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We study the nonrelativistic limit of quantum fields for an inertial and a noninertial observer. We show
that nonrelativistic particle states appear as a superposition of relativistic and nonrelativistic particles in
different frames. Hence, the nonrelativistic limit is frame dependent. We detail this result when the
noninertial observer has uniform constant acceleration. Only for low accelerations, the accelerated observer
agrees with the inertial frame about the nonrelativistic nature of particles locally. In such a quasi-inertial
regime, both observers agree about the number of particles describing quantum field states. The same does
not occur when the acceleration is arbitrarily large (e.g., the Unruh effect). We furthermore prove that wave
functions of particles in the inertial and the quasi-inertial frame are identical up to the coordinate

transformation relating the two frames.
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I. INTRODUCTION

Since the theoretical proposal of the Unruh effect [1-3]
as the equivalent of the Hawking effect [4] in accelerated
frames, there has been a wide interest in detectors able to
reveal such an effect. In their pioneering works, Unruh and
DeWitt [3,5,6] considered a particle in a box detecting
field excitation in the comoving frame via monopole
coupling. These works provided a toy model for the
description of noninertial detectors that interact with fields
in their proper frame and produce acceleration-induced
effects. The same model has been used in the context of
electrodynamics for light-matter interaction of accelerated
atoms (see e.g., [7-9]).

Atomic Unruh-DeWitt detectors are described by a first-
quantization prescription: the atom is assumed to be non-
relativistic and made by a fixed number of particles.
However, to the best of our knowledge, the fact that such
a description is frame dependent has been overlooked.
Remarkably, one has to take into account that the labo-
ratory and the atom frame have different representations for
the same quantum system.

One of the features of quantum field theory in curved
spacetime is the fact that different observers give different
particle representations for the same state [10]. For
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instance, the vacuum state of an inertial frame appears
as a thermal bath of particles if seen by accelerated
observers [1-3]. As a consequence of such frame depend-
ence, the number of particles is generally not preserved if
one switches from one frame to another. This poses a
problem for the first quantization description of atomic
systems in noninertial frames. An accelerating atom—that
is prepared in the laboratory frame with a fixed number of
electrons—appears as made by an indefinite number of
particles in its proper frame.

In addition to fixed numbers of particles, nonrelativistic
energies are assumed for the first quantization of atomic
systems. One may wonder if, along with the number of
particles, the nonrelativistic limit is a frame dependent
feature of the quantum system. To address such a question,
in this manuscript we investigate the nonrelativistic limit of
fields in different frames.

In our previous work [11], we derived the nonrelativistic
limit of scalar and Dirac fields in curved spacetimes. Here,
we study the points of view of an inertial and a noninertial
observer. We show that the two observers do not always
agree about the nonrelativistic nature of particles.
Specifically, states that are nonrelativistic in the inertial
frame appear as a mixture of relativistic and nonrelativistic
particles if seen by the noninertial observer. We detail the
case in which the noninertial observer is uniformly accel-
erated, and we quantify the presence of nonrelativistic
particles depending on the magnitude of the acceleration a.

As a consequence of such frame dependence, accelerated
observers cannot rely on the nonrelativistic description of
atomic systems. Conversely, no problem arises when both

Published by the American Physical Society


https://orcid.org/0000-0002-0959-0647
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.085016&domain=pdf&date_stamp=2023-04-21
https://doi.org/10.1103/PhysRevD.107.085016
https://doi.org/10.1103/PhysRevD.107.085016
https://doi.org/10.1103/PhysRevD.107.085016
https://doi.org/10.1103/PhysRevD.107.085016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

RICCARDO FALCONE and CLAUDIO CONTI

PHYS. REV. D 107, 085016 (2023)

observers are inertial and moving with low relative veloc-
ities. We are, hence, motivated to look for a trade-off
between noninertial (a # 0) and inertial (a« = 0) motion,
which, respectively, produces acceleration-induced effects
and preserves nonrelativistic energies and number of
particles. We show that such a quasi-inertial condition is
met when « is sufficiently small and when both the state
and the noninertial observer are localized where the metric
is almost flat. In such quasi-inertial regime, the two
observers agree about the nonrelativistic nature and the
number of particles.

In addition, we show that wave functions describing
states in the quasi-inertial frame are approximated by the
corresponding wave functions in the inertial frame, with the
only difference coming from the coordinate transformation
relating the two frames. In other words, particle states
appear identical—i.e., with the same number of particles
and the same wave function—if seen by either observer.

We detail the results by considering Gaussian single
particles and the related quasi-inertial regime. The accel-
erated observer sees a nonrelativistic particle only when «a
is sufficiently small and the wave packet in the inertial
frame is narrower than the scale length of the curvature, but
wider than any relativistic wavelength. We also show that
the wave function describing the state the accelerated frame
is approximately Gaussian.

The manuscript is organized in the following way. In
Sec. II we consider an inertial and a noninertial frame and
show that such observers generally do not agree about the
nonrelativistic nature and the number of particles. In
Sec. III we consider the specific case of a constant uniform
acceleration. The case of low acceleration and a quasiflat
metric is discussed in Sec. IV. In such a regime, the
nonrelativistic limit, number of particles and wave function
of any state are approximately the same in the two frames.
We detail these results in Sec. V for Gaussian single
particles. Conclusions are drawn in Sec. VI.

II. INERTIAL AND NONINERTIAL FRAME

Here, we consider two sets of coordinates. With (z, X) we
refer to an inertial frame, characterized by the Minkowski
metric

M = diag(—c2, 1,1, 1), (1)

where c is the speed of light. We also consider a coordinate
transformation (7, X¥) — (T, X) such that the frame (7', X) is
noninertial and associated to a static metric g,,. The
condition of static spacetime guarantees the definition of
particles with defined real energy [l1]. Moreover, we
consider a complex scalar field in the inertial (¢) and in
the noninertial (&) frame. (7, X) transforms into ®(T, X)
as a scalar field, under the coordinate transformation
(t.%) > (T, X):

A - A -

&(T.X) = p(1(T. X),X(T. X)). (2)

The aim of this section is to show that the nonrelativistic
limit in (#,X) is generally noncompatible with the non-
relativistic limit in (7, X).

We start by decomposing ¢ with respect to Klein-
Gordon modes g(6) and h(6):

{czr,waﬂay - <mTCZ> 2] 9(0) =0, (3a)

[cznﬂwaﬂay - <m702> 2] h(6) =0, (3b)

where 0 is a discrete and/or continuum collection of
quantum numbers and ¢(@) and (@) have, respectively,
positive and negative frequencies:

9(0,1,%) = §(8,%)e" 0, h(6,t,X) = h(6,%)e 0,

(4)

with hw(0) as the energy of the single particle with

quantum numbers 6. The decomposition of the field ¢
reads as

d(1.%) = Z{g(@, ,X)a(0) + h(0,1,X)b'(0)], (5)

0

where Y, is a generalized sum, a(#) is the annihilation
operator for the particle with quantum numbers @ and b' ()
is the creation operator for the associated antiparticle.

