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Abstract: In a construction project schedule, delays in delivery are one of the most important
problems. Delays can be caused by several project components; however, the issue is amplified
when delays occur simultaneously. Classifying delays is relevant in order to allocate responsibility
to the parties. In Italy, the delay in the delivery of medium and large-sized works in residential
urban centers is about 15% compared to the project forecast. Moreover, the AECO sector’s ability to
adapt to emerging challenges, such as environmental sustainability and digitization, is limited by
the lack of innovation in management methods. The aim of this research is to create a methodology
for managing the built and to-be-built environment in a digital way. This will optimize the building
process by reducing delays and waste of resources. The methodology will use tools such as digital
twin (DT), Building Information Modeling (BIM), Internet of Things (IoT), and Artificial Intelligence
(AI) algorithms. The integration of lean construction practices can make the use of these technologies
even more efficient, supporting better workflow management by using the BIM environment. The
paper presents a methodology that can be applied to various scaling factors and scenarios. It is also
useful for construction sites that are already in progress. As highlighted below, this brings significant
economic-temporal advantages.

Keywords: building production; digital management; digital twin; BIM; IoT; AI; machine learning

1. Introduction

Nowadays, the Architecture, Engineering, Construction, and Operations (AECO) sec-
tor is at the center of a rapid evolution driven by the necessity to align with changing needs
and emerging challenges, including environmental sustainability and digitalization [1].
However, the sector’s ability to adapt has been limited by a lack of innovation in manage-
ment methods, which has delayed progress towards key objectives such as operational
efficiency and a reduction in wasted resources. The construction industry has experienced
a slower adoption of digital technologies compared to other sectors. This can be attributed
to several factors [2]. Resistance to change in traditionally conservative sectors like architec-
ture and engineering can impede the adoption of new digital technologies. The complexity
of projects, with a wide range of variables and phases, can make it challenging to imple-
ment digital solutions that cover all aspects of the project lifecycle. The high investments
required for the acquisition of hardware, software, and staff training are a further obstacle
to the sector’s digital transition. The lack of standardization and interoperability between
the different software and platforms used can further complicate the adoption of digital
solutions and reduce their overall effectiveness. The resistance to change and innovation
within an organization can be attributed to various cultural barriers. One such barrier is
a deep-rooted attachment to traditional systems and procedures [3]. In addition, strict
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industry rules and regulations can limit the uptake of digital solutions, especially if they
are not fully integrated into existing regulatory processes.

To overcome these challenges, an integrated approach is required that actively in-
volves stakeholders, including businesses, governments, academic institutions, and the
technology industry. This will help to overcome barriers and promote greater efficiency,
innovation, and sustainability in the sector [4]. The limiting factors mentioned above have
significant implications throughout the work’s lifecycle, from planning to disuse/reuse. In
the construction phase, it is well known that delays in the finalization of construction work
remain a characteristic challenge in the construction industry [5]. Comparing the possible
causes of delays at the European level, it was found that when considering projects realized
with traditional methodologies and projects achieved using BIM, there is a decrease in
delays in favor of the use of digital methodologies [6]. Sepasgozar et al. analyzed multiple
scientific papers to highlight the predominant factors causing delays in the delivery of a
project in 29 different countries [7]. Elizabeth et al. presented the findings of a quantitative
literature search aimed at identifying the main causes of delays in construction projects. A
total of 47 articles were analyzed, revealing 1057 different causes of delay [8].

A crucial aspect of architectural and engineering projects is the delivery of activities
within the agreed timeframe. As exceeding project deadlines can have serious consequences
for the delivering organization, such as cost overruns and damage to corporate reputation,
it is essential to distinguish between causes of delay that can be considered justified and
those that cannot. Al Momani investigated the causes of delays in 130 public projects of
various construction types in Jordan. The primary causes identified include design issues,
changes requested by users, adverse weather conditions, site difficulties, delivery delays,
economic instability, and variations in the quantity of work [9]. Assaf et al. conducted a
survey on the time performance of various types of construction projects in Saudi Arabia
to identify the causes of delays by interviewing owners, consultants, and contractors. The
survey found that 76% of the contractors and 56% of the consultants reported an average
delay of between 10% and 30% compared to the original duration [10].

Some of the most common design errors include incorrect specifications or poor
communication between the various actors involved in the construction process, which
can lead to material procurement and management errors. Contractual and legal errors
can also have significant effects on the project timeline. The absence of clear definitions
of contract terms and conditions can generate uncertainties and disputes between parties;
an inadequate understanding of regulatory requirements can cause delays in the permit
approval process and review stages. Financial errors such as underestimating costs or
inappropriate budget control can lead to unexpected delays in project completion. The
most common errors in different activities of a construction project are listed in Table 1.

To assist in visualizing the impact of errors on project delivery time, Figure 1 highlights
the Relative Importance Index estimated for each process phase [11,12].

The use of new technologies opens up the globalization of the construction business,
leading to a careful reflection on the potential of using BIM as a tool to approach digital
management. The adoption of digital methodologies underpins the transformation process
of the built environment industry. At the national level, on the other hand, the analysis car-
ried out by the Bank of Italy provides an in-depth look at the construction phase duration of
public works in Italy based on information over a period of about 15 years [8]. This analysis
focuses on the internal and external dynamics and actions involved in the realization of
a project by correlating different factors through specific statistical methodologies. The
common quantifying factor is the time between a fixed starting point and a closing event.
The focal point of this multivariate statistical model is in its application as a function of
time, whereby, by comparing causes to quantities, it is possible to detect a specific time
lag in the progress of work. In fact, by applying the duration estimation method, it is
possible to note that, in the execution phases of projects, significant intervention is required
to reduce the causes that generate delays in the delivery of the work.
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Table 1. Main causes of construction delivery delays [11] by process area.

