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A B S T R A C T

This paper studies the monotonicity of equilibrium costs and equilibrium loads in nonatomic congestion games,
in response to variations of the demands. The main goal is to identify conditions under which a paradoxical
non-monotone behavior can be excluded. In contrast with routing games with a single commodity, where the
network topology is the sole determinant factor for monotonicity, for general congestion games with multiple
commodities the structure of the strategy sets plays a crucial role.

We frame our study in the general setting of congestion games, with a special focus on singleton congestion
games, for which we establish the monotonicity of equilibrium loads with respect to every demand. We then
provide conditions for comonotonicity of the equilibrium loads, i.e., we investigate when they jointly increase
or decrease after variations of the demands. We finally extend our study from singleton congestion games to
the larger class of constrained series–parallel congestion games, whose structure is reminiscent of the concept
of a series–parallel network.
1. Introduction

Decision making in a multi-agent strategic context is prone to
various paradoxes that are impossible in a single-agent framework. For
instance, expanding the feasible choice set produces a better outcome
in single-agent optimization, but, in a game, it may give rise to an
equilibrium that is worse for all players. Analogously, more information
is beneficial in single-agent decision making under risk, but may induce
worse Bayes-Nash equilibria in a game.

Several paradoxes arise in routing games. These games represent
situations where roads to go from one origin to the corresponding
destination are chosen strategically by travelers in a way that mini-
mizes their traveling time. The nonatomic version of these games is a
good approximation of situations with a large number of travelers. In
nonatomic games the standard equilibrium concept, due to Wardrop
(1952), prescribes that, for each OD pair, only the paths with the
smallest traveling time are used and they all have the same traveling
time. A famous paradox in routing games, due to Braess (1968), Braess
et al. (2005), shows that adding an edge to a network can make the
traveling time worse for all players. Other paradoxes arise in this class
of games. For instance, although one could expect that an increase
in traffic demand would make the traveling time higher across the
network, this is not always the case. In fact, while Hall (1978) proved
that – ceteris paribus – an increase in the demand of one OD pair
increases the traveling time of this OD, Fisk (1979) showed that an
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increase of traffic demand of one OD pair can be beneficial for some
other OD pair by decreasing its traveling time. Even in networks with
a single OD pair, an increment in the traffic demand may decrease the
equilibrium load on some edges in the network. These paradoxes will
be examined in detail in Examples 3 and 4.

Networks in which the equilibrium loads of all the edges increase
with the travel demand of every OD pair are more predictable and
easier to handle for a social planner, because an edge is never used
below a certain level of demand and is always used above that level.
The goal of this paper is precisely to understand when the equilibrium
travel times and edge loads are monotone in the demand, so that
the paradoxical phenomena observed in the above examples cannot
happen. Rather than focusing on routing games, we will state our
results for the wider class of congestion games, of which routing games
are a significant but particular example.

1.1. Our results

Nonatomic congestion games are defined by a finite set of resources
and a finite set of commodities. Each commodity has a demand that can
be satisfied by different strategies in a strategy set, where each strategy
is a subset of the resource set. In a Wardrop equilibrium each resource
has a nonnegative load (a fraction of the total demand), which varies
with the demand vector.
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The first part of our paper (Section 3) focuses on singleton conges-
tion games, in which every strategy contains only one resource. We
start by proving an equilibrium selection result for this class of games:
Theorem 6 shows that, even when there exist multiple equilibrium
flows, one can always select one equilibrium whose corresponding
resource loads are monotone increasing with respect to each demand.

We then use the notion of comonotonicity, which captures the
idea that different resource loads jointly increase or decrease upon
variations of the demands. Theorem 12 provides some structural results
about the demand regions where different subsets of resources are used
in equilibrium and how these resources become active or inactive as the
demands vary. This analysis allows us to identify regions of the space
of demands where the equilibrium loads are comonotonic.

The following section is devoted to games that are more general
than singleton congestion games. Proposition 19 shows that every
congestion game can be suitably represented as a routing game that
is subject to some restrictions, i.e., not every path from an origin to
a destination is feasible. Then Theorem 23 extends the monotonicity
properties of Section 3 to a class of games that is obtained from sin-
gleton congestion games by applying the series and parallel operations.
Finally Theorem 27 relates constrained series–parallel games to routing
games. These results shed light on the features that produce the non-
monotonicity paradoxes, and highlights the difference between the
single- and multiple-OD networks: for routing games with a single OD
pair, the network topology is the sole relevant factor that guarantees
the monotonicity of equilibrium loads, whereas for multiple ODs the
structure of the set of feasible routes plays a crucial role.

1.2. Related work

Several authors studied the sensitivity of Wardrop equilibria in
routing games with respect to changes in the demand. Hall (1978) ob-
served that, when the costs are strictly increasing, the equilibrium loads
depend continuously on the demands. Patriksson (2004) and Josefsson
and Patriksson (2007) studied the directional differentiability (or lack
thereof) of equilibrium costs and loads, whereas Cominetti et al. (2023)
studied differentiability along a curve in the space of demands. Specific
cases of differentiability, were also considered in Pradeau (2014).

As mentioned previously, Hall (1978) proved that the equilibrium
cost of an OD pair increases when the demand of that OD pair grows.

Some positive results concerning the monotonicity of equilibrium
loads in series–parallel single-commodity networks can be found in
Klimm and Warode (2022) for piece-wise linear costs and in Cominetti
et al. (2021) for general nondecreasing costs.

Traffic equilibria in routing games exhibit a multitude of paradoxes.
The most famous, due to Braess (1968), shows that removing an
edge from a network could actually improve the equilibrium cost for
all players (see Fig. 2). Also surprising is the fact observed by Fisk
(1979) that an OD can reduce its cost and benefit from an increase
in the demand of a different OD, even after doubling all the demands.
Fisk and Pallottino (1981) showed that such paradoxical phenomena
could be observed in real life in the City of Winnipeg, Manitoba,
Canada. Dafermos and Nagurney (1984) studied how equilibrium costs
are affected by changes in the travel demand or addition of new
routes under a more general non-separable cost structure. A related
paradoxical phenomenon was studied by Mehr and Horowitz (2020)
in a model with both regular and autonomous vehicles: despite the
fact that autonomous vehicles are more efficient by allowing shorter
headways and distances, replacing regular with autonomous vehicles
may increase the total network delay.

A particularly simple class of congestion games is the one of single-
ton congestion games where each strategy comprises a single resource.
Different variants of these type of games have been considered in the
literature, including atomic weighted and unweighted players, with
755

splittable or unsplittable loads, as well as nonatomic games. i
For atomic splittable singleton games, Harks and Timmermans (2017)
developed a polynomial time algorithm to compute a Nash equilibrium
with player-specific affine costs. In a different direction, Bilò and
Vinci (2017) investigated how the structure of the players’ strategy
sets affects the efficiency in singleton load balancing games. Atomic
splittable singleton games have also been used to model the charging
strategies of a population of electric vehicles (Deori et al., 2017; Ma
et al., 2013; Nimalsiri et al., 2020). In a related but different direc-
tion, Castiglioni et al. (2019) studied the computational complexity of
finding Stackelberg equilibria in games where one player acts as leader
and the others as followers.

For atomic unsplittable singleton games, Gairing and Schoppmann
(2007) provided upper and lower bounds on the price of anarchy, dis-
tinguishing between restricted and unrestricted strategy sets, weighted
and unweighted players, and linear vs. polynomial costs. Fotakis et al.
(2009) studied the combinatorial structure and computational complex-
ity of Nash equilibria, including the problems of deciding the existence
of pure equilibria, computing pure/mixed equilibria, and computing
the social cost of a given mixed equilibrium. Gairing et al. (2010)
studied weighted atomic unsplittable routing games on a parallel-edge
network where each user can only route over a restricted set of edges.
They developed a polynomial time algorithm for the model where
the edge costs are identical and linear, and both player weights, and
edge capacities are integer. Harks and Klimm (2012) characterized the
classes of cost functions that guarantee the existence of pure equilibria
for weighted routing games and singleton congestion games.

Finally, in the nonatomic setting, which is the focus of our pa-
er, Gonczarowski and Tennenholtz (2016) used a clever hydraulic
ystem representation to study asymmetric singleton congestion games,
resenting applications in the home internet and cellular markets, as
ell as in cloud computing. Another recent application of nonatomic

ingleton congestion games to hospital choice in healthcare systems is
iscussed in van de Klundert et al. (2023). In the special case of routing
ames, singleton games correspond to parallel networks. Despite its
imple topology they are nevertheless of interest in the literature (see,
.g., Acemoglu & Ozdaglar, 2007; Harks et al., 2019; Wan, 2016). Fu-
ishige et al. (2017) considered nonatomic congestion games and used
atroid theory to characterize games for which two forms of Braess’s
aradox cannot occur. A similar problem was considered by Verbree
nd Cherukuri (2023), who – among other things – studied the effect of
raess’s paradox at different levels of the demand in single-OD routing
ames with affine costs.

In Section 4 we use the concept of comonotonicity. Although its
efinition is purely analytic and concerns real functions defined on an
rbitrary space, the idea originated in various applications in actuarial
cience (Borch, 1962), economic theory (Arrow, 1970; Wilson, 1968),
nd decision theory (Schmeidler, 1989; Yaari, 1987). A mathematical
reatment of the concept – in connection with Choquet capacities – can
e found in Dellacherie (1971), who uses the term ‘‘même tableau de
ariation’’ and Schmeidler (1986), who – to the best of our knowledge
was the first to use the term comonotonic in his preprint Schmeidler

1984) (there exists a previous version, Schmeidler (1982), which we
ould not access, so we do not know whether the term was used there
r not). A recent application of comonotonicity to game theory can be
ound in Koçyiğit et al. (2022). The reader is referred to Dhaene et al.
2002), Puccetti and Scarsini (2010) for a more thorough discussion
nd further references.

.3. Organization of the paper

The paper is organized as follows. Section 2 recalls the standard
odel of non-atomic congestion games and reviews the basic properties

f equilibria. This section includes the definition of monotonic equilib-
ium selection and comonotonicity. Sections 3 and 4 both deal with
ingleton congestion games. Section 3 contains the central monotonic-

ty result, whereas Section 4 discusses comonotonicity and the structure
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of the domains associated to different sets of resources. Section 5
studies the monotonicity properties of more complex congestion games
beyond the case of singleton strategies. Section 6 summarizes the
results of our paper and proposes some open problems. Appendix A
includes some supplementary proofs. Appendix B contains a list of the
symbols used throughout the paper.

2. Congestion games and equilibria

In this section we recall the basic concepts and properties of
nonatomic congestion games, and we fix the notations used throughout
the paper. The basic structural elements are:

• a finite set  of resources and, for each 𝑟 ∈ , a continuous
nondecreasing cost function 𝑐𝑟 ∶R+ → R+, where 𝑐𝑟(𝑥𝑟) represents
the cost of resource 𝑟 under a workload 𝑥𝑟; and

• a finite set  of commodities and, for each ℎ ∈ , a family
ℎ ⊂ 2⧵∅ of feasible strategies, where every 𝑠 ∈ ℎ is a nonempty
subset of resources 𝑠 ⊂ .

hese elements define a congestion game structure  = (, 𝒄,) with
𝒄 ∶=

(

𝑐𝑟
)

𝑟∈ the vector of cost functions and  ∶= ×ℎ∈ℎ the set
of strategy profiles.