The modes g(6) and h(6) are orthonormal with respect to
the Klein-Gordon inner product:

(9(0), 9(6"))kG = oo (6a)
(7(0), h(0))xG = —Bop (6b)
(9(0), 1(0))xc = 0. (6¢)

where
#F)ko =z [ x| D0 0.5)
P D)o (1 >} (7)

The deltas in Eq. (6) are generalized: they act as Kronecker
deltas for discrete indexes and as Dirac deltas for con-
tinuum variables.

We also define the vacuum state |Oy;) with respect to

a(6) and b(6):
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a(0)|0p) =0, b(0)[0n) = 0. (8)

Similar decomposition occurs for the field o:
S(T.X)=>" [G(@,T,)?)A(@)) +H(®,T,??)BT(®)} . 9
©

where G(©) and H(®) are curved Klein-Gordon modes
with real frequencies with respect to the time coordinate 7"

ch 2
o)~ (") |o@ =0 o
2 mc2 2
=) - () e —o. o
G(O,T.X) = G(©,X)e9OT (11a)
H(O.T.X) = H(©,X)eQOr, (11b)

A(®) (B(®)) is the annihilation operator associated to the
particle (antiparticle) with quantum numbers ©.

In this case, the orthonormality of G(®) and H(®)
modes with respect to the curved Klein-Gordon scalar
product is

(G(©),G(®))cks = o - (12a)
(H(©),H(®'))cks = —de0- (12b)
(G(0), H(0'))ckg = 0. (12¢)
Such a scalar product reads as
(@@ )exs = =3z [, XY =0T X)gH(T.%)
x {@*(T,)?)@@’(T,}?)
~ (T, X)9,®"(T, f()} . (13)

The vacuum state |Oxy) of the field & reads as

A©)|0ny) =0, B(®)[0xm) =0.  (14)

Creation and annihilation operators of particles and
antiparticles with respect to ¢ and @ are related by a
Bogoliubov transformation:

a0) = Y- |atv.004@) + po.0F @) (150

[S)

b(9) = Z[y(&, ©)B(®) +5(6.0)AT(®)|.  (15b)

(S)

A general procedure to compute Eq. (15) is the follow-
ing. One starts by isolating a(6) and b' () from Eq. (5) by
using the Klein-Gordon scalar product (7) and the ortho-
normality conditions (6):

a(0) = (9(0).#)xg.  D'(0) = ~(h(6).P)xg- (16)
Then, one combines Eq. (16) with the inverse of Eq. (2) and
with Eq. (9) to obtain an equation with the form of Eq. (15).
By using Eq. ((15) in Eq. (8), one can also derive the
relation between |0y;) and |Ony). The Minkowski vacuum
|Op) can be written as an element of the Fock space Fyu
generated by the vacuum state |Oyy) and the creation
operators A(©) and B'(©). Analogously, [Oyy) can be
seen as an element of the Minkowski-Fock space Fy [12].
We define the nonrelativistic limit as

hw

1<
" 1<e¢ (17)

in the Minkowski spacetime and
Se (18)

in the noninertial frame, where ¢ < 1 is a parameter that is
vanishing in the nonrelativistic limit. A nonrelativistic
particle in the inertial (noninertial) frame is defined by
the quantum numbers 6 (®) such that w(0) (Q(®)) is of
order given by Eq. (17) [Eq. (18)]. Correspondingly, a
nonrelativistic Fock state in the inertial (noninertial) frame
is defined by nonrelativistic particles created in the vacuum
state |[Opr) (|Onn))-

One can notice that, even if @ is nonrelativistic—i.e.,
haw(0)/mc* — 1 < e—the sum of Eq. (15) runs over all
values of O, including the ones such that Q(®) is
relativistic—i.e., |AQ(0)/(mc?) — 1| > e. This means that
the Bogoliubov transformation (15) mixes nonrelativistic
modes of one frame with relativistic modes of the other.
The effect is twofold. On one hand, the “sea” of noninertial
particles and antiparticles populating the Minkowski vac-
uum |0y;) in Fy generally includes states with relativistic
energies. On the other hand, a nonrelativistic particle

(antiparticle) creator a'(6) (@T(G)) can be responsible for
the creation and the destruction of relativistic noninertial
(anti)particles. These two facts imply that an element of
JFwm that is made of nonrelativistic (anti)particles, when
seen as an element of F, is generally made of relativistic
Minkowski (anti)particles. The other way around is also
true: not always an element of Fy; made by nonrelativistic
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(anti)particles is also made by nonrelativistic (anti)particles
in F M-

Given a frame of reference K, nonrelativistic states are
defined as elements of the Fock space of K made of
nonrelativistic particles. When seen by a different observer
K’, such states appear as a mixture of relativistic and
nonrelativistic particles. The conclusion is that the non-
relativistic limit is frame dependent.

One can also deduce from Eq. (15) the nonconservation
of particle and antiparticle number when switching from K
to K'. An element of F); with n particles and m anti-
particles is not an element of F; with the same number of
particles and antiparticles. This occurs because |0y;) is not a
vacuum state for Fyy, and Minkowski particle (antipar-
ticle) creators a'(6) (b'(0)) annihilate non-Minkowski
antiparticles (particles), besides creating noninertial par-
ticles (antiparticles).

III. INERTIAL AND ACCELERATED FRAME

In the present section, the noninertial observer is
assumed to have uniform acceleration a = c’a along the
x axis. We hence consider Rindler frames, defined by the
following coordinate transformations:

act, = exp(s,aX) sinh(acT), (19a)

ax, = s, exp(s,aX) cosh(acT), (19b)
with v € {L,R} and where s; = —1 and sg = 1. We also
assume that a > 0, so that the coordinates (#; , X; ) cover the
left wedge defined by x < —c|t| and (tg,Xg) cover the
region x > c|t|. It can be noticed that the two coordinate
transformations in Eq. (19) differ by a sign in front of a:
one can switch from the left to the right wedge and the other
way round by letting a — —a.
The metric g,, in the right wedge reads as

9 (T, X) = diag(—c?eX, 24X 1,1). (20)

The left wedge metric is obtained by a > —a in Eq. (20).
The scalar field in the Rindler frame @, is related to ¢
through Eq. (2):

—

&,(7.X) = ¢(1,(1.X).%,(T.X)), (21)

where the transformations 7,(T,X), %,(T.X) are given
by Eq. (19).

