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Abstract
Reinforcement learning (RL) algorithms have been long recognized as powerful tools 
for optimal sequential decision making. The framework is concerned with a decision 
maker, the agent, that learns how to behave in an unknown environment by making deci-
sions and seeing their associated outcome. The goal of the RL agent is to infer, through 
repeated experience, an optimal decision-making policy, i.e., a sequence of action rules 
that would lead to the highest, typically long-term, expected utility. Today, a wide range 
of domains, from economics to education and healthcare, have embraced the use of RL 
to address specific problems. To illustrate, we used an RL-based algorithm to design a 
text-messaging system that delivers personalized real-time behavioural recommendations 
to promote physical activity and manage depression. Motivated by the recent call of the 
UNECE for government-wide actions to adapt to population ageing, in this work, we argue 
that the RL framework may provide a set of compelling strategies for supporting popula-
tion research and informing population policies. After introducing the RL framework, we 
discuss its potential in three population-study applications: international migration, public 
health, and fertility.

Keywords  Reinforcement learning · Multi-armed bandits · Optimal decision making · 
Population policies · Public health

1  Introduction

Decision  making is a recurrent, ubiquitous activity that individuals, organizations, and 
governments face in their everyday life. In applied demography, the subject plays a criti-
cal role in problems such as decisions to marry, have a child, migrate, or retire  (Kintner 
and Pol 1996). The process can be more or less rational or irrational and can be based on 
explicit or tacit information and beliefs (Gilboa 2009). Essentially, it can be regarded as a 
problem-solving activity yielding a solution deemed to be optimal or at least satisfactory. 
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As an illustrative guiding example, consider the context of international student mobility. 
From the point of view of a government, there is a growing interest in exploring or finding 
new ways to attract foreign students as a potential source of highly skilled workers. To this 
end, they may consider a set of interventions (such as financial support, housing, or paid 
work experiences) and decide which policy to implement to maximize the average retention 
rate, i.e., the fraction of incoming students who stay in the country after graduation. From 
the point of view of a student, the decision-making problem may be about  whether to move 
or not so as to maximize their future income, for example.

Although decisions may well involve evidence-based practices (Movsisyan et al. 2021) 
or irrational beliefs, the scientific community widely recognizes the potential of following 
a personalized data-driven approach (see e.g., Kosorok and Laber 2019; Liu et al. 2017). 
This approach is also advocated in the recent EU-funded HumMingBird project,1 which 
aims to leverage real-time information from mobile phones, social media, and remote sens-
ing services  in the context of migration problems. The idea is that decisions should be 
guided by the set of individual characteristics of a unit, rather than by intuition or aver-
age evidence alone. In the above example, if a government acts in a setting with limited 
resources and has to limit the decision to at most one option for each potential student, 
the task is to decide not only which intervention to offer, but also whether or not to offer it 
and to which student. Similarly, the decision of the student on whether to move or not will 
account for their current state, i.e., their individual and contextual information, such as 
socio-demographics and preference-related aspects.

Furthermore, unlike traditional protocols that regard the decision-making problem as a 
single-stage classification or prediction problem, it is now widely agreed that formulating 
it as a sequential decision problem—when appropriate—can better reflect the dynamics 
of individual (e.g., students) behavior and their evolving interaction. In fact, it is unreal-
istic to believe that governmental policies for attracting international students will have 
the same effect over time. Practical examples of such protocols can be found in personal-
ized medicine (Chakraborty and Moodie 2013; Deliu and Chakraborty 2022; Tsiatis et al. 
2019)—where interventions are dynamically tailored to the uniquely evolving health status 
of each patient—or recommender systems (Afsar et al. 2022), which adapt news, entertain-
ment, or shopping items to individual customer preferences. Notably, these examples have 
extensively embraced the use of reinforcement learning (RL) to solve complex sequential 
decision-making tasks.

Reinforcement learning is an area of machine learning (ML) concerned with under-
standing how agents (humans, animals, machines) might learn to improve their decisions 
through repeated experience. More formally, it aims at identifying optimal decision rules 
(i.e., policies) in sequential decision-making problems under uncertainty (Bertsekas 2019; 
Sutton and Barto 2018). An optimal RL policy is the one that maximizes the expected 
long-term utility (as in classical economic models and decision theory; Fishburn 1970; Gil-
boa 2009), assuming this is likely to outweigh the associated short-term costs. Even if an 
individual may act primarily with a short-term horizon, they do understand that saving 
money is essential to build wealth and having a secure financial future.

The general RL framework is formalized through a continuous interaction between a 
learning agent (i.e., the decision maker) and the environment it belongs to and wants to 
learn about. At each interaction stage, the agent observes some representation of the envi-
ronment’s state or context, and on that basis selects an action or arm, i.e., makes a decision. 

1  https://​cordis.​europa.​eu/​artic​le/​id/​444860-​a-​data-​driven-​appro​ach-​to-​the-​migra​tion-​chall​enge.

https://cordis.europa.eu/article/id/444860-a-data-driven-approach-to-the-migration-challenge
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The impact of the chosen action is evaluated through a reward (or outcome) provided by 
the environment. Based on the reward received, the agent learns, by trial-and-error, on 
how to take better actions in the future to maximize the cumulative reward over time.

RL has existed for decades and has been widely studied, with tremendous theoretical 
achievements in efficiency, generalization, and representation. Nowadays, it is increas-
ingly being applied in different domains such as robotics, business management, finance, 
and healthcare, just to name a few  (Chakraborty and Moodie 2013; Charpentier et  al. 
2021; Mnih et al. 2015). More recently, its value has been leveraged in the mobile-health 
domain  (Figueroa et  al. 2022, 2021; Steinhubl et  al. 2015). To illustrate, we used it to 
design a mobile-health app for delivering behavioral interventions in the form of text mes-
sages to promote physical activity in university students  (Figueroa et  al. 2022). The RL 
strategy was designed to evaluate, on a daily basis, which type of text message, and at what 
time, is more likely to maximize the number of steps walked the next day by a specific 
individual. The study is now being implemented in a clinical population with diabetes and 
depression (Aguilera et al. 2020).

Despite significant progress and an increase in the number of success stories, the con-
siderations of RL-guided decision  making in population research are still very limited. 
Compared to other ML methods, which have received much more attention within demog-
raphy (see e.g., Carammia et al. 2022; Nigri et al. 2022), RL can be particularly suited to 
inform population policies in a context of global population changes (Billari 2022; Vollset 
et al. 2020) thanks to the following features: 

	 (i)	 RL explicitly tackles the problem of making decisions and learning policies in an 
uncertain and changing environment;

	 (ii)	 RL focuses on long-term goals; furthermore, it is able to handle long and complex 
sequential decision-making tasks with sampled, delayed, non-stationary, and exhaus-
tive outcomes;

	 (iii)	 RL can be implemented online and learn as new data are acquired, without requiring 
massive amounts of representative historical data. Note that most of ML techniques 
learn offline from a fixed dataset only;

	 (iv)	 RL approaches can easily leverage existing population models and simulations–such 
as agent-based models (Klabunde and Willekens 2016)–to extrapolate and integrate 
the impact on population dynamics when predicting future possibilities.

