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A B S T R A C T

This study addresses the drought phenomenon that affected the Po River, north of Italy, by jointly exploiting
methods based on measurements remotely sensed by the European Sentinel-1 C-band Synthetic Aperture
Radar (SAR) and meteo-climatological information derived from both in situ and satellite datasets. The
SAR methods consist of a baseline approach, which estimates the water-covered area from dual-polarized
SAR imagery using a constant false alarm rate (CFAR) approach, augmented with ancillary vertical ground
displacement information derived from SAR interferometry (InSAR). The meteo-climatological information
includes hydrometric water level, rainfall data, and the Standard Precipitation Evapotranspiration Index (SPEI).
Experimental results, obtained using a seven-year time series of SAR scenes collected over the Po River close
to the city of Piacenza and contrasted with ancillary external information, demonstrate the soundness of
the proposed SAR-based added-value products and their satisfactory accuracy in emphasizing both seasonal
trends and the drought phenomena occurred in the area. This paves the way for an operational use of SAR
measurements to monitor the water-covered area of the Po River and potentially other similar environments.
1. Introduction

Drought is a natural disaster with far-reaching consequences that
have plagued civilizations for centuries, leaving an indelible mark on
our world’s social, economic, and environmental fabric. Water scarcity
poses immense challenges for agriculture, ecosystems, and human well-
being, demanding immediate attention and comprehensive solutions.
Since 2003, there has been an increase in the frequency of drought
events in the Po River Basin, the longest Italian river, leading to a
gradual transformation in drought management (Musolino et al., 2018).
In 2022, the Po River was affected by the most severe drought of the
last 70 years, (Po River District Basin Authority - https://www.adbpo.
it/ (Montanari et al., 2023; Clifford, 2022). At the beginning of 2022,
a severe meteorological drought occurred over a large part of Europe
causing an exceptional scarcity of precipitation in Northern Italy, and
contributing to a prolonged hydrological drought that threatened water
resources security in the area (Montanari et al., 2023). The continuous
monitoring of the river basin is a key need to assist the planning
and development of regional and/or national strategies for managing
water resources. Satellite-based remote sensing platforms, due to their
synoptic and non-cooperative observations at fine-to-moderate spatial
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resolution, can be exploited to improve the understanding and manage-
ment of drought events. Optical sensors are a straightforward choice
since their measurements are relatively simple to be interpreted. How-
ever, optical radiation is sunlight-dependent and severely affected by
cloud cover and other adverse meteorological conditions that may limit
the information extraction process, especially for monitoring purposes.
These issues can be overcome by radar sensors that guarantee all-day
and almost all-weather observations together with a wide area cover-
age. Among the radar sensors, the Synthetic Aperture Radar (SAR), due
to its fine spatial resolution imaging capabilities (3 m to 30 m), is the
key candidate for monitoring the time evolution of the water content
of the Po River.

State-of-the-art SAR approaches to monitor the water extent of
inland water basins are mainly based on the use of time series mea-
surements. In Pipitone et al. (2018) visual matching and unsupervised
classification approaches are used to analyze the water level of the
Castello dam of the Magazzolo reservoir, Italy. Results, obtained using
both X-band SAR and optical imagery show that the combination
of different sensors can improve land/water discrimination. In Ding
and Li (2011), a time series of Environmental Satellite (ENVISAT)
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Advanced SAR (ASAR) images are used to monitor the water-area
variations of Dongting Lake, China. Results demonstrate the effec-
tiveness of the time series of SAR imagery to monitor changes in
water-basin extent. The same lake is analyzed in Xing et al. (2018)
using dual-polarization (DP) C-band Sentinel-1 (S-1) SAR imagery.
The authors adopt an empirical threshold to generate a binary image
where the water body is distinguished from the surroundings. In ad-
dition, it is shown that the vertical transmit and horizontal receive
(VH) channel outperforms the vertical transmit and vertical receive
(VV) one in identifying surface water. In Li and Wang (2015), Otsu’s
method is used to detect water bodies in the Spiritwood buried valley
using full-polarimetric (FP) C-band RadaRSAT-2 imagery. Experimen-
tal results show that the cross-polarized channel results in the best
land/water discrimination. In Zeng et al. (2017), the water body of the
Poyang Lake (China) is distinguished from the surroundings using a
histogram-based threshold. Experimental results show that the dense
time series of Sentinel-1 SAR imagery provides enough sensitivity to
track monthly variations of the water body. In Masetti et al. (2018),
the high-resolution (3 m) COSMO-SkyMed X-band SAR data are used
to monitor the artificial recharge basin area of the Po plain, together
with ground observations and numerical modeling. The study shows
that the approach is reliable in estimating the total infiltration capacity.
Finally, multi-polarimetric features are exploited in Ferrentino et al.
(2020) to evaluate the changes in the reservoir water body of Monte
Cotugno Lake (Italy). Results, obtained using a two-year time series
of DP Sentinel-1 SAR data, show that DP metrics outperform single
polarization (SP) ones in land/water separation.