Here, we consider the decomposition of the Minkowski
scalar field c}ﬁ in Klein-Gordon modes with defined
momenta. For such decomposition, the quantum numbers

0 are the vectorial components of momenta k= (ky, ko, k3).
Equation (5) reads as

P(1.%) = / d%{f(/?,t,z)a(iéw f*(l?,t,i’)l?*(lz)}, (22)
R3
with

> flC2 iRk E
flk,t,%) = | ————=-e o)tk (23)
(27)32w(k)

as the Klein-Gordon mode with momentum & and frequency

w(k) = \/ <’”7Cz>2 + (ck)?, (24)

where k = [k].
Conversely, a decomposition of ®r can be obtained
by considering frequency € and transverse momenta

components K, = (K,,K3) as
0= (QK,) [13]:

éR(T,)?):/mdQ/ £K,
0 R?

x [F(Q, K. T.X)AR(Q.K )

quantum numbers

+F*(Q.K,.T.X)B (2, 1@)} . (25)
with

FQ.K,.T.X) = F(Q,K,.X)eKiXi-ioT (26a)

o 1 fn . /pQ
F(Q,KJ_,X):F E|Slnh<7>‘

2\ 2 ,aX
X KiQ/(ca) <\/6‘2Ki + (K) ¢ >’
h ca

(26b)

(26¢)

and where X | = (Y, Z) are the Rindler transverse coor-
dinates. K (&) appearing in Eq. (26b) is the modified
Bessel function of the second kind.

In the left wedge, ®; can be decomposed as @y with
X +— —X. Indeed, the Klein-Gordon equation in Rindler
spacetime,

{—62 + c20% + cre?X [82 + 02— (mc) 2} }F(C:)) =0
o 1 h 03 7 ,
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is invariant under the transformation a — —a, X — =X,
and the orthonormality condition

(F(©),F(6))cks = 5 (0 - ©), (28a)
(F*(8). F*(0)cxg = =5 (0 —6').  (28b)
(F(©). F*(©))ckg =0 (28¢)

also holds for the modes F(Q, K . T,-X, X 1) in the left
wedge. Therefore, by considering both wedges, the field

d, (T, X) is

éU(T,i)_/mdQ PK,
0 R2

-

x [F(Q, K. T.5,X,.X A, (Q.K))
+F*(Q.K,.T,s,X.X,)B(Q, fg)] . (29)

The Bogoliubov transformations relating a(k) and b(k)
with A,/(Q,f(l) and By(Q,I?L) [Eq. (15)] read as

+ a, (K, —@)B:(é)] , (30a)
b= Y / " 4o, / dzél[%(;:,é)a(@)
v={LR} V0 R?
+ a, (k. —é)AZ(é)], (30b)
where
7 A _ 3 e(slz'x) ﬂ 7 % (T e
ay(k,®)—Azdx—hcz D1 wo(Fy)| £ (7.0.7)
x F(©,5,X,(x))e® %1, (31)

X, = (y,z) are Minkowski transverse coordinates, 0, =
(©,,03) the transverse coordinates of 0= (0,,0,,05)
and 0(x) the Heaviside theta function. The function X, (x)
appearing in Eq. (31) is the inverse of Eq. (19b) when
t=T=0:

X,(x) = %ln(sbax). (32)

In Appendix A we provide an explicit proof for Egs. (30)
and (31).

We write Eq. (30) in a more compact form in the
following way:

a®) = / PO, (F.6)4,6), (33)
v={LR} /R’
b(k) = / d*@a,(k.0)B,(0).  (33b)
v={LR} /R’
where
- AB©) ifO >0
A,@)={ MO OO
Bj(-©) if® <0
- B,(®) if©®, >0
B8 = 2O O=0 1y
Aj(-@) if® <0

The Rindler vacuum state |0y , Oz )—which is annihilated
by A, (Q.K,) and B,(Q.K,) operators—and the
Minkowski vacuum state |Oy;) are related by the identity [13]

|OM> = S\OL»OR>» (35)

with the following unitary operator:

N 00 - Q
S = exp <2/ dQ/ d’K | exp (— ’B—>
0 R? 2

x [Am KB K ))
. L . A
LBl (@R DAL —Ku] ) (36)

and where O* = (O — 0")/2 is the anti-Hermitian part of
any operator O.

Equations (30) and (35) give the same results as Sec. II:
any Minkowski-Fock state |¢) € Fy; made of nonrelativ-
istic (anti)particles can also be seen as an element of
Rindler-Fock space Fir where the Minkowski vacuum
background |0y;) is converted into a sea of Rindler
(anti)particles—including relativistic ones [Eq. (35)]—and
any 4" (k) and b'(k) operator acting on |0y) is converted
into creation and annihilation operators involving also
relativistic modes [Eq. (30)]. The nonrelativistic limit in
the inertial frame is nonequivalent to the nonrelativistic
limit in the accelerated frame. Moreover, the number of
(anti)particle changes in the two frames.

We wonder if we can overcome such general differences
in specific regimes. So far, we have considered an arbitrarily
large acceleration. We may expect that in a limit in which the
two frames are similar, the nonrelativistic condition and the
number of (anti)particles become approximately equivalent.

085016-5



RICCARDO FALCONE and CLAUDIO CONTI

PHYS. REV. D 107, 085016 (2023)

In the following section we test the conditions for such
equivalence to occur.

IV. INERTIAL AND QUASI-INERTIAL FRAME

In the present section, we consider the case in which the
noninertial observer has a small acceleration with respect to
the nonrelativistic limit. Specifically, we require that

ha
% ~ 63/2. (37)

The limits (18) and (37) can also be obtained by considering
a diverging speed of light ¢ — oo with finite nonrelativistic
energy E=hQ—mc*~c" and finite acceleration
a=ac®>~c’. We remark that Eq. (37) is not a direct
consequence of the nonrelativistic limit, and it must be
considered independently of Eq. (18). Indeed, the limit ¢ —
oo does not specify if a has to go to infinity with finite a, or a
has to go to zero with finite a, or any other limiting
scenarios.

The acceleration a in Eq. (37) is sufficiently high for
noninertial effects to be present in the nonrelativistic limit.
Indeed, when a is such that Eq. (37) holds, noninertial
corrections to the Hamiltonian are of the same order of
nonrelativistic energies [11]. Also, a is low enough to
preserve the nonrelativistic condition and the number of
particles, as we show in the present section.