In light of this, a number of decision-making problems in demographic research (such as 
fertility and migration) could be formalized and studied through a decision-theoretical 
framework and ultimately solved with RL solutions.

This work re-echos the observation that the main models and techniques used for pol-
icy making have practical and theoretical limitations  (Banha et  al. 2022). In Hallsworth 
(2011), a number of major challenging points are discussed; notably, they point to a domi-
nant policy-making model that is outdated and does not accurately reflect reality. Neverthe-
less, the vision of “modernized” policy making introduced in the Modernising Government 
White Paper in 1999 (Bullock et al. 2001; Cabinet 1999) illustrates nine features of modern 
policy making, which include, among others:

Forward looking: taking a long-term view, based on statistical trends and informed 
predictions, of the likely impact of policy;
Evaluation: building systemic evaluation of early outcomes into policy processes;
Learn lessons: learning from experience of what works and what does not;
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Innovative and creative: questioning established ways of dealing with things and 
encouraging new ideas.

A policy-making process should thus be a nonmyopic evidence-based approach that learns 
from experience and systematically evaluates and incorporates early outcomes into the decision 
making. Additionally, the process should accommodate innovative technologies and ideas.

We believe that there is ample scope to raise awareness of the RL potential in this context. 
In fact, RL is based on a continuous evaluation of past actions to learn how to improve future 
decisions to optimize a long-term goal. In this work, we argue that leveraging 1) mathemati-
cal decision-making frameworks to formulate decisions and 2) modern RL solutions into the 
policy-making process could support decisions and enhance their effectiveness and efficiency. 
This is particularly the case for processes with high degrees of uncertainty and complexity, 
such as those related to migration aspects, which may relate to exogenous conditions that are 
consequences of period circumstances.

It is aim of this work to make demographers and policy-makers more aware of the poten-
tial of innovative approaches to decision making, as well as to the interplay between policy-
making and demography, recently emphasized by the United Nations Economic Commission 
for Europe (UNECE 2022):

Population ageing has social and economic implications for which societies need to pre-
pare and to which they need to adapt. This requires a coordinated, whole-of-government 
and whole-of-society effort. [...] A comprehensive situation analysis, including demo-
graphic projections, helps identify priorities and directions for ageing-related policies 
overall but also to identify the relevance of demographic change for different sectors.

We note that this interplay can be broadly contextualized within a number of domains–going 
from economics to social aspects–where population estimates play a key role. As extensively 
discussed (Ahn et al. 2005; Buettner 2022; United Nations Department of Economic and Social 
Affairs 2022), population projections are widely used in various policy-making processes and 
for development planning. Demographic forecasts have created awareness of population ageing 
and assisted numerous public policies such as changes in pension or birth control. Although 
many of these policies have made demographers active participants, these are mostly regarded 
as a part of other public goals and not as an instrument of population policy.

In this work, after a formal introduction of the RL framework in Sect. 2, our focus will 
be on examples that used RL, and specific RL subclasses, for learning policies in population 
problems. Section 3 will discuss the applicability of RL in three demographic areas: interna-
tional migration, public health, and fertility. Some challenges that may limit the adoption of 
RL in real world will be presented in Sect. 4.

2 � Overview of the RL framework

2.1 � Basic ingredients

In reinforcement learning, differently from other ML methods, data are available in 
sequential order and learning is performed through many stages. For practicality, consider 
a discrete time space indexed by t ∈ ℕ = {0, 1,… , } . At each time t, the RL framework 
describes an interaction between an agent and an unknown environment, articulated in the 
following three key elements:
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•	 State or context, denoted by X
t
∈ X

t
 , being the representation of the environment at 

step t. This includes the set of information (demographic and nondemographic covari-
ates, such as age and country of origin) that may be relevant to make predictions about 
the consequences of policy alternatives.

•	 Action At , taken by the agent from a set of admissible actions A
t
 , i.e., the set of policy 

alternatives. When making the choice, the agent weighs the consequences of the alter-
natives and their likelihood, given the state.

•	 A (short-term) reward Y
t+1 ∈ Y

t+1 ⊂ ℝ provided by the environment in response to 
the chosen action At , in correspondence with an observed state Xt . This closely relates 
to the concept of utility or welfare, which should be the ultimate criterion for judging 
whether the whole policy works well or not. In conjunction with the reward, the envi-
ronment makes a transition into a new state X

t+1 ∈ X
t+1.

By repeating this process for each t ∈ ℕ , the result is a trajectory T  of states visited, 
actions pursued, and rewards received:

In an international migration context, this trajectory can be viewed as the history of con-
textual and individual students’ information Xt , the type of financial support offered At , and 
the ultimate outcome Yt of the student (moving or not into the host country). A schematic 
of the generic agent-environment interaction, along with the specific student-migration 
example, is reported in Fig. 1. Note that in some settings there may be multiple interven-
tions at different stages and only one terminal reward; in this case, the rewards at all previ-
ous stages are taken as 0. In addition, in many settings, the context may also depend on the 
selected action, that is Xt = Xt,at

.

(1)T ≐
{
(X

t
,A

t
, Y

t+1)
}
t∈ℕ

.

Fig. 1   Schematic of the RL framework through its sequential agent-environment interaction (left) and an 
illustrative one-stage example in the context of governmental policies for attracting international students 
(right)
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2.2 � Mathematical formalization of RL

Define now �� ≐
(
X0,… ,Xt

)
 , �� ≐

(
A0,… ,At

)
 , �� ≐

(
Y1,… , Yt

)
 , and similarly �� , �� 

and �� , where the upper- and lower-case letters denote random variables and their par-
ticular realizations, respectively. Also define the history �� as all the information avail-
able at time t prior to decision At , i.e., �� ≐ (��−�,�� ,��) ; similarly �� . The history 
�� at stage t belongs to the product set H

t
= X0 ×

∏t

�=1
X� ×A�−1 × Y� . Note that, by 

definition, �� = X0 . We assume that each longitudinal history is sampled independently 
according to a distribution P

�
 , given by

where:

•	 p0 is the probability distribution of the initial state X0.
•	 � ≐ {�t}t≥0 represents the exploration policy and determines the sequence of actions 

generated throughout the decision-making process. More specifically, �t maps his-
tories of length t, �� , to a probability distribution over the action space A

t
 , i.e., 

�t(⋅ ∣ ��) . The conditioning symbol “ ∣ ” in �t(⋅ ∣ ��) reminds us that the exploration 
policy defines a probability distribution over A

t
 for each �� ∈ H

t
 . Sometimes, At 

is uniquely determined by the history �� , and the policy is simply a function of the 
form �t(��) = at . We call it deterministic policy, in contrast to stochastic policies 
that determine actions probabilistically.

•	 {pt}t≥1 are the unknown transition probability distributions and they completely 
characterize the dynamics of the environment. At each time t ∈ ℕ , the transition 
probability pt assigns to each trajectory (��−�, ��−�, ��−�) = (��−�, at−1) at time t − 1 a 
probability measure over X

t
× Y

t
 , i.e., pt(⋅, ⋅ ∣ ��−�, at−1).