Water content variations can also impact the land surrounding
a water body producing ground subsidence/uplift which can be ef-
fectively monitored with millimeter accuracy by multi-temporal SAR
Interferometry (InSAR) techniques (Stramondo et al., 2008; Wang et al.,
2012; Polcari et al., 2018). Such effects typically occur on the river
or lake banks and are mostly characterized by elastic or poroelastic
deformation according to the ongoing phenomenon and the material
response. The elastic deformation is characterized by ground sub-
sidence or uplift as a consequence of the increasing or decreasing
surface load mainly due to water mass increase in the ground and
water bodies in rainy seasons and vice versa in dry seasons (Gahalaut
et al., 2017; Vitagliano et al., 2020). On the other hand, poroelastic
deformation is mostly connected with the changes in water head level
in aquifers (Chaussard et al., 2014). When the water is withdrawn
typically the deposits undergo compaction effects that result in ground
subsidence, conversely, with the recharge, pores are refilled thus pro-
ducing ground uplift (Bell et al., 2008; Béjar-Pizarro et al., 2017). The
ground deformation occurring in areas surrounding water bodies has
been studied by satellite InSAR data. The ground subsidence and uplift
around Lake Mead, Nevada, induced by water level increase and drop
according to the elastic behavior of the deposits is studied in Cavalié
et al. (2007) using ERS 1-2 InSAR imagery. The Lake Mead area is also
investigated in Darvishi et al. (2021) using ERS1/2, Envisat, ALOS, and
Sentinel-1 data. The Siling Co Lake, in central Tibet, is studied in Doin
et al. (2015) using ERS and Envisat SAR imagery, which measures
subsidence of about 5 mm/yr associated with the increased lake load.
The elastic response to water level changes around Yangzhuoyong Lake,
Tibet, is investigated in Zhao et al. (2016) using Envisat SAR data.
The subsidence around Lake Nasser, Egypt, is modeled in Saleh et al.
(2018) and linked to the loading of the lake. The significant long-term
subsidence affecting the Yellow River Delta, China due to groundwater
exploitation is addressed in Yi et al. (2021) showing the key role of
poroelastic effects.

In this study, the drought phenomenon that affected the Po River
in 2022 is analyzed by jointly exploiting two different SAR-based
techniques and meteo-climatological information. The proposed SAR
processing has a twofold objective: to estimate the water-covered area
and track it over time; and to augment the previous estimates with

vertical ground deformation obtained through InSAR processing. These a

2 
two approaches are applied to a 7-years time series of Sentinel-1 SAR
scenes collected over a region of interest close to the city of Piacenza,
Italy, which includes the Po River (Fig. 1). This region is selected
since here the river calls for a complex shape, pushing the limits
of the applied SAR techniques. The meteo-climatological information,
which is here used to provide independent validation of the SAR-based
estimated trends, includes hydrometric water level, rainfall data, and
Standard Precipitation Evapotranspiration Index (SPEI). Experimental
results show that the water area estimated by the proposed approach
fits in-situ observations and is consistent with the InSAR-based mea-
surements. In addition, the approach allows the detection of both
seasonal and inter-annual trends, such as harsh drought phenomena.

The main innovative contributions of this study can be summarized
as follows: (a) the extraction of the water-body area, which is a quite
challenging task in the case of rivers due to their relatively small
bank-to-bank extension, is here addressed using both co- and cross-
polarized Sentinel-1 scenes showing that the former provides generally
more accurate results; (b) the time variability of the water-body area is
here investigated using a 7-year SAR time series that clearly emphasize
the anomalies associated to drought events confirmed by external
meteo-climatological information; c) the joint use of the proposed SAR
(water-body extent) and InSAR (vertical displacement) products can
help to monitor the effects of climate variation affecting the Po river
basin, and in particular, the drought phenomenon impacting this area
in the last years.

Although here we showcased the results on a portion of the Po
River, the wide swath of the Sentinel-1 mission makes the proposed
approach potentially applicable to regional scale studies, including
the entire hydrologic basin, and the network of tributaries, and to
other river basins, especially those located in remote areas, which are
hard to monitor through in-situ measurements. In addition, the joint
use of SAR-based and meteo-climatological information is shown to
provide useful information for monitoring the climate variation effects
at unprecedented spatial scales and spatiotemporal resolution.

2. Area of interest and datasets

2.1. Study area

The study area is depicted as a red box in Fig. 1 and includes the
Po River area close to the city of Piacenza, in Northern Italy. The Po
is the longest Italian river, stretching over 650 km from its source in
the Western Alps to the Adriatic Sea. The river flows through several
Italian regions, including Piemonte, Lombardia, Emilia-Romagna, and
Veneto, and has a catchment area of approximately 71,000 km2. The
rea surrounding the river is characterized by a mix of agricultural,
ndustrial, and urban land uses. The area is also densely populated
osting more than 15 million people (Bodini et al., 2000). The Po
iver and its tributaries are essential resources for the region’s water
upply, irrigation, and hydropower production. However, the basin
xperienced several droughts in recent years, leading to significant
ater scarcity and economic losses (Damilano, 2022). The most recent
rought was so impressive that its effect can be observed by visually
nspecting the two optical images of Fig. 2 which were collected on
ovember 18, 2018, i.e., before the drought event (a), and on July 18,
022, i.e., during one of the peaks of the drought (b).

.2. Data sources

The SAR dataset consists of a time series of 217 C-band S-1 images
ollected in Interferometric Wide (IW) mode over an area that includes
he Po River, from June 27, 2015, to September 18, 2022. This dataset
s used to estimate the water content and to perform the InSAR analysis.
he S-1 images are acquired along the ascending pass with an incidence
ngle of around 39◦. An excerpt of the speckle-filtered VV SAR scene

cquired on November 14, 2018, i.e., before (Fig. 3(a)) and July 20,
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Fig. 1. Pictorial view of the area that hosts the Po River. The red rectangle shows the selected region of interest adopted in this study. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
2022, i.e., during one of (Fig. 3(c)) the major droughts occurred in 2022
is here presented for reference purposes.