In addition to Eq. (37), we consider a further condition
that defines the quasi-inertial limit. Specifically, we assume
that quantum states are localized in a region of the right
wedge such that

lax — 1| Ze, alX| Ze. (38)
Moreover, we assume that the noninertial observer only has
access to such a region. For any X such that Eq. (38) holds,
the metric g,, is approximated by 7,, [Eq. (20)]. This
motivates our choice for the name quasi-inertial observer.

The localization condition (38) defines the set of particle
states that can be detected by the quasi-inertial observer.
For instance, left-Rindler (anti)particles are excluded by
such a selection, since they are localized beyond the
Rindler horizon. The same occurs for right-Rindler
(anti)particles with frequency Q < ca, which are localized
close to the horizon. Such localization is a consequence of

the fact that the F(Q, K,.T.X ) modes are exponentially
vanishing when Q < ca and aX Z —1. One can see this by
knowing that

ot
VE

when £ — oo, and, hence, F(Q, K T, )_f) is infinitesimal
at least of order

Kig(f) ~ (39)

F(QK,,T.X)~ 34exp (—e3/%). (40)

n Q
— sinh(”—) €
ca

a

We define a Fock space Fyq that is generated by
left-wedge (anti)particles with any frequency Q and by
right-wedge (anti)particles with frequency Q < ca. Fngr
represents the set of states that cannot be detected by the
quasi-inertial observer. Therefore, we define the partial trace
Trnqr over Fnar- Trngr maps any pure state (@) € F g into
a statistical operator p € Fq; = TryqrF L describing |®)
from the point of view of the noninertial observer. In
practice, the quasi-inertial observer is not able to distinguish
between any element of 'y and the vacuum state of F .

In the following, we show that an inertial and a quasi-
inertial observer agree about the first-quantization descrip-
tion of states that are localized in the region (38).
Specifically, we prove that any localized nonrelativistic
Minkowski-Fock state |¢) is also nonrelativistic in the
quasi-inertial frame, and that the number of (anti)particles
and the wave functions are the same.

We start by clarifying what we mean by localized
Minkowski-Fock states with respect to Eq. (38). Such a
localization condition is imposed on the wave functions of
|¢), which are defined in the following way:

2m\ -
Y et d3(n+m)k k
bonle) = (55) T [ 6

n+m

fokl,Ox, 1 7k;.0.%). (41)
j=n+1
where
X = (X1seees Xy X1 oo es X ) (42a)
k= (kysoookp Ksrs e o) (42b)

are collections of 7 + m vectors. ¢,,,, (k) is defined from the
decomposition of |¢) with respect to the Minkowski-Fock
space Fy

) = &4|0m). (43)
with
=3 [ @ =] # ()
n.m=0 R3(n+m n!m!iZI
n+m SN
< [T &' (k). (44)
Jj=n+1

¢pm(k) is defined to be symmetric with respect to

the momenta variables 121, En and with respect to
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lz,m, IZHW Given the definition of wave functions for
Minkowski states, one claims that |¢) is localized in (38) if
@,m(x) is vanishing for any position variable X outside such
a region.

We consider a nonrelativistic Minkowski-Fock state
|p) € Fy that is localized in the region (38). We, hence,
assume that ¢,,,, (k) and ¢,,,(x) are nonvanishing when,
respectively, all momenta are nonrelativistic,

ha (k)
—1<
- 1 <e, (45)
and when all position variables are inside the region (38).

The explicit expression for |¢) as an element of F; can

be obtained from Eqs. (33), (35), (36), (43), (44) and reads as

with
N 1
C,= 3(n-+m) @<I>,m, (CN7
’ anOZAP (ntm) ©.7) nlm!
n Ntz n—+m e o
< [ AL (©) B,,(0;), (47)
i=1 j=n+1
and

nim
< [ a,;.6)). (48)
j=n+1
where
0=(6,,...6,.6,.....0,.,) (49a)
V=Vl esVUpsVpils > Vnim) (49Db)

are collections of ® and v variables, and where the sum >
in Eq. (47) runs over all the possible v variables v € {L,R}.

By using Eq. (23) in Eq. (31) and by computing the
derivative with respect to X |, one obtains

a,(k. ) = (k. — 6, ),(k.©)), (50)
with
/ / dx0(s,x) (l?)] etk
hc? wo(k
X F Q, kl,s,, (51)

and k 1 = (ko, k3) as transverse coordinates of momentum
k. Asa consequence of the nonrelativistic nature of |¢) and
thanks to the Dirac delta function appearing in Eq. (50), one
deduces from Eq. (48) that ®,,, is vanishing when at least
one @-variable is such that | | > €!/2mc/h. This leads to
the following constrain for all ©-variables:

@ <el/2, (52)
mc ™

which implies that each 6 . must be a nonrelativistic
momentum.

Moreover, in the nonrelativistic limit (45), « (
be approximated by

-

,0) can

-

a8~ [ Pap(0.95,E6). ()

with

o (7.6) = 2] (290 ) (6,0

x e®u T, (54)

The relative error of Eq. (53) is of order e._

By using the relation between ¢,,, and ¢,,, [Eq. (41)]
and between a,(k,®) and @,(¥,©) [Eq. (53)], one can
approximate Eq. (48) with

2m n+m R
(n+m)
nm (@ V) (fl2> Auw»:) d x¢nm (x>
< [a,.6) ] &, .6, (55)

with relative error of order e. The locality condition can be
used in Eq. (55) by recalling the fact that the wave function
¢,m(x) is vanishing outside the region defined by X
variables such that Eq. (38) holds. The Heaviside theta
function appearing in Eq. (54) implies that a necessary
condition for the localization condition is that ®,,,(®,v) is
not vanishing only for all v variables being equal to R.
Therefore, hereafter we only consider the right-wedge wave
function ®,,,(®) defined by

®,,(0) =®,,(0.R), (56)
with
R=(R....R.R....R). (57)
— —
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One may also introduce a cutoff dx for any integration
variable x in Eq. (55) and assume that any integration can
be approximately performed in x € [a™! — 6x, a™! + Sx]—
with 6x ~ ea™! in the nonrelativistic limit—instead of the
full real axis. By considering such approximation in
Eq. (55) and using Eq. (41), one obtains

-

(i)nm (9) ~ / d3(n+m)k$”m (k) H a*(ki’ éi’ 5)6)
R3(n+m) i1

n+m

x ] o (k. 6,.60), (58)
j=n+1
with
JN 1 mc2 a'+6x
a(k,@,éx) = ﬁ <®] +fl> . d)C/RZ dzxL
x £ (k,0,%)F(6, Xg (x))e®r%:, (59)