Every vector 𝝁 ∶=
(

𝜇ℎ
)

ℎ∈ of demands 𝜇ℎ ≥ 0, determines a
nonatomic congestion game (,𝝁) as follows. For each commodity ℎ ∈ ,
a feasible flow is a vector 𝒇ℎ ∶=

(

𝑓ℎ𝑠
)

𝑠∈ℎ satisfying

𝜇ℎ =
∑

𝑠∈ℎ
𝑓ℎ𝑠 , 𝑓ℎ𝑠 ≥ 0, for all 𝑠 ∈ ℎ. (2.1)

A family 𝒇 ∶=
(

𝒇ℎ
)

ℎ∈ , where each 𝒇ℎ is a feasible flow satisfying
(2.1), induces aggregate loads 𝒙 = (𝑥𝑟)𝑟∈ over the resources, given by

𝑥𝑟 ∶=
∑

ℎ∈

∑

𝑠∈ℎ
𝑓ℎ𝑠 1{𝑟∈𝑠}, ∀𝑟 ∈ , (2.2)

which in turn induce strategy costs, defined as

𝑐𝑠(𝒙) ∶=
∑

𝑟∈𝑠
𝑐𝑟(𝑥𝑟), ∀𝑠 ⊂ . (2.3)

We call 𝝁 the set of feasible pairs (𝒇 ,𝒙) satisfying (2.1) and (2.2). We
also write 𝝁 for the projection of 𝝁 on the 𝒙 variables, that is, the
set of load profiles 𝒙 induced by all feasible flow vectors 𝒇 .

The concept of Wardrop equilibrium is based on the assumption that
for each commodity only the strategies with the smallest possible cost
are actually used. A feasible pair (𝒇 ,𝒙) ∈ 𝜇 is a Wardrop equilibrium if
there exists a nonnegative vector 𝝀 ∶=

(

𝜆ℎ
)

ℎ∈ , such that

∀ℎ ∈ ,

{

𝑐𝑠(𝒙) = 𝜆ℎ for all 𝑠 ∈ ℎ with 𝑓ℎ𝑠 > 0,
𝑐𝑠(𝒙) ≥ 𝜆ℎ for all 𝑠 ∈ ℎ with 𝑓ℎ𝑠 = 0.

(2.4)

The quantity 𝜆ℎ is called the equilibrium cost of commodity ℎ ∈ . A
strategy 𝑠 ∈ ℎ is said to be active if 𝑐𝑠(𝒙) = 𝜆ℎ. Similarly, a resource
𝑟 ∈  is active for commodity ℎ ∈  if it belongs to some active
strategy. Clearly, the equilibrium equation implies that every strategy
carrying a strictly positive flow 𝑓ℎ𝑠 > 0 is necessarily active. Note,
however, that a strategy with zero flow may still be active as long as
its cost matches the minimum.

As shown by Beckmann et al. (1956), the set of load profiles induced
by equilibrium flows coincides with the set of optimal solutions of the
minimization problem

min
𝒙∈𝜇

∑

𝑟∈
𝐶𝑟(𝑥𝑟), (2.5)

where 𝐶𝑟(𝑥𝑟) ∶= ∫ 𝑥𝑟0 𝑐𝑟(𝑧) d𝑧. Since the cost functions 𝑐𝑟 are continuous
and nondecreasing, the above objective function is convex and differ-
entiable. Thus, since 𝝁 is a bounded polytope, for every 𝝁 there exists
at least one optimal solution.

For an equilibrium load profile 𝒙̂, we define the equilibrium re-
756

source costs 𝜏𝑟 ∶= 𝑐𝑟(𝑥𝑟). By using Fenchel’s duality theory (see e.g., t
Fig. 1. Fisk’s network.

Remark 30 in Appendix A, or Fukushima (1984) for the special case of
nonatomic routing games), we can prove that the equilibrium resource
costs are optimal solutions of the strictly convex dual program

min
𝝉

∑

𝑟∈
𝐶∗
𝑟 (𝜏𝑟) −

∑

ℎ∈

(

𝜇ℎ min
𝑠∈ℎ

∑

𝑟∈𝑠
𝜏𝑟

)

, (2.6)

where 𝐶∗
𝑟 ( ⋅ ) is the Fenchel conjugate of 𝐶𝑟( ⋅ ), which is strictly convex.

Thus, for each 𝝁 the equilibrium resource costs 𝜏𝑟 are uniquely
defined and are the same for all equilibrium loads. This implies that the
strategy costs 𝑐𝑠 =

∑

𝑟∈𝑠 𝜏𝑟 and equilibrium costs 𝜆ℎ = min𝑠∈ℎ
∑

𝑟∈𝑠 𝜏𝑟
depend only on 𝝁 and not on the particular equilibrium flow under
consideration. Thus, also the active strategies and active resources only
depend on 𝝁.

The active regime at demand 𝝁 is defined as ̂(𝝁) ∶= (̂ℎ(𝝁))ℎ∈
ith ̂ℎ(𝝁) the set of active resources for commodity ℎ ∈ . We also

et 𝝁 ↦ 𝜆(𝝁) denote the equilibrium cost map, whose basic properties
re summarized in the next proposition.

roposition 1. Let  = (, 𝒄,) be a congestion game structure. Then the
quilibrium cost map 𝝁 ↦ 𝜆(𝝁) is continuous and monotone in the sense
hat ⟨𝜆(𝝁1) − 𝜆(𝝁2),𝝁1 − 𝝁2⟩ ≥ 0 for every 𝝁1,𝝁2 ∈ R

+ . In particular,
ach component 𝜆ℎ(𝝁) is nondecreasing with respect to its own demand
ℎ. Moreover, the equilibrium resource costs 𝜏𝑟(𝝁) are uniquely defined and
ontinuous.

Proposition 1 is a simple extension of Cominetti et al. (2021, Propo-
ition 3.1) to the multi-commodity setting. See also Hall (1978) for
he case of strictly increasing costs. For the sake of completeness, we
nclude a proof of Proposition 1 in Appendix A.

emark 2. When the cost functions are strictly increasing, thus in-
ertible, Proposition 1 implies that the equilibrium load vector 𝒙(𝝁) is
nique for every 𝝁 ∈ R

+ , and the map 𝝁 ↦ 𝑥(𝝁) is continuous. If the
osts are just nondecreasing, the equilibrium loads may be non-unique.
ere we point out that there exists some literature about the charac-

erization of games having the so-called uniqueness property (see, e.g.,
onishi, 2004; Meunier & Pradeau, 2014; Milchtaich, 2000, 2005). A
atural question for the case of multiple equilibria is whether there
xists a continuous selection 𝝁 ↦ 𝑥(𝝁).

Routing games are an important instance of congestion games. In
his class of games there is a finite network in the background with
finite set of OD pairs (the commodities of the game); edges are the

esources and paths from one origin to the corresponding destination
re the strategies of the game.

Hall (1978) proved that in routing games an increase of traffic
emand for one OD pair – when the remaining demands are kept fixed
weakly increases the traveling time of this OD pair. The following

xample, due to Fisk (1979), shows that an increase in the traffic
emand of one OD pair may actually reduce the traveling time of
nother OD pair. Fisk (1979) showed that it is also possible for the
ocial cost 𝖲𝖢(𝝁) = ∑

ℎ∈ 𝜇
ℎ𝜆ℎ(𝝁) to decrease along a direction where

∑ ℎ
he total demand ℎ∈ 𝜇 increases.
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Fig. 2. In the Wheatstone network with three paths and a single OD pair, the equilibrium load on the vertical edge (𝑣1 , 𝑣2) equals the equilibrium flow on the path 𝖮 𝑣1 𝑣2𝖣 and
is decreasing for 𝜇 ∈ [1, 2].
Example 3. Consider the network depicted in Fig. 1 with three OD
pairs (𝑎, 𝑏), (𝑏, 𝑐), (𝑎, 𝑐). Let the initial demands be 𝜇(𝑎,𝑏) = 1, 𝜇(𝑎,𝑐) = 20,
𝜇(𝑏,𝑐) = 100, and let the cost functions be as in Fig. 1. The equilibrium
loads are 𝑥(𝑎,𝑏) = 4, 𝑥(𝑎,𝑐) = 17, 𝑥(𝑏,𝑐) = 103, and the corresponding
equilibrium costs are

𝜆(𝑎,𝑏) = 4, 𝜆(𝑎,𝑐) = 107, 𝜆(𝑏,𝑐) = 103.

If we now let the demand 𝜇(𝑎,𝑏) rise from 1 to 4, the new equilibrium
loads are 𝑥(𝑎,𝑏) = 6, 𝑥(𝑎,𝑐) = 18, 𝑥(𝑏,𝑐) = 102, and the corresponding
equilibrium costs are

𝜆(𝑎,𝑏) = 6, 𝜆(𝑎,𝑐) = 108, 𝜆(𝑏,𝑐) = 102.

That is, the increase of 𝜇(𝑎,𝑏) increases the cost of the edge 𝑎𝑏 and pushes
the (𝑎, 𝑐) pair to favor the use of the direct edge 𝑎𝑐. This reduces the
load on the edge 𝑏𝑐, which ultimately benefits the pair (𝑏, 𝑐) by reducing
its cost.

Perhaps more surprising is the fact that this phenomenon may even
occur when all the demands increase by the same factor: with demands
𝜇(𝑎,𝑏) = 60, 𝜇(𝑎,𝑐) = 30, 𝜇(𝑏,𝑐) = 6 the equilibrium cost for the third OD
is 𝜆(𝑏,𝑐) = 24, and when all the demands are doubled it decreases to
𝜆(𝑏,𝑐) = 18.

Example 4. Even in networks with a single OD pair, where the equi-
librium cost increases with the demand, it may happen that the load
on some edges decrease after a surge in the demand. This can be
observed in the classical Wheatstone network depicted in Fig. 2 (see
Braess, 1968; Braess et al., 2005, for the famous paradox that uses this
network).

In what follows, we want to determine if a congestion game has
an equilibrium selection such that the resource loads are monotone
with respect to an increase in any demand. This is made precise in the
following definition.

Definition 5. A congestion game structure  = (, 𝒄,) is said to have
a monotonic equilibrium selection (MES) if there exists an equilibrium
load vector 𝒙(𝝁) such that for every resource 𝑟 ∈  the map 𝝁 ↦ 𝒙𝑟(𝝁)
is nondecreasing with respect to each component 𝜇ℎ of the demand
vector 𝝁.