At each time t, the transition probability distribution pt+1(xt+1, yt+1 ∣ �� , at) gives rise 
to: (i) the state-transition probability distribution pt+1(xt+1 ∣ �� , at, yt+1) , i.e., the prob-
ability of moving to state xt+1 conditioned on the observed history �� , the current 
selected action at , and the reward received yt+1 ; and (ii) the immediate reward distribu-
tion rt+1(yt+1 ∣ �� , at, xt+1) , which specifies the reward Yt+1 after transitioning to xt+1 with 
action at . To better incorporate uncertainty, we assume a stochastic reward distribution.

The cumulative discounted sum of immediate rewards from time t onwards is known 
as return, say Rt , and is given by

The discount rate � ∈ [0, 1] determines the current value of future rewards: a reward 
received � time steps in the future is worth only �� times what it would be worth if it were 
received immediately. If � = 0 , the agent is myopic in being concerned only with maximiz-
ing the immediate reward, i.e., Rt = Yt+1 . If � = 1 , the return is undiscounted and it is well 
defined (finite) as long as the time horizon is finite, i.e., T < ∞ (Sutton and Barto 2018).

The goal in RL is to learn an optimal way of choosing the set of actions or learning 
an optimal policy, so as to maximize the expected future return. Note that the expected 
return is the most common approach to handling decisions under uncertainty (De Lara 

(2)P
�
≐ p0(x0)

∏
t≥0

�t(at ∣ ��)pt+1(xt+1, yt+1 ∣ �� , at),

Rt ≐ Yt+1 + �Yt+2 + �
2Yt+3 +⋯ =

∑
�≥t

�
�−tY�+1, t ∈ ℕ.
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and Doyen 2008). Thus, at any time t ∈ ℕ , the RL problem is to find an optimal policy 
�
∗
t
≐ {�∗

t
}�≥t such that

where the expectation is meant with respect to the distribution in Eq. (2).
For estimating optimal policies, various methods have been developed so far in the 

RL literature: see Sutton and Barto (2018) and Sugiyama (2015) for an overview. A tra-
ditional approach is through value functions, which define a partial ordering over poli-
cies, with insightful information on the optimal ones. In fact, optimal policies share the 
same (optimal) value function. For this reason, efficient estimation of the value func-
tion is one of the most important components of almost all RL algorithms. For exam-
ple, comparing estimated value functions of different candidate policies offers a way to 
understand which strategy may offer the greatest expected outcome.

There are two types of value functions: (i) state-value or simply value functions, say 
V�

t
 representing how good it is for an agent to be in a given state, and (ii) action-value 

functions, say Q�

t
 indicating how good it is for the agent to perform a given action in a 

given state. These are formally defined as:

∀t ∈ ℕ , ∀�� ∈ H
t
 and ∀a

t
∈ A

t
 . By definition, at stage t = 0 , V�

0
(��) ≐ V�

0
(x0) ; while for 

the terminal stage, if any, the state-value function is 0.
For ease of notation, in this work, we assume that we are at the beginning of a process, 

that is, at stage t = 0 , and we focus on state-value functions. The aim is to finding the pol-
icy having the greatest value of expected total-discounted reward, �∗ = argmax

�

V�

0
(x0) , 

where

and � ∈ [0, 1] . Note that Yt+1 is a function of the current history �� (or state xt ) and the 
selected action at.

A fundamental property of the value functions used throughout RL is that they sat-
isfy particular recursive relationships, known as Bellman optimality equations  (Bell-
man 1957). Denoted with V�

∗

t
 the optimal value function at time t, which is the one that 

yields the largest expected return for each history, it holds that:

This property allows for the  estimation of (optimal) value functions recursively, from T 
backwards in time. In finite-horizon dynamic programming (DP), this technique is known 
as backward induction, and represents one of the main methods for solving the Bellman 
equation.

(3)�
∗
t
= argmax

�
t

�P
�

[Rt] = argmax
�
t

�P
�

[∑
�≥t

�
�−tY�+1

]
,

V�

t
(��) ≐ �P

�

[
Rt ∣ �� = ��

]
= �P

�

[∑
�≥t

�
�−tY�+1 ∣ �� = ��

]
,

Q�

t
(�� , at) ≐ �P

�

[
Rt ∣ �� = �� ,At = at

]
= �P

�

[∑
�≥t

�
�−tY�+1 ∣ �� = �� ,At = at

]
,

(4)V�

0
(x0) = �P

�

[∑
t≥0

�
tYt+1 ∣ X0 = x0

]

V∗
t
(��) = �

[
Yt+1 + �V∗

t+1
(��+�) ∣ �� = ��

]
.
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Offline and Online RL. In many decision problems, the estimation policy we want 
to learn about, say d , might be different from the exploration policy � that generated the 
data. This may happen when we want to estimate an optimal policy without interacting 
with the environment but using some already collected data (e.g., observational data), for 
which a certain exploration policy, often unknown, was used. We refer to it as offline RL, 
as opposed to online RL, where the agent interacts with the environment to collect samples 
and iteratively improve the policy. In practice, a learning problem where the policy is only 
evaluated according to the state of the system at the end of the process, even if decisions 
and outcomes occurred in a sequential manner, is regarded as an offline learning problem. 
On the contrary, a problem is said to be online if the policy is evaluated and optimized as 
rewards are collected and new information is gathered. The multi-armed bandit (MAB) 
problem is a classic example of an online RL problem.

2.3 � The multi‑armed bandit class

MAB problems represent some of the simplest expressions of RL problems. The classi-
cal form of the MAB problem is as follows. There are multiple actions or arms, say K, 
each associated with a (possibly different) reward distribution. At each time t = 0, 1,… , 
the learner makes a choice among the K arms and only receives a reward for the action 
chosen at each time t. As information accumulates, the learner’s goal in a MAB problem is 
to maximize the cumulative reward by trading-off between selecting the best actions so far 
(exploitation) and acquiring new knowledge about the other actions (exploration). Within 
this framework, an optimal solution to Eq. (3), can be derived by solving k 1-dimensional 
optimization problems instead of the k-dimensional problem as required by dynamic pro-
gramming. Basically, the goal reduces to the selection of the optimal action A∗

t
 at each time 

t, with

Based on how exploration is approached, there are several ways to build policies to solve 
the MAB problem. For example, one may focus on exploration and never exploit any of the 
data they have gathered. Pure-exploration policies are completely random; we call them 
Random policies. Pure-exploitation policies would always choose the best possible solu-
tion, assuming they already have all the data to exploit and know the underlying truth; 
we call this an Oracle. Clearly, the latter is possible only in theory, and decisions can be 
equally bad as random policies. Thus, the state-of-the-art MAB policies rely on an efficient 
balance between exploration and exploitation. We refer to Lattimore and Szepesvári (2020) 
for an extensive overview and analysis of the matter, while here we report two alternative 
strategies known as the Gittins index and the Thompson sampling.