By using Eq. (23) and performing the integral with
respect to X, Eq. (59) reads as

a(k,,6x) = (k. — 6, )y (k.©y,6x),  (60)

with

- VA mcz a’l+§x
x(k,Q,6x) = - <Q—|——>/ dx
( hCZ (k) h a~'—6x

x e F(Q k|, Xg(x)), (61)

which is the equivalent of Eq. (51) with a cutoff of 6x
and w(k) ~ mc2/h. o

We are interested in the behavior of a(k,®,dx) with
varying ©;, and we show that, when constraints (37), (38),
(45) and (52) hold, Eq. (59) is not vanishing only for 0,
such that

-]z (©2)

To this end, we perform the coordinate transformation

ax — 1
X = , 63
F= 2 (63)
with
2/3
G =21 (@) (64)
mc

as an acceleration-dependent adimensional variable. We
furthermore consider the following adimensional variables:

) 5
Coa=20 =2 (65)
mc a

=1

a
a

In this way, Eq. (61) reads as

ca s a [md K\ _(ak h©, a
x(k,@,éx):f,/ﬂexp<_i_1>;((a_7_;’“__x)’
a h a a mc- a

(66)
with
= Q41 ox .z = 2
(k. Q,8%) = M dxe MIF(Q k|, X)
V1 + 2ak?\/5x J-ox
(67)
and

—— [a . (mcQ ak ax +1
F(Q.k,.X)= %F< 7 ’7J_’XR< P >> (68)

as adimensional functions. The variable k, appearing in
Eq. (67) is made by the transverse components of k,
1.e.: ]_CJ_ = (7(2,]_(3).
Explicitly, Eq. (67) reads as
Q+1 ox
27323/ 1 + 2ak*/ adx J 5%
. h( Q )
sinh| —
V2a®

|1+ 2ak? -

and gives the distribution of energies Q in the quasi-inertial

d)—ce—i]_c]i’

;2(1?, Q,6%) =

x Kiayvaw

frame for different k. In Fig. 1 we plot such a function for
different values of k; and Q. We choose @ € {0.1, 1} and
6x € {1,10} to show the quasi-inertial limit (i.e., a < 1
and 6x < 1).

Conditions (37), (38), (45) in the new set of coordinates
read as

k| <1, ox <1, (70)
while Eq. (62) reads as

Q1]
—  <1.
P

(71)
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UOT)RIS[OIIE MO]

a=0.1, 6z =10

JLIjotI 'J‘I’,H[S‘l?llb

FIG. 1. Distribution of Rindler energies Q (horizontal axis)
with respect to Minkowski momenta k; (vertical axes). The
quantity measured here is y(k,Q,dx), which describes how
energy-momentum wave functions transform from inertial to
accelerated frames [Eqgs. (58), (60), (66)]. For simplicity, we
ignore the transverse coordinates y and z by choosing k, = 0 and
ky = 0. The regime of low acceleration (a2 < 1) and quasiflat
metric (6x ~ 1) [Eq. (70)] are indicated with, respectively, blue
and purple arrows. In such a regime, nonrelativistic Minkowski
momenta are paired with nonrelativistic Rindler energies (green
arrows) Indeed, when &k, < 1 [Eq. (70)], 7(k, Q, 6%) is peaked for
Q ~ 1 [Eq. (71)]. This means that in the quasi-inertial regime, the
accelerated observer agrees with the inertial observer about the
nonrelativistic nature of particles.

In Appendix B, we show that when the coordinates |k| and

6x are constrained by Eq. (70), )‘((l_c, Q, 6%) is not vanishing
only for Q such that Eq. (71) holds. One can see this in
Fig. 1, where the regime of low acceleration (a < 1), quasi-
flat metric (6x < 1) and nonrelativistic Minkowski momenta
(|k;| 1) is characterized by a distribution y(k,Q, 6%)
peaked for nonrelativistic Rindler energy (Q ~ 1).

The result is that Eq. (62), together with Eq. (52), selects
the only © variables for which ®,,,(0) is not vanishing.
This means that C » 1s approximately only made by creators
and annihilators of nonrelativistic right-Rindler particles.
Therefore, the transformation ¢, é’¢ conserves the
nonrelativistic nature of particles when one switches from
the inertial to the accelerated frame.

Moreover, condition (62) implies that ®; > 0 and,
hence, A,(0) =A,(0), B,(0) = B,(6). This leads to
the following approximation for é’d,:

R 1
Cyp~ Z / Brrmed,, (0)

n'm!

[144)
i=1
<[] Bu(®)). (72)

Hereafter the integration intervals of @ are given by ©@; €
(0, 00) and o) | € R? foreach © variable. Alternatively, one
may use the intervals given by Egs. (52) and (62), since,
outside such a region, ®,,, vanishes.

By comparing Eq. (72) with Eq. (44) one can notice that
é‘¢ is identical to ¢, up to the wave function ®,,, replacing
¢.m and the right-Rindler creation operators Al BE
replacing the Minkowski operators &', b'. This implies
that the number of particles and antiparticles created by C,/,
is the same as ¢,,. The conclusion is that the transformation
Cp > C‘,/, conserves the number of (anti)particles, in
addition to the nonrelativistic condition.

The approximation (72) can be used in Eq. (46) together
with the following approximation for S:

N A > Q
S~ exp 2/ dQ | d’K | exp _pe
0 R 2

x [Am K )BLQ.~R)
R L _ A
1B (@ R DAL —m] ) (73)

where A is a cutoff that excludes integration for Q > ca.
Equation (73) can be derived from the fact that when
Q> ca, exp(—f€Q/2) is exponentially small.

One can notice that the integration interval in Eq. (73) is
for Q <ca < mc?/h [Eq. (37)], while the frequency
variables ®, in Eq. (72) are constrained by ©, ~ mc?/h
[Eq. (62)]. This means that 6‘4, and § approximately
commute:

[Cy. 8] ~0. (74)

For the same reason, C’¢ is left unaffected by the partial
trace Tryqp

TFNQI(C¢O) ~ 6¢TrNQI(O)’ (75)
while § satisfies the trace cyclic property

TrNQI(S 0) ~ TrNQ](O S) (76)

Indeed, the (anti)particles created by C‘¢ do not belong to
Fnaon since O ~ mc*/h > ca [Eq. (37)]. On the other
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hand, (anti)particles created and annihilated by S have
frequency Q < ca and, hence, belong to Fyqr.