In mixed scenarios where some demands increase and other de-
crease, one may naturally expect that the same holds for the induced
equilibrium loads. However, it is still of interest to identify groups of
resources whose equilibrium loads vary in the same direction, regard-
less whether 𝝁 and 𝝁′ are comparable or not. In such a case, observing
an increase/decrease in the load of a specific resource one can infer
that all the remaining loads in the group move in the same direction.
This property is captured by the notion of comonotonicity: a family of
functions {𝜓𝑖 ∶ 𝛺 → R}𝑖∈𝐴 is comonotonic if for all 𝑖, 𝑗 ∈ 𝐴 we have

∀𝜔 ,𝜔 ∈ 𝛺, (𝜓 (𝜔 ) − 𝜓 (𝜔 ))(𝜓 (𝜔 ) − 𝜓 (𝜔 )) ≥ 0. (2.7)
757

1 2 𝑖 1 𝑖 2 𝑗 1 𝑗 2
For singleton congestion games, we will identify subsets of resources
whose equilibrium loads exhibit such comonotonic behavior in specific
regions of the space of demands R

+ . Informally, we will show that a
group of commodities that share the same equilibrium cost behave as
a single commodity, and the loads on the resources used by this group
are comonotonic.

3. Monotonicity in singleton congestion games

In a singleton congestion game each strategy corresponds to a single
resource. Thus, for every commodity ℎ ∈  the set of feasible strategies
ℎ can be viewed as a subset ℎ ⊂  of the set of resources. The
following result shows that the MES property holds in this case.

Theorem 6. Every singleton congestion game structure  = (, 𝒄,) has
a MES.

Proof. We first prove the result for strictly increasing cost functions,
and we then use a regularization argument to address the general case
of nondecreasing costs.

Suppose first that the costs 𝑐𝑟( ⋅ ) are strictly increasing. We will
prove the existence of a MES locally by showing that for every demand
vector 𝝁0 ∈ R

+ and every commodity ℎ ∈ , there exists 𝜀 > 0 such
that 𝑥𝑟(𝝁0 + 𝑡𝒆ℎ) ≥ 𝑥𝑟(𝝁0) for all 𝑡 ∈ [0, 𝜀], where 𝒆ℎ is the ℎ-th vector
of the canonical basis of R . The global MES property throughout the
space of demands then follows from the continuity of the map 𝝁 ↦ 𝒙(𝝁)
(see Remark 2).

Let 0 be the set of resources such that 𝑐𝑟(𝑥𝑟(𝝁0)) = 𝜆ℎ(𝝁0). This
set contains the active resources for commodity ℎ but may also include
resources used by other commodities and that are not feasible for ℎ. By
continuity of the equilibrium costs (Proposition 1), there exists 𝜀 > 0
such that an increase in the demand for commodity ℎ by an amount 𝑡
smaller than 𝜀 can only affect the equilibrium loads of resources in 0,
and therefore for 𝑟 ∉ 0 and 𝑡 ∈ [0, 𝜀] we have 𝑥𝑟(𝝁0 + 𝑡𝒆ℎ) = 𝑥𝑟(𝝁0).
Let us then focus on the resources 𝑟 ∈ 0. Fix an arbitrary 𝑡 ∈ [0, 𝜀] and
partition 0 into the three subsets

+
0 ∶= {𝑟 ∈ 0 ∶ 𝑥𝑟(𝝁0 + 𝑡𝒆ℎ) > 𝑥𝑟(𝝁0)}, (3.1)

−
0 ∶= {𝑟 ∈ 0 ∶ 𝑥𝑟(𝝁0 + 𝑡𝒆ℎ) < 𝑥𝑟(𝝁0)}, (3.2)

=
0 ∶= {𝑟 ∈ 0 ∶ 𝑥𝑟(𝝁0 + 𝑡𝒆ℎ) = 𝑥𝑟(𝝁0)}. (3.3)

Suppose by contradiction that −
0 is not empty. Since the total demand

at 𝝁0 + 𝑡𝒆ℎ is strictly larger than the total demand at 𝝁0, whereas the
total flow on the resources −

0 ∪ =
0 decreases, some flow must have

been transferred from −
0 ∪=

0 to +
0 . This implies the existence of a

commodity ℎ′ which has feasible resources in both −
0 ∪

=
0 and +

0 , and
which sends a positive flow along a resource in +

0 at demand 𝝁0 + 𝑡𝒆ℎ.
This contradicts the equilibrium condition for that commodity because
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the cost of all resources in +
0 is strictly higher than the cost of the

resources in −
0 ∪ =

0 . This establishes the existence of a MES for the
case of strictly increasing costs.

When costs 𝑐𝑟(𝑥𝑟) are assumed to be just nondecreasing, we perturb
hem as 𝑐𝜀𝑟 (𝑥𝑟) ∶= 𝑐𝑟(𝑥𝑟) + 2𝜀𝑥𝑟 with 𝜀 > 0, to make them strictly
ncreasing, and then consider the limit as 𝜀 approaches zero. As recalled
n Section 2, the equilibrium flow 𝒙(𝝁, 𝜀) for the congestion game
tructure 𝜀 ∶= (, 𝒄𝜀,) is the unique solution of the Beckmann
roblem (2.5), which in this case has the form

min
𝑥∈𝜇

∑

𝑟∈
𝐶𝑟(𝑥𝑟) + 𝜀‖𝒙‖2, (3.4)

ith 𝐶𝑟(𝑥𝑟) ∶= ∫ 𝑥𝑟0 𝑐𝑟(𝑧) d𝑧. Tikhonov regularization (see, e.g., Attouch,
996, section 1.1) tells us that 𝒙(𝝁, 𝜀) converges, as 𝜀 approaches zero,
o the minimal norm equilibrium 𝒙0(𝝁) of the original unperturbed
ame . From the previous case of strictly increasing costs, for each
> 0 the map 𝝁 ↦ 𝒙(𝝁, 𝜀) is nondecreasing with respect to each demand
ℎ, and this property is inherited by 𝝁 ↦ 𝒙0(𝝁) in the limit as 𝜀 ↓ 0,
roviding a MES as claimed. □

emark 7. The quadratic regularizer 𝜀‖𝒙‖2 was introduced by Tikhonov
n the study of ill-posed inverse problems (Tikhonov, 1943, 1963;
ikhonov & Arsenin, 1977). It is also the basis of ridge regression in
tatistics (Hoerl, 1959, 1962; Hoerl & Kennard, 1970). In our set-
ing this is just one choice among others, and can be replaced by a
eparable regularizer 𝜀∑𝑛

𝑖=1 𝑔𝑖(𝑥𝑖) with 𝑔′𝑖 ( ⋅ ) strictly increasing. Every
uch regularizer selects a specific optimal solution in the limit when
↓ 0 (see Attouch (1996, theorem 2.1) and Auslender et al. (1997,

roposition 2.5). Moreover, one can verify that the previous proof is
till valid and yields a monotone selection of the set of Wardrop equi-
ibria. In particular, 𝜀∑𝑛

𝑖=1 𝑥𝑖 log(𝑥𝑖) selects the Wardrop equilibrium of
aximal entropy. A similar entropic regularization was used in Rossi

t al. (1989) to select one among multiple flow decompositions of a
ardrop equilibrium (see Borchers et al., 2015, for a survey of related
ork). In our case we deal with multiple equilibria and the regular-

zation is used to obtain a selection with monotonicity properties. As
lternatives one may consider general penalty schemes of the form
∑𝑛
𝑖=1 𝜃(𝑥𝑖∕𝜀), including the classical log-barrier 𝜃(𝑥) = − log(𝑥), the

nverse-barrier 𝜃(𝑥) = 1∕𝑥, the exponential penalty 𝜃(𝑥) = exp(−𝑥),
nd more (see Cominetti, 1999). Let us also mention the multi-scale
egularizer ∑𝑛

𝑖=1 𝜀
𝑖𝑥2𝑖 , which yields a hierarchical selection principle:

elect the Wardrop equilibria that have the smallest first coordinate 𝑥21,
mong these the ones with smallest 𝑥22, and inductively with 𝑥23,… , 𝑥2𝑛.

emark 8. Theorem 6 is related to results in Fujishige et al. (2017),
hich investigates Braess’s paradox in the context of nonatomic matroid

ongestion games, where the strategy set for each commodity ℎ is the
et ℎ of bases of some matroid 𝑀ℎ = (,ℎ), defined over a common
round set  of resources. Among other results, lemma 3.2 in that
aper establishes the monotonicity of the resource costs at equilibrium,
rom which one can readily deduce the monotonicity of the loads when
he cost functions are strictly increasing.

. Comonotonicity and active regimes in singleton congestion
ames

Theorem 6 shows that the equilibrium loads in singleton congestion
ames respond monotonically when all the demands increase or stay
he same. In mixed cases where some demands increase and others
ecrease, one can still identify groups of resources that behave comono-
onically in specific regions of the space of demands. A trivial example
s when all commodities can use every resource ℎ ≡ , so they can
e treated as a single commodity and the equilibrium loads are just
ondecreasing functions of the total demand 𝜇 =

∑

ℎ∈ 𝜇
ℎ. More

enerally, we will show that a subset  ⊂  of commodities that have
he same equilibrium cost, behave as if they were a single-commodity
758
n a smaller congestion game restricted to a subset  of resources, and
he equilibrium loads of these resources are nondecreasing functions of
he aggregate demand 𝜇 of the group, so that they are comonotonic.

To state our result precisely, given a singleton congestion game
tructure  = (, 𝒄,), we partition the space of demands R

+ into
different regions 𝛤⪯ characterized by the order in which the com-
modities are ranked by equilibrium cost. In order to understand the
geometry of such regions, we further decompose them into sub-regions
corresponding to different active regimes.

Definition 9. For any fixed weak order ≾ on  we call 𝛤≾ the set of
emands that rank the commodities exactly in this order, that is,
≾ =

{

𝝁 ∈ R
+ ∶ 𝜆ℎ(𝝁) ≤ 𝜆ℎ

′
(𝝁) ⟺ ℎ ≾ ℎ′ for all ℎ, ℎ′ ∈ 

}

, (4.1)

and we call 𝛤≾𝝔 the sub-region with active regime 𝝔 ∶=
(

𝜚ℎ
)

ℎ∈ with
ℎ ⊂ ℎ, that is,
≾
𝝔 ∶=

{

𝝁 ∈ 𝛤≾ ∶ ̂(𝝁) = 𝝔
}

. (4.2)

We recall that the equivalence relation and strict order associated
ith ≾ are defined by

ℎ′ ∼ ℎ) if and only if (ℎ ≾ ℎ′) and (ℎ′ ≾ ℎ),

ℎ′ ≻ ℎ) if and only if (ℎ ≾ ℎ′) and ¬(ℎ′ ≾ ℎ).

he relation ∼ partitions  into equivalence classes, called cost classes:
wo commodities are in the same cost class if and only if ℎ ∼ ℎ′, that is
o say, if and only if 𝜆ℎ(𝝁) = 𝜆ℎ′ (𝝁) for all 𝝁 ∈ 𝛤≾. To each cost class 
e associate the subset  of all the resources 𝑟 ∈  that are feasible

or some commodity ℎ ∈ , excluding those which are also feasible for
igher ranked commodities ℎ′ ≻ ℎ, that is

 =
(

∪ℎ∈ℎ) ⧵
(

∪ℎ′≻ℎ′
)

. (4.3)

efinition 10. Let  be a cost class for a weak order ≾ on . We let
 ∶= ( , 𝒄, ) denote the singleton congestion game structure with
a single commodity whose strategy set  comprises all the singletons in
 .