Area Causes of Construction Delivery

Schedule Unrealistic program schedule
Schedule Long decision-making processes
Contract/Legal Incorrect or incomplete contract documents
Contract/Legal Late approval of design documents by the owner
Contract/Legal Design and owner legal disputes
Contract/Legal Delays in obtaining permits and acquisitions
Construction Improper project delivery method selection
Construction Over-ordering of changes during construction
Construction Delays in providing and delivering the site to the contractor
Construction Use of improper construction methods
Construction Contractor inefficiency in work provision, equipment, materials, subcontractor management
Economic/Financial Late payments by the owner
Economic/Financial Financial difficulties and contractual mismanagement
Economic/Financial Financial issues with the designer
Communication Inadequate communication and coordination between owner, designer, and/or contractor
Communication Confusion over work scope between owner and designer
Experience/Quality Poor owner’s quality assurance (QA) plan
Experience/Quality Lack of owner management staff
Experience/Quality Inadequate contractor experience, low site management, and quality control
Experience/Quality Inadequate designer experience
Design Design errors
Design Project design complexity and ambiguity
Design Delays in the provision of design documents by the designer
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Figure 1. Delays index [12] by process area.

The duration models for the estimation of times and possible causes of delays are fed
from the databases available on digitally open platforms, such as BDAP or SIMOG [13]. The
proposed methodology enables digital management to foresee unexpected and possible
conflict situations while avoiding the consequent project variants; at the same time, it
enables the implementation of solutions that consistently avoid the waste of resources. The
cornerstones for digital management are a digital model with a high level of information,
connected and shared through cloud management strictly focused on achieving contractual
objectives. In addition, as the works are located in large urban centers, the implemen-
tation of a digital information flow with the digital model enables the management of
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the typical problems of construction sites affected by a high level of car and pedestrian
traffic in the surrounding area as well as the limited availability of on-site material storage.
Optimization is quantified in units of time, which derives in the management section from
the prediction of unforeseen events in the realization phase from the implementation of
strategies conditioned by the project team through the use of AI systems capable of pre-
dicting and providing valid and immediate alternatives supporting decision making [14].
Therefore, it appears that a reduction in the delays in the delivery of work is consequential
to the implementation of a digital process perpetually implemented by an information flow
integrated into the BIM model. The use of IoT devices, including presence or temperature
sensors, computer vision cameras, and smart actuators, enables the optimized management
of time and workforce through the real-time monitoring of construction activities.

To maximize the benefits of digital twins in this area, it is essential to ensure a
smooth connection and accurate prediction of data exchange between the real and virtual
worlds [15]. Furthermore, the digital model is prepared to evolve over time to become a
DT environment, capable of handling post-opera maintenance requests, energy manage-
ment, and building automation [16–18]. The management process is automated thanks
to Machine Learning (ML) systems and AI algorithms that are flexible and adaptable to
the various scenarios generated by the unforeseen events encountered, as well as able to
efficiently manage the entire construction process with the suggestion of precise solutions to
direct the choices of the stakeholders. The adoption of digital solutions in the construction
sector has the potential to foster digital transformation and innovation throughout the
AECO sector and in the management of natural resources [1]. This interconnection between
different disciplines in the same sector can lead to synergies and new opportunities for
economic growth and technological development. It is important to consider that the
optimization of construction processes through digital solutions contributes to a reduction
in environmental impact; it is indeed true that reducing material waste and optimizing the
energy efficiency of projects can make a significant contribution to long-term environmental
sustainability, supporting necessary efforts to address the challenges of climate change and
reducing the environmental impact of human activities [19,20].

This research aims to develop a comprehensive methodology for the digital manage-
ment of building production in the context of the digital transition of the AECO sector,
proposing a holistic approach that addresses both existing buildings and those still in the
design and construction phase, covering the entire lifecycle of structures. Although there
are various methods in the literature that use digital systems to optimize the construction
process, these are sometimes limited or aimed at specific objectives to solve individual
types of problems. The innovation of the proposal could be identified in its ability to be
applied in every phase of building production, taking responsibility for processes ranging
from site management to predictive maintenance, and synergistically integrating digital
technologies such as BIM, DT, AI, and IoT. BIM facilitates collaboration between the various
stakeholders in a project by enabling more efficient management of information and better
coordination of activities; DT enables energy/architectural diagnosis of the structure and
automation of the building; AI intervenes to optimize decision-making processes, analyzing
large amounts of data and providing recommendations to improve efficiency and quality
of work; IoT enables real-time data collection from devices and sensors distributed in
buildings, allowing continuous monitoring of performance and the possibility of predictive
intervention to prevent failures or inefficiencies.

The integration of the aforementioned digital technologies maximizes the efficiency of
the building process, reducing downtime and wasted resources, and effectively improving
the overall quality of the construction process.

2. Materials and Methods

The prolonged nature of renewal operations is a known problem and is mainly due to
the use of traditional building methods. In the context of digital approaches, BIM fits into
different phases in building production, improving the planning of human and material
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resources and enabling a regular dialogue between the actors of the various disciplines [21]
(Figure 2). Liao et al. quantified the time savings, eliminating the overlapping of incom-
patible work on site and, consequently, excluding the possibility of having idle teams of
workers (non-value-added activities) [22,23].
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In this context, this paper aims to structure a digital management methodology (Figure 3)
that is also applicable to the realization phase of work in order to reduce the delays of the end
of works through BIM. The proposal seeks to meet this critical gap by highlighting a number
of technologies and working methods that can mitigate the extension of the construction time
in favor of higher quality and lower costs, with a significant impact on environmental, social,
and economic sustainability. These factors are closely associated with construction time. In
order to meet this need, it is necessary to achieve the fourth dimension through digital tools,
realizing a process in which the three-dimensional models are connected to a dense network
of information related to the scheduling time of the activities [24]. The creation of a 4D
model makes it possible to deal with the contingencies of traditional scheduling by bringing
discrete advantages, such as optimized management of design documents, upgrading site
coordination, and an analysis of the impact of possible variants on the project timeline.
On the other hand, the 4D BIM model requires a deep and thoughtful understanding of
its functionality before the project team can utilize it. On the basis of a BIM model and
large amounts of inspection data derived from Internet of Things (IoT) devices, the digital
approach returns simulations that can virtually predict the execution of tasks and related
cooperation between workers [25,26]. Cyber-physical systems (CPSs) are computer systems
composed of physical elements with computational capacity that can interact continuously
with the physical environment in which they operate, and the IoT in particular plays a
leading role in the monitoring of critical infrastructures [27–29]. The Internet of Things is
a cyber-physical system consisting of integrated electronic devices, software, sensors, and
network connectivity, which allow these objects to collect and exchange data to contribute
through Artificial Intelligence (AI) algorithms to the decision-making process. Peripheral
devices operate mainly as detectors to gather information from the physical environment or
as actuators to control objects.