2.3.1 � The Gittins index

An alternative approach to DP for solving Eq.  (3) is to associate an index to every 
state  or  stage and select the arm with the highest index at every stage t. The Gittins 
index  (Gittins 1974), originally named dynamic allocation index, offers a solution to a 
very large number of problems (see Chapter 1 of Gittins et al. 2011, for an overview) and 
represents a key breakthrough for the MAB problem. Formally, the Gittins index theorem 
states that, for any infinite-horizon discounted RL problem, with finitely many arms and 

A
∗
t
= argmax

at∈A

V
t
(x

t
) = argmax

at∈A

�(Y
t+1 ∣ Xt

= x
t
,A

t
= a

t
).
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bounded rewards, the policy obtained by backward induction is optimal if and only if it 
always selects the arm k with the highest Gittins index at each time t. In correspondence to 
the initial state x0,k , the index of arm k, denoted by G

k
(x0,k) , is defined as:

where � is a past-measurable stopping-time. Intuitively, the index can be interpreted as the 
maximal value of the ratio of the  ex discounted reward to the  expected discounted time 
under policies that choose a stopping time �.

Importantly, Eq.  (5) tells us that the index depends only on the  information concern-
ing arm k, greatly reducing the dimensionality of the problem and its solution. The Gittins 
index policy assigns the value to each arm based on the observed state variables, and sug-
gests as optimal strategy the one with the highest value. It can be computed offline, calcu-
lating the table of values of the index for each state and action, or online, calculating the 
value of the index for the current state, and the corresponding stopping time for the current 
state. We refer to Chakravorty and Mahajan (2014) for an overview.

2.3.2 � Thompson sampling

Rooted in a Bayesian framework, the Thompson sampling algorithm guides the choice 
of actions in proportion to the posterior probability of producing the maximum expected 
reward at each time t. For a given action k, the policy � at each time t + 1 is explicitly 
defined as:

where the conditioning term �� = �� reflects the posterior nature of this probability and 
should not be confused with the conditioning terms of the Q-function.

For some families of reward distributions, it is possible to compute �t+1,k either analyti-
cally or by quadrature. In any case, it may be computationally and memory intensive, thus, 
the typical way for implementing the Thompson sampling algorithm does not involve their 
direct computation, but follows a posterior sampling procedure as detailed in Agrawal and 
Goyal (2013).

2.3.3 � A simulation‑based comparison

For the sole purpose of better understanding the advantages of RL in a resource alloca-
tion problem, let us now evaluate it in a simplified simulation experiment. Consider again 
the example of international student mobility. Assume that the decision-making agent is 
the government or an educational institution, whose task is to select and offer one type of 
intervention to each potential incoming student. In an RL framework, the student would 
represent the unknown environment the agent wants to learn about. The agent may also 
decide for a “no offer” option, due, e.g., to limited resources. Specifically, let us consider 
the following action space:

(5)G
k
(x0,k) ≐ sup

�≥1

�

�∑�−1

t=0
� tY

t+1(Xt,k) ∣ X0,k = x0,k

�

�

�∑�−1

t=0
� t ∣ x

t,k

� ,

(6)
�t+1,k = ℙ

(
Q�

t+1
(Xt,k,At = k) ≥ Q�

t+1
(Xt,k� ,At = k�),∀k� ≠ k ∣ �� = ��

)

= ℙ

(
𝔼[Yt+1(Xt,k)] ≥ 𝔼[Yt+1(Xt,k� )],∀k

�
≠ k ∣ �� = ��

)
,
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In principle, the agent does not know which of the four interventions is optimal, i.e., is 
associated with the highest outcome and for whom. In this example, we define the outcome 
of interest as the binary variable Y = {0, 1} , where 1 indicates a student who has decided 
to move to the host country after receiving the offer and 0 otherwise. We assume a station-
ary setting, where the outcome distribution does not change over time, and model it as a 
Bernoulli variable depending on the unknown success parameter pk of each arm k:

Therefore, the agent’s goal is to learn sufficient information about the different interven-
tions in terms of their associated outcome or pk , so as to assign the most promising inter-
vention to most students. This results in maximizing the total number of international stu-
dents moving to the host country.

In this example, each step t of the RL framework corresponds to the unique student 
involved in the international mobility process. In other examples (such as the one that will 
be discussed in Sect. 3.1), it may represent different time points of the same individual. 
In both cases, effective learning is based on observing the outcomes obtained at previous 
time points (e.g., of previous students or groups of students, or of the same individual at 
prior time steps) and using the continuously accrued information to make better decisions 
in the future. The outcomes depend on the intervention k and may also depend on one or 
more specific characteristics X of the students, e.g., gender, age, country of origin. In that 
case we may consider pk to be a logistic function of the form pk(xt) =

1

1+e−(�0+�1xt )
 , with xt 

being the characteristic of the individual t and �0, �1 the unknown regression parameters. 
Here, for simplicity of exposition and without loss of generality, we assume pk(xt) = pk,∀t.

Comparative results in terms of reward and arm choice are reported in Figs. 2 and 3. 
These are generated on the basis of the illustrative student example model in Eq.  (7) 
with arm success parameters taken as p1 = 0.8, p2 = 0.6, p3 = 0.6, p4 = 0.2 . We assume 

A = {arm 1 = “��������� ������� (���������� �� ��� ������� ����)”,

arm 2 = “�������”,

arm 3 = “���� 
��� (������� ������� ���� ��� ������� ����)”,

arm 4 = “�� �����”}.

(7)Yk ∼ Bernoulli(pk), k = 1, 2, 3, 4.
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Fig. 2   Arm choice percentage of policies Random sampling (left), Thompson sampling (middle) and 
Gittins index (right). The Oracle, by definition, always selects the best arm(s), thus it is not shown. Results 
are averaged over M = 1000 independent simulation runs
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that arm 1 = “financial support” is the optimal intervention, capable of attract-
ing 80% of potential students, while when arm 4 = “no offer” is provided, the student 
is still open to move in 20% of cases. Arm 2 and arm 3 are assumed to be equivalent in 
terms of student attractiveness: even if the professional and economic return of arm 3 is 
greater than the one of arm 2, this comes at the cost of working hours.

We compare the two MAB policies introduced above (Thompson sampling and 
Gittins index, for which  we use the approximation in Brezzi and Lai (2002) and a 
discount rate of � = 0.95 ) with a Random policy that chooses arms uniformly at ran-
dom and an Oracle that always selects the best intervention. Results are averaged over 
M = 1000 independent simulation runs, with a horizon of T = 500 , equivalent to the 
number of students.

As shown in Fig. 2 (middle and right plot), after an initial learning phase in which 
the two MAB policies explore and learn about the optimal interventions, the choice of 
the arm quickly skews toward the optimal arm 1 = “financial support”. It should 
also be noted that the arm associated with the lowest probability of success (arm 4 = 
“no offer”) is quickly dropped. The result naturally translates in an increased prob-
ability of attracting international students (as shown in the reward plots in Fig.  3). 
While a Random policy attracts 55% of the students over time, a MAB-based policy 
is able to achieve performances similar to an Oracle in the long run. On average, over 
500 students, the MAB policies attract between 380 and 385 students, compared to an 
Oracle with 400 and a Random policy with 275 students, respectively.