The regions 𝛤≾ can be empty for some orders ≾ (e.g., if ℎ, ℎ′ ∈ 
are such that ℎ ⊆ ℎ′ we cannot have 𝜆ℎ(𝝁) < 𝜆(ℎ′)(𝝁)). We stress that
each commodity ℎ ∈  belongs to a unique cost class , whereas each
resource 𝑟 belongs to the cost class of the highest ranked commodity
among those for which 𝑟 is feasible.

Example 11. Consider a singleton congestion game structure with three
resources  = {𝑟1, 𝑟2, 𝑟3} with affine costs 𝑐1(𝑥) = 𝑥 + 1, 𝑐2(𝑥) = 𝑥,
3(𝑥) = 𝑥 + 2, and two commodities 𝛼 and 𝛽 with 𝛼 =

{

𝑟1, 𝑟2
}

and
𝛽 =

{

𝑟2, 𝑟3
}

. For visualization, Fig. 3(a) represents this as a routing
ame on a parallel network, where both commodities have to move
raffic between the two vertices, but each of them is allowed to use only
ertain edges. In Fig. 3(b) the horizontal axis represents the demand of
ommodity 𝛼 and the vertical axis the demand of 𝛽. The three colors
epresent the regions 𝛤≾ corresponding to the possible orders of 𝜆𝛼
nd 𝜆𝛽 . In the top-left region in green 𝜆𝛼 < 𝜆𝛽 , in the bottom-right

region in orange 𝜆𝛼 > 𝜆𝛽 , whereas in the middle region in purple
𝜆𝛼 = 𝜆𝛽 . Hence, in the top-left and bottom-right regions we have two
cost classes 1 = {𝛼} and 2 = {𝛽}, each containing one commodity.
However, in the top-left region the corresponding resource sets are
1 = {𝑟1} and 2 = {𝑟2, 𝑟3}, whereas in the bottom-right region
1 = {𝑟1, 𝑟2} and 2 = {𝑟3}. The region in purple has a single cost
class  = {𝛼, 𝛽} with  = {𝑟1, 𝑟2, 𝑟3}. The sub-regions delimited by
horizontal and diagonal lines within a colored region, correspond to
different active regimes. In the purple region characterized by 𝜆𝛼 = 𝜆𝛽 ,
with a single cost class  = {𝛼, 𝛽} and  = {𝑟1, 𝑟2, 𝑟3}, there are three
sub-regions depending on the value of the total demand 𝜇 = 𝜇𝛼 + 𝜇𝛽 .
When 𝜇 ∈ (0, 1) both 𝛼 and 𝛽 use only the central edge with active

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Fig. 3. A singleton congestion game with affine costs.
egime 𝜚𝛼 = 𝜚𝛽 = {𝑟2} and equilibrium costs 𝜆𝛼 = 𝜆𝛽 = 𝜇 . For
 ∈ [1, 3) we have 𝜆𝛼 = 𝜆𝛽 = (1 + 𝜇 )∕2, with 𝛽 using the central edge
𝛽 = {𝑟2}, whereas 𝛼 splits the flow between the top and central edge
ith 𝜚𝛼 = {𝑟1, 𝑟2}. Finally for 𝜇 ≥ 3 the active regime is 𝜚𝛼 = {𝑟1, 𝑟2}

and 𝜚𝛽 = {𝑟2, 𝑟3} with equilibrium costs 𝜆𝛼 = 𝜆𝛽 = 1 + 𝜇∕3. Similarly,
the green region is characterized by 𝜆𝛼 < 𝜆𝛽 with cost classes 1 = {𝛼}
nd 2 = {𝛽}. Throughout this green region the active regime for 𝛼 is
onstant 𝜚𝛼 = {𝑟1}, whereas 𝜚𝛽 = {𝑟2} if 𝜇𝛽 < 2 and 𝜚𝛽 = {𝑟2, 𝑟3} if
𝛽 ≥ 2.

Our next result describes the equilibrium within a cost class : we
how that the loads on the resources in  coincide with those of the
ingle-commodity game  . In other words, in terms of equilibrium
oads the commodities in  behave as if they were a single commodity.
his allows in turn to analyze the regions on which the equilibrium

oads on  are comonotone. Moreover, part (c) further analyzes the
eometry of the regions of comonotonicity, as observed in Example 11.
he simple structure exhibited by the sub-regions in Example 11 holds
ore generally: even if the cost functions are nonlinear, the sub-regions

re separated by hyperplanes defined by the aggregate demand of some
ost class. We recall that a break point in a single commodity game is
demand 𝜇̄ at which the set of active resources changes, i.e., this set

s not constant on any interval (𝜇̄ − 𝜀, 𝜇̄ + 𝜀) with 𝜀 > 0 (see Cominetti
t al., 2021, definition 3.4).

heorem 12. Let  = (, 𝒄,) be a singleton congestion game structure,
nd 𝛤≾ the region associated with a weak order ≾ on . Then, for each
ost class  for ≾ we have:

(a) For all 𝝁 ∈ 𝛤≾ and every equilibrium load 𝒙 of (,𝝁), the vector
𝒙̄ = (𝑥𝑟)𝑟∈

is an equilibrium in the single-commodity game ( , 𝜇 )
with aggregate demand 𝜇 ∶=

∑

ℎ∈ 𝜇
ℎ.

(b) If  has a unique equilibrium for each demand in R+, then for
𝝁 ∈ 𝛤≾ the equilibrium loads 𝑥𝑟(𝝁) with 𝑟 ∈  can be expressed
as nondecreasing functions of the aggregate demand 𝜇 , which is
equivalent to the fact that the equilibrium loads of the resources in
 are comonotonic in the region 𝛤≾.

(c) If the costs are strictly increasing, then the boundary between the
sub-regions 𝛤≾ coincides with the points 𝝁 ∈ 𝛤≾ satisfying at least
759

𝝔

one of the linear equations
∑

ℎ∈
𝜇ℎ = 𝜇̄,

where 𝜇̄ is a break point in the single-commodity game  .

Proof. (a) Let 𝒙 be an equilibrium load vector of demand 𝝁 ∈ 𝛤≾.
We note that every commodity ℎ ∈  allocates traffic only through
resources in  . Indeed, if a commodity ℎ ∈  has a feasible resource
also in ′ with ′ ≠ , then, because of (4.3), we have ℎ′ ≻ ℎ for
every ℎ′ ∈ ′, which is equivalent to 𝜆ℎ′ (𝝁) > 𝜆ℎ(𝝁), because 𝝁 ∈ 𝛤≾.
For this reason, all the commodities ℎ ∈  have the same equilibrium
cost 𝜆ℎ(𝝁) =∶ 𝜆 (𝝁), which implies that for every 𝑟, 𝑟′ ∈  we have

𝑥𝑟 > 0 ⟹ 𝑐𝑟(𝑥𝑟) = 𝜆 (𝝁) ≤ 𝑐′𝑟(𝑥
′
𝑟).

Since ∑

𝑟∈
𝑥𝑟 =

∑

ℎ∈ 𝜇
ℎ = 𝜇 , the vector 𝒙̄ = (𝑥𝑟)𝑟∈

is a single-
commodity equilibrium for  with demand 𝜇 . It follows that 𝜆 (𝝁) is
in fact a function of the aggregate demand 𝜇 and so we can write it
as 𝜆 (𝜇 ).

(b) By the result in (a), for each 𝑟 ∈  and 𝝁 ∈ 𝛤≾ the
equilibrium load 𝑥𝑟(𝝁) coincides with the unique equilibrium in the
single-commodity game  with demand 𝜇 , and therefore it is a
function of the aggregate demand 𝜇 . Now, according to Cominetti
et al. (2021, proposition 3.12) every single-commodity game on a SP
network has a nondecreasing selection of equilibria, so that 𝑥𝑟(𝝁) is a
nondecreasing function of 𝜇 . The equivalence with the comonotonicity
of the maps 𝝁 ↦ 𝑥𝑟(𝝁) for 𝑟 ∈  throughout the region 𝝁 ∈ 𝛤≾,
then follows from a known result (see e.g., Dellacherie (1971) and
Landsberger and Meilijson (1994)). Since we could not find a proof
of this latter result in the literature, we include one in Lemma 31 in
Appendix A.

(c) Consider any demand 𝝁 ∈ 𝛤≾. By (a), the equilibrium loads
can be partitioned by cost classes (𝑥𝑟(𝝁))𝑟∈

, the latter being an
equilibrium in the single-commodity game  . The equilibrium cost for
 is a strictly increasing function 𝜇 ↦ 𝜆 (𝜇 ) of the aggregate demand
𝜇 =

∑

ℎ∈ 𝜇
ℎ. It then follows that each load 𝑥𝑟(𝝁) = 𝑐−1𝑟 (𝜆 (𝜇 )) for

𝑟 ∈  is also a strictly increasing function of 𝜇 .
If 𝝁 ∈ 𝛤≾ is on the boundary between two or more sub-regions 𝛤≾𝝔 ,

the set of active resources changes locally at 𝝁 and then there must
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Fig. 4. An example with quadratic costs. The first commodity uses the two top edges, and the second commodity uses the bottom two. The three colors represent the regions
𝛤 ≾ for the possible orders ≾ of the equilibrium costs. The straight lines within each region separate sub-regions corresponding to different active regimes. The regions 𝛤 ≾ are not
onvex, but the boundary between sub-regions is still affine.
xist a cost class  whose set of active resources also changes locally
t 𝜇 , which is therefore a break point in the single-commodity game
 . □

xample 13. Consider the variant of Example 11 with quadratic costs
s in Fig. 4. The regions 𝛤≾ are no longer convex, but the sub-regions
or different active regimes are still delimited by the hyperplanes
escribed in Theorem 12(c). In the purple region where 𝜆𝛼 = 𝜆𝛽 with a
ingle cost class  = {𝛼, 𝛽} and  = {𝑟1, 𝑟2, 𝑟3}, the equilibrium loads
f all the resources are strictly increasing functions of the total demand
 = 𝜇𝛼 +𝜇𝛽 , and the active regimes present break points at 𝜇 = 1 and
 = 1 +

√

2, that is,

⎧

⎪

⎨

⎪

⎩

𝜚𝛼 = {𝑟2} and 𝜚𝛽 = {𝑟2} if 𝜇 ∈ [0, 1),
𝜚𝛼 = {𝑟1, 𝑟2} and 𝜚𝛽 = {𝑟2} if 𝜇 ∈ [1, 1 +

√

2),
𝜚𝛼 = {𝑟1, 𝑟2} and 𝜚𝛽 = {𝑟2, 𝑟3} if 𝜇 ∈ [1 +

√

2,∞).
(4.4)

Similarly, in the green region where 𝜆𝛼 < 𝜆𝛽 with cost classes
1 = {𝛼} and 2 = {𝛽}, we have 𝜚𝛽 = {𝑟2} for 𝜇𝛽 <

√

2 and 𝜚𝛽 = {𝑟2, 𝑟3}
for 𝜇𝛽 ≥

√

2, whereas 𝜚𝛼 = {𝑟1} is constant.

emark 14. By Remark 2, having strictly increasing costs ensures
he uniqueness of equilibria for  , as required in Theorem 12(b).
ctually, it suffices that no two resources in  have cost functions

that are constant and equal on some (possibly different) non-degenerate
intervals. Moreover, for strictly increasing costs the equilibrium loads
𝑥𝑟(𝝁) for 𝑟 ∈  and 𝝁 ∈ 𝛤≾ are strictly increasing with 𝜇 . Indeed,
since ∑

𝑟∈
𝑥𝑟(𝝁) = 𝜇 , a strict increase of 𝜇 implies that some

oad 𝑥𝑟(𝝁) and its corresponding cost 𝑐𝑟(𝑥𝑟(𝝁)) must strictly increase.
However, across 𝛤≾ the equilibrium costs of all the resources 𝑟 ∈
 remain equal, so that all their loads 𝑥𝑟(𝝁) must strictly increase
simultaneously.