The ancillary datasets include information on meteo climatic trends:
hydrometric water level, rainfall data, and Standard Precipitation Evap-
otranspiration Index (SPEI). The hydrometric water level data are
recorded at the Piacenza station (ID 210700) from the Agenzia Inter-
regionale per il fiume Po (https://idrometri.agenziapo.it/Aegis/map/
map2d). The rainfall data refer to the Piacenza area (cell number
0288) and are extracted from a climate dataset produced by the Arpae
Climate Observatory (https://dati.arpae.it/dataset/erg5-eraclito) (An-
tolini et al., 2016). This dataset covers the whole Emilia Romagna
region and is obtained by spatially interpolating on a regular grid the
values measured by a network of meteorological stations.

The SPEI (Vicente-Serrano et al., 2010) is a multi-scalar drought
index based on precipitation and potential evapotranspiration. It com-
bines input data (e.g., rainfall and temperature) with climate and
statistical analysis to compute anomalies (i.e., deviations from the long-
term average) of the observed total surface water balance (difference
between precipitation and potential evapotranspiration) for any lo-
cation and time scale (1 month to few years). Therefore, the SPEI
index can be used to determine the onset, duration, and severity of
dry/wet conditions (respectively positive/negative SPEI values) in a
variety of environments. The SPEI is usually calculated on a daily basis
on different time scales and using a predefined time span (decades) as
the reference period. The time scale (accumulation period) corresponds
to the length of the rolling time window over which the total surface
water balance is calculated: 30 days for SPEI-1, 60 days for SPEI-2,
90 days for SPEI-3, and so on. The SPEI output consists of positive
and negative values, with SPEI≈0 representing normal conditions of
surface water balance in the selected time scale compared to the long-
term average, SPEI≈1/-1 representing a surplus/deficit of about one
standard deviation in surface water balance (wet/dry conditions). SPEI
values <–1 typically indicate moderate-to-severe drought periods.
3 
Different SPEI datasets exist, which are obtained using different
input data, model assumptions, and spatial resolutions. In this study,
the SPEI data provided by the Alpine Drought Observatory (https://
ado.eurac.edu/ Slovenian Environment Agency, & Central Institution
for Meteorology and Geodynamics, 2022) are used, since they include
a detailed analysis of the Alpine area performed using a time scale
consistent with the time period analyzed. We selected data referring to
the area of Lodi and Pavia provinces, which are adjacent to our study
area, and we considered different accumulation periods.

3. Methodology

The methodology to process the SAR dataset includes the estimation
of the water body area and deformations occurring along the banks of
the Po River.

3.1. Water body area estimation

The water body area is estimated from the Sentinel-1 scenes using a
constant false alarm rate (CFAR) approach that binarizes the Sentinel-
1 scene to distinguish the water body from the surroundings. The
methodology consists of the following steps.

The first step is to pre-process the SAR data set by performing: (a)
radiometric calibration to convert image pixel values to normalized
radar cross section (NRCS); (b) speckle noise reduction using an N×N
boxcar filter. In this study 𝑁 = 7 is used since it provides a good enough
trade-off between speckle reduction and spatial resolution; (c) terrain
correction to convert the SAR imagery from slant to ground range
coordinates using the digital elevation model (DEM) obtained from the
Shuttle Radar Topography Mission (SRTM) 1 Arc-Second, i.e., 30 m
spatial resolution; (d) resampling to generate square-pixel images of
13.9 m by 13.9 m; (e) multi-temporal coregistration of all the scenes
onto a common grid. Once the pre-processing is accomplished, the
co-polarized NRCS is used to generate the binary map.

https://idrometri.agenziapo.it/Aegis/map/map2d
https://idrometri.agenziapo.it/Aegis/map/map2d
https://idrometri.agenziapo.it/Aegis/map/map2d
https://dati.arpae.it/dataset/erg5-eraclito
https://ado.eurac.edu/
https://ado.eurac.edu/
https://ado.eurac.edu/
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Fig. 2. Excerpt of the Sentinel-2 scenes acquired on November 18, 2018 (a) and July 18, 2022 (b) over the area of interest.
The second step is to generate a binary image by contrasting each
pixel with a threshold. To cope with the speckled nature of the SAR
imagery, a CFAR method is applied to the NRCS image. A key step
to designing a CFAR method is studying the spatial distribution of the
NRCS over the clutter, i.e., a region that belongs to the water body of
the Po River. In Ferrentino et al. (2020), the NRCS distribution over
the water-covered area is found to follow a Generalized Gamma Distri-
bution (G𝛤D). According to the G𝛤D distribution, the CFAR threshold
is given by:

th =

⎧

⎪

⎨

⎪

⎩

𝜎
(

1
𝜇𝛤

−1 (1 − 𝑃fa, 𝜇
)

)
1
𝜈 , 𝜈 > 0

𝜎
(

1
𝜇𝛤

−1 (𝑃fa, 𝜇
)

)
1
𝜈 , 𝜈 < 0

(1)

where 𝑃𝑓𝑎 is the pre-assigned probability of false alarm, 𝛤 (⋅) is the
Gamma function, 𝜎, and 𝜇 represent the non-negative scale and power
parameters, respectively, and 𝜈 is the shape parameter (Stacy, 1962).
4 
The final step consists of extracting the edges of the binary map
that can be considered as the waterlines of the river. Once the latter
is available, the water body area is straightforwardly obtained by
counting the number of pixels within the waterlines and weighting
them according to the Sentinel-1 pixel size.