The most commonly used detection devices are passive infrared (PIR) sensors, which
measure the infrared light radiated by objects in their field of view [30]. The use of these
devices makes it possible, with total respect for privacy, to monitor the coordination of the
various works on site, thus avoiding critical situations that would lead to delays in the
delivery of the work.
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Esraa A. Metwally et al. focused on the importance of IoT applications in buildings and
highlighted that, despite technological developments, there is still a lack of in-depth research
on the adaptation and standardization of IoT applications in the architectural environment.
Their study proposed a framework of criteria to develop a simplified method useful to
assess the level of IoT implementation and the impact of its applications in buildings [31].
Guneet et al. implement an Elman-type recurrent neural network model and an exponential
model to predict the power consumption of loads in the building environment, considering
factors such as ambient temperature and space occupancy status [32]. Ling et al. highlighted
the importance for companies in the AECO sector to identify digital technologies that provide
them a competitive advantage during the lifecycle of an operation [33]. Sowiński et al.
illustrated the use of mixed reality equipment and software to improve the safety and health
of construction workers, with a focus on the implementation of ultra-wideband networking
and communication technologies [34].

To date, the monitoring of safety and site activities is almost entirely entrusted to
manual observation, which is laborious and extremely difficult. Jeewoong et al. integrated
Bluetooth low-energy (BLE)-based location tracking technology, BIM-based site identifica-
tion, and a cloud-based communication platform [35]. This system brilliantly demonstrated
how the ability to detect unsafe conditions of workers in real time and analyze workers’
trajectories with respect to potential safety hazards could optimize the construction process.
McKinsey estimated that 50 percent of the world economy will be influenced by these new
technologies to the amount of 14.6 trillion USD [36]. Digital management through the DT
is a game changer for the construction industry, capable of optimizing the entire building
process by combining real building data analysis with virtual model simulations [37,38].
The generated information flows constantly feed the process and provide through ma-
chine learning systems increasingly accurate solutions for the prediction of unforeseen
events [39]. Pan et al. structured a closed-loop DT in the integration of BIM, IoT, and Data
Mining (DM) techniques, demonstrating the possibility of anticipating possible critical
situations through precise simulations [40]; by using multi-variable statistical analyses such
as the Multivariate Auto-regressive Integrated Moving Average (ARIMAX) model, it is
possible to organize the work and the person in detail, adapting the process to changing
situations [40]. Thus, the constitution of the DT given by the integration of the BIM model
and a physical cyber system combines the digital copy of the building with a constantly
updating information flow.
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The development of new technologies makes the building innovation process possible
and aims at its improvement through digital management strategies. One of the main
aspects of building process digitization is related to data management, which includes:

− cloud-based solutions for data collection, storage, and sharing;
− cloud-based processes for electronic verification and validation;
− data analysis through AI algorithms for construction progress supervision;
− implementation of blockchain technology for the management and tracking of smart

contracts and agreements.

The combined use of these solutions can actively contribute to a more efficient and safer
construction process, promoting the optimization of project costs and time. However, the
use of these technologies may not be enough to guarantee optimization of the construction
process; in fact, through integration with lean construction practices, appropriate project
management of the workflow can be achieved, adequately supported by BIM tools [41,42].
Salehi et al. structured a management system based on BIM, Mixed Reality, and Lean
Construction to offer opportunities to improve the quality of planning, understanding, and
execution of construction projects [43]. Singh et al. exploited the potential of the BIM model
as a replacement for two-dimensional designs to generate mathematical models for site
layout designing [44]. Similarly, Zhang described the construction site safety situation in
terms of qualitative and quantitative issues, developing through information technology
a digital approach based on the teaching of technical methods with the aim of making
construction site management more efficient [45]. The integration of the BIM model with
CPS for training the DT through machine learning practices offers virtuous opportunities
to improve the efficiency and safety of construction processes.

The use of these innovative technologies and others such as AI, cloud computing, and
blockchain enable more effective management of data and processes, helping to optimize
project costs and timescales. However, it is important to underline that these technologies must
be integrated with lean construction practices to maximize the benefits. Adopting a holistic
approach that combines technology and management methodologies can lead to significant
results in the construction industry, promoting innovation and long-term sustainability.

2.1. Lean Construction Integration

The aim of the research is to develop a methodology for the digital management
of building production, both for the built environment and those in the design and con-
struction phase, covering the building lifecycle (Figure 4). The proposed methodology
aims to optimize the building process through the use of tools such as DT, BIM, IoT, and
AI algorithms. The integration of these digital technologies provides an opportunity to
optimize processes by reducing delays and wasted resources. In particular, DT works to
improve the virtual representation of structures, allowing their operation to be monitored
and optimized in real time. BIM facilitates collaborative design and information man-
agement, improving coordination and communication between project stakeholders. IoT
provides real-time data on building usage and performance, enabling timely intervention
and preventive maintenance. Artificial intelligence algorithms analyze the collected data,
identifying patterns and trends to further improve efficiency and process optimization.
However, to maximize the effectiveness of these technologies, it is essential to integrate
them with lean construction practices.
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Lean construction principles (inspired by the principles of Lean Manufacturing) in-
tegrated with digital technologies represent a holistic approach that can contribute to
optimizing the following building processes:

− Delivery Management: This methodology is predicated on the fusion of BIM and DT
technologies, with the objective of enhancing delivery management in the construc-
tion sector. It proposes the utilization of AI-powered predictive models to optimize
workflows and anticipate potential delays, thereby ensuring the timely delivery of
projects that meet the expectations of stakeholders.