Remark 15. Theorem 12(b) implies that comonotonicity fails across
different cost classes  ≠ ′: if 𝜇 increases and 𝜇′ decreases, the
equilibrium loads of the resources  and ′ will move in opposite
directions. On the contrary, if both aggregate demands move in the
same direction, the same holds for the corresponding equilibrium loads.

Remark 16. The comonotonicity in Theorem 12(b) may fail when 
has multiple equilibria. Consider for instance a variant of Example 11
with costs 𝑐1(𝑥) = 𝑐3(𝑥) = 1 and 𝑐2(𝑥) = 𝑥. When the demand is
𝝁 = (2, 0) the equilibrium sends 1 unit of flow through 𝑟 and 𝑟 , and
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1 2
zero on 𝑟3. Instead, at demand 𝝂 = (0, 2) nothing is sent through 𝑟1,
with 1 unit of traffic on both 𝑟2 and 𝑟3. Hence, despite the fact that
at both 𝝁 and 𝝂 all three resources have the same equilibrium cost
equal to 1, the load on resource 𝑟1 decreases when moving from 𝝁 to
𝝂, whereas the load on resource 𝑟3 increases, so these loads are not
comonotonic. Theorem 12(b) does not apply here because the single-
commodity game  on the three resources and aggregate demand 2
has multiple equilibria.

Remark 17. For single-commodity routing games on SP networks the
number of active regimes is at most the number of paths. This bound
does not hold for multiple commodities and there can be as many as
∏

ℎ∈

(

2
|

|

|

ℎ|
|

| − 1
)

potential combinations for ̂(𝝁), (see Appendix A.3).

5. Beyond singleton congestion games

In this section we provide some monotonicity results that go beyond
the class of singleton congestion games studied in Section 3 and that
also extend some known theorems for routing games with single OD
pair. We recall that in a standard routing the commodities coincide with
OD pairs and, moreover, the feasible strategies for each OD pair are all
the possible paths connecting the corresponding origin and destination.

Cominetti et al. (2021, proposition 3.12) proved that in a single-OD
routing game over a series–parallel network the equilibrium load of
each edge is nondecreasing in the traffic demand. Every network that is
not series–parallel contains a Wheatstone subnetwork (see Milchtaich,
2006); therefore, as shown in Example 4, there exist costs for which
the equilibrium loads of some edges are decreasing in some demand
interval. This implies that the series–parallel nature of the network is
the best topological assumption that guarantees monotonicity of the
equilibrium loads in a single-OD setting.

Unfortunately, for multi-OD routing games the network topology
alone does not provide a criterion for the monotonicity of equilibrium
loads. To obtain some useful results, we consider the following class of
constrained routing games.

Definition 18. A constrained routing game (CRG) is a tuple (𝐺,, 𝒄, ,𝝁)
where

• 𝐺 = ( , ) is a directed multigraph with vertex set  and edge set
 ,

•  is a finite family of commodities,
• 𝒄 = (𝑐 ) is a vector of edge cost functions,
𝑒 𝑒∈
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•  = (ℎ)ℎ∈ , with ℎ a nonempty set of paths between an origin
𝖮ℎ ∈  and a destination 𝖣ℎ ∈  ,

• 𝝁 =
(

𝜇ℎ
)

ℎ∈ is a demand vector.

This defines a congestion game structure with resource set  =  ,
ommodity set , costs 𝒄 = (𝑐𝑒)𝑒∈ , and strategy sets ℎ = ℎ. Notice
hat in a constrained routing game the commodities are distinguished
y their different strategy sets ℎ, although they might share the same
D pair and may also have some paths in common. This is in contrast
ith standard routing games where each OD pair is identified as a

ingle commodity and ℎ includes all the paths from 𝖮ℎ to 𝖣ℎ. All the
xamples in Section 4 are in fact constrained routing games.

Although restricting the paths to a subset might seem a minor detail,
t is in fact a flexible feature that allows us to represent any congestion
ame as a constrained routing game. Furthermore, we can also turn this
outing game into a common-OD where all commodities have the same
rigin and destination, by

• adding a super-source 𝖮 connected to each 𝖮ℎ by a zero-cost edge
(𝖮,𝖮ℎ),

• adding a super-sink 𝖣 connected by zero-cost edges (𝖣ℎ,𝖣), and
• appending the edges (𝖮,𝖮ℎ) and (𝖣ℎ,𝖣) to each path of commod-

ity ℎ.

The next proposition shows that every congestion game is equiva-
ent to a common-OD routing game over an extremely simple network,
nd all the complexity of the game is in fact encoded into the feasible
ets of paths.

Formally, two congestion game structures  and ̆ are said to be
quivalent if there exist one-to-one correspondences ℎ ↔ ℎ̆ between
heir commodities and 𝑠 ↔ 𝑠̆ between strategies, such that for each
emand 𝝁 and each feasible flow 𝒇 of the first game, the flow 𝒇̆ defined
s 𝑓𝑠̆ = 𝑓𝑠 is feasible in the second game and the strategy costs coincide
𝑐𝑠̆(𝒇̆ ) = 𝑐𝑠(𝒇 ). In this case the equilibria of both games are also in
ne-to-one correspondence.

roposition 19. Every congestion game is equivalent to a common-OD
onstrained routing game over a SP network.

roof. Consider a congestion game structure with resources  =
𝑟1,… , 𝑟𝑚}. Consider the SP network in the figure below,

where each resource is represented by two parallel edges: one of them
has the original resource cost 𝑐𝑟( ⋅ ), and the other edge provides a
ypass with zero cost. Any strategy 𝑠 ⊆  can be represented as a

path joining 𝖮 to 𝖣 that takes the top edge for each resource in 𝑠,
and the bypass otherwise. We can then represent the commodities of
the congestion game in the routing game by prescribing that they all
have the same origin 𝖮 and same destination 𝖣, whereas the feasible
paths correspond to their feasible strategies in the original congestion
game. □

Regarding the previous result, one may naturally ask whether a
given nonatomic congestion game is equivalent to an unconstrained
nonatomic routing game. We are not aware of any result on this
question, apart from the somewhat related result by Milchtaich (2013),
who showed that every finite game can be represented as a weighted
atomic routing game.

As mentioned above, for standard multi-commodity routing games
a SP network topology does not suffice to guarantee the monotonicity
of the equilibrium loads. Indeed, Examples 20 and 21 below show that
there exist common-OD constrained routing games such that:
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• 𝐺 is SP; o
• every commodity uses paths ℎ that form a SP subnetwork;
• the equilibrium loads 𝒙(𝝁) are unique; but
• the map 𝝁 ↦ 𝒙(𝝁) is not a MES.

Example 20. Consider Fisk’s network in Fig. 5(a) with 𝑐𝑒1 (𝑥) = 𝑐𝑒2 (𝑥) =
, 𝑐𝑒3(𝑥) = 𝑥 + 90, as in Example 3, and add bypass edges 𝑒4, 𝑒5, as in
ig. 5(b), with 𝑐𝑒4 (𝑥) = 𝑐𝑒5 (𝑥) = 0, producing commodities ℎ1, ℎ2, ℎ3

where 𝖮ℎ = 𝑎, 𝖣ℎ = 𝑐 for every commodity ℎ, and ℎ1 = {(𝑒1, 𝑒5)},
ℎ2 = {(𝑒4, 𝑒2)}, and ℎ3 = {(𝑒1, 𝑒2), 𝑒3}. This defines an equivalent
common-OD constrained routing game. As noted in Example 3, an
increment in the demand of ℎ1 pushes commodity ℎ3 to divert more
flow towards the direct path 𝑒3, thus reducing the load on 𝑒2 (see Fisk,
1979).

Example 21. Monotonicity can also fail in a common-OD constrained
routing game, even on a SP graph. Indeed, the standard Braess’s routing
game in Fig. 2 corresponds to the single-commodity congestion game
structure ( , 𝒄, {𝖮 𝑣1 𝑣2𝖣,𝖮 𝑣1𝖣,𝖮 𝑣2𝖣}). Using Proposition 19 this is
equivalent to a common-OD constrained routing game on a SP network,
for which the MES property fails.

These examples show that, in addition to a SP topology, we need to
impose further conditions on how the commodities overlap. To this end
we introduce the following operations of series and parallel connection
of congestion game structures.

Definition 22. Let 1 = (1, 𝒄1,1) and 2 = (2, 𝒄2,2) be two
congestion game structures with disjoint resource sets 1∩2 = ∅. The
series and parallel game structures are both defined on the resource set
 = 1 ∪2 with their original cost functions. Specifically:

• The series game structure 1 × 2 has commodities (ℎ1, ℎ2) ∈
1 × 2, with corresponding strategy set  (ℎ1 ,ℎ2) = {𝑠1 ∪ 𝑠2 ∶
(𝑠1, 𝑠2) ∈ ℎ11 × ℎ22 }.

• The parallel game structure 1∪2 has commodity set  = 1∪2
and the original strategy sets ℎ11 for ℎ1 ∈ 1 and ℎ22 for ℎ2 ∈ 2.

• A constrained series–parallel (CSP) congestion game structure is
constructed starting from singleton congestion game structures
and applying a finite number of series or parallel connections to
game structures already constructed.