Equations (75) and (76) can be used together with (46) to
prove that

Trnai(14) (@1) ~ Cyl001) (O0ul Cy- (77)

where

10qr1) {Oqi| = Trxqi(|Or, Or) (O, Og|) (78)

is the vacuum state of F ;. Equation (77) states that |¢) is
seen by the quasi-inertial observer through a pure state |®)
such that

@) = Cyl0qn)- (79)

In this way, we have proved that |¢) is seen by the quasi-
inertial observer as a nonrelativistic state and with the same
number of (anti)particles. Indeed, by comparing Eq. (79)
with Eq. (43) and Eq. (72) with Eq. (44), one notices that
the same number of nonrelativistic (anti)particles is created
over the respective vacuum. As said before, the map
Cp > é‘¢ preserves the nonrelativistic condition and the
number of (anti)particles from the inertial to the quasi-
inertial frame. The conclusion is that the inertial and the
quasi-inertial observer agree about the first-quantization
description of states.

Moreover, we have proved that ®,,,(®), defined by
Eq. (48), plays the role of the wave function of |®) with
respect to the quantum numbers ©, analogously to ¢,,,, (k)
in the inertial frame. The transformation ¢,,, — ®,,, is
given by Eq. (48).

The wave function of |®) in momentum space, instead,
can be defined by [11]

2 o -
By (X) = (—’”) " [awnea,,o)

hZ
n+m
XHF 6.0.X) [ F(6,.0.X;). (80)
j=n+1

The wave function transformation ¢, — ®,,, can be
derived by using Eq. (55) in Eq. (80):

CunX) 5 [ ) H B3 X,
R3(n+m)

n+m

with

i (3, X) = A " 4o, /R 40,34 (3.6)F(6.0.%).  (82)

As in Eq. (55), the relative error of Eq. (81) is of order e.
In the nonrelativistic (45), (62) and localized (38) limit,
Eq. (54) can be approximated by

The relative error of Eq. (83) is of order e.
It is possible to show that

/ 4o, ;9' F(©, Xg(x))F(6, X)
0

:ﬁé(x—xR(X)), (85)

where x,(X) is the inverse of Eq. (32), and, hence, the
coordinate transformation (19b) with r =7 = 0:

ax, = s, exp(s,aX). (86)

A proof for Eq. (85) is provided in Appendix C.
Equations (84) and (85) lead to

Gp(¥.X) ~6(x — xg (X)) (X1 =X 1), (87)
which can be used in Eq. (81) to obtain
D (X) % i (xR (X)) (88)
where
xr(X) = (X)), oo (X T (K1) oo o (Kip)-
(39)

The function )'c',,(}? ) appearing in Eq. (89) is the coordinate
transformation from the wv-Rindler to the Minkowski
spacetime when t =T = 0:

551/(}?) = (xu(X)7XJ_)‘ (90)

Equation (88) states that the wave functions in the position
representation approximately transform as scalars: @,,,
is identical to ¢,,, up to the coordinate transformation
(90) [14].
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V. GAUSSIAN SINGLE PARTICLE

We now provide an example of the Minkowski single-
particle state |¢) to probe the results that we obtained. We
assume that ¢,,, is vanishing for any n and m, except for
n =1 and m = 0. We also assume that the wave function

brolk ) has a Gaussian form along the x axis:

~ -

B10(K) = 27p(ky)5(k ), (91)

with

O ] e

In the position representation, the wave function ¢
[Eq. (41)] reads as

$10(¥) = ¢(x), (93)
with
[_ome zklx 94
and ¢, = (1,0,0). The nonrelativistic limit leads to

X — X 2
e G HRNC

which is a Gaussian wave function with variance o.
Conversely, in the accelerated frame, the wave functions

®,, [Eqgs. (48)] and @, [Eq. (80)], respectively, read as

B p(QK ) =272D(Q)*(K L),  @p(X) =D(X), (96)
with
() = / dk (ki (ki1 ). (97a)
O(X) = 2”‘/2_’" © dQd(Q)F(QE,. X).  (97b)

In order for |¢) to be nonrelativistic in the inertial frame
[Eq. (45)], we have to assume that

h
— <€l?, (98)
mco

which, together with Eq. (37), reads as
ac Z €. (99)

The localized condition (38), instead, requires

laxg — 1] e (100a)
ac < e. (100b)
Hereafter we assume
1
=_, 101
X0 a ( )

in order to meet condition (100a). On the other hand, we
consider different values of o, which are constrained by
Eqgs. (99) and (100b):

ac ~ €. (102)

We consider the adimensional variables defined by
Egs. (63), (64), and (65), together with

G-z (103)
a a
and the following adimensional wave functions
) = [Lew (i2)3(42). 10w
. fa (ax +1
i) =2 () (1040)
= - mc? . (mc*Q
. a_(aX
d(X) = \/;op <7> (104d)
In this way Egs. (92), (94), and (97) read as
_ = 252
p(ky) = ﬂl—\/ieXP (— %) (105a)
lk].X¢ )
P(x / (105b)
~Var 1+ 2ak
b(Q) = f/ a6 (k)7 (k2. ), (105¢)
B(X) = % i T a0 Q) (07, 7 (X)), (105d)
where
Fo(X) = é {axR (%) - 1] (106)
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is the coordinate transformation between the adimensional
variables X and X, and where y, is defined as the adimen-

sional equivalent of ;(,,(l_é, Q) by the following identity:

- n k ak hQ
00— e (A)n(2.2). o
mc?a a a mc

Moreover, condition (102) now reads as
o~ 1. (108)

The explicit form of 7 (k;€;, Q) appearing in Eq. (105¢)
can be obtained by performing the integral in Eq. (51),

which leads to [13]
ﬂ-Q -1/2
h
sin ( >

Q. Q  [(w(k)+ ck
X exp <T— lﬂlﬂ(m)) (109)

The adimensional equivalent of Eq. (109) reads as

smh( 70 ) ]_1/2
V2ad
coxp (’f—QH@

(2a)’? " a

S Q V14 2ak? ++/2ak, (110)
—1
(2a 3/2 V1+2ak2 —/2ak,

and can be used in Eq. (105¢) to derive the explicit form
of ®(Q).

By using Egs. (26b), (68), and (110) in Eq. (105) one is
able to compute the wave functions ®(Q) and ®(X) in the
accelerated frame. The results are drawn in Fig. 2.

In Fig. 2(a), we show that under condition (108) and

wr(KQ) = [47[61(0(1{)

;‘(R(l':, Q)= {4;:\/ 1 +2ak?

a< 1, ®Q) is not vanishing only for nonrelativistic
frequencies (Q ~ 1). This is in agreement with the results
of Sec. IV: in the quasi-inertial regime (6 < 1, a < 1), the
accelerated observer detects nonrelativistic particles
(Q ~ 1) when the state is also nonrelativistic in the inertial
frame (6 2 1). Conversely, when conditions (108) and
a < 1 are not met, relativistic energies are present in the
accelerated frame.