− Maintenance: The method integrates IoT and monitoring systems to establish proac-
tive maintenance procedures, aiming to anticipate and solve any problems that occur.
Through real-time data analysis, the methodology aims to prevent dysfunctions and
failures, extending the building’s useful life and improving its overall performance.

− Asset Management: This phase of the investigation concerns the utilization of DT
and BIM for advanced asset management, with the objective of optimizing the value
of assets throughout the lifespan of the building. This encompasses space manage-
ment and strategic asset planning based on the 3D and 4D BIM model in order to
achieve the highest possible efficiency in terms of economic, environmental, and social
sustainability. The adoption of digital models using DT enables the implementation
of bi-directional data flows, which facilitate the execution of remote and/or auto-
mated actions. This, in turn, minimizes energy wastage, thereby reducing greenhouse
gas emissions.

− Real-time Monitoring: The model proposes the implementation of IoT sensors for real-
time data collection and the Common Data Environment (CDE) on the cloud, which
allows for the collection, storage, and sharing of data. The DT enables the control and
execution of actions on the digital model, allowing the transmission of inputs to the
physical building via the actuators. This facilitates the real-time management of the
building, enabling immediate responses to change and anomalies detected.

− Space Management: The interpretation of data collected by BIM and IoT, which is
enabled by artificial intelligence-based analyses, serves to enhance the efficacy of
space management. Following the analysis of data pertaining to the behavior of
occupants, the AI is capable of providing both routines for building automation
and predictions based on historical knowledge regarding the future behavior of the
building. Consequently, the facility manager is able to set the cash flow in advance,
as the AI is able to forecast the energy consumption. This should result in enhanced
operational efficiency and a superior user experience within the building.
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The combination of the proposed methodology with the principles of efficiency and
waste reduction characteristic of lean construction is proposed as an integrated architecture
that capitalizes on digital technologies for optimized lifecycle management of buildings.
This approach aims to lay the groundwork for future research and practical experiments
to empirically validate the effectiveness of the proposed model through quantitative and
qualitative analyses in different scales of building production contexts.

The lean construction methodology defines a process of constant implementation of
activities by monitoring performance to achieve progressive process improvement. The
identification of non-value-added activities and the continuous search for a reduction in
time and economic inefficiencies must be managed through a correct and transparent
exchange of information between all participants. BIM, in combination with these lean
construction practices, significantly increases the chances of success in terms of results.
This is possible because the digital approach allows data to be provided at the beginning
of the process so that they can be available in open formats between all stakeholders
involved in the construction project. The shared DT, which enables data to be collected and
analyzed in real-time, makes it possible to reduce delivery delays through the elimination
of non-value-added activities and through the data analysis of the process through Artificial
Intelligence systems.

2.2. Digital Management Methodology

Construction process planning is the phase that organizes operational production
activities by identifying time and resources. The strategy used to break down the project
into basic activities is the Work Breakdown Structure (WBS), which visualizes the project
components at different hierarchical levels by defining a tree diagram. However, tradi-
tional project management methods do not provide for the possibility of organizing and
monitoring activities by means of a three-dimensional dynamic model. A valid solution
can be interpreted through BIM-4D modeling. Through this model, it is possible to identify
construction activities in a graphical manner and monitor their progress in real time, thus
analyzing and preventing problems related to the spatial and temporal aspects of the
project. This research study proposes a digital approach by defining a combination of
the Gantt chart, WBS, and BIM model to correlate existing project management tools and
digital objects, defining a digitization phase of the building process (Figure 5).

In addition, it is useful to define a set of parameters and information regarding the
technical and temporal aspects of the activities with respect to the project milestones in
order to carry out simulations through the model to assess the economic and temporal
impacts of any unforeseen events. Therefore, the first step of the proposed methodology
is the realization of a BIM model that accurately represents the real structure. In the
case of a built environment, it would be appropriate to carry out laser scanner surveys
to obtain point clouds as the basis for the construction of the model in order to obtain a
digital replica with a high level of accuracy; in many cases, the two-dimensional drawings
of the original plans do not give an accurate reflection. Alvares et al. [46] assessed the
potential of using three-dimensional mapping of buildings and construction sites through
images obtained via unmanned aerial systems (UAS) to support construction management
activities. Gan et al. [47] proposed a method for crack detection on the underside of bridges
using high-resolution images acquired using an Unmanned Aerial Vehicle (UAV) and Faster
R-CNN deep learning. This approach achieved a 92.03% accuracy and a 96.54% recall rate in
identifying cracks. The crack images were integrated into a Building Information Modelling
(BIM) model of the bridge, enabling a more accurate assessment of its structural condition.
Banfi et al. [48] have presented an integrated workflow that combines digital technologies,
such as BIM, 3D cloud services, and virtual/augmented reality (AR-VR), to create high-
quality immersive solutions from detailed 3D surveys. Their new SCAN-to-BIM method
transfers the features of the surveyed building into a shared cloud system, supporting
documentation and preservation.
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At the same time, the analysis of the schedule and WBS documentation begins by
applying a reverse engineering process, whereby all components are deconstructed to pro-
duce a single activity combined with the reference time frame. The data generated by this
interpolation is inserted into the digital object derived from the parallel inverse engineering
process applied to the BIM model. In this way, it is possible to virtually visualize for each
object the activity related to it with the associated start and end dates. The parameters
developed with the help of spreadsheets can connect with the BIM model using visual
programming software (Dynamo for Revit 2.1). In their study, Kensek et al. [49] investi-
gated the possibility of linking environmental sensors to a BIM model. They used various
software tools, including Rhino 8, Grasshopper for Rhino, Firefly 3, Revit Architecture
2023, and Dynamo 2.1, to create virtual prototypes that could react to sensor data and alter
the 3D model. Should there be any interference or unforeseen events, it is sufficient to
update the data flow to synchronize the entire process, thus making the model dynamic and
adaptive. At this level of progress, it is possible to analytically extrapolate the qualitative
and quantitative information of the economic and time estimates to be compared with the
budget curve foreseen in the planning phase and the work schedule.