3.2. Ground deformation estimation

The ground deformation estimates are obtained using the InSAR
technique. It is well known that ground movement and topography
changes that occurred between two SAR acquisitions can be estimated
through the interferogram (Massonnet et al., 1993), that is the pixel-
by-pixel phase difference between the two SAR images. When using
large datasets of SAR images acquired for long-time spans, several
interferograms can be calculated and combined to reconstruct the
temporal deformation history of all the InSAR point targets identified
in the area of interest. In the last two decades, several methods have
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Fig. 3. Excerpt of the Sentinel-1 speckle-filtered SAR scenes collected on November 14, 2018 (a, b), i.e., before the main drought events, and on July 20, 2022 (c, d), i.e., during
one of the main drought events. The first column (a–c) and the second column (b–d) stand for VV- and VH-polarized SAR scenes.
been developed (Crosetto et al., 2016) to reconstruct such informa-
tion, all relying on the two main techniques proposed more than
two decades ago: the Permanent Scatterers (PS, Ferretti et al., 2001),
and the Small Baseline Subset (SBAS, Berardino et al., 2002). Here,
the S1 dataset acquired from 2015 to 2022 is processed by a multi-
temporal InSAR approach developed and implemented in the GAMMA
software (Wegmuller, 1997). The data are first multi-looked by factors
of 24 by 6 to reduce phase noise thus obtaining a pixel spacing of
about 90 m. Then the interferometric pairs are selected by setting a
maximum threshold for the spatial and temporal baseline to 100 m
and 100 days, respectively, returning in 1355 interferograms. A 30 m
spatial resolution DEM, provided by the SRTM mission, is then used
to remove the topography-related phase and the retrieved interfero-
grams are filtered by Goldstein filter (Goldstein and Werner, 1998),
unwrapped by Minimum Cost Flow algorithm (Costantini, 1998). The
interferograms affected by severe tropospheric artifacts and unwrap-
ping errors are manually removed. The whole stack of interferograms is
spatially sampled to extract point targets following coherence threshold
criteria, i.e., identifying all the points in the interferograms that can be
assumed as persistent in all the SAR images in the stack. Finally, ground
deformation velocity and displacement time series are estimated using
an extension of the Singular Value Decomposition (SVD) based on
Least-Squares inversion (Werner et al., 2012; Berardino et al., 2002).

4. Results and discussion

This section discusses the experimental results related to the esti-
mation of the water body area and the ground deformation and their
comparison with ancillary data.

4.1. Water body area estimation

In this subsection, first, the sensitivity of the waterline extraction
method is analyzed using selected test cases; then, the time-variability
of the water body area is analyzed using a time series of 88 S-1 images
(one per month from June 2015 to September 2022).

The sensitivity analysis consists of discussing the ability of the wa-
terline extracted by the co- and cross-polarized NRCSs to fit the edges
of the Po River. This task is carried out considering two meaningful
5 
SAR scenes, displayed in Fig. 3 according to a matrix format where
the two rows consist of the imagery acquired before and during the
major drought event that occurred in 2022; while the two columns
stand for the VV- and the VH-polarized NRCSs. In all the images, the
river appears darker than the background as expected since, from an
electromagnetic viewpoint, the water body represents a smooth surface
resulting in a backscatter lower than the surroundings, which in turn
appears, in the SAR scene, darker than the background. By visually
comparing the scenes collected before (first row in Fig. 3) and during
(second row in Fig. 3) the drought event, we can note that the darker
area associated with the water body reduces its size during the drought
in both the polarimetric channels (see panels (c) and (d) in Fig. 3). This
means that both co- and cross-polarized NRCSs provide information
about the loss of water-covered areas resulting from the drought. In
addition, there is also a fairly good visual agreement between the
SAR imagery of Fig. 3 and the Sentinel-2 scenes displayed in Fig. 2.
By visually inspecting the two polarimetric channels one can note
that the area covered by the water does not change significantly in
the pre-drought event (see panels (a) and (b) in Fig. 3); while non-
negligible differences appear in the co- (c) and cross-polarized (d)
imagery collected during the drought event.

