution coupled with relative errors 
of approximately 10%. This difference can be explained by 
the approximation of the liquid system by a single equivalent 
mass–spring system. Complementary studies and new experi-
mental results are required to verify this deviation.
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Appendix A: Curve Fitting Toolbox

Figure 11 shows an example of dynamic parameter identifi-
cation performed by the Curve Fitting Toolbox (CFTOOL/
MATLAB). This illustration presents the liquid’s dynamic 

Fig. 8  Convergence of the oscillation frequency �
i
[rad/s] of the dis-

crete model as a function of the i(th) equivalent mass. The ordinate 
presents the relative error 

(
�
i
− �exact

)
∕�exact(%)

Fig. 9  Experimental oscillation period T[s] as a function of the 
aspect ratio H∕L for different pendulum lengths l (“·”l = 290 mm , 
“×”−l = 407 mm , “+”−l = 538 mm ). Cooker’s pendulum analytical 
solution (continuous line) and mass equivalent model (dotted line) are 
compared with the experimental data

Fig. 10  Experimental damping ratio �[%] as a function of the 
aspect ratio H∕L for different pendulum lengths l (“·”l = 290 mm , 
“×”−l = 407 mm , “+”−l = 538 mm)
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level motion in a rectangular container observed by motion 
capture, as shown in Fig. 5.
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