
Microprocessors and Microsystems 86 (2021) 104334

A
0

N
L
a

b

A

K
H
L
S
S

1

a
c
l
p
f
H
s
t
d
m
u
s

t
m
l
a
t
m
H
c

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

on-iterative SDC modulo scheduling for high-level synthesis
eandro de Souza Rosa a,∗, Christos-Savvas Bouganis b, Vanderlei Bonato a

Institute of Mathematics and Computer Sciences, The University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, Brazil
Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BU, United Kingdom

R T I C L E I N F O

eywords:
igh-level synthesis
oop pipelining
calability
cheduling

A B S T R A C T

High-level synthesis is a powerful tool for increasing productivity in digital hardware design. However,
as digital systems become larger and more complex, designers have to consider an increased number of
optimizations and directives offered by high-level synthesis tools to control the hardware generation process.
One of the most explored optimizations is loop pipelining due to its impact on hardware throughput and
resources. Nevertheless, the modulo scheduling algorithms used at resource-constrained loop pipelining are
computationally expensive, and their application through the whole design space is often non-viable. Current
state-of-the-art approaches rely on solving multiple optimization problems in polynomial time, or on solving
one optimization problem in exponential time. This work proposes a novel data-flow-based approach, where
exactly two optimization problems of polynomial time complexity are solved, leading to significant reductions
on computation time for generating a single loop pipeline. Results indicate that, even for complex loops, the
proposed method generates high-quality designs, comparable to the ones produced by existing state-of-the-art
methods, achieving a reduction on the design-space exploration time by 2.46× (geomean).
. Introduction

High-Level Synthesis (HLS) has emerged as a powerful tool for
ccelerating the hardware design process. HLS allows a high-level
apture of the architecture of the intended system through a high-
evel programming language such as C and Java, enabling software
rogrammers and hardware designers to elaborate digital systems in a
raction of the time required through traditional RTL level tools. In an
LS context, the programmer can explore multiple ways of mapping the

ource-code into hardware by using appropriate directives. However,
his flexibility leads to an exponential increase in the design space
imensions [1], which is often explored partially by the user over
any iterations [2]. A common way to handle such large DSE is to
se heuristics and statistical models to reduce the number of explored
olutions [3].

A direct approach to reducing the DSE time is by reducing the time
aken to estimate the impact of the directives in the code. Loop transfor-
ations are usually the most critical directives in an HLS scenario since

oop acceleration can lead to significant performance improvements
nd to more efficient hardware resources usage. A key optimization
o achieve high throughput is loop pipelining, which is performed by
odulo scheduling algorithms, which are responsible for most of the
LS compilation time [4], making the DSE non-viable for large and
omplex codes.

∗ Corresponding author.
E-mail addresses: leandrors@alumni.usp.br (L. de Souza Rosa), christos-savvas.bouganis@imperial.ac.uk (C.-S. Bouganis), vbonato@usp.br (V. Bonato).

Towards creating loop pipelines, early approaches used an itera-
tive ‘‘greedy’’ heuristic, which allows the representation on scheduling
and hardware design-specific aspects in a single optimization formu-
lation [5]. The introduction of a back-tracking heuristic [4] was used
to improve the search, leading to better solutions in reduced execution
time.

Opposing to the heuristics, Integer Linear Problems (ILP) have been
proposed to completely model the pipelining [6–8]. By encoding all
aspects of the problem, ILP formulations eliminate the need for iterative
searches and guaranteeing to achieve optimal solutions. However, the
expanded formulation has an exponential solving time, which makes its
application impractical for large problems or design-space exploration
tasks.

Recent works propose to divide the loop pipelining problem in
two parts, leaving the allocation part of the problem to be solved
by a Genetic Algorithm (GA), while the scheduling part is solved as
a standard optimization problem [9], speeding up the process when
compared against the heuristic approaches.