By means of Business Intelligence (BI) systems, this information can be graphically
employed to generate statistical data and thus compare the actual expenditure incurred in
relation to the activities performed. The data can be interpolated using IoT devices, which
provide a direct information flow from the construction site to the DT model that can be
visualized in the properties table of the BIM environment (Figure 6). IoT devices transmit
data to the CDE in .csv format. A visual programming algorithm in Dynamo is employed
to insert each piece of data into the parameters of the corresponding digital element in the
BIM model. On the other hand, if it is necessary to modify certain parameters manually, it
is sufficient to change them in the properties menu of the element to be modified. After
this operation, the IoT actuators will operate according to the new parameters entered.
Once modular operations, analysis types, change requests, and analytical forecasts are
established, they can be automated through AI system algorithms. Once trained with ML
algorithms that capture data from user behaviors and circumstances, the AI system can be
enabled to perform tasks autonomously or suggest actions to the facility manager.
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These intelligent systems, aided by time data on previous jobs, work-site incidence
data, and other datasets, provide the ability to work out solutions for the management
of interference and unforeseen events that would delay the delivery of the work, besides
assessing the progress of the latter. However, in the built environment, the system can
interpret the data flow in the same way but for different purposes, such as maintenance,
energy management, and equipment automation.

3. Results

The methodological results show that the adoption of a dynamic digital approach to
the management of activities and resources on-site is an effective method to mitigate project
delivery delays in the construction sector. This approach involves executing multiple
activities simultaneously, enabling optimal use of available resources and preventing
overlaps that could impede overall progress. This strategy allows for maximum operational
efficiency, minimal downtime, and optimized allocation of labor and material resources.
It also promotes flexibility in responding to unforeseen events and changes in working
conditions, enabling rapid and targeted adaptation to meet emerging challenges during
the construction process.

Overall, the methodology suggests a linear approach to digitizing building production,
enabling the creation of a digital twin for each element at all stages of the building process.
This facilitates various activities, such as building management, real-time monitoring, and
scenario simulation for both the built environment and ongoing construction sites.

3.1. Digital Twin for the Built Environment

The built environment strategy was applied to an interdepartmental research center at
the Sapienza University of Rome (Figure 7). The choice of IoT devices to be installed was
guided by two factors: ease of installation/configuration and the availability of open software
interface specifications. Following market research, devices of the type were identified:
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− Shelly 2.5, a two-channel wireless relay switch that allows power consumption to be
controlled and monitored separately for each channel;

− Shelly 1, wireless relay switch for home automation, suitable for switching on and off
lighting points with an electrical voltage of 110–230 V, but also 12 V;

− Shelly Smart Plug S, an intelligent wireless power socket that automatically controls
any connected electrical appliance;

− Schneider Electric Power Tag Link (A9XMWD20), communicating monitoring sensors
with wireless technology that provide accurate real-time data on energy, current,
voltage, power, and power factor. These are installed on the control panel to monitor
the production of the photovoltaic system.

All of these devices have an application interface available via 802.11 (WiFi) over the
TCP/IP protocol.
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All these measuring sensors were interconnected via a dedicated mixed-technology
data network. This comprised cable routes (for the Schneider devices) and wireless connec-
tion components (for the Shelly devices) up to a local data concentrator (hub) connected, in
turn, with a central data recording and processing system. This architecture is designed
to be scalable and allows monitoring of a multitude of installations. The fundamental
elements of this architecture are threefold:

− Edge: responsible for interacting with the local sensor network and acting as a buffer
for automatic data and behavior;

− Proxy: responsible for interfacing with the Edge and Server, guaranteeing the connec-
tion and synchronization of data and commands (and recovery after any momentary
lack of connectivity);

− Server: responsible for all computation and providing a Graphical User Interface (GUI).

The Zabbix open-source system is used to visualize and manage energy consumption
and automation in medium to large environments with a large number of technological
devices that consume significant amounts of electricity and lighting.

Zabbix is a control system that makes it possible to keep the detection database up to
date, recording everything that happens and that has an impact on energy consumption,
such as the installation of a new device or its disconnection, the movement of a device
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from one room to another, and its consumption measured in real time. In this way, it
is possible to visually and quickly understand and control the consumption (including
switching on/off) of the various devices in the rooms. It allows the capillary management
of consumption, increasing efficiency and reducing electricity and heating/air conditioning
costs before the consumption results are known through the receipt of the invoice issued
by the relevant manager.

ML algorithms were used for the simulation of forecast scenarios. Based on the
collected data, and after a training period with decision tree methods, it is possible to
predict future consumption in parallel with energy production by visualizing the contents
on the Zabbix system itself (Figure 8). This enables the facility manager to anticipate
expenses and take appropriate action to optimize cash flow management.
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In summary, the digital twin of the built-environment model

− Building management

◦ more efficient and timely maintenance, as all architectural and plant elements
and their technical data sheets are available in a single parametric environment.
This will result in reduced costs and an optimized lifecycle.

◦ automation: it is possible to create scenarios through IoT devices to improve the
quality of life or to optimize energy efficiency by using installations and lighting
based on presence in the building;

◦ energy consumption: by knowing the amount of energy consumed, the self-
learning system is able to provide the building’s energy requirements after a
certain period of time, so that energy efficiency strategies can be developed.