In Fig. 2(b), we plot the wave function ®(X). We choose
a configuration in which condition (108) and a < 1 are
met. One can see that in such a case, ®(X) is approximated
by ¢ (%), up to the coordinate transformation (106). Such a
result confirms the prediction of Eq. (88) for the case of a
single Gaussian particle.

a=056=1

1 -
5 k
0 -
low acceleration )
A A

-1 kquasiﬂat metric

a=0.1,6=05 ) a=01,6=1
nonrelativistic
/- limit

nonrelativistic limit

T T T T T T
1.0 1.5 2.0 25 3.0 35

T T T T T T
05 1.0 1.5 2.0 25 3.0

2

Q
(b)
0.7
0.6F onn-
0.5
04
0.3}
0.2}
0.1
0.0k

<I>(X)

FIG. 2. Inertial Gaussian single-particle wave functions in
accelerated frames. In panel (a), we plot the distribution of
Rindler frequencies Q with respect to different acceleration a and

different variance 6. If @ = 0.1, 6 = 1, the wave function d)(fz) is
peaked in Q~ 1, and hence, the state is populated by non-
relativistic energies in the accelerated frame [Eq. (71)]. Con-
versely, relativistic energies appear for other configurations. The
reasons are the following: when 6 =5, the particle is not well
localized in the region where the metric is almost flat [Eq. (100b)];
when 6 = 0.5 the state is populated by relativistic Minkowski
momenta [Eq. (99)]; when @ = 0.5 the acceleration is not
sufficiently low for the quasi-inertial approximation [Eq. (37)].
In panel (b), we show the wave function in the position
representation ®(X) (gray solid line) for the state seen by the
accelerated observer. We chose @ =0.1 and 6 =1 for the
nonrelativistic and quasi-inertial approximation. In such a re-
gime, ®(X) can be approximated by the Minkowski wave
function ¢(Xx(X)) (orange dashed line) under the coordinate
transformation Xg (X).

VI. CONCLUSIONS

We have shown the frame dependence of the non-
relativistic limit. Specifically, we have shown that by
switching from an inertial to a noninertial frame, the
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relativistic nature of quantum states may change: non-
relativistic particles of one frame can be relativistic for the
other observer. Also the number of particles may change.

This can be problematic in the context of noninertial
detectors—e.g., Unruh-DeWitt detectors [3,5,6]. For in-
stance, an atomic detector—that is prepared in the labo-
ratory frame as a nonrelativistic n-particle state and then
accelerated—cannot be described as a fixed number of
nonrelativistic particles in its proper noninertial frame. The
familiar first-quantization description of atomic systems
breaks down when one switches from the inertial to the
accelerated frame.

We have proposed a solution to such a problem by
considering a quasi-inertial frame. The observer is defined
to have low acceleration in the nonrelativistic limit—but
high enough to see noninertial effects—and can only have
access to a region in which the metric is quasiflat. We have
shown that nonrelativistic states in the inertial frame are
also nonrelativistic in the quasi-inertial frame, as opposed
to the case of arbitrarily large accelerations. Moreover, the
number of particles is preserved when switching from one
frame to the other. This provides a solution to the problems
mentioned above.

Also, we have shown how particles’ wave functions
transform from the inertial to the quasi-inertial frame.
Specifically, we have proved that such functions approx-
imately transform as scalar fields under the coordinate
transformation.

We believe that these results may be useful in future
works about nonrelativistic particles seen by inertial and
noninertial observers, such as accelerated Unruh-DeWitt
detectors.

APPENDIX A

We prove Egs. (30) and (31). We use the procedure
shown in Sec. II that led to Eq. (15) through Egs. (2), (9)
and (16).

An explicit decomposition of the field in Minkowski
spacetime is given by Eq. (22). Therefore, the equivalent of
Eq. (16) reads as

a(k) = (f(&). P)xa: ~ b(k) ==(f* (k). P)s.  (AD)
which explicitly reads as
a(®) = é A s {f*(l?, L) (t,F)
— (1, %)0f* (k. 1. z)] , (A2a)

b (k) = —é . dx {f(/?, 1, %)0(1, %)

— (1. ¥)oof (k. 1, z)} . (A2b)

The transformation between fields Ci>y — (}5 when
t =T = 0 is given by the inverse of Eq. (21):

. {cﬁL(o,xL(z)) ifx <0 A3)

PO.X)=¢ 7
Dr(0,XR(X)) ifx>0

where X, (%) is the coordinate transformation from the
Minkowski to the v-Rindler spacetime when t =T = 0:

(A4)

Analogously, dy¢(z,X) can be obtained from @, (T, )_f) by
considering the following chain rule:

0 01,0 dx,0 dy, 0 07,0

—= =t —=—+==—+=—, (AS)
o dTot 0T ox 0T dy 0T oz
which in the Rindler spacetime reads as
0 0 ,. 0
o7 = Svaxy, + s,ac - (A6)

By using Eq. (A6) in Eq. (21) and choosing ¢t = T = 0, one
obtains

—(ax)"'oy®y (0. X, (X)) if x <0

.- (A7)
(ax)™'9yPg (0, X (X))

50‘2’(0’ )?) = {

ifx>0

In a more compact way, Egs. (A3) and (A7) read,
respectively,

HO.H = Y 06,00,0.%,(3)  (a8)
v={LR}
and
0h(0.3) = Y 0(5,0) 220, (0.%,(3).  (a9)

v={L,R}

By choosing # = 0 and using Eqs. (A8) and (A9) in
Eq. (A2) one obtains
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h02 Z /d3x«9sx

v={L,R}

A

. [%f*(l?, 0. %)y, (0. %, (%))

—6,(0.%, (80" (£.0. x)] (A10a)
b (k) = _WD%:‘R} . d*x0(s,x)

2 E 0.5, 0., (7)

—d,(0.X,(%))9, f(/?,o,z)]. (A10b)

Equation (29) can be used in Eq. (A10) to obtain

- o I
a, (k,®) = ﬁ/%@ d*x0(s,x)
x {s— £*(K.0,%)3,F (8.0, 5,X, (%))
ax

—F(6,0,5,X,(%))dof*(k.0, x)] (Al2a)

ay_(l_é C:)) hlc / d*x0(s,x)
% [_” F*(k.0,%)0F* (6,0, s,X, (%))
ax

—F*(6,0,5,X,(%))aof" (.0, x)} (A12b)

By using Egs. (23), (26a) and the fact that F is real,

Eq. (A12) reads as

. 1 S >
a,.(k,©) = P / dx0(s,x) {:t Sl;lxl —l—a)(k)]

x £ (k,0,%)F (6, 5,X,(x))ex® %, (A13)

By knowing that F(®,X) is invariant under ® — —@
[Eq. (26b)], Eq. (A13) reads as

-

a, (k. ©)

with @, defined by Eq. (31).
Equations (A11) and (A14) finally prove Eq. (30).