To quantitatively analyze the area of the water-body estimated
using 𝜎0𝑉 𝑉 and 𝜎0𝑉 𝐻 , the waterline is extracted according to the pro-
posed methodology using a 𝑃𝑓𝑎 = 10−6, that resulted in the best
compromise in terms of water body detection/false alarms. The ob-
tained binary image is then refined with a morphological filter, which
consists of removing artifacts and filling holes. Finally, the waterline
profile is extracted from the binary image using the Sobel edge de-
tector algorithm (Raman and Aggarwal, 2009). A small portion of
the region of interest (ROI) excerpted over the true-color Sentinel-2
scene collected before the event, is displayed in Fig. 4(a); while the
corresponding 𝜎0𝑉 𝑉 and 𝜎0𝑉 𝐻 imagery are displayed in Fig. 4(b) and
(c), respectively where the extracted waterlines are annotated as red
lines. The extracted waterlines follow remarkably well the river profile
and no false edge is visible. Negligible differences appear in the two
extracted waterlines that can be likely due to the SAR processing. The
robustness and accuracy of the waterline extraction process depend,
of course, on the land/water separability. Therefore, to investigate
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land/water separability in a more quantitative way, co- and cross-
polarized NRCSs are evaluated along with the white dashed transect
of Fig. 4(b) and, depicted in Fig. 4(d), where a decibel (dB) scale is
used. The co- and cross-polarized NRCSs are represented using circle
red and square blue markers, respectively. Note that the plot also
shows the S-1 noise equivalent sigma zero (NESZ) value (−22 dB) that
is annotated as dashed black line, together with the thresholds 𝑡ℎ𝑉 𝑉
and 𝑡ℎ𝑉 𝐻 automatically selected by the CFAR approach to process the
𝜎0𝑉 𝑉 and 𝜎0𝑉 𝐻 imagery, respectively (see dashed red and blue lines).
In Table 1, the 𝑡ℎ𝑉 𝑉 and the 𝑡ℎ𝑉 𝐻 values are listed together with the
sample at which the values are reached. By jointly analyzing Fig. 4(d)
and Table 1 one can note that the two channels estimate a river bed
extent equal to 570 m (co-pol) and 598 m (cross-pol). To verify the
estimation accuracy, unfortunately, no ground information is available;
hence, we used optical measurements to carry out an independent
comparison. The Sentinel-2 optical image is processed through the
Normalized Difference Water Index (NDWI) which emphasizes values
associated with the water-covered area (McFeeters, 1996). The NDWI
values evaluated along with the transect depicted in Fig. 4(b) are
displayed in Fig. 4(d) as a pink line with square markers. Note that the
NDWI threshold 𝑡ℎ𝑁𝐷𝑊 𝐼 , that is empirically set to 0.4, is also annotated
as a pink dashed line. The 𝑡ℎ𝑁𝐷𝑊 𝐼 and the samples at which this metric
is reached in both the upper and the lower banks of the Po River are
listed in Table 1. The extent of the river bed estimated by the NDWI
is equal to 626 m. Assuming the NDWI as a reference, both the SAR
channels provide results comparable to the NDWI one (the difference
is within 10 pixels) with the cross-polarized channel providing the best
agreement. In addition, the main difference among the three metrics
applies to the lower bank. From an electromagnetic viewpoint, it is
worth noting that the cross-polarized signal is entirely below (above)
the NESZ over the water body (surrounding land). The co-polarized
NRCS is everywhere above the NESZ. To verify the ability of the co- and
cross-polarized channels to extract the waterline during the drought
event, the SAR scenes of Fig. 3(b) and (d) are processed. The ROI
extracted on the true-color Sentinel-2 scene is depicted in Fig. 5(a) and
the correspondent 𝜎0𝑉 𝑉 and 𝜎0𝑉 𝐻 imagery are displayed in Fig. 5(b) and
c), respectively where the extracted waterlines are also annotated as
ed lines. The scenario is completely different from the previous one
ince the drought event makes the river body very narrow in some areas
here sand appears (see the blue and the red dashed boxes in Fig. 5(a)

hat show sandy areas that are not present in the image of Fig. 4(a)).
y visually contrasting the 𝜎0𝑉 𝑉 and 𝜎0𝑉 𝐻 imagery of Fig. 5(b) and (c),
ignificant differences appear with the 𝜎0𝑉 𝐻 image resulting in a large
umber of false edges over the land area. In addition, the areas enclosed
n the boxes annotated in Fig. 5(a) appear not correctly identified by the
0
𝑉 𝐻 processing. This can be observed also in the transects depicted in
ig. 5(d) where the same format of Fig. 4(d) is adopted. The waterline
xtracted using the 𝜎0𝑉 𝑉 channel results in a fairly good agreement with
he NDWI one, see Table 1; while the cross-polarized channel is not
ble to distinguish the water body neither from the sandy area (in
he southern part of the bank) nor from the agricultural area (in the
orthern part of the bank). According to Table 1 and Fig. 5(d), when
ealing with the upper bank, the pixels where the threshold values are
eached in the co- and cross-polarized channels are close to the NDWI
ne. Significant differences apply when dealing with the lower bank.
n this case, the 𝜎0𝑉 𝐻 does not provide accurate enough results since it
oes not distinguish the water body from the sandy area. This is likely
ue to the low backscatter resulting from the water body and the sandy
rea, which is largely below the NESZ. All this matter demonstrates that
he scattering peculiarities that characterize the river under the drought
vent suggest using 𝜎0𝑉 𝑉 for the subsequent analyses since it provides
he most accurate extraction of the water-body area.

The binary images obtained from 𝜎0𝑉 𝑉 related to the Sentinel-1
magery of Figs. 3(a) and (c) are shown in Fig. 6(a) and (b), respec-
ively. The figure highlights the significant loss of water-covered area

hat occurred in the Po River from November 2018 to July 2022.