− Real-time monitoring

◦ with IoT devices, it is possible to set up an intelligent environment with building
automation practices. This results in a building that can dynamically adapt to occu-
pants’ needs and environmental conditions, ensuring optimal comfort and reducing
energy consumption. Thanks to automation, the building can adjust temperature,
ventilation, and lighting automatically based on the presence of occupants, weather
conditions, and other environmental factors, improving the quality of the indoor
environment. Automation enables real-time monitoring and the management of sys-
tem operations, allowing for prompt intervention in the event of faults or problems.
This ensures greater safety and reliability of the building.
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− Scenarios simulation

◦ based on the BIM model and the analysis of large amounts of data collected
over time, the DT can develop a predictive model that can simulate scenarios
to optimize energy efficiency and plan maintenance and operations in advance.
This enables interventions to eliminate downtime and repair costs. Through data
analysis, the DT can improve the building’s use of energy resources and provide
recommendations to improve operational efficiency and reduce environmental
impact. It dynamically adapts system settings based on expected space utilization
patterns and occupant needs, providing detailed reports on building performance
trends over time to enable informed decisions.

3.2. Digital Twin for the Construction Phase

The proposed digital management strategy, tested during the construction phase of
a building undergoing redevelopment, is based on the creation of a digital BIM model
according to the objectives of the lean construction processes discussed above. To achieve
high accuracy in the digital representation of the building, point clouds from drone surveys
were used for the exterior and laser scanners for the interior.

Once created, the model was georeferenced and aligned using automatic systems
based on common coordinates to virtually align it with the real building. To digitize the
site, a reverse engineering process was used after analyzing the time schedule and WBS,
simplifying the construction phases and identifying each activity in a given time frame. The
same process is applied to the BIM model so that each digital element and its relationship
to the construction activities can be controlled through BI systems (Figure 9).
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At this stage, it is possible to make a precise analysis of construction progress, monitor
the use of human resources, visualize cash flow trends in order to adjust the project budget,
and, above all, verify that timing and quality are being met.

The accuracy of the data is dependent on the timely updating of site information.
The digital model must be consistently updated via an Excel file, which is filled out at the
conclusion of each activity. Dynamo allows the automatic updating of the BIM model. By
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applying the digitization process to all activities on the time schedule until construction is
complete, future scenarios of the construction phases can be visualized (Figure 10).
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In summary, the digital twin for the construction phase model

− Site management

◦ comparing the progress of the site with that predicted using the digital model
allows site resources and activities to be managed effectively. This comparison
enables the identification of any discrepancies and delays with respect to the
planned schedule, allowing operators to eliminate non-essential activities and op-
timize the process. This approach maximizes the efficiency of available resources
and improves time and cost management during construction project execution.

− Real-time monitoring

◦ using IoT sensors and actuators, it is possible to assess the allocation of resources
in the field against the progress of activities in real-time. These devices enable the
collection of data through the resources used and activities in progress, providing
a clear and immediate view of the situation in the field. Information can be used
to optimize resource allocation, identify inefficiencies, and take timely corrective
action to ensure effective project progress.

− Scenarios simulation

◦ a digital model that evolves in parallel with the actual building enables the
simulation of design variants and the development of different strategies based
on forecast data. This process facilitates the exploration of various design options,
the assessment of their implications, and the making of informed decisions before
implementing actual changes to the building. The capacity to simulate different
variations and strategies aids in optimizing decision-making, reducing the risk of
expensive design errors, and enabling better adaptability to emerging needs and
challenges during the building process.
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In both the construction phase and the built environment application, AI is used to
collect, manage, and analyze data from IoT devices to interconnect a digital approach to
building production. This enables combining DT model and AI algorithms with neural
network streams transmitted to decision trees, aimed at supporting decision-making to
manage the client’s priorities.

This approach maximizes efficiency by performing multiple activities simultaneously,
avoiding overlap, and optimizing the allocation of labor and resources. BIM is key in this
process, providing advanced space management over traditional 2D drawings [50]. This is
especially true when the BIM model is integrated with sensors, cameras, actuators, and
other IoT devices that monitor access and usage of individual areas of the site in real time.
To assess the effectiveness of these strategies in reducing delays, the schedule provided in
the project documentation can be compared with that generated using a ML system [51].
This comparison provides a quantitative assessment of the reduction in delays and the
effectiveness of the strategies implemented.

As such projects are often characterized by numerous unpredictable factors that can
cause delays in delivery, a dynamic and technologically advanced approach can help
to mitigate these risks and accelerate the construction process. Although the benefits
may be less obvious in plant construction or dry site activities, which are often more
modular and standardized, there would still be significant benefits for the client and the
contractor. Greater control and more efficient management of resources can help reduce
overall completion times and improve client satisfaction while ensuring greater profitability
for the contractor.

4. Discussion

In the Italian context, particularly in urban centers, managing the delivery times
for medium and large-scale construction projects is a significant challenge. It has been
estimated that about 15% of these projects experience delays compared to their initial
forecasts. This reality underscores the importance of accurately identifying the causes of
such delays and clearly attributing responsibilities in order to effectively address temporal
issues in the construction sector.

Additionally, according to the latest 2021 census [52], about two million buildings in
Italy have exceeded a century of life. The energy improvement of these buildings becomes
necessary and involves a variety of different factors, which depend on the building’s history,
intended use, and employed construction techniques. Therefore, the refurbishment of the
built environment becomes an urgent goal, in line with European standards [53].

However, the AECO sector faces slow digitalization, hindered by resistance to change,
project complexity, and high initial investments. The absence of standardized computeriza-
tion further complicates the adoption of digital technologies [54].

In response to these issues, the aim of this contribution is to mitigate delays and
optimize the management of the built environment through digital methodologies that
can also be applied on-site. The research proposes a systematic and adaptable approach to
integrate these strategies, considering both the construction and post-construction phases.

The methodology proposed in the article can be applied to various scale factors
and scenarios. Furthermore, its use is also foreseen for ongoing construction sites. The
application of digital management methodologies with lean construction practices allows
project managers to obtain a real-time view of work progress and resource allocation.

The results of the methodological approach of the proposed digital strategy highlight
that the adoption of digital systems in managing activities and resources on-site constitutes
an effective method to mitigate delays in project delivery in the construction sector. This
strategy, which implies the possible simultaneous execution of different activities, allows
optimization in the use of available resources, avoiding overlaps that could hinder overall
work progress. Through this operational mode, the adoption of BIM, IoT, and AI, can
maximize workforce efficiency and minimize delivery times by optimizing the distribution
of labor and material resources. In addition, it promotes greater flexibility in facing unfore-
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seen events and variations in working conditions, allowing rapid and targeted adjustment
to meet emerging challenges during the construction process.