Whereas the parallel connection is a simple superposition of disjoint
commodities, its combination with the series connection and the possi-
bility of imposing constraints in the set of resources, provides a flexible
tool to distinguish different types of commodities and to represent
complex strategy sets that result from sequential processes. Consider
for instance a family of different job classes, each one representing
a commodity ℎ ∈ , which must be processed in a series of stages
𝑘 ∈ 𝐾. At every stage there is a set of machines 𝑀𝑘 that work in
parallel to perform the given task, while the jobs of type ℎ can only
be processed in a subset 𝑀ℎ

𝑘 ⊂ 𝑀𝑘. A commodity ℎ can then be
identified with a particular sequence of feasible machines (𝑀ℎ

𝑘 )𝑘∈𝐾 , and
ts strategy set corresponds to the strategy set for a connection in series
f singleton congestion game structures, one for each stage. On the
ther hand, some job classes might not require some processing stages,
hich can be modeled as a bypass strategy using the parallel operation.
s an illustration, the graph in Fig. 6 can represent simultaneously
ommodities that must go sequentially over all four processing stages,
ossibly with restrictions on the machines that are allowed for each
f them, as well as commodities that only perform the first and fourth
tages, and skip the two intermediate stages. The bypass strategy can
lso be replaced by a series of alternative processing stages. Using
uch series and parallel operations one can model complex processing
aths for different job classes. This construction gives rise to an SP
raph, however the main additional ingredient is which combinations

f commodities are allowed along the construction.
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Fig. 5. Fisk’s multi-commodity network can be embedded in a SP network with a common-OD, by adding two edges with zero cost.
Fig. 6. The SP graph for a job-processing game.
Theorem 23. Every CSP congestion game structure has a MES.

Proof. By induction and Theorem 6, it suffices to show that the MES
property is preserved under series and parallel operations on game
structures. To this end, let 1 and 2 be two congestion game structures
with MES’s 𝝁1 ↦ 𝒙1(𝝁1) and 𝝁2 ↦ 𝒙2(𝝁2) respectively. Then we prove
the two parts:

(a) The series game structure 1 × 2 has a MES. Let 𝝁 =
(𝜇(ℎ1 ,ℎ2))ℎ1∈1 ,ℎ2∈2

with 𝜇(ℎ1 ,ℎ2) the demand for the commodity
(ℎ1, ℎ2) in a game whose structure is 1 × 2. Define

∀ℎ1 ∈ 1, 𝜇ℎ11 =
∑

ℎ2∈2

𝜇(ℎ1 ,ℎ2); ∀ℎ2 ∈ 2, 𝜇ℎ22 =
∑

ℎ1∈1

𝜇(ℎ1 ,ℎ2),

(5.1)

𝝁1 =
(

𝜇ℎ11
)

ℎ1∈1
, and 𝝁2 =

(

𝜇ℎ22
)

ℎ2∈2
. An equilibrium for 𝝁

can be obtained by superposing 𝒙1(𝝁1) on the resources 1 and
𝒙2(𝝁2) on the resources 2. Since an increase of any demand
𝜇(ℎ1 ,ℎ2) induces an increase in the demands 𝜇ℎ11 and 𝜇ℎ22 , the loads
in 𝒙1(𝝁1) and 𝒙2(𝝁2) increase, so that this superposed equilibrium
provides a MES for the series game.

(b) The union game structure 1 ∪ 2 has a MES. For each demand
𝝁 = (𝝁1,𝝁2) in a game with structure 1 ∪ 2 we can directly
find an equilibrium by superposing 𝒙1(𝝁1) on the resources 1
and 𝒙2(𝝁2) on the resources 2. Since the loads in these two
equilibria are monotone with respect to each individual demand,
the same holds for their superposition which provides a MES for
the parallel game structure. □

Remark 24. The common-OD constrained routing game of Example 20,
in which Fisk’s network is embedded, does not have a CSP structure:
the strategy set of ℎ3 cannot be obtained as a strategy set of a previously
present commodity when constructing a parallel game structure. For a
different reason, the common-OD SP routing game in Example 21 does
not have a CSP game structure either. Indeed, its network would be
made of 5 two-edge parallel network in series, each one associated to a
resource, i.e., an edge of the Wheatstone network. The classical Braess’s
routing game has a single commodity with three strategies, and a strat-
egy set with cardinality 3 cannot be obtained as the Cartesian product
of the strategy sets of the 5 two-edge parallel networks connected in
series. A series of Pigou games has strong limitations, for example, a
commodity with a number of paths divisible by a prime larger than 2
is not constructible as in Definition 22.

Remark 25. It is somewhat odd that the class of CSP’s does not
include single-OD routing games over an SP graph, in which there is
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a single commodity and every path is allowed. This happens because
the parallel connection does not allow to merge commodities and they
are kept separated. However, if in the construction of CSP’s instead of
taking singleton congestion games as the initial atoms, one replaces
each singleton strategy with a series–parallel routing game structure
with a single commodity, then Theorem 23 remains true for this larger
class which trivially includes series–parallel routing games.

Remark 26. Every CSP game structure as defined above is a matroid
game. In fact, if 1 and 2 are two matroid game structures, then the
parallel game structure 1 ∪ 2 is trivially a matroid game structure,
whereas the strategy sets  (ℎ1 ,ℎ2) in the series game structure 1 × 2
correspond to the direct sum operation on the original matroid bases
ℎ11 and ℎ22 . As a consequence, for strictly increasing costs the previous
result can also be derived from Fujishige et al. (2017, lemma 3.2).

Whereas CSP congestion game structures were defined for general
congestion games, they can also be described as constrained routing
games with a specific structure. The following representation is also
more natural compared to the one in Proposition 19.

Theorem 27. Every CSP congestion game structure  = (, 𝒄,) is
equivalent to a common-OD constrained routing game structure (𝐺, 𝒄, )
such that

(i) the graph 𝐺 is SP,
(ii) for each commodity ℎ all the paths in ℎ visit the same vertices in

the same order,
(iii) for every two paths 𝑝1, 𝑝2 ∈ ℎ and edges 𝑒1 ∈ 𝑝1 and 𝑒2 ∈ 𝑝2

connecting two subsequent vertices, the paths obtained from 𝑝1 and
𝑝2 by exchanging 𝑒1 with 𝑒2 also belong to ℎ.

Furthermore, every common-OD constrained routing game satisfying (i), (ii),
(iii), has a CSP congestion game structure.

Proof. Every CSP game structure is built starting with singleton
congestion games and applying a finite number of series or parallel
operations. We start by noting that every singleton congestion game
is equivalent to a constrained routing game on a parallel network with
two vertices connected by edges corresponding to the resources of the
singleton congestion game, and any such game satisfies (i), (ii), (iii).
Hence, it suffices to show that these properties are preserved under
series and parallel operations.

Consider two congestion game structures 1 = (1, 𝒄1,1) and
2 = (2, 𝒄2,2) which are respectively equivalent to some common-
OD constrained routing games (𝐺1, 𝒄1, 1) and (𝐺2, 𝒄2, 2) satisfying (i),
(ii), (iii).
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The series game structure 1 × 2 is then equivalent to the con-
trained routing game structure (𝐺, 𝒄̃, ̃ ) where 𝐺 is obtained by joining
n series the graphs 𝐺1 and 𝐺2, the costs 𝒄̃ are the cost functions
iven by 𝒄1 and 𝒄2 on the corresponding edges, and the commodities
re given by the sets of paths obtained choosing commodities ℎ1 for
𝐺1, 𝒄1, 1) and ℎ2 for (𝐺2, 𝒄2, 2), and joining every path in ℎ1 with

every path in ℎ2 to construct paths in 𝐺. Moreover, (𝐺, 𝒄̃, ̃ ) satisfies
(i), (ii), (iii) because (𝐺1, 𝒄1, 1) and (𝐺2, 𝒄2, 2) do.

Similarly, the parallel game structure 1 ∪ 2 is equivalent to the
constrained routing game structure (𝐺̄, 𝒄̄, ̄ ) where 𝐺̄ is obtained join-
ing in parallel 𝐺1 and 𝐺2, the costs 𝒄̄ are the cost functions given by
𝒄1 and 𝒄2 on the corresponding edges, and the commodities are given
by the commodities of (𝐺1, 𝒄1, 1) and (𝐺2, 𝒄2, 2). Also in this case,
the routing game (𝐺̄, 𝒄̄, ̄ ) satisfies (i), (ii), (iii) because (𝐺1, 𝒄1, 1) and
(𝐺2, 𝒄2, 2) do.

This completes the proof of the first claim of the theorem.
Conversely, notice that every SP graph 𝐺 is constructed starting with

parallel networks and joining them in series or in parallel for a finite
number of times. Suppose that a common-OD constrained routing game
(𝐺, 𝒄, ) structure satisfies (i), (ii), (iii).

If the graph 𝐺 is obtained by joining in series two graphs 𝐺1 and
𝐺2, we can endow them with cost functions that associate costs to edges
as in 𝒄. Furthermore, given a commodity ℎ for (𝐺, 𝒄, ) we can define
commodities ℎ1 on 𝐺1 and ℎ2 on 𝐺2 by determining for 𝑖 = 1, 2 the set
of paths

ℎ𝑖 =
{

𝑝 path in 𝐺𝑖 s.t. 𝑝 is part of a path in ℎ} .

Since (𝐺, 𝒄, ) satisfies (iii), we have ℎ = ℎ1 × ℎ2 , so that (𝐺, 𝒄, )
is the series game structure of the two constrained routing games just
defined on 𝐺1 and 𝐺2.

If the graph 𝐺 is obtained by joining in parallel two graphs 𝐺1 and
𝐺2, then we can assume that the direct edges from the origin and the
destination of 𝐺 are all contained in one of the two. We can again
endow 𝐺1 and 𝐺2 with cost functions that associate costs to edges as
in 𝒄. Furthermore because of property (ii), for every commodity ℎ of
(𝐺, 𝒄, ) the paths in ℎ all belong to one between 𝐺1 and 𝐺2. This
allows us to define for each commodity of (𝐺, 𝒄, ), a commodity either
in 𝐺1 or 𝐺2, so that (𝐺, 𝒄, ) is the parallel game structure of the two
constrained routing games just defined on 𝐺1 and 𝐺2. □

Remark 28. Note that Braess’s classical example in Fig. 2 satisfies
(ii) and (iii), but does not satisfy (i). Fisk’s network embedding of
Example 20 satisfies (i) and (iii) but does not satisfy (ii). Finally,
the constrained routing game of Example 21, obtained by embedding
Braess’s game in a SP graph as in Proposition 19, satisfies (i) and (ii),
but not (iii).

Remark 29. Conditions (i), (ii), (iii) in Theorem 27 can be equivalently
stated by requiring that all feasible paths for a commodity ℎ visit
a specific ordered sequence of nodes; between successive nodes only
a specific subset of parallel edges are allowed; and ℎ includes all
possible paths in this subnetwork. Still another equivalent description
is to require that for any two paths 𝑝1, 𝑝2 ∈ ℎ the mixed path where
we follow 𝑝1 up to an intermediate node and then continue with 𝑝2 is
also in ℎ.