In this work, we propose to substitute the GA search by a heuristic
to construct a solution, which reduces asymptotically the computation
time needed to create a loop pipeline, implying in considerable time
savings on design-exploration tasks. This paper extends the initial
version of this work [10], with a complete evaluation of the proposed
vailable online 11 September 2021
141-9331/© 2021 Published by Elsevier B.V.

ttps://doi.org/10.1016/j.micpro.2021.104334
eceived 22 September 2020; Received in revised form 15 April 2021; Accepted 29
 August 2021

http://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:leandrors@alumni.usp.br
mailto:christos-savvas.bouganis@imperial.ac.uk
mailto:vbonato@usp.br
https://doi.org/10.1016/j.micpro.2021.104334
https://doi.org/10.1016/j.micpro.2021.104334
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2021.104334&domain=pdf

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.

t
o
t

i
d

r
t
v
𝑟
d
a
s

l
𝐼

w
l
𝑏

F
e

s
t
d

T
n
c

approach, including a full description of the method, along with a broad
number of examples, and a detailed result analysis over the scheduler
impacts on the final hardware quality.

The key contributions of this work are:

• An heuristic approach to construct a solution for the allocation
part of the modulo scheduling problem, aiming to reduce the
final design latency, greatly improving the computation time to
achieve a solution.

• An investigation on the relationship between the latency and
hardware resource usage of the generated design.

• An evaluation of the proposed methodology and state-of-the-
art approaches regarding the impact on the generated hardware
design’s performance and area, and their impact on a design-space
exploration context.

The rest of this paper is organized as follows: Section 2 intro-
duces the basic nomenclature and definitions on the topic. Section 4
presents the state-of-the-art modulo schedulers. Section 5 presents the
proposed approach. Section 6 compares the proposed approach against
state-of-the-art modulo schedulers regarding the computation time and
achieved hardware quality. Section 7 summarizes future works, and
Section 8 concludes the paper.

2. Background

Loop pipelining improves the system’s throughput by creating a
hardware structure that allows the initiation of the next loop iteration
before the current finishes. A loop structure without pipelining would
take 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑡𝑐 ∗ 𝑙 to complete its execution, where 𝑡𝑐 is the loop
rip count (number of loop iterations), and 𝑙 is the loop latency (number
f clock cycles to finish one loop iteration). A pipelined loop would
ake 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑙 + 𝐼𝐼 ∗ (𝑡𝑐 − 1) to finish its execution, where 𝐼𝐼 is the

initiation interval (the number of clock cycles between loop iterations).
The problem of designing a hardware structure that would allow a

loop pipeline is addressed through modulo scheduler algorithms that
find a schedule for the loop instructions given a target 𝐼𝐼 such that
no dependency or resource constraint is violated. The smaller the 𝐼𝐼
value is, the fewer the cycles the loop will take for completion. In
the general form, a modulo scheduler algorithm is used to find a
schedule for an estimated minimum 𝐼𝐼 . In case the scheduler fails,
the candidate 𝐼𝐼 is increased, and the modulo scheduler algorithm
is performed again. The minimum 𝐼𝐼 estimation is given as 𝑀𝐼𝐼 =
max(𝑅𝑒𝑠𝑀𝐼𝐼,𝑅𝑒𝑐𝑀𝐼𝐼), where 𝑅𝑒𝑠𝑀𝐼𝐼 and 𝑅𝑒𝑐𝑀𝐼𝐼 are the resource-
constrained and recurrence minimum 𝐼𝐼 , respectively [4]. This work
focuses on the problem of identifying a schedule for a candidate 𝐼𝐼 ,
and the scheduler algorithm to be iteratively applied by increasing the
candidate 𝐼𝐼 .

As input, the modulo schedulers consider the loop source code in its
Data-Flow Graph (DFG) form. A DGF is a directed graph 𝐷𝐹𝐺 = {𝑉 ,𝐸},
with vertices 𝑉 = {𝐼𝑖 ∣ 𝑖 = {1,… , 𝑛}} representing the 𝑛 instructions in
the loop body, and edges 𝐸 = {(𝑖, 𝑗) ∀𝑖, 𝑗 ∣ 𝐼𝑗 depends on 𝐼𝑖} represent-
ng that instruction 𝐼𝑗 uses the results of instruction 𝐼𝑖. Hereinafter, we
efine 𝑛 = |𝑉 | as the loop size.

As in [9], we consider the modulo scheduling problem to be sepa-
ated into two parts. The scheduling part consists in finding the starting
ime 𝑡𝑖 for all instructions 𝐼𝑖 ∈ 𝑉 such that no dependencies are
iolated. The allocation part consists in determining a resource instance
𝑖 and congruence class 𝑚𝑖 for instructions 𝐼𝑖 to be executed. 𝑚𝑖 is
efined as 𝑚𝑖 = 𝑡𝑖%𝐼𝐼 (the remainder of the integer division by 𝐼𝐼)
nd encodes the starting time of 𝐼𝑖 for all iterations of the loop in a
ingle variable.