6 
able 1
alues of the CFAR thresholds corresponding to the selected 𝑃𝑓𝑎 for both the VV and

he VH channels and pixel number at which the threshold is reached both in the upper
nd in the lower bank of the Po River. NDWI threshold and pixel at which the threshold
alue is reached on both the upper and the lower bank. The distance column refers to
he distance (m) between the pixels lying in the upper and low banks.
Date Threshold Sample Distance [m]

Upper bank Lower bank

November 2018
𝑡ℎ𝑉 𝑉 −17.2 37 78 570
𝑡ℎ𝑉 𝐻 −21 34 77 598
𝑡ℎ𝑁𝐷𝑊 𝐼 0.4 36 81 626

July 2022
𝑡ℎ𝑉 𝑉 −17.8 37 48 153
𝑡ℎ𝑉 𝐻 −21 36 77 570
𝑡ℎ𝑁𝐷𝑊 𝐼 0.4 36 55 264

The number of pixels belonging to the water body (coded in black in
the binary imagery) reduced significantly in Fig. 6(b). It can be also
observed that, in some areas, the river is too narrow to prevent correct
CFAR processing. Once the binary image that distinguishes the water
body from the surroundings is obtained, the water body area can be
straightforwardly evaluated by using the Sentinel-1 pixel size (which is
equal to 13.9 m2).

The value in square km of the water body area estimated within
the area of interest of Fig. 1 over the whole time series of Sentinel-
1 SAR scenes (one per month) is depicted in Fig. 7. The plot shows
an oscillating trend that never decreases below 7 km2, except for
the period starting around summer 2022 that calls for a significant
decreasing trend that reaches a maximum water loss in 2022. This
result agrees with the independent information provided by the Po
River district basin authority which reported a sharp reduction of the
water area in the 2022 summer time (Clifford, 2022).

4.2. Ground deformation from InSAR

The ground deformation occurring along the banks of Po River is
estimated using a data set of 215 S-1 images collected from June 2015
up to September 2022. The Line of Sight (LOS) ground deformation
velocity estimated by InSAR analysis is shown in Fig. 8. Note that, due
to the S-1 incident angle of around 39◦, the LOS component accounts
for about 75% of the total vertical displacement, assuming a negligible
or null horizontal motion. A linear subsidence peaking at about 10–
15 mm/yr is detected along the Po River banks. This trend is consistent
with a typical river plain where the soft alluvial sediments may result
in consolidation processes or anthropogenic activities such as water
pumping or construction of infrastructures that result in ground sub-
sidence phenomena (Stramondo et al., 2008; Polcari et al., 2014). This
is what typically happens in the Po plain which is notoriously charac-
terized by long-term subsidence, especially in the delta region (Baldi
et al., 2009; Serpelloni et al., 2013). To mitigate the noise of InSAR
data that may result in several outliers, the displacements estimated at
the point targets located along the Po River banks (see the red polygon
depicted in Fig. 8) are averaged at each epoch (Fig. 9(a)). Moreover,
to remove the long-term effect and highlight seasonal and inter-annual
variations, the average time series are detrended (Fig. 9(b)).

Fig. 10 shows the comparison between the water body (blue lines)
and the InSAR time series (red lines). To make the two data sets
consistent, the InSAR time series is first monthly averaged and then pro-
jected along the vertical displacement component (Fig. 10(a)). To better
emphasize transient trend with respect to the high-frequency noise, an
additional 6-month moving average window is applied (Fig. 10(b));
while the cumulative detrended time series are displayed in Fig. 10(c).
The comparison between the two datasets shows that the two-time
series are roughly in counter-phase: the increase in the water body
area results in a decrease of the vertical displacement (subsidence) and,
vice versa, the river banks uplift when the water body area decreases.
This behavior applies, in particular, starting from mid-2021 till the
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Fig. 4. (a) Excerpt of the Sentinel-2 image that includes the Po River observed on November 18, 2018; (b) and (c) waterline extracted from 𝜎0
𝑉 𝑉 and 𝜎0

𝑉 𝐻 input images and
superimposed on the original VV- and VH-polarized NRCS SAR imagery, respectively, on November 14, 2018; (d) 𝜎0

𝑉 𝑉 (circle red curve), 𝜎0
𝑉 𝐻 (diamond blue curve) and NDWI

(squared pink curve) evaluated along with the transect shown in panel (b).
end of 2022, i.e., during the 2022 drought where a cumulated uplift
of about 6 mm is observed. This suggests that, at seasonal and inter-
annual time scales, the alluvial deposits over the banks of the Po River
mainly show an elastic response to water load: they subside when
loaded by an external source such as an increase in river water level,
surface water accumulation, and vice versa in the drought periods. This
behavior is consistent with literature studies carried out at different
spatial and temporal scales, with InSAR and other deformation data
(Global Navigation Satellite System – GNSS) (Li et al., 2020; White
et al., 2022). Even if at different spatial scales (basin area of Po River
compared to the local area along the riverbanks we are addressing in
this study) and spatial resolution (tens of kilometers for GNSS sites
and hundreds of meters for InSAR points), a recent study based on
vertical GNSS data shows that the whole Po River basin calls for
an elastic response to hydrological loading, showing clear uplifting
trend in drought periods (Pintori and Serpelloni, 2024). Future studies
considering InSAR data over a larger area, and possibly incorporating
GNSS data, could reveal information about the response of Po River
basins to changing climatic conditions at unprecedented detail and
provide key knowledge for water resource management. The additional
complexity resulting from the InSAR time series is probably due to the
superimposition of different types of responses expected by sedimentary
material in river plains (Vitagliano et al., 2020). Furthermore, at least
part of the observed InSAR signal could be related to the effect of soil
moisture variations along the riverbanks. Indeed, as shown in literature,
under specific conditions, the phase delay and the soil moisture exhibit
a non-negligible correlation (De Zan et al., 2014; Ansari et al., 2021;
Mira et al., 2022, 2024). This is due to the change of the dielectric
constant between SAR acquisitions due to soil moisture variations
7 
which cause a deeper/shallower penetration of the SAR signal thus
producing an apparent ground subsidence/uplift. Discriminating and
quantifying the contributions of real and apparent deformation due to
the elastic response and the soil moisture variations can be challenging.
In any case, since both processes are related to changes in the water
content in the ground, the correlation between InSAR displacement and
the water body area remains valid.