3 � Applications in population research

In principle, most of the decision-making problems in dynamic population phenomena, 
ranging from birth control to migration policies, could be formalized through a model 
of rational decision making under an RL framework. In practice, the literature on the 
matter is very limited. In what follows, we offer a window to its potential by illustrat-
ing two application examples that addressed population problems with RL.
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3.1 � Individual migration decision making

An inevitable phenomenon of modern globalized societies is migration: a relatively per-
manent movement of people to new geographical locations, typically for the purpose of 
employment and improved living conditions. Over the past decades, international labor 
migration has been increasing worldwide, especially from lower income countries and in 
border-free systems such as Europe (Boswell 2018). There are a number of positive effects 
of labor migration. For the hosting country, it allows filling potential gaps in the labour 
market, boosting the local economy, and increasing the demographic and cultural variety, 
among other factors. For the country of origin, it lowers the unemployment rate, reduc-
ing job rivalry. For the immigrant, it represents a means by which individual workers can 
enhance their standard of living, skills, and/or career opportunities.2 However, it can also 
create challenges such as pressure on public services, racial tensions, and discrimination. 
Therefore, the need to factor international mobility and migration into strategies and poli-
cies is increasingly recognized among nations (OECD 2017).

Notably, “interest in artificial intelligence, machine learning, predictive analytics, and 
automated decision making is not immune to this tendency” (Molnar and Gill 2018). To 
some extent, this is already a reality. For example, Canada uses algorithmic decision mak-
ing in the determination of immigration and asylum  (Molnar and Gill 2018); similarly, 
Switzerland is developing an algorithm to improve the integration of refugees to optimize 
their overall employment rate  (Bansak et al. 2018). However, as far as our knowledge is 
concerned, existing strategies are not constructed on the basis of a theoretical framework 
for decision making where RL could be applied. Rather, they are based on a combina-
tion of supervised machine learning techniques (used for prediction and classification) and 
optimization. Thus, we argue that the use of RL to support migration policy making, cur-
rently underexplored, could revolutionize the way governments and international organiza-
tions seek to manage this international phenomenon. An illustration of its applicability and 
potential for migration decisions is now provided from the perspective of an individual (the 
RL agent) who has to decide whether and where to migrate (the actions).

Back in 1997, Berninghaus and Seifert-Vogt  (Berninghaus and Seifert-Vogt 1987) 
embraced the modern paradigm of sequential decision making under uncertainty to model 
the individual migration decision making. Authors regarded the problem of international 
migration as a dynamic precess under incomplete information in which agents make their 
decisions so as to maximise their utility. Referring back to the human capital theory of 
Sjaastad (1962), migration is seen as a form of individual behavior: individuals migrate 
to improve their economic situation compared to staying where they are. The decision to 
migrate is eventually based on comparing the expected discounted future return abroad 
with that achievable in their home country. The discount rate reflects the degree of time 
preference over the time horizon. As the migrant will acquire continuously more knowl-
edge by staying in the chosen country, they might decide to leave that country or to move 
to a different one in case of unexpectedly unfavourable events or rewards. That is, the 
migrant must be able to revise their decision at each decision time point in face of incom-
ing information.

Consider an individual migrant who faces a decision-making problem at finitely 
many decision times t = 0, 1,… , T (T < ∞) . At each time t, the migrant has to make 
a choice among one of K countries, in addition to the one they are currently staying, 

2  https://​www.​vazir​group.​com/​news/​impac​ts-​of-​migra​tion-​around-​the-​globe/.

https://www.vazirgroup.com/news/impacts-of-migration-around-the-globe/
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with the action space being A = {0, 1, 2,… ,K} . Aligned with other migration-related 
works  (Constant and Zimmermann 2012), authors assume a Markov decision model, 
meaning that agent’s decisions can be entirely determined based on the last/current 
available information (state) only, i.e., pt+1(⋅, ⋅ ∣ �� ,At) = pt+1(⋅, ⋅ ∣ Xt,At) , ∀t ≥ 0 . The 
idea is that it is only this current state, if known, that influences the future migration 
choice. The trajectory distribution in Eq. (2) is thus exemplified as follows:

It is assumed that a migration decision is influenced by the states of the countries Xt,k at 
time t, with k = 0,… ,K . These represent a set of selected real-valued socioeconomic vari-
ables that characterize the attractiveness of a given location. We may have, for example, 
Xt,k = (Wk, Lk) ∈ ℝ

2
+
 , where Wk > 0 denotes the wage rates and Lk > 0 is the quality of 

life, k = 0,… ,K , that is, a state of information about a pecuniary and a non-pecuniary fac-
tor, respectively. Additional factors–such as individual preferences for certain countries or 
migration times–or potential information on how Wk and Lk will evolve during the decision 
process can be taken into account.

The attractiveness of a location can be measured in terms of its  utility (e.g., in a 
utility maximisation model) or value (e.g., in a value expectancy model). It reflects 
a behavioural model of migration, based on which a migrant is more likely to move 
if they expect to be better off elsewhere. Considering a value expectancy model, and 
given an initial state X0,k = x0,k associated with the country k where an individual is 
living, the problem is to find an optimal migration strategy �∗ ≐ {�∗

t
}t≥0 that maxi-

mizes the expression:

The concept of a migration strategy reflects that of a general policy, i.e., a sequence of 
rules {�t}t≥0 , where each �t is a mapping from the state space that characterizes the country 
an individual lives in at time t to the space of migration options. Basically, it prescribes 
which country to move for the period [t, t + 1) depending on the current state observed 
xt,j . Note that only the states associated with the country in which a migrant has lived are 
observed; information on the other countries remains unknown to the agent before explor-
ing it. The migrant’s decision to whether to move or not will thus be based on the expecta-
tion they may have on that country (and, of course, the cost).

An important novelty of the approach proposed in Berninghaus and Seifert-Vogt 
(1987)–compared to other works that incorporate incomplete information in the migra-
tory context  (see Molho 1986, for an overview)–is the use of algorithms developed 
under the theory of stochastic dynamic optimization, more specifically within the 
MAB framework introduced in  Sect.  2.3. An illustrative example using the Gittins 
index is presented below. So far, the progress in incorporating decision processes into 
migration models has been increasingly growing (see e.g., the concept of agent-based 
models for describing individual-based dynamics; Klabunde and Willekens 2016), but 
their solution has been limited to standard optimization techniques, ignoring the poten-
tial of RL.

P
�
≐ p0(x0)

∏
t≥0

�t(at ∣ xt)pt+1(xt+1 ∣ xt, at)rt+1(yt+1 ∣ xt+1, at).

(8)�P
�

[Rt] = �P
�

[∑
t≥0

�
trt+1(⋅,At) ∣ X0,k = x0,k

]
.
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3.1.1 � An illustrative example

Consider a guest worker who has to choose between two options A = {0, 1} , with k = 1 
corresponding to moving into a host country, and k = 0 corresponding to staying at 
home. Let us assume that if the worker stays at home ( k = 0 ) he is completely informed 
of his net returns in terms of both the wage rate W0 = w0 and the quality of life L0 = l0 , 
whereas the state values of the host country ( k = 1 ) are only partially known before they 
are experienced. We recall that capital letters denote random variables and small let-
ters their observed or realized value. Specifically, the following schematical sequence of 
information acquisition can be utilized:

•	 t = 0 : the decision process starts with the artificial state 

•	 t = 1 : if the migrant has moved to country k = 1 , after one period, the state of infor-
mation changes to 

 that is, the migrant obtains full information exactly after one period living in the host 
country k = 1.