6. Summary and open problems

This paper studied the monotonicity of equilibrium travel times
and equilibrium loads in response to variations of the demands, iden-
tifying conditions under which the paradoxical phenomena of non-
monotonicity cannot happen. We considered the general setting of
congestion games, with a special focus on singleton congestion games
with multiple commodities for which we established in Theorem 6 the
existence of a selection of the equilibrium loads which monotonically
763

increase with respect to the demand of every commodity.
We next explored the notion of comonotonicity, which captures
the idea that different resource loads jointly increase or decrease after
variations of the demands. Theorem 12 described how comonotonicity
is connected to the structure of equilibria in terms of how the commodi-
ties are ranked by cost and how the resources become active or inactive
as the demands vary. We complemented this finding by a structural
result on the regions of the demand space for which the same sets of
resources are used at equilibrium.

Theorem 23 extended the study of monotonicity from singleton
congestion games to the larger class of congestion games having a
CSP structure, reminiscent of the concept of a SP network. We also
derived an embedding that maps congestion games into constrained
routing games (see Proposition 19) and characterized the classes of con-
gestion games with good monotonicity properties by embedding them
into routing games (see Theorem 27). This last result sheds light on
the features that produce the paradoxes and showcases the difference
between single and multiple OD networks. When the network has a
single OD pair, its topology is the sole relevant factor to guarantee
the monotonicity of equilibrium loads. In the multiple OD case the
structure of the paths that are in each OD pair also plays a crucial role.

A first open question not addressed in this paper, and which will be
interesting to explore, is how the structural results on the regions 𝛤≾
and sub-regions 𝛤≾𝜚 for the different active regimes might be exploited
to devise an algorithm for building a curve of equilibria along a demand
curve, analog to the path-following method for piece-wise affine costs
developed by Klimm and Warode (2022). A basic question here is to
investigate the geometry of the regions 𝛤≾ for specific classes of cost
functions. For the special case of Bureau of Public Roads (BPR) costs,
we conjecture that the boundaries between these regions are asymptotic
to straight lines through the origin. This would imply that when the
demands are scaled proportionally, the regimes will not repeat and
the curve will eventually enter into a particular asymptotic region 𝛤≾

and remain there forever. The latter could inspire a path following
algorithm to build a curve of equilibria.

A second open problem is to find an algorithm to recognize CSP
congestion game structures. In this regard, one could be tempted to
use the equivalent game in Proposition 19 for which (i) and (ii) in
Theorem 27 hold trivially, so that only (iii) would need to be checked.
Unfortunately, the CSP property is not preserved under equivalence:
for instance, a singleton congestion game with only one commodity is
CSP by definition, but its equivalent representation in Proposition 19
is not because property (iii) fails. This suggests that recognizing CSP
game structures is not straightforward. As a possible starting point to
address this question, one might try to adapt the existing algorithms
for recognizing SP networks (see Eppstein, 1992; He & Yesha, 1987;
Valdes et al., 1982).
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Appendix A. Supplementary proofs

A.1. Missing proof

Proof of Proposition 1. Let (, 𝒄,) be a nonatomic congestion game
structure. For every demand 𝝁 ∈ R

+ , let 𝑉 (𝝁) be the minimum value
of the Beckmann potential as in (2.5), that is,

𝑉 (𝝁) = min
𝒙∈𝝁

∑

𝑟∈
𝐶𝑟(𝑥𝑟). (A.1)

We obtain the result as a consequence of convex duality. Consider the
function 𝜑𝝁 ∶ R × R → R ∪ {+∞} given by

𝜑𝝁(𝒇 , 𝒛)

=

{

∑

𝑟∈ 𝐶𝑟
(
∑

𝑠′∋𝑟 𝑓𝑠′
)

if 𝒇 ≥ 𝟎,
∑

𝑠∈ℎ 𝑓𝑠 = 𝜇ℎ + 𝑧ℎ for every ℎ ∈ ,
+∞ otherwise,

(A.2)

which is a proper closed convex function. Letting 𝑣𝝁(𝒛) denote the
optimal value function of the primal problem

(𝖯𝝁) inf
𝒇
𝜑𝝁(𝒇 , 𝒛), (A.3)

we have 𝑉 (𝝁 + 𝒛) = 𝑣𝝁(𝒛) and, in particular, 𝑉 (𝝁) = 𝑣𝝁(𝟎).
Since 𝜑𝝁 is convex, we have that 𝒛 ↦ 𝑣𝝁(𝒛) = 𝑉 (𝝁 + 𝒛) is also

convex, from which we deduce that 𝝁 → 𝑉 (𝝁) is convex. Moreover,
the perturbed function 𝜑𝝁 yields a corresponding dual

(𝖣𝝁) min
𝜆∈R

𝜑∗
𝝁(𝟎,𝝀), (A.4)

where 𝜑∗
𝝁 is the Fenchel conjugate function, that is,

𝜑∗
𝝁(𝟎,𝝀) = sup

𝒇 ,𝒛
⟨𝟎,𝒇⟩ + ⟨𝝀, 𝒛⟩ − 𝜑𝝁(𝒇 , 𝒛)

= sup
𝒇≥𝟎

∑

ℎ∈

(

𝜆ℎ
(

∑

𝑠∈ℎ
𝑓𝑠 − 𝜇ℎ

))

−
∑

𝑟∈
𝐶𝑟

(

∑

𝑠′∋𝑟
𝑓𝑠′

)

.
(A.5)

Since 𝑉 (𝝁′) is finite for all 𝝁′ ∈ R
+ , it follows that 𝑣𝝁(𝒛) = 𝑉 (𝝁+ 𝒛)

is finite for 𝒛 in some interval around 𝟎, and then the convex duality
theorem implies that there is no duality gap and the subgradient ∇𝑣𝝁(𝟎)
at 𝒛 = 𝟎 coincides with the optimal solution set 𝖲(𝖣𝝁) of the dual
problem, that is, ∇𝑉 (𝝁) = ∇𝑣𝝁(0) = 𝖲(𝖣𝝁).

We claim that the dual problem has a unique solution, which is
exactly the vector of equilibrium costs 𝜆(𝜇). Indeed, fix an optimal
solution 𝑓 for 𝑣𝜇(0) = 𝑉 (𝜇) and recall that this is just a Wardrop
equilibrium. The dual optimal solutions are precisely the 𝜆’s in R such
that

𝜑𝜇(𝑓, 0) + 𝜑∗
𝜇(0, 𝜆) = 0.

This equation can be written explicitly as

∑

𝑟∈
𝐶𝑟

(

∑

𝑠∋𝑟
𝑓𝑠

)

+ sup
𝑓≥0

∑

ℎ∈

(

𝜆ℎ
(

∑

𝑠∈ℎ
𝑓𝑠 − 𝜇ℎ

))

−
∑

𝑟∈
𝐶𝑟

(

∑

𝑠′∋𝑟
𝑓𝑠′

)

= 0,

from which it follows that 𝑓 = 𝑓 is an optimal solution in the latter
supremum. The corresponding optimality conditions are

𝜆ℎ −
∑

𝑟∈𝑠
𝑐𝑟

(

∑

𝑠′∋𝑟
𝑓𝑠′

)

= 0, if 𝑓𝑠 > 0, ℎ ∈ , 𝑠 ∈ ℎ,

𝜆ℎ −
∑

𝑟∈𝑠
𝑐𝑟

(

∑

𝑠′∋𝑟
𝑓𝑠′

)

≤ 0, if 𝑓𝑠 = 0, ℎ ∈ , 𝑠 ∈ ℎ,

which imply that 𝜆ℎ is the equilibrium cost of the OD pair ℎ for
the Wardrop equilibrium, that is, 𝜆ℎ = 𝜆ℎ(𝝁) for every ℎ ∈ . It
follows that the subgradient ∇𝑉 (𝝁) = {𝜆(𝝁)} so that 𝝁 ↦ 𝑉 (𝝁) is not
only convex but also differentiable with gradient ∇𝑉 (𝝁) = 𝜆(𝝁). The
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conclusion follows by noting that every convex differentiable function
is automatically of class 𝐶1 and its gradient is monotone, in the sense
that ⟨∇𝑉 (𝝁1) − ∇𝑉 (𝝁2),𝝁1 − 𝝁2⟩ ≥ 0 for every 𝝁1,𝝁2 ∈ R

+ , which in
particular implies that 𝜆ℎ is nondecreasing in the variable 𝜇ℎ.

The continuity of the equilibrium resource costs 𝜏𝑟 = 𝜏𝑟(𝝁) is a
consequence of Berge’s maximum theorem (see, e.g., Aliprantis &
Border, 2006, Section 17.5). Indeed, as explained in Fukushima (1984),
the equilibrium resource costs are optimal solutions for the strictly
convex dual program (2.6). Hence, since the objective function is
jointly continuous in (𝝉 ,𝝁), Berge’s theorem implies that the optimal
solution correspondence is upper-semicontinuous. However, in this case
the optimal solution is unique, so that the optimal correspondence is
single-valued, and, as a consequence, the equilibrium resource costs
𝜏𝑟(𝝁) are continuous. □

Remark 30. A similar analysis where we reformulate the primal prob-
lem by including resource load variables 𝑥𝑟 and considering perturba-
tions in the flow balance equations 𝑥𝑟 =

∑

𝑠∋𝑟 𝑓𝑠 + 𝑧𝑟, yields the dual
problem (2.6), which characterizes the equilibrium costs 𝜏𝑟.

Perhaps a more direct argument is as follows. Let us rewrite the flow
balance equations 𝑥𝑟 =

∑

𝑠∋𝑟 𝑓𝑠 in vector form as 𝒙̂ =
∑

𝑠∈ 𝑓𝑠𝜼𝑠 where
𝜼𝑠 = (𝜂𝑠𝑟 )𝑟∈ denotes the indicator vector with

𝜂𝑠𝑟 = 1{𝑟∈𝑠}. (A.6)

Since 𝜇ℎ =
∑

𝑠∈ℎ 𝑓𝑠, by letting 𝛼ℎ𝑠 = 𝑓𝑠∕𝜇ℎ for all 𝑠 ∈ ℎ we have that
∑

𝑠∈ℎ 𝛼
ℎ
𝑠 = 1 and 𝛼ℎ𝑠 ≥ 0, the latter inequality being strict only for the

optimal strategies for commodity ℎ. With these notations, we can write

𝒙̂ =
∑

𝑠∈
𝑓𝑠𝜼𝑠 =

∑

ℎ∈
𝜇ℎ

∑

𝑠∈ℎ
𝛼ℎ𝑠 𝜼

𝑠. (A.7)

Now, for each ℎ ∈  the super-differential of the concave function
𝛩ℎ(𝝉) ∶= min𝑠∈ℎ

∑

𝑟∈𝑠 𝜏𝑟 is given by convex hull of the indicators of
optimal strategies, that is,

𝜕𝛩ℎ(𝝉) = co

{

𝜼𝑠 ∶ 𝑠 ∈ ℎ,
∑

𝑟∈𝑠
𝜏𝑠 = 𝛩ℎ(𝝉)

}

, (A.8)

so that from (A.7) we derive

𝒙̂ =
∑

ℎ∈
𝜇ℎ

∑

𝑠∈ℎ
𝛼ℎ𝑠 𝜼

𝑠 ∈
∑

ℎ∈
𝜇ℎ 𝜕𝛩(𝝉). (A.9)

Finally, letting 𝛷(𝒙) ∶= ∑

𝑟∈ 𝐶𝑟(𝑥𝑟) and 𝜏𝑟 = 𝑐𝑟(𝑥𝑟) we clearly have 𝝉 =
∇𝛷(𝒙̂), which is equivalent to 𝒙̂ ∈ 𝜕𝛷∗(𝝉) where the Fenchel’s conjugate
is given by 𝛷∗(𝝉) =

∑

𝑟∈ 𝐶
∗
𝑟 (𝜏𝑟). Since all the involved functions are

finite and continuous, using standard subdifferential calculus rules,
(A.9) is equivalent to 0 ∈ 𝜕𝛹 (𝝉) for the convex function 𝛹 (𝝉) = 𝛷∗(𝝉) −
∑

ℎ∈ 𝜇ℎ𝛩ℎ(𝝉) which is precisely the objective function in (2.6).