4.3. Comparison with external data

To assess the reliability of the water body area estimates, the latter
(blue curve in Fig. 11(a)) are contrasted with all the available ancillary
data. To be consistent with the monthly temporal sampling of the
SAR dataset, all ancillary data are sampled as mean monthly values.
Firstly, the water-body area is contrasted with the hydrometric water
level (red curve in Fig. 11(a)), which can be considered as external
benchmark information that is used operationally by the District Basin
Authority. It can be noted that the period under investigation shows
seasonal and inter-annual variability of climatic conditions, where
wet periods (e.g., 2018–2019, 2020–2021) alternate with dry ones
(e.g.,2017–2018, 2021–2022). In the period spanning from mid-2021
to the end of 2022, the effect of the severe drought (Bonaldo et al.,
2022) is observed, resulting in a hydrometric water level showing a
quasi-monotonic decreasing trend that approaches −1.5 m. The curves
of Fig. 11(a), exhibit a fairly good agreement demonstrating the ability
of SAR to detect the seasonal trend and to highlight anomalies, such
as the severe water loss associated with the 2017 and 2022 drought
episodes. To highlight the transient deviations from the average long-
term (2015–2022) behavior of water level and water-body area, the
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Fig. 5. (a) Excerpt of the Sentinel-2 image that includes the Po River observed on July 18, 2022; (b) and (c) waterline extracted from 𝜎0
𝑉 𝑉 and 𝜎0

𝑉 𝐻 input images and superimposed
on the original VV- and VH-polarized NRCS SAR imagery, respectively, on July 20, 2022; (d) 𝜎0

𝑉 𝑉 (circle red curve), 𝜎0
𝑉 𝐻 (diamond blue curve) and NDWI (squared pink curve)

evaluated along with the transect shown in panel (b).
cumulative-detrended time series is computed (i.e., first, the cumulative
series is computed, and, then, a linear trend is fitted to the cumulative
series and subsequently removed (Roeloffs, 2001)). The resulting time
series (Fig. 11 (b)) presents a fairly good agreement, highlighting
clearly alternated phases of dry and wet periods, as the steep decreasing
trends associated with the 2017 and 2022 drought periods (Baronetti
et al., 2020; Bonaldo et al., 2022). Moreover, we computed the cross-
correlation between the SAR water body and the water level data,
resulting in values higher than 0.7, at zero time lag, see Table 2. In
Fig. 11(c) the water body area is contrasted with the monthly rainfall
which represents one of the key factors affecting wet/dry periods. The
figure shows a fair agreement between periods of low (high) rainfall
rates and lower (higher) water-body areas. This is even clearer in
Fig. 11(d) where the cumulative detrended time series are contrasted.
It is worth noting that the decreasing trend observed in the rainfall data
spanning from 2016 to 2017 is captured by the SAR estimates starting
from late 2017. A time lag between the two curves applies while they
are almost time synchronous in detecting the decreasing trend that
occurred in 2022. This behavior can be also observed in Fig. 11(a)
and (b) suggesting some intrinsic differences between the onset of
the two drought episodes. The cross-correlation analysis confirms this
result with a moderate correlation (0.65) with a three-month time
lag between the two measurements. The monthly time series results
in a lower correlation likely due to the scattered nature of monthly
rainfall data. This indicates that the water body area mostly depends on
trends of rainfall cumulated over time, instead of short-period rainfall
variations.

The last comparison is with the SPEI indexes. The SPEI index is a
comprehensive metric of the regional-scale behavior of the Po River,
8 
which, embeds multiple meteorological information (Section 2.2). The
SAR water body area is compared with the SPEI related to different
aggregation periods (1 month – SPEI-1 – to 12 months – SPEI-12) for
the Pavia and Lodi areas. The cross-correlation analysis shows moder-
ate values, slightly higher for the Pavia area with a maximum value
(equal to 0.62) corresponding to SPEI-6 (Table 2). The comparison
between the SPEI-6 time series and the water body area is shown in
Fig. 12 which shows a good agreement between the short-term peaks
in the water-body area and positive SPEI values. This could indicate
that the water body area reflects both short (monthly) and medium-
scale (years) climate time scales, possibly related to different drought
types, i.e. droughts affecting only the shallower soil levels or deeper
ones, affecting groundwater content (Vicente-Serrano et al., 2010). The
same agreement also applies when dealing with a strong reduction of
the water body area that corresponds to negative SPEI values. Note
also that SPEI values lower than −1 (which indicate severe drought)
correlate well with the reduction of the SAR-estimated water-covered
area that occurred in 2021–2022. In general, discrepancies between the
two datasets might be partly due to the different spatial scales involved.