= a,(k, +6), (A14)

APPENDIX B

We assume that Eq. (70) holds. We prove that )'((l:é, Q, 5%)
is vanishing when |Q — 1| > a. We start by considering
the case |Q| < a@*?, which is a sufficient condition for
|Q—1|>a. The limit |Q|<a¥? is equivalent to
|©;| < ca, and, hence leads to exponentially vanishing
Rindler modes F (Q, k 1,X) appearing in Eq. (67), as we
have already shown in Eq. (40)

Conversely, if |Q| > a*/2,
mated by [15,16]

F(Q, kL, X) can be approxi-

with
_ 2 1
z(Q,kL,)‘c)*@ 1+2aki(1+ax), (B2a)
%C”%z):ln(”—vﬁ‘zz)—\/l— 2 if0<z<1,
(B2b)

%[—C(Z)P/ZZ\/Z —1—arccos< > ifz>1

and where Ai(¢) is the Airy function.
When conditions (70) hold and when ||Q| — 1| ~ @, the

variables z(Q, k 1,X) and {(z) can be approximated by the
following expansion [16]:

A0k W)~ +all® +5) - (9 -1),  (B3a)
£(2(@. kL, %)~ —V2a(k2 + %) — (9] - 1] (B3b)

If ||Q| - 1| > a, instead, z(Q,lz,)'c) and ¢(z) can be
approximated by

1

Z(Qa ]_CJJX) |Q|

[1+a(k? + X)), (B4a)
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_ > 1\ 13/2
X 3/2/\/ _
el k) “"C<|s‘z|>
. ~ 3 _ _
~sign(|Q ~ 1) 2a/1Q2 - 1@ +9).

(B4b)

Condition ||Q| — 1| > @ ensures that the Taylor expan-
sion (B4b) is performed sufficiently far from the singularity
z = 1 of the derivatives of |£(z)[*/%. .

If |Q —1|~a, Eq. (B3) leads to {(z(Q.k,.X)) ~a,
which means that the argument of the Airy function in
Eq. (B1) does not diverge. Specifically, Eq. (B1) can be
approximated by

sl

_ = | |§_2|—1
Q. kX))~ —Ail k&Z +x- , B5
@E. g iR +a- B0, e

which has already been proved for nonrelativistic modes in
the Rindler frame [11].

If ||Q| — 1] > a, divergences in the argument of the Airy
function of Eq. (B1) appear. Specifically, if |Q| — 1 < —a,
then |Q| <1 and |£(1/|Q|)| > a@. This means that the
argument of the Airy function diverges at +o0, leading to

Ai(9) ~ zexp (—%53/2) (B6)

and, hence, leading to an exponentially vanishing F/(Q, k| , ¥).
Conversely, if |Q| — 1 > &, the argument of Ai(&) diverges at
¢ - —oo, leading to a rapidly oscillating Airy function.
Indeed, modulus and phase of Ai(¢) have the following
asymptotic leading terms:

Ai(¢) ~ ﬁ sin <% + % (_5)3/2> _

Because of this rapidly oscillating behavior, the integral of
Eq. (67) vanishes.

To explicitly show that Eq. (67) is vanishing in the
regime of |Q| — 1> @, we use Eqs. (B1) and (B7) in
Eq. (67):

(B7)

> _ Q 1 ox
gkt r—t [T s

277/ | Q6% J-s%

X(/ 2a
(14 2ak2)[1 - 2(Q, %, 5)]

<4 fﬂ(( Ok >>]

3/2

)

(B8)

;‘((l_:, Q, 5%)

which can be furthermore approximated by

;\Zsl_x \4/ IQI2 —1 /
o - 22 002 w ) o

By working in the regime (70), one can use Eq. (B4b) in
order to see Eq. (B9) having the following form:

3/2

oz Q—l—l 4 2a /
k,Q,6%) ~ v/
a 27/5% \ |QF = 1

X sin(— x+(p kL, ), (B10)
with
- Q /Q*-1
k(Q) =— —, (Blla)
V2 a
= r Q (271 1 3/2
kL0 =242 2 =
#lks, ) 4+ﬂ{3{a5<|9|>}
Q2 — 1.
-\ ki}. (B11b)

One can finally see that y(k,Q,8%) in Eq. (B10) is
vanishing because of an infinitely rapidly oscillating Airy
function integrated over a finitely oscillating function.
Indeed, the two frequencies are respectively x(Q) and
ky. While k, is finite (k; <1), x(Q) diverges when
Q| - 1> a.

We proved that when ||Q| — 1| > a, )((k Q,5%) van-
ishes. One can consider the following two remaining cases:
Q—1|<aand |[-Q-1|<a The case |-Q-1|<a
has to be excluded because of the Q + 1 factor appearing in
Eq. (67), which makes 7(k, Q, 5%) vanishing when Q ~ —1.
The only nonvanishing case is |Q — 1| < a@. This concludes
our proof of Eq. (71).

APPENDIX C

We prove Eq. (85). Such a proof follows from consid-
ering any function ¢ (&) in & > 0 and the following integral:

085016-15



RICCARDO FALCONE and CLAUDIO CONTI

PHYS. REV. D 107, 085016 (2023)

d de
/ x/ lhc ax

F(®,Xu(x) (6. X)y (V o (9)'5)

/0, me*\ 2 x
/ dx/ d@lsmh(z) 0,/ (ca) <\/ 2% + <h> C)

x Ki®1/(ca)(\/ 07 + ( >
By using the coordinate transformation

6 B 92 me2\ 2 x
é’_ca’ f—\/C@L—I—(h = (C2)

Eq. (C1) reads as

g/ daf/ dc> smh(”?) i(€)

XK:((\/ o+ (20) o, (@)

Equation (C3) can also be written in the following way:
o0 00 2@1
d d®
A * A Yhactax
2\ 2
2@2 4 (M)
<of e () )

F(6.Xg(x)F(6.X)

i (T

where

20

Klol©) = Zysinn(g) [ ™G

3 Ki(&oé)  (C5)

is the Kontorovich—Lebedev transform and

K g)(&) = / " KK (Ep(0) (C6)

0

its inverse. Since X! is the inverse of K, Eq. (C4) reads as

2 7 - U
/ dx / de, = ®1 F(0, X (x))F(6, X)
cax
2\ 2
20 mc X
w o+ (") )
B 1 s mc2 2€aX
4”2¢(¢c @l+< h) —). (C7)

Since Eq. (C7) holds for any ¢, we have proven Eq. (85).
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