At time t = 0 , the migrant has no certainties about the non-pecuniary return, but they 
are informed about the pecuniary factor. This may be the case of a worker who signs a 
contract with a fixed wage rate before migrating. To formalize this assumption we sup-
pose that the prior (before migration) non-pecuniary return for the worker is a random 
variable L1 where

and l1 > 0 . At each time t, the decision process is evaluated according to the value of each 
country’s state, as defined in Eq.  (8). The reward Y ∶ X × A → ℝ , that is, the utility the 
migrant can extract from living in a country k, is conceptualized as a function of Wj and Lj , 
and it is supposed to be a Markov process where:

for the home country, while for the host country we could express it as

where k1 denotes the migration cost of moving into country k = 1 . Note that other formu-
lations for the reward function, and well as for the state definition, are possible; we point 
to Berninghaus and Seifert-Vogt (1987) for more details. We also emphasize that the rep-
resentation in Eqs. (9) and (10) gives a simplified example to make the Gittins index eas-
ily tractable and understandable. They could be formulated according to more accurate 
domain theories, with the inclusion of the main determinants of quality of life lk of a coun-
try k, as well as quality of life indicators related to the countries of interest.

X0,k =

{
(w0, l0) ∶ “complete information about country k” k = 0,

(w1, L1) ∶ “incomplete information about country k” k = 1;

X1,k = (wk, lk), k = 0, 1,

L1 =

{
l1 with probability

1

2

−l1 with probability
1

2
,

(9)Y
t+1(Xt,0, 0) = w0 + l0, t = 0, 1,… , T

(10)
Y1(X0,1, 1) = w1 − k1, (X0,1 = w1)

Y2(X1,1, 1) = w1 + L1, (X1,1 = (w1, L1)),
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Once the migrant is fully informed about the relevant variables in the two countries 
they can decide whether to stay in that country or move back. For illustrative purposes we 
assume:

In other words, the state w1 ± l1 is an absorbing state of the Markov process.
For this specific example, as shown in McCall and McCall (1984), the Gittins indices, 

following the definition in Eq. (5), are given by:

By these indices, it is possible now to derive the migration history of the migrant in our 
stylized example. Suppose G0(x0,0) ≥ G1(x0,1) ; then migration will not take place at all. If 
G0(x0,0) < G1(x0,1) , the worker will move for at least one period into the host country, and 
after one period living there, the optimal decision will be to stay in the host country forever 
if G1(x1,1) ≥ G0(x1,0) , and return to the home country otherwise. As expected, the decision 
depends not only on wages and moving costs, but–when l1 is “large” relative to k1–on its 
non-pecuniary attributes. While in principle the illustrated model suggests that individu-
als can freely migrate at any time t, we acknowledge that constraints to migration (such 
as visa requirements or family circumstances) may be in place. One way to express this 
constraint may be through the cost component k1 , which could be formulated as a function 
of individual characteristics. More generally, if other dimensions relevant to the migration 
decision are to be considered, they may be entered into the reward function through the 
quality of life or a new additional component. We refer to McCall and McCall (1984) for 
other extended models of migration.

3.2 � Public health: management of infectious diseases

In early 2020, the COVID-19 pandemic engulfed the world. Since its debut, it has altered 
the course of the global economy and devastated human communities (Horton 2021), with 
dramatic harms on health, on population, and on the society as a whole. Before vaccines 
and effective medical treatments were made available, global governments faced the emer-
gency with testing, contact tracing, and lockdowns to ensure social distancing and to miti-
gate unnecessary travel. However, it became quickly obvious that these restrictive measures 
would not have been economically and socially sustainable in the long run. As a conse-
quence, many countries sought to judiciously relax restrictions on travel and social dis-
tancing, with the risk of allowing the spread of asymptomatic or presymptomatic infected 
individuals. Certainly, extensive active testing might have been an ideal solution, but, at 
that moment, resources were scarce and often inaccurate.

In the context of international travelling, most of the nations adopted border screening pro-
tocols, typically based on traveller’s country of origin and differentiating between high-, mid-, 
and low-risk countries. As reported in Bastani et  al. (2021), most of the European nations 
defined the risk entirely based on population-level epidemiological metrics such as positivity 

P
(
Yt+1(Xt,1, 1) = w1 ± l1 ∣ Yt(Xt−1,1, 1) = w1 ± l1

)
= 1, ∀t ≥ 2.

G0(x𝜏,0) = w0 + l0, 𝜏 ≥ 0,

G1(x𝜏,1) = w1 ± l1, 𝜏 ≥ 1,

G1(x0,1) =

⎧
⎪⎨⎪⎩

(w1−k1)+
1

2

𝛾

1−𝛾
(w1+l1)

1−
1

2
𝛾

, k1 <
l1

1−𝛾
,

(w1 − k1) +
1

2

𝛾w1

1−𝛾
, k1 >

l1

1−𝛾
.
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rates, which may be biased by under-reporting or reporting delays, among other factors. An 
exception was Greece, engaged in the nationwide (across all Greek borders) deployment of 
EVA (Bastani et al. 2021): a real-time RL-based system for personalized COVID-19 screen-
ing. The goal was dual: i) to collect real-time data to monitor the epidemic progress and to 
inform better boarder policies; and ii) to combine the accumulated data on previously tested 
passengers with the new individual data so as to determine whether they should be screened 
or not at the Greek border. In contrast to country-wide protocols, EVA adopted a personal-
ized data-driven approach to determine the high-risk individuals to be allocated to the scarce 
(screening) resource adaptively. In fact, the prevalence of COVID-19 was constantly evolving 
as the pandemic ebbed and flowed, with changing risks across subgroups. Hence, the ideal 
policy should adapt to the dynamic nature of the pandemic. In Fig. 4, we illustrate the opera-
tional flow of EVA.

Formally, denote with rt(x) the unknown underlying risk for a passenger with characteris-
tics x on day t, where rt(x) is defined as the probability of a random passenger with character-
istics x to test positive on on day t. Let Nt(x, e) be the number of travellers with characteristics 
x arriving at entry point e on day t, with e ∈ E = {1,… , 40} . Finally, let Bt(e) denote the 
e-th entry-specific testing budget determined exogenously by the Secretary General of Public 
Health. The goal of EVA was to determine the number passengers nt(x, e) with characteristics 
x , arriving at entry e on day t to screen in order to maximize the expected number of infec-
tions caught at the border over the time horizon T (summer of 2020). That is, the goal is to 
maximize

subject to constraints on the entry-specific testing budget and capacity,

(11)max
n(⋅)

�

[
T∑
t=1

∑
e∈E

∑
x∈X

n
t
(x, e)r

t
(x)

]
,

Fig. 4   Schematic of the RL-based EVA system adopted by the Greek government to limit the influx of trav-
ellers infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)



Reinforcement learning for sequential decision making in…

1 3

Note that the true traveler risk rt(x) is unknown; it must be estimated using accumulated 
data from previous time steps, resulting in a typical exploration-exploitation dilemma char-
acterizing MABs (Lattimore and Szepesvári 2020). The chosen MAB algorithm was the 
optimistic Gittins index: each arm (testing vs. not testing) was associated with a determin-
istic index that represented its “risk score”, incorporating both its estimated prevalence and 
uncertainty. Unlike the classical stochastic bandit literature, the problem tackled here suf-
fers from nonstationary rewards (risks change over time), batched decision  making (deci-
sions are made at the start of the day), delayed feedback (test results are returned only 
after 48 h), and specific constraints (entry-specific budgets and arrivals), which had to be 
accounted for when designing the algorithm.