The scheduling part of the problem can be captured as Formu-
ation 1, in which the constraints (line 3) capture that instruction
2

𝑗 should start after instruction 𝐼𝑖. 𝐷𝑖 is the delay of instruction 𝐼𝑖,
hich accounts for multi-cycle instructions. 𝑏𝑖,𝑗 measures the intra-
oop dependencies (represented as a back-edge in the loop DFG), where
𝑖,𝑗 > 0 for back-edges between 𝐼𝑖 and 𝐼𝑗 , and 𝑏𝑖,𝑗 = 0 for forward edges.

ormulation 1: Scheduling part of the modulo scheduling. All
quations are implicitly applied ∀{𝑖, 𝑗} ∈ [1,… , 𝑛]

(1) minimize: ∑

𝑖 𝑡𝑖
(2) subject to:
(3) 𝑡𝑖 − 𝑡𝑗 ≤ −𝐷𝑖 + 𝑏𝑖,𝑗𝐼𝐼

Formulation 1 has a Totally Uni-Modular (TUM) matrix of con-
traints, allowing it to be solvable in polynomial time with respect
o the problem size [11], which is defined as the total number of
ecision variables and constraints.

The allocation information is represented as a Modulo Reservation
able (MRT), with 𝐼𝐼 rows and ∑

𝑘 𝑎𝑘 columns, where 𝑎𝑘 is the instance
umber of resource type 𝑘. Each MRT row and column represent a
ongruence class 𝑚 and a resource instance 𝑟, respectively. Finding an

allocation means to find a unique pair (𝑚𝑖, 𝑟𝑖) for each instruction in
𝐼𝑖 ∈ 𝑉 .

For the rest of this paper, we define an MRT as ‘‘valid’’ if each entry
is assigned to one instruction at maximum. A ‘‘conflict’’ is defined as
when two instructions are assigned to the same MRT entry. We will use
‘‘MRT’’ and ‘‘allocation’’ interchangeably hereinafter.

3. Related works

Recent works focus on improving the loop pipeline indirectly, by
transforming the source code to obtain better pipelines later on in the
compilation flow. [12] introduces the Prioritized Code Motion (PCM)
heuristic that modifies the source code to improve the loop pipelining.
[13] focus on optimizing loop pipeline to enable the pipelining of
nested loops. [14] splits loops in smaller loops with fewer dependencies
which can be more easily pipelined. Such works are complementary
and can be applied on top of modulo schedulers to further improve the
results.

The CCC HLS tool [15,16] particularly compiles C code into ADA
code, which is then translated into hardware by its back-end. All
code optimizations are applied at front-end level, e.g. code motion,
expression simplification, loop unrolling, and loop pipelining. In this
specific case, the loop pipeline is a non resource-constrained software-
based implementation [17], which is a sub-problem of the problem
stated in this work.

[18] presents an iterative loop pipelining method which pairs the
standard SDC problems with Boolean Satisfiability Problems (SAT) to
solve the resource constraints. This work has two contributions. The
first is a method to divide the DFG into sub-graphs, which are scheduled
independently. The second is the usage of a SAT problem to solve MRT
conflicts in the MRT, which substitutes the SDCS backtracking heuristic.
As such, the improvements presented here are complementary and can
be applied on top of modulo schedulers to further improve the results.

[19] presents an ILP formulation which includes the resource con-
straints as decisions variables in the problem, resulting in a multi-
objective optimization, focusing on minimizing both the latency and
number of functional units (nFUs). [8] extends the ILP formulations
to find schedules with rational 𝐼𝐼s, which greatly improved the final
design throughput, however without guaranteeing the rational 𝐼𝐼 op-
timality. These approaches are generalizations of [6], which is defined
to solve the modulo scheduling problem as defined in Section 2.

Next, Section 4 presents in detail the closest approaches to our
work, which apply a resource-constrained loop pipelining to generate

a schedule.

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.
4. State-of-the-art approaches

This section provides a high-level description of four state-of-the-
art modulo schedulers, namely the Iterative SDC Modulo Scheduler
(SDCS), the ILP Modulo Scheduler (ILPS), the Genetic Algorithm Mod-
ulo Scheduler (GAS), and the Swing Modulo Scheduler (SMS). The first
three schedulers cast the modulo scheduling problem as an optimiza-
tion problem, considering all instructions of the loop simultaneously,
while the last is a representative of the list-based family of schedulers,
and it is based on a set of heuristics to provide a solution for the modulo
scheduling problem.