To better understand the ground deformation affecting the river-
bank, the estimated InSAR time series are contrasted with the rainfall
and water level data, assumed as a proxy of the temporal trend of
the main factors potentially causing surface loading/unloading (water
accumulation/depletion in soil and river water level variation). Fig. 13
shows the comparison between monthly data (panels (a) and (c)) and
after applying a 6-month moving average (panels (b) and (d)), which
highlights inter-annual trends. All plots show that, at first order, dry
periods are associated with uplift, and vice versa, in agreement with
the elastic response to the elastic loading hypothesis presented in
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Fig. 6. Binary images related to the VV-polarized SAR scenes of Fig. 3 acquired before (a) and during (b) one of the major drought events.
Fig. 7. Water-body area estimated from the binary images obtained by the time series of 𝜎0
𝑉 𝑉 imagery.
Section 4.2. Discrepancies and time-lags between the compared time
series could be attributed to data uncertainties and different spatial res-
olutions, to further complexities affecting the InSAR data, as discussed
9 
in Section 4.2, and to the complex response of the soil to periods with
climatic conditions of different intensity and temporal duration. These
results suggest the use of InSAR ground deformation measurements to
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Fig. 8. LOS displacement estimated using the whole InSAR data set within the area of interest depicted in Fig. 2. The point targets are colored according to the displacement in
mm/year. The polygon that will be used in the subsequent experiments is also annotated in red. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 9. The mean displacement (a) related to the point targets within the red polygon of Fig. 8 and its detrended (b) version. The blue line indicates the linear deformation trend.
cross-validate and support the interpretation of the water-body area
results.

5. Conclusions

This study is to discuss the ability of multi-polarization Sentinel-1
SAR imagery to monitor variable conditions of river basins associated
with different meteo-climatic trends, with a special focus on hydro-
logical droughts, as the one that hit the Po River basin in 2022.
Added-value products are derived from a 7-year time series of SAR
and InSAR measurements to analyze the drought events through the
10 
water-area coverage and the ground displacements. These added-value
products are then contrasted with meteo-climatological products to
demonstrate their performance. Although the SAR-based processing
is based on state-of-the-art approaches, the following novelties are
introduced:

(a) The SAR method to extract the water-body area is applied to
a challenging position of the Po River that calls for a very
complex shape. Experimental results show that, unlike the liter-
ature that suggests using the cross-polarized channel to detect
the waterline of inland basins, here the co-polarized channel
performs best under drought conditions. We also elucidated the
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Fig. 10. SAR-based estimates are contrasted with external info. (a) Water body area against InSAR vertical displacement; (b) 6-month moving average water body area against
6-month moving average vertical displacement; (c) cumulated and detrended water body area against cumulated and detrended vertical displacement.
Table 2
Cross-correlation results between the water body area time series (and the related
cumulative detrended time series) and the ancillary data time series.

Water Body Area VS Correlation
value

Time lag
(months)

Rainfall 0.37 0
Cum. det. Rainfall 0.65 3
Hydrometric Water Level 0.80 0
Cum. det. Hydrometric Water Level 0.72 0
SPEI-1 (Pavia/Lodi) 0.45/0.35 0/0
SPEI-3 (Pavia/Lodi) 0.55/0.47 0/0
SPEI-6 (Pavia/Lodi) 0.62/0.54 0/0
SPEI-12 (Pavia/Lodi) 0.56/0.55 0/0

physical processes that are at the basis of this result, namely
the occurrence of sandy areas (under drought event) that call
for a backscatter indistinguishable from the water one using the
cross-polarized channel.

(b) To the best of our knowledge, the SAR water-body area has
never been contrasted with the InSAR-based ground displace-
ment. Although there is still room for a deeper understanding
of the physical processes linking the two information, this study
paves the way to synergistic exploitation of ground motion and
under-extent information.
11 
An additional key novelty arising from this study consists of con-
trasting information derived by SAR (and therefore available on a fine
spatial resolution scale over a dense enough time scale) with meteo-
climatological information available at a different time and spatial
scale/ Experimental results are convincing and can be summarized as
follows:

(a) the time evolution of the water body area extracted from the
time series of co-polarized Sentinel-1 imagery agrees fairly well
with the independent hydrometric rainfall and SPEI informa-
tion, suggesting including SAR-based analysis to help decision-
makers;

(b) the ground deformation appears to be mainly linked to the elas-
tic response of the riverbanks to the water load variation (sub-
sidence in periods of increasing water level during the rainfall
season and uplift in drought periods, as the recent one in 2021–
2022). However, the effects of additional factors (e.g., inelastic
deformation or processing inaccuracies due to soil moisture
variation) cannot be excluded;

(c) the time evolution of the ground deformation clearly points out
an anomalous behavior in 2021–2022 confirming the severity of
the drought event.
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Fig. 11. SAR-based estimates are contrasted with external information. (a) Water body area against water level; (b) cumulated and detrended water body area against cumulated
and detrended water level; (c) water body area against rainfall; (d) cumulated and detrended water body area against cumulated and detrended rainfall.

International Journal of Applied Earth Observation and Geoinformation 133 (2024) 104095 

12 



E. Ferrentino et al.

Fig. 12. SAR-based estimates (blue line) are contrasted with the SPEI-6 time series. Note that the red (blue) bars indicate negative (positive) SPEI values. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. InSAR-based vertical displacement is contrasted with hydrometric water level (a, b) and rainfall (c, d) data. Both are represented as monthly values (a, c) and 6-month
moving averages (b, d).
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