Overall, this work represents a successful example of the potential of RL and large-scale 
real-time data for safeguarding public health. However, while the COVID-19 pandemic 
shone a light on the importance of flexible data-driven adaptive experimentation and/or 
deployments for ethical and efficient decision making, it has also highlighted that in public-
health contexts such practices are very limited. We refer to Weltz et  al. (2022) and  Liu 
et al. (2023) for a general survey on RL methods in public health.

3.3 � Optimized mobile health interventions for family planning and contraceptive 
use

Mobile-health (mHealth) interventions have gained significant attention in recent years 
and are now part of the WHO “long-term strategic plan to develop and implement eHealth 
services, to develop the infrastructure for information and communication technologies 
for health, to promote equitable, affordable and universal access to their benefits” (WHO 
2021). Aided by the use of mobile technologies such as smartphones, mHealth interven-
tions directly target attitudes and behavior changes, by disseminating, gathering, and 
analyzing health-related data and supporting interventions. Several studies, ranging from 
physical activity to substance addition, highlight the benefits of mHealth for their potential 
to improve healthcare delivery and outcomes among the general public  (Liu et al. 2023; 
WHO 2011). Additionally, these tools can be utilized for online consultations, medication 
adherence, and health literacy.

Various works focusing on sexual and reproductive health showed that mobile technolo-
gies have the potential to improve the uptake of services and support family planning. For 
example, SMS text messages can be used as reminders to improve attendance to doctor 
appointments and compliance with medications or contraceptives  (Halpern et  al. 2013; 
Lopez et  al. 2016; McCarthy et  al. 2018). In upper-middle and high-income countries, 
there has been a proliferation of mHealth apps and digital devices, often equipped with 
sensors, that monitor menstrual cycles, track basal body temperature, and record other rel-
evant data about individuals’ fertile windows. By analyzing the collected information, the 
app can act as a data-driven support system for drug-free cycle-based contraception or for 

∑
x∈X

n
t
(x, e) ≤ B

t
(e), ∀e ∈ E

n
t
(x, e) ≤ N

t
(x, e), ∀e ∈ E,∀x ∈ X.
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increasing the chances of successful conception for individuals and couples planning to 
conceive or already expecting a child (see e.g., the UK Natural Cycles app; Pearson et al. 
2021). In low- and middle-income countries, studies have tested the use of mobile SMS 
text messages to encourage discussion about family planning and to prevent unintended 
pregnancies (Athey et al. 2021; Babalola et al. 2019). It is worthnoting that expansion of 
contraceptive use in most impoverished countries is also part of the Family Planning 2020 
Commitment to Action,3 especially among adolescents (Sánchez-Páez and Ortega 2018).

In addition to providing accessible and up-to-dated educational resources, when 
equipped with artificial intelligence systems such as RL, these apps can offer recommen-
dations on preconception care, healthy lifestyle choices, or nutrition, and can suggest spe-
cific family-planning approaches tailored to individual circumstances. While the adoption 
of mHealth technologies combined with RL remains low, experimental studies are being 
conducted.

We now illustrate a study protocol of The World Bank, which has been approved by 
the Cameroon National Ethics Committee to test a digital counseling approach that allows 
for shared decision making in contraceptive use and family planning.4 The study occu-
pies a relevant place at the intersection between public health, mortality and fertility. In 
fact, Cameroon had a maternal mortality ratio of 529 in 2017 and a total fertility rate of 
about 4.6 in 2018, with a fifth of all births being unwanted or considered mistimed by 
the mother  (Organization 2019). Thus, increasing the uptake of contraceptives may have 
relevant benefits in terms of the fertility goals for this country, and, in turn, on maternal 
mortality rates, welfare losses, abortions, school dropouts and early marriages, among oth-
ers (Bearak et al. 2020).

Specifically, the aim of the study in question is to evaluate whether a tablet-based job-
support tool for nurses conducting family planning consultations, along with price dis-
counts for contraceptives, can increase the uptake of long-acting reversible contraceptives 
among reproductive-age females in Cameroon (including adolescents who may be unmar-
ried). At the time of enrollment in the study, each participant t is assigned to one of the 
study arms, each given by a combination of:

•	 The way the contraception options are viewed = {“side-by-side” or status quo view for 
individuals who do not express any contraceptive preference, “sequential” view with 
their preferred contraceptive method displayed at the top if a preference is expressed};

•	 A random price = { “Free”, “Low”, “Mid”, “High” }. It is important to note here that 
even the “High” price constitutes at least a 20% discount relative to the normal prices 
charged at the hospital.

For each time or individual t, the objective is defined in terms of a loss function, conceived 
as a weighted sum of “failures” Ft(k) and costs Ct(k) associated to intervention k:

Here, Ft represents a prediction for the probability of an unwanted pregnancy within the 
next year and is defined as a function of the contraceptive method:

(12)Losst(k) = �tFt(k) + �Ct(k).

3  http://​2014-​2015p​rogre​ss.​famil​yplan​ning2​020.​org/.
4  For an abridged version of the study protocol see: https://​www.​world​bank.​org/​en/​progr​ams/​sief-​trust-​
fund/​brief/​camer​oon-a-​seque​ntial-​and-​adapt​ive-​exper​iment-​to-​incre​ase-​the-​uptake-​of-​long-​acting-​rever​
sible-​contr​acept​ives-​among-​adol.

http://2014-2015progress.familyplanning2020.org/
https://www.worldbank.org/en/programs/sief-trust-fund/brief/cameroon-a-sequential-and-adaptive-experiment-to-increase-the-uptake-of-long-acting-reversible-contraceptives-among-adol
https://www.worldbank.org/en/programs/sief-trust-fund/brief/cameroon-a-sequential-and-adaptive-experiment-to-increase-the-uptake-of-long-acting-reversible-contraceptives-among-adol
https://www.worldbank.org/en/programs/sief-trust-fund/brief/cameroon-a-sequential-and-adaptive-experiment-to-increase-the-uptake-of-long-acting-reversible-contraceptives-among-adol
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The first term in Eq. (12) takes into account the amount of potential unwanted pregnancies, 
with �t representing a deterministic function of a participant’s age. It is maximal when a 
participant is 15 years old (the youngest age allowed in the experiment) and decays linearly 
until 20 years old. The second term in Eq. (12) relates to the cost of contraception, while 
the parameter 𝜆 > 0 controls the trade-off between minimizing costs and failures.

The research team proposed an RL framework, more specifically a Thompson sampling 
variant, to deliver an online policy with the advantages of making the experiment more 
efficient (by making it faster) and more ethical (by assigning more individuals to the treat-
ment condition with the highest probability of success for their context). We refer to the 
detailed Pre-Analysis Plan5 of the study for further details.