4.1. Iterative SDC Modulo Scheduler (SDCS)

The System of Difference Constraints (SDC) Modulo Scheduler [4]
is considered to be the state-of-the-art scheduler, and it is used by
academic [20] and industrial [21] HLS tools. SDCS casts the scheduling
problem as presented in Formulation 1, which is called to be in the SDC
form since the left-side of the constraints are differences. Such type of
formulation will be referred to as an ‘‘SDC problem’’ hereinafter.

Since Formulation 1 does not consider any allocation information,
SDCS applies an iterative heuristic approach that solves (𝑛2) SDC prob-
lems to find a schedule with a valid MRT, where 𝑛 is the loop size.
The heuristic used by SDCS extends the ‘‘greedy’’ search presented
by [5] by including a backtracking function during the search, leading
to better solutions with less computation time.

To search for a valid MRT, the heuristic modifies the SDC for-
mulation by adding constraints related to the starting times 𝑡𝑖. After
solving the modified formulation, the heuristic checks whether the MRT
associated with the solution is valid. As such, SDCS searches for a valid
MRT indirectly.

4.2. ILP Modulo Scheduler (ILPS)

Instead of searching for a valid MRT, [6] proposes to represent
the MRT explicitly in the problem formulation by using overlap vari-
ables [22].

Formulation 2 presents a summarized version of the Integer Linear
Program (ILP) formulation; The constraint on line (3) is the same
dependency constraint on Formulation 1. 𝜖𝑖𝑗 and 𝜇𝑗𝑖 are the overlap
variables which ensures the MRT validity through constraints (4) to
(10). Constraint (11) links the instructions start time (𝑡𝑖) with their
congruence class using a helper variable (𝑦𝑖).

Formulation 2: Summarized ILP formulation for modulo scheduling
presented in [6]. All equations are implicitly applied ∀{𝑖, 𝑗} ∈ [1,… , 𝑛]

(1) minimize ∑

𝑖∈𝑉 𝑡𝑖
(2) subject to:
(3) 𝑡𝑖 +𝐷𝑖 ≤ 𝑡𝑗 + 𝑏𝑖,𝑗𝐼𝐼
(4) 𝜖𝑖𝑗 + 𝜖𝑗𝑖 ≤ 1
(5) 𝑟𝑗 − 𝑟𝑖 − 1 − (𝜖𝑖𝑗 − 1)𝑎𝑘 ≥ 0
(6) 𝑟𝑗 − 𝑟𝑖 − 𝜖𝑖𝑗𝑎𝑘 ≤ 0
(7) 𝜇𝑖𝑗 + 𝜇𝑗𝑖 ≤ 1
(8) 𝑚𝑗 − 𝑚𝑖 − 1 − (𝜇𝑖𝑗 − 1)𝐼𝐼 ≥ 0
(9) 𝑚𝑗 − 𝑚𝑖 − 𝜇𝑖𝑗𝐼𝐼 ≤ 0
(10) 𝜖𝑖𝑗 + 𝜖𝑗𝑖 + 𝜇𝑖𝑗 + 𝜇𝑗𝑖 ≥ 1
(11) 𝑡𝑖 = 𝑦𝑖𝐼𝐼 + 𝑚𝑖

Formulation 2 does not have a TUM constraints matrix since con-
straint (10) has 𝐼𝐼 ≥ 1 as coefficient for the variable 𝑦𝑖, while TUM
matrices can only have coefficients 0 or ±1 [23]. Hence, the problem
is a general ILP with exponential solving time.

With all scheduling and allocation information captured in the
problem formulation, ILPS guarantees to find the optimal schedule
3

for a given 𝐼𝐼 , if such a solution exists, guaranteeing both 𝐼𝐼 and
latency optimality. However, (𝑛2) overlap variables are created in the
formulation, where 𝑛 is the loop size, which can make the approach
not practical in many cases, especially considering the exponential ILP
solving time. Nevertheless, when optimal solutions are targeted, ILPS
is considered the state-of-the-art approach.

To avoid prohibitive time consumption, ILPS constricts the solver
with a time budget. If the solver does not find the optimal solution
during this time, it returns the current best solution. If no solution was
found, the candidate 𝐼𝐼 is increased and the process is repeated.