The integration of sensors, cameras, actuators, or other IoT devices within the BIM
model could provide a detailed overview of ongoing activities and available resources on
the construction site [55]. For example, motion sensors can monitor access to different site
areas, allowing a more efficient distribution of labor and resources. Surveillance cameras
can be used to monitor the progress of work in real time and identify potential issues or
delays. Actuators, in combination with the BIM model, can also be employed to activate
alarm or notification systems in case of critical situations [56] or emergencies.

The use of continuously updated data for simulating predictive scenarios becomes a
key analysis tool for refining planning, production, and effective resource management [57].
This helps in minimizing construction time and costs and enhances the accuracy of building
performance evaluations. In summary, integrating IoT devices to enable bidirectional
data exchange in the digital twin model provides innovative practices that revolutionize
building management, including:

1. Resource optimization and real-time monitoring: adopting IoT in BIM allows accurate
and constant control of resources, contributing to reducing delays and inefficiencies in
construction projects. IoT sensors installed on construction sites can monitor various
parameters in real time, such as energy and water consumption, building material
usage, and the availability of construction machinery. These data, once integrated
into the BIM model, provide an up-to-date view of the status of resources.

2. Workplace safety and health: air quality sensors and temperature detection devices
improve working conditions, preventing health risks and ensuring safer environments.
IoT sensors can detect critical parameters such as air quality, temperature, humidity,
and the presence of airborne contaminants in real time. When integrated with BIM,
they enable the creation of dynamic models of working environments. The system can
generate automatic alarms when critical thresholds are exceeded, allowing immediate
action to be taken to reduce risk. For example, if a dangerous level of carbon monoxide
is detected, the system can activate automatic ventilation and notify staff of the
criticality. The continuous assessment and optimization of environmental conditions
on construction sites helps to reduce the incidence of occupational illnesses and
accidents, improving the overall health and safety of workers.

3. Efficient management of materials and equipment: asset tracking systems contribute
to better inventory management, reducing the risk of loss or theft. RFID and GPS
technology can be used to monitor the location and status of materials and equipment
in real time. These data, integrated with BIM, provide complete asset visibility.
Analysis of tracking data enables the optimization of inventory levels, reducing costs
associated with overproduction or material shortages and helping to ensure that the
right materials are available at the right time. Continuous asset tracking systems help
prevent theft and loss, improving site security and reducing financial losses.

4. Predictive and preventive maintenance: this technology facilitates the proactive iden-
tification and resolution of problems in infrastructures, extending their lifespan and
reducing maintenance costs. IoT sensors can constantly monitor the operating con-
dition of infrastructure, detecting signs of wear and tear or malfunctions. Using ML
algorithms, it is possible to predict when a component might fail and to schedule
maintenance work before critical issues occur. The collected data can be used to de-
velop preventive maintenance programs based on the actual state of the infrastructure,
rather than fixed time intervals. This approach reduces unplanned downtime and
extends the useful life of assets. The implementation of predictive and preventive
maintenance strategies helps reduce overall maintenance costs, improving operational
efficiency and reducing the incidence of repair costs.

5. Proactive resource management: using IoT devices in the BIM model paves the way
for a more intelligent and proactive approach to long-term resource management. The
integration of IoT data with BIM enables more accurate strategic resource planning
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based on real, up-to-date data. This enables informed decisions on resource allocations,
personnel planning, and materials management. Continuous analysis of the data
collected by IoT devices enables continuous optimization of resource use, adapting
quickly to changes in operating conditions and project requirements. A proactive
approach to resource management promotes more sustainable practices, reducing
material waste, minimizing environmental impact, and promoting energy efficiency.

However, adopting these technologies is not without complications or limitations that
require in-depth analysis and strategic solution development [58]. The main challenges to
address include:

1. Compatibility and interoperability: ensuring that different IoT devices can effectively
communicate with the BIM model is crucial. This requires standardization of commu-
nication protocols and compatibility between different technologies. The extensive
variety of IoT devices, each with its own protocols and data formats, presents a sig-
nificant challenge to achieving interoperability. Furthermore, the rapid evolution
of IoT technologies can render existing systems obsolete or incompatible with new
solutions. Effective communication between IoT devices and BIM models necessitates
the adoption of standardized communication protocols and interoperable technolo-
gies. Standardization, supported by bodies such as the International Organization
for Standardization (ISO) and the International Electrotechnical Commission (IEC), is
of fundamental importance in ensuring that data can be exchanged and interpreted
correctly between different systems. The development of middleware and appli-
cation programming interfaces (API) can facilitate integration, thereby improving
compatibility between heterogeneous devices.

2. Data privacy and security: protecting sensitive data and maintaining privacy are
critical aspects. Robust security mechanisms and data management policies are
necessary to prevent unauthorized access and breaches. Cyber-attacks are becoming
increasingly sophisticated, requiring more advanced security measures. It is necessary
to use advanced encryption algorithms to protect data in transit and at rest, and
to implement multi-factor authentication systems and role-based authorizations to
control access to data and ensure that data management processes comply with data
protection regulations. However, it is important to strike a balance between making
data available to authorized users and protecting it from unauthorized access.

3. Technological infrastructure: developing and maintaining an adequate technological
infrastructure to support IoT integration requires significant investments and careful
planning. Developing and maintaining a robust technology infrastructure requires
significant investment and careful planning. The adoption of technologies such
as 5G, edge computing, and cloud computing can improve connectivity, processing
capacity, and system scalability. However, high costs and the need to ensure long-term
compatibility are major challenges that need to be carefully managed.