4 � Discussion and conclusions

Demographic change is one of the key challenges to be faced by global nations today. The 
process is complex and its outcomes are both uncertain and consequential. Population 
dynamics vary widely among different countries  (Vollset et  al. 2020), and the develop-
ment process of population policies must be tailored to the specific needs of a country and 
the specific characteristics of its population. Efforts should be stepped up to incorporate 
uncertainty in population projections, human behavior, and expected outcomes into flex-
ible policy-making strategies. As stated in the Modernising Government White Paper of 
1999 (Cabinet 1999), among a number of features, a policy-making process should: (i) take 
a long-term view; (ii) systematically evaluate early outcomes; and (iii) learn from accumu-
lated experience.

Well suited to the problem at hand, in this work we introduced the powerful reinforce-
ment learning framework for formalizing and solving complex decision-making prob-
lems in population research. While a couple of existing works have touched on the prom-
ise of RL in applied demography (this is the case of the migration problem illustrated in 
Sect.  3.1), to our knowledge, this represents the first piece of work that systematically 
introduces the rich RL framework and illustrates examples of its potential applicability for 
supporting population policies. The examples presented here only scratch the surface of 
the promise of RL in population problems. The field is in its infancy, and we expect to see 
growing interest in the near future.

Our focus in this work was principally on providing mathematical formalization and 
illustrative examples to guide theoretical and applied researchers into understanding the 
RL framework. However, applying RL to problems for population policies requires con-
siderations that go beyond the general RL formalization and the development of effective 
learning algorithms. Therefore, it is not only necessary, but dutiful, to discuss the limita-
tions associated with the application of RL in population research.

Ft(k) ≐

⎧
⎪⎪⎨⎪⎪⎩

0.05% if participant adopted implant

0.8% if participant adopted intra-uterine device

6% if participant adopted pill

9% if participant adopted injectable

25% otherwise

5  Available online at https://​www.​socia​lscie​ncere​gistry.​org/​versi​ons/​91771/​docs/​versi​on/​docum​ent.

https://www.socialscienceregistry.org/versions/91771/docs/version/document
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In the first place, we note that most demographic and population data are macro (or 
aggregate) in nature. Within the context of population policies, the World Population Poli-
cies Database6 provides up-to-dated and detailed longitudinal country-by-country infor-
mation on national plans and strategies, as well as implemented programs. These include 
policies on population ageing, fertility and family planning, urbanization and international 
migration. Such macro-oriented data may produce strong evidence on population trends 
and patterns, as well as their associations across time and space. They are crucial in the dis-
covery phase (regarded as the “core” of demography by many scholars), but, as pointed out 
by Billari (2015), do not provide an adequate means for understanding how the action and 
interaction of individual units generated what is discovered. Micro-level data are essen-
tial to infer how (average) population change arises from individual behavior in response 
to specific actions and interactions, and their need has been long advocated (see e.g., the 
“theory of change and response” in Davis 1963). Notably, the quantity of individual-level 
population data is exploding (Langedijk et al. 2019; Ruggles 2014) and efforts have been 
made to ensure their free access for the academic community; see e.g., the IPUMS pro-
ject,7 releasing data for almost 800 million observations drawn from 300 censuses of about 
100 countries (McCaa and Ruggles 2002). Big micro-data represent a new kind of source 
material and they are expected to provide individual-level data about entire populations 
spanned over multiple time-points and at high geographic resolution (Ruggles 2014; Ram-
pazzo et  al. 2023). However, although the potential comprehensiveness of data continue 
to improve, due to privacy and security factors, there are significant access restrictions for 
these data. Further, collection of high-quality longitudinal data, reflecting a potential effect 
of a policy, remains limited. In the migratory case, for example, one would need individual 
data at discrete time points for the same unit and information on the origin and host coun-
tries at each migration time. Progress towards the collection of high-quality micro-data, 
arising for example from experimental or quasi-experimental studies, could take policy-
making to a different level. In particular, the availability of real-time data would encourage 
processes of online learning and near-real-time policy adaptation. At the moment, micro-
based simulations and agent-based modeling  (Billari and Prskawetz 2003), supported by 
formal demography for ensuring a proper design and validation, remain a solution and 
may have useful place in RL-based population research. Examples are provided in Heiland 
(2003), Kniveton et al. (2011), Klabunde and Willekens (2016), Willekens (2017), and in 
Billari et al. (2007), and Bijak et al. (2013), who advocated a wider use of simulation mod-
els for international migration and family planning, respectively. An extensive review of 
agent-based models of human migration is provided in Klabunde and Willekens (2016). 
In particular, decision making is emphasized in behavioural models of migration, wherein 
individuals are likely to leave a location if they expect an improved status elsewhere con-
ditioned on manageable barriers to migration. Such practices may also be useful in terms 
of understanding how key demographic processes could change if we were able to incor-
porate in our modeling difficult or impossible to observe quantities (see e.g., Ciganda and 
Lorenti 2019).

A substantial challenge in applying RL in practice is represented by the need to ade-
quately express each of the basic ingredients of the RL problem (see Sect. 2.1) in relation 
to the specific application. These include the identification and selection of the state vari-
ables, an accurate definition of the reward function or the utility model, and the way we 

6  https://​www.​un.​org/​devel​opment/​desa/​pd/​data/​world-​popul​ation-​polic​ies.
7  https://​usa.​ipums.​org/​usa/.

https://www.un.org/development/desa/pd/data/world-population-policies
https://usa.ipums.org/usa/
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define the dynamics of the process, among others. In domain applications, RL algorithms 
are often trained and applied according to some representation of the world, which nec-
essarily involves making some (simplifying) assumptions about reality. In the illustrative 
example of international student migration, the way we formalize a student’s preferences 
shapes the “reality” that guides a government actions. In the individual migration example 
introduced in Sect. 3.1, a Markov property is assumed for the states and reward progres-
sion, following the human capital theory of Sjaastad (1962). Several other theories that 
give explanations and predictions of why people migrate could be employed; these include 
the neoclassical theory, the new economics of migration theory, and social capital theory, 
among others (see e.g., Massey 1999; Van Hear 2010). Any simplifying assumption, such 
as the Markov property, should be properly investigated in the specific context to which 
it is applied. For example, in the repeated migration study of Constant and Zimmermann 
(2012), authors assess the plausibility of this assumption based on the German Socio-Eco-
nomic Panel (GSOEP; Goebel et al. 2019), a nationally representative survey in Germany 
of people aged 16 or older, including legal immigrants that started in 1984. The authors 
concluded that it may be an appropriate representation for their setting. All these aspects 
should be informed by domain knowledge. Considering also the novelty of the approach, 
potential applications in social sciences, particularly in demography, will require joint col-
laboration and strong synergy between methodologists and applied researchers with exper-
tise in the specific applied topic, such as migration.

It should also be mentioned that the development of optimal population policies requires 
an underlying framework for assessing the causal effect of each alternative intervention 
and, most importantly, each policy (Engelhardt et al. 2009). Real-world applications should 
be developed under appropriate considerations of causal inference. Finally, as with any 
primer introduction of new frameworks or methods to an application area, there are many 
challenges ahead, from the scarcity of sufficiently “good” data to interpretation, ethics, and 
fairness concerns, among others.

The challenge, then, is not how to use new technology to entrench old problems, but 
instead to better understand how we may use this opportunity to imagine and design 
systems that are more transparent, equitable, and just. (Molnar and Gill 2018)
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