4.3. Genetic Algorithm Modulo Scheduler (GAS)

The GAS modifies Formulation 2 to explicitly separate the prob-
lem into its scheduling and allocation parts [9]. GAS considers valid
MRTs as individuals for evolution, and uses the SDC Formulation 3 to
calculate a schedule for such individuals.

By considering a valid MRT as an individual, constraints (5) to (11)
can be removed from Formulation 2, whose purpose is to guarantee
MRT validity. Then, 𝑡𝑖 = 𝑦𝑖𝐼𝐼 +𝑚𝑖 (constraint (12)) is used to substitute
𝑡𝑖 in all other constraints, resulting in Formulation 3.

Formulation 3: SDC base problem for scheduling and allocation
separation. All equations are implicitly applied ∀{𝑖, 𝑗} ∈ [1,… , 𝑛]

(1) minimize: ∑

𝑖 𝑦𝑖 ∗ 𝐼𝐼 + 𝑚𝑖
(2) subject to:
(3) 𝑦𝑖 − 𝑦𝑗 ≤

⌊−𝐷𝑖+𝑏𝑖,𝑗𝐼𝐼−(𝑚𝑖−𝑚𝑗)
𝐼𝐼

⌋

In contrast to Formulation 1, Formulation 3 incorporates the MRT
values 𝑚𝑖 and 𝑚𝑗 , linking the resulting schedule to a valid MRT.

However, [9] shows that some MRT configurations can make For-
mulation 3 infeasible. A ‘‘feasible’’ MRT is defined as an MRT for which
Formulation 3 is feasible (has at least one solution) for its 𝑚𝑖, 𝑚𝑗 , and
II values.

To handle infeasible MRTs, [9] proposes a GA evolution that aims to
find feasible MRTs while optimizing the schedule latency concurrently.
During evolution, GAS solves (𝑛) SDC problems, where 𝑛 is the loop
size.

GAS computation time can be controlled by the parameters (𝛼, 𝛽),
which define the GA population size 𝑝𝑜𝑝 = 𝛼𝑛 and minimum number of
generations 𝑔𝑒𝑛 = 𝛽𝑛, where 𝑛 is the loop size. As such, (𝛼, 𝛽) control
the GAS’ trade-off between quality of solution and computation time.

4.4. Swing Modulo Scheduler (SMS)

The Swing Modulo Scheduler [24] is a representative of the list-
based schedulers family. This type of schedulers can generally provide
fast solutions when compared to other modulo schedulers, as they
do not rely on formulating and solving high complexity optimization
problems, and do not support incremental and back-tracking searches.
However, list-based schedulers often fail to produce valid schedules,
where the non-list-based approaches can provide valid schedules [25].

Previous works showed that SMS outperforms the other list-based
schedulers in terms of Quality of Results (QoR) [25] and considers SMS
to be the state-of-the-art in this category of schedulers.

SMS is based on two heuristics. The first creates an ordered list
of the loop instructions, aiming to reduce the topological distance
between dependent instructions. To do so, SMS first enumerates and
sorts all sub-cycles (𝜓) in the loop Data-Flow Graph (DFG) according to
their 𝑀𝐼𝐼𝜓 ; then, instructions from cycles are added to a list according
to its obeying an 𝑀𝐼𝐼𝜓 decreasing order and dependencies between
instructions.

The second step utilizes the generated list to find a schedule for each
instruction (i.e., evaluates a 𝑡𝑖 value for each 𝐼𝑖), obeying the resource

and dependency constraints. To create the schedule, an instruction is

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.

∃
b
i
1
𝜓

1

1

t
D
𝜓

s

p

𝑖
s
‘

i
w
S

𝑀

retrieved from the list and it is scheduled according to its dependencies,
respecting the MRT validity.

In one hand, SMS schedules and allocates each instruction indi-
vidually (hence the ‘‘list-based’’ nomenclature), elaborating only one
schedule and allocation. On the other hand, non-list-based schedulers
schedule all instructions at the same time by solving an optimization
formulation. Hence, SMS is generally faster than the other sched-
ulers, but it often fails to create schedules due to its limited search
capabilities.

5. Non-Iterative Modulo Scheduler (NIS)

This paper proposes the Non-Iterative SDC Modulo Scheduler (NIS),
which uses a heuristic to generate a valid and feasible MRT by con-
struction, followed by a search for a respective schedule utilizing
Formulation 3. As such, the proposed approach avoids to solve several
SDC problems to find a valid MRT (in contrast to SDCS), avoids to
address simultaneously the scheduling and allocation parts (in contrast
to ILPS), avoids evolving several MRTs to find a feasible one (in contrast
to GAS), and evaluates several schedules for the constructed MRT (in
contrast to SMS) to minimize the resulting schedule latency.

MRT construction is a key element of the proposed algorithm. NIS
focuses on two objectives, the MRT feasibility, and the schedule latency
reduction, which are analysed in Sections 5.1 and 5.2 respectively. The
proposed heuristic and its detailed implementation are presented in
Section 5.3.

5.1. Objective 1: MRT feasibility

Let us consider a loop for modulo scheduling, with a target 𝐼𝐼 , and
its corresponding DFG. Consider also all elementary cycles 𝜓 in the
DFG, which are lists of nodes starting with 𝐼𝑗 and ending in 𝐼𝑖 such as
{(𝐼𝑗 → 𝐼𝑖; 𝑏𝑗,𝑖 ∶= 1)} ∈ 𝐸 (i.e., the node 𝐼𝑖) is a destination of an DFG
ack-edge, and the list ends on 𝐼𝑗). Code 1 presents a simple example to
llustrate the proposed approach steps. Fig. 1 presents the DFG for Code
, which contains 3 cycles: 𝜓0 = {𝐼1, 𝐼3, 𝐼4, 𝐼6}, 𝜓1 = {𝐼1, 𝐼2, 𝐼4, 𝐼6}, and
2 = {𝐼1, 𝐼5, 𝐼6}.

1 for(int i=LB; i<UB; i++){
2 I1 = v[i-1]; //mem. - 1 cycle delay
3 I2 = I1+2; // add - 1 cycle delay
4 I3 = I1*3; // mult - 2 cycles delay
5 I4 = I2+I3;
6 I5 = I1+4;
7 v[i] = I5+I4; //I6
8 I7 = I1+5;
9 I8 = I7+6;
0 I9 = I7*7;
1 }

Code 1: Loop source code example.

As shown in [9], the feasibility of Formulation 1 only depends on
he formulation constraints related to the instructions that are part of
FG cycles. The scheduling constraints for the instructions in a cycle
= {𝐼𝛼 , 𝐼𝛼+1,… , 𝐼𝜔−1, 𝐼𝜔}, are captured as the set of Inequalities (1).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝛼 − 𝑡𝛼+1 ≤ −𝐷𝛼
𝑡𝛼+1 − 𝑡𝛼+2 ≤ −𝐷𝛼+1

…
𝑡𝜔−1 − 𝑡𝜔 ≤ −𝐷𝜔−1
𝑡𝜔 − 𝑡𝛼 ≤ −𝐷𝜔 + 𝑏𝜔,𝛼𝐼𝐼

(1)

Summing up Inequalities (1) leads to Inequality (2).

0 ≤ 𝑏𝜔,𝛼𝐼𝐼 −
∑

𝐷𝑖 (2)
4

𝑖∈𝜓
Fig. 1. DFG of Code 1, containing 3 cycles created due to the back-edge (dotted arrow
from 𝐼6 to 𝐼1).

We define 𝑙𝜓𝑓 =
∑

𝑖∈𝜓 𝐷𝑖 as the forward path length of a cycle 𝜓 , and
𝑙𝜓𝑏 = 𝑏𝜔,𝛼𝐼𝐼 its back-edge length. The slack of a cycle 𝑠𝜓 can be defined
as Inequality (3).

𝑠𝜓 = 𝑙𝜓𝑏 − 𝑙𝜓𝑓 ≥ 0 (3)

Now, define 𝑡0𝑖 as the time when all dependencies of 𝐼𝑖 are ready.
However, there is no guarantee that a resource will be available at
𝑚0
𝑖 = 𝑡0𝑖%𝐼𝐼 . In this case, 𝑡𝑖 should be scheduled in another congruence

class, creating a delay represented by {𝑔𝑖 = 𝑡𝑖 − 𝑡0𝑖 ∣ 0 ≤ 𝑔𝑖 ≤ 𝐼𝐼 − 1}.
Hence, Inequality (3) is redefined in Inequality (4) as the effective
slack, which represents the final schedule slack.

𝑒𝑠𝜓 = 𝑙𝜓𝑏 − 𝑙𝜓𝑓 −
∑

𝑖∈𝜓
𝑔𝑖 = 𝑠𝜓 −

∑

𝑖∈𝜓
𝑔𝑖 ≥ 0 (4)

The condition 𝑒𝑠𝜓 ≥ 0 ∣ ∀𝜓 is necessary for Inequalities (1) to be
atisfied. Thus, it is also a condition for the MRT to be feasible.

Even though 𝑔𝑖 can be only calculated with the final schedule in
lace, Inequality (4) shows that the larger the slack 𝑠𝜓 is, the larger

∑

∈𝜓
𝑔𝑖 can be, without violating 𝑒𝑠𝜓 ≥ 0. In other words, the larger the

lack 𝑠𝜓 , the more space there is for the instructions of cycle 𝜓 to be
‘re-arranged’’ in the MRT without violating 𝑒𝑠𝜓 ≥ 0.

The proposed heuristic exploits the above observation and sets
nstructions in DFG cycles with shorter 𝑠𝜓 to be arranged in the MRT
ith higher priority. This sorting has similarities with SMS presented in
ection 4.4, where the DFG cycles are sorted according to their 𝑀𝐼𝐼𝜓

values. In SMS, a cycle with larger 𝑀𝐼𝐼𝜓 means a longer forward path,
which is equivalent to a shorter 𝑠𝜙 in NIS. However, using 𝑠𝜓 instead of
𝐼𝐼𝜓 allows the algorithm to distinguish between cycles that exhibit

the same 𝑀𝐼𝐼𝜓 .

5.2. Objective 2: Latency reduction

As noted in Section 5.1, the position of an instruction in the MRT
can add possible delays 𝑔𝑖 in the final forward length of a schedule.
Furthermore, whenever an instruction 𝐼𝑖 is delayed due to MRT con-
flicts, all instructions 𝐼𝑗 that depend on 𝐼𝑖 should also be delayed by
the same amount in order to match 𝑚𝑗 = 𝑚0

𝑗 .
Thus, we can conclude that the instructions should be arranged in

the MRT such that all instruction dependencies are arranged before
themselves; i.e., they should be arranged in a ‘‘topological order’’.

NIS applies a topological sorting over the instructions 𝑠𝜓 -sorted list
(elaborated according to Section 5.1). SMS opposes to the proposed
approach since it maintains the 𝑀𝐼𝐼𝜓 order (which is the analogous
ordering to the proposed 𝑠𝜓 -sorting) over the topological order.

5.3. Proposed heuristic

The main idea behind the proposed heuristic is to find an ordering

for the instructions targeting the objectives presented in Sections 5.1

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.

l
T
f

𝑜

s
c

1
i

f

t
u
𝑐
a

T
p
i

o
c

t
𝑜
o
2

and 5.2 . The algorithm takes as input the loop’s DFG, the constraint set,
and the candidate 𝐼𝐼 , and produces an MRT and a schedule associated
with it. The proposed heuristic is presented in Algorithm 1.

The first step calculates the DFG’s elementary cycles 𝜓 and slacks
𝑠𝜓 for all back-edges 𝑏𝑖,𝑗 (line 1) using a DFG recursive deep-search
(detailed in Algorithm 2). Cycles are sorted according to their 𝑠𝜓 values
(line 2). Instructions in cycles are parsed into a list that contains a
single instance of each instruction (lines 3 and 4), handling instructions
that appear in multiple cycles (as 𝐼5, shared by 𝜓0 and 𝜓2 in Fig. 1)
by avoiding repeating their entries in the list. This list is topologically
ordered (line 5) and results in a topologically ordered instruction list
with slack priority.

For the given example in Fig. 1, the slacks values are 𝑠𝜓0 =
0, 𝑠𝜓1 = 1, and 𝑠𝜓2 = 2. The list without repeated elements is
{𝐼1, 𝐼3, 𝐼4, 𝐼6, 𝐼2, 𝐼5}, and topologically ordered list is {𝐼1, 𝐼3, 𝐼2, 𝐼4, 𝐼5,
𝐼6},

The second step creates the topological order of all instructions that
are not contained in any cycle. The length of instruction 𝐼𝑖 is set the
maximum length of all forward-paths containing 𝐼𝑖 (lines 6 and 7) (note
that paths within cycles are naturally excluded from this step). Then,
the DFG edges are sorted according to the destination length (lines
8 and 9). The instructions are then parsed into a list in depth-first
order (line 10), which is topologically sorted (line 11). The ‘‘topological
sort’’ (lines 5 and 11) indicates a ‘‘stable’’ order one among many valid
topological sorts of the given DFG. Finally, this list is appended to the
ordered list (lines 12).

Following the example in Fig. 1, instructions {𝐼1, 𝐼7, 𝐼8, 𝐼9} have
lengths {4, 4, 3, 4}. Ordering the DFG according to the instructions
engths results in the edge 𝐼7 → 𝐼9 to be swapped with the edge 𝐼7 → 𝐼8.
he list ordered according to the path length is {𝐼7, 𝐼9, 𝐼8}. Finally, the
inal order is presented in Eq. (5).

𝐿𝑖𝑠𝑡 = {𝐼1, 𝐼3, 𝐼2, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼9, 𝐼8} (5)

The third step of the proposed heuristic creates the MRT. An ASAP
cheduling is performed by solving Formulation 1, resulting in the base
ongruence class values 𝑚0

𝑖 = 𝑡𝐴𝑆𝐴𝑃𝑖 %𝐼𝐼 (line 13). The base 𝑚0
𝑖 value is

updated in case one of its predecessors had a conflict (line 15). Non-
resource-constrained instructions are allocated within 𝑚0 (lines 16 and
7). Resource-constrained instructions are attempted to be allocated
nto an MRT entry 𝑚 = 𝑚0

𝑖 (lines 18 to 26). However, in the case the
MRT entry is not available, the congruence class is incremented, and a
corresponding increment delay is introduced (line 25). Then, the delay
increments are recursively passed to all instructions that depend on
𝑖 (line 26). The schedule is calculated solving Formulation 3 for the
resulting MRT (line 27).

Finally, In the case where the resulting MRT is infeasible (line 28),
NIS is considered to fail to the candidate 𝐼𝐼 . In this case, the candi-
date 𝐼𝐼 must be incremented, another MRT elaborated, and another
scheduling attempt performed, in the same fashion as all other modulo
schedulers.

As presented in Fig. 1 example, a back-edge can belong to multiple
DFG cycles with different forward paths in the DFG. Algorithm 2
presents a DFG recursive deep-search function (called
𝑔𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝑠𝐴𝑛𝑑𝑆𝑙𝑎𝑐𝑘𝑠) that returns all cycles for a given back-edge. The
function takes as arguments the target 𝐼𝐼 , a current instruction (𝑐𝑖), the
final node from which the back-edge is sourced (𝑏𝑖), the partial slack
rom the paths starting at 𝑐𝑖 (𝑝𝑠), and the back-edge distance (𝑏𝑖,𝑗𝐼𝐼).

The goal of the function 𝑔𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝑠𝐴𝑛𝑑𝑆𝑙𝑎𝑐𝑘𝑠 is to find all paths from
the current instruction 𝑐𝑖 that lead to the back-edge 𝑏𝑖. Note that 𝐼𝐼 ,
𝑏𝑖, and 𝑏𝑖,𝑗𝐼𝐼 are constants during Algorithm 2 execution for a given
back-edge.

Initially, an array of cycles is created to store all cycles related to
the back-edge and their respective slack (line 1). Then 𝑐𝑖 is checked if it
has been marked as ‘‘not leading’’ to 𝑏𝑖 (lines 2 and 3), what can occur
if 𝑐𝑖 belongs to multiple paths. If 𝑐𝑖 has not been marked as ‘‘not in the
5

t

Algorithm 1: NIS.
input : Data-Flow Graph, Constraints, 𝐼𝐼
output: Valid MRT, schedule
/* Topological-slack order */

1 𝛹 ←
𝐷𝐹𝐺
⋃

𝑏𝑖,𝑗

𝑔𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝐴𝑛𝑑𝑆𝑙𝑎𝑐𝑘𝑠(𝐼𝐼, 𝑗, 𝑖, 0, 𝑏𝑖,𝑗𝐼𝐼);

2 sort 𝛹 increasingly according to 𝑠𝜓 ;
3 for 𝜓 ∈ 𝛹 do
4 add all instructions 𝑖 ∈ 𝜓 to 𝑜𝐿𝑖𝑠𝑡 if 𝑖 ∉