4. Staff training: ensuring that workers are adequately trained to use these innovative
systems is fundamental for the success of the integration. Continuous training and
the upskilling of staff are key points for successful IoT-BIM integration. Targeted
training programs, specific certifications, and the development of digital and analytical
skills are necessary to ensure that staff are able to use new technologies effectively.
Overcoming resistance to change and encouraging the adoption of innovation are
critical and fundamental aspects of the success of digital transformation.

After overcoming these challenges, the adoption of innovative digital systems can
radically transform construction project management, leading to holistic approaches that
outline new paradigms of efficiency and innovation.

Looking towards future research perspectives, the proposed methodology could incorpo-
rate additional advanced technologies (Table 2). These might include Augmented Reality (AR)
and Virtual Reality (VR) to enhance visualization and collaboration in projects, robotics and
automation to boost efficiency and safety on construction sites, the implementation of BIM 7D
for sustainable transition, and blockchain for transparency and security in transactions.
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Table 2. Impact of emerging technologies in the construction sector: innovations, safety, and
project management.

Digital
Technologies

Advantages and
Potential

Practical
Applications

Contribution to Safety
and Efficiency

Augmented Reality (AR)

Enhancement of project
visualization
Overlaying of digital
information/components onto
the real world.

Virtual/digital guidance during
construction phases
Detailed instructions in the field
of work [59].

Increase in efficiency and
safety at the workplace.

Virtual Reality (VR)

Creation of virtual work
environments for detailed
planning and training
Reduction in the risk of
workplace accidents [60,61].

Staff training
Exploration and planning of
work in virtual environments
[62].

Remote monitoring and
management of high-risk
activities [63].

Automation and Robotics

Automation of repetitive tasks,
enhancing productivity.
Reduction in human involvement
in high-risk tasks [64].
Unmanned aerial vehicles (UAVs)
for optimizing management
practices.

Assembly of prefabricated
components, demolition, site
cleaning, and building
maintenance [65].
Remote monitoring and
progress verification of
construction sites.

Improvement of site
operational efficiency and
safety [66].

BIM 7D

Integration of sustainability
information, optimization of
environmental impact, and energy
efficiency of buildings [67].

Collaboration among
stakeholders in the construction
sector throughout the lifecycle
of a building [68].

Enhancement of energy
efficiency and reduction in
impact.

Blockchain

Tracking and sharing of critical
information
Enhancement of transparency
Efficiency and safety of
operations.

Management of contracts,
financial transactions,
certifications, and other critical
data [69].

Increased security and
transparency in operations.

These technologies will be increasingly adopted and deeply integrated into the design,
construction, and management processes of building production. This leads to more
effective team collaboration, increased operational efficiency, and enhanced environmental
sustainability. In particular, a user-centered approach to managing built spaces is emerging,
emphasizing customization and enriching life and work experiences within buildings.

The discussion on this topic highlights the importance of an approach that syner-
gistically combines digital technologies with advanced construction methodologies. It
becomes clear that the mere use of digital tools is not in itself a guarantee of success in
construction project management. It is crucial to adopt a comprehensive strategy that
integrates technological aspects with organizational and social elements. The ability to
adapt and modulate the methodology according to different contexts and project challenges
proves essential for its effective use in a wide variety of scenarios.

5. Conclusions

The combination of appropriate behavior and conscious use of technology makes it
possible to outline a precise path capable of optimizing the entire lifecycle of the building
both from temporal and economic points of view [70].

The digital collaboration between BIM models and intelligent systems such as the
Cyber-Physical System and Machine Learning is significantly influencing the construc-
tion industry and beyond. The proposal dealt with in detail in the paper places trust in
technological development a methodology that makes it possible for the management
of construction phases more efficient, upgrading time and costs. At the same time, the
methodology can be applied to an existing building to set up a DT, and to monitor, manage,
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and analyze all components of the built environment, with the capability to simulate future
scenarios or retrofitting.

The methodology was applied in two distinct case studies: one pertaining to the built
environment and the other to a construction site in progress. The objective was to demon-
strate the actual possibility of the different types of applications described above. The
limitations of this methodology, which can also be found in other case studies, lie mainly
in the limited possibility of interoperability between different software or devices. Conse-
quently, it may be challenging to read data from different formats in a shared environment.
Consequently, it is of the utmost importance at the preliminary stage to design a system
architecture that is able to meet all needs and requirements at the data format level. In this
perspective, when analyzing the equipment required to implement a digital management
system such as the one proposed, it seems more feasible to create a homogeneous data
environment for application in a built environment. The diversity of device types to be
used on the construction site, which can range from drones to augmented reality viewers,
via video cameras and sense-meters, makes it more challenging to create a centralized
system for simplified data management.

ML systems improve as the amount of data transmitted increases and generate detailed
analyses useful for decision-making. Traditional methods are static and unprepared to react
promptly to unforeseen events, and these difficulties have an important economic and social
impact. The effectiveness of a dynamic digital approach is enhanced by these inefficiencies
and demonstrates the need to accelerate the process of technological transformation in
the construction sector. By setting up dynamic digital approaches aimed at optimizing
management and construction strategies, predictive maintenance models can be developed
on the basis of the previously described methodology due to the amount of data connected
to the digital model. The potential of the proposed system is the ability to be replicable in
different situations and at different stages of the project, including the possibility of taking
over in progress of a construction process with a traditional footprint.

In conclusion, a unified strategic plan for digital transition in the AECO sector appears
imperative to ensure the effective implementation of digital technologies throughout the
building lifecycle. Such a plan would enable the definition of common goals, standards, and
procedures for the adoption and integration of digital technologies, facilitating consistency
and effectiveness in building production. Maximizing the benefits of digitization, such as
operational optimization, time and cost reduction, and improved environmental sustain-
ability, can be achieved through increased collaboration among all industry players. This
is crucial in addressing the complex and interdisciplinary challenges of the construction
sector. Cooperation between various industries, including IT, engineering, architecture,
materials production, circular economy, and environmental management, could provide
the expertise and resources required to develop innovative and integrated solutions. This
holistic approach would foster the sharing of best practices and the creation of synergies to
promote sustainable and resilient growth in the AECO sector.
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