A.2. Characterization of comonotonicity

For the sake of completeness we include the following characteriza-
tion of comonotonicity. This is a folk result (see e.g., Landsberger and
Meilijson (1994)), but its proof is not easy to find in the literature.

Lemma 31. Consider a finite family of functions 𝜓𝑖 ∶ 𝛺 → R for 𝑖 =
1,… , 𝑚 and let 𝑠(𝜔) ∶= ∑𝑚

𝑖=1 𝜓𝑖(𝜔). Then, the family {𝜓𝑖 ∶ 𝑖 = 1,… , 𝑚} is
comonotonic if and only if there exist nondecreasing functions 𝐹𝑖 ∶ R → R
such that 𝜓𝑖(𝜔) = 𝐹𝑖(𝑠(𝜔)) for all 𝜔 ∈ 𝛺 and 𝑖 = 1,… , 𝑚.

Proof. Since the ‘‘if’’ implication holds trivially, it suffices to prove
the ‘‘only if’’. Suppose that the 𝜓𝑖’s are comonotonic. For 𝑧 ∈ R define
𝐹𝑖(𝑧) = sup𝜔∈𝛺{𝜓𝑖(𝜔) ∶ 𝑠(𝜔) ≤ 𝑧} if there is some 𝜔 ∈ 𝛺 with
𝑠(𝜔) ≤ 𝑧, and 𝐹𝑖(𝑧) = inf𝜔∈𝛺 𝜓𝑖(𝜔) otherwise. Clearly the functions
𝐹𝑖 are nondecreasing and 𝜓𝑖(𝜔) ≤ 𝐹𝑖(𝑠(𝜔)), whereas comonotonicity
implies that the latter holds with equality for all 𝑖 = 1,… , 𝑚 and 𝜔 ∈ 𝛺.

It remains to show that the 𝐹𝑖’s are everywhere finite. Indeed, if
𝐹 (𝑧) = ∞ for some 𝑧 ∈ R we can find a sequence 𝜔 ∈ 𝛺 with 𝑠(𝜔 ) ≤ 𝑧
𝑖 𝑛 𝑛
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such that 𝜓𝑖(𝜔𝑛) increases to ∞. However, by comonotonicity, the latter
mplies 𝑠(𝜔𝑛) → ∞ which is a contradiction. Now, if 𝐹𝑖(𝑧) = −∞ we

must be in the case 𝐹𝑖(𝑧) = inf𝜔∈𝛺 𝜓𝑖(𝜔) = −∞ and comonotonicity
implies inf𝜔∈𝛺 𝑠(𝜔) = −∞, so we may find 𝜔 ∈ 𝛺 with 𝑠(𝜔) ≤ 𝑧 which
yields the contradiction 𝐹𝑖(𝑧) ≥ 𝜓𝑖(𝜔) > −∞. □

A.3. A remark on the number of active regimes

The monotonicity result in Cominetti et al. (2021, proposition 3.12)
implies that the number of active regimes in a single-commodity rout-
ing game on a SP network is at most the number of paths. This bound
does not hold for multiple commodities. In a singleton congestion
game there are ∏

ℎ∈

(

2
|

|

|

ℎ|
|

| − 1
)

potential combinations for ̂(𝝁), and
this bound may be attained (see Example 32 below). This is not the
case for single-commodity routing games: if we consider a subnetwork
composed by only two paths, it is always SP and only two of the three
nonempty subsets of paths can actually correspond to an active regime
̂(𝜇) for some 𝜇 ∈ [0,+∞).

Example 32. Let us build a multi-commodity routing game that attains
the maximal bound for the number of active regimes. Take 𝑚 a positive
integer and consider a routing game on a parallel network with 𝑚
resources (edges)  = {1,… , 𝑚} with cost functions

∀𝑖 ∈ {1,… , 𝑚} , 𝑐𝑖(𝑥𝑖) = 𝑥𝑖 + 𝑖,

and 𝑚+1 commodities where each commodity 𝑖 = 1,… , 𝑚 can only use
one specific resource 𝑖 = {𝑖}, whereas commodity (𝑚 + 1) can use all
the resources 𝑚+1 = .

We claim that ̂(𝝁) assumes the maximum number ∏𝑚+1
𝑖=1

(

2|𝑖
| − 1

)

= 2𝑚 − 1 of possible active regimes as the demands 𝝁 vary. Indeed,
for each commodity 𝑖 ≤ 𝑚 the active regime is always {𝑖}, whereas
every nonempty subset 𝜚𝑚+1 ⊂  is the active regime of the (𝑚 + 1)-th
commodity for some demand 𝝁. Namely, let 𝑖max = max{𝑖 ∈ 𝜚𝑚+1} and
consider the demand

∀𝑖 ≤ 𝑚, 𝜇𝑖 =

{

0 if 𝑖 ∈ 𝜚𝑚+1,
𝑖max if 𝑖 ∉ 𝜚𝑚+1,

𝜇𝑚+1 =
∑

𝑖∈𝜚𝑚+1
(𝑖max − 𝑖).

Then, the unique equilibrium is such that commodity (𝑚 + 1) allocates
𝑖max− 𝑖 to each resource 𝑖 ∈ 𝜚𝑚+1 with cost 𝑖max, whereas every resource
𝑖 ∉ 𝜚𝑚+1 has a cost 𝑖max + 𝑖 > 𝑖max, so that the active regime for
commodity (𝑚 + 1) is exactly 𝜚𝑚+1.

Appendix B. List of symbols

𝑐𝑟 cost function of resource 𝑟
𝑐𝑠 cost function of strategy 𝑠, defined in (2.3)
𝒄 vector of cost functions; it can be indexed both by

elements in  or 
𝑐𝜀𝑟 (𝑥𝑟) regularized cost 𝑐𝑟(𝑥𝑟) + 2𝜀𝑥𝑟
𝐶𝑟(𝑥𝑟) primitive of costs ∫ 𝑥𝑟0 𝑐𝑟(𝑧) d𝑧
𝐶∗
𝑟 ( ⋅ ) Fenchel conjugate of 𝐶𝑟( ⋅ )

 subset of commodities having the same equilibrium cost
𝖣ℎ destination for OD pair ℎ
(𝖣𝝁) dual problem, defined in (A.4)
 set of edges
𝒆ℎ ℎ-th vector of the canonical basis of R

𝑓ℎ𝑠 flow on strategy 𝑠 in commodity ℎ
𝒇ℎ ℎ-th commodity flow vector

(

𝑓ℎ𝑠
)

𝑠∈ℎ
𝒇 flow vector

(

𝒇ℎ
)

ℎ∈
𝝁 set of feasible pairs (𝒙,𝒇 ) for the demand vector 𝝁
765
𝐺 directed multigraph
 (, 𝒄,), congestion game structure
𝜀 (, 𝒄𝜀,), perturbed congestion game structure
 ( , 𝒄, ), single commodity game defined in

Definition 10
1 × 2 series game
1 ∪ 2 parallel game
ℎ commodity
 set of commodities
𝖮ℎ origin for OD pair ℎ
(𝖯𝝁) primal problem, defined in (A.3)
̂(𝜇) set of paths that attain equilibrium cost at equilibrium

with demand 𝜇
ℎ the set of paths of commodity ℎ
 (ℎ)ℎ∈
𝑟 resource
 set of resources
̂ℎ(𝝁) set of active resources for commodity ℎ ∈ 
̂(𝝁) (̂ℎ(𝝁))ℎ∈ , active regime
0 set of resources such that 𝑐𝑟(𝑥𝑟(𝝁0)) = 𝜆ℎ(𝝁0)
+

0 {𝑟 ∈ 0 ∶ 𝑥𝑟(𝝁0 + 𝑡𝒆ℎ) > 𝑥𝑟(𝝁0)}, defined in (3.1)
−

0 {𝑟 ∈ 0 ∶ 𝑥𝑟(𝝁0 + 𝑡𝒆ℎ) < 𝑥𝑟(𝝁0)}, defined in (3.2)
=

0 {𝑟 ∈ 0 ∶ 𝑥𝑟(𝝁0 + 𝑡𝒆ℎ) = 𝑥𝑟(𝝁0)}, defined in (3.3)


(

∪ℎ∈ℎ) ⧵
(

∪ℎ′≻ℎ′
)

, defined in (4.3)
ℎ set of feasible strategies for commodity ℎ
 ×ℎ∈ℎ, set of strategy profiles
𝖲(𝖣𝝁) optimal solution set of the dual problem
𝖲𝖢(𝝁)

∑

ℎ∈ 𝜇
ℎ𝜆ℎ(𝝁), social cost

𝑣𝝁(𝒛) inf𝒇 𝜑𝝁(𝒇 , 𝒛), defined in (A.3)
𝑉 (𝝁) min𝒙∈𝝁

∑

𝑟∈ 𝐶𝑟(𝑥𝑟), defined in (A.1)
 set of vertices
𝑥𝑟 load of resource 𝑟, defined in (2.2)
𝒙 (𝑥𝑟)𝑟∈, load vector
𝝁 projection of the set of feasible pairs 𝝁 onto the 𝒙

variables
𝛤≾ demand regions induced by a given order ≾, defined in

(4.1)
𝛤≾𝝔 demand subregions for a given order ≾ and active

regime 𝜚, defined in (4.2)
𝜂𝑠𝑟 1{𝑟∈𝑠}, defined in (A.6)
𝜼𝑠 (𝜂𝑠𝑟 )𝑟∈
𝜆ℎ equilibrium cost of commodity ℎ, defined in (2.4)
𝝀

(

𝜆ℎ
)

ℎ∈ , equilibrium cost vector
𝜇ℎ demand for commodity ℎ
𝝁

(

𝜇ℎ
)

ℎ∈ demand vector
𝜇 aggregate demand on 
𝝔

(

𝜚ℎ
)

ℎ∈ , regime
𝜚ℎ subset of ℎ

𝜏𝑟 equilibrium cost of resource 𝑟
𝜑𝝁 defined in (A.2)
𝜑∗
𝝁 Fenchel conjugate of 𝜑𝝁, defined in (A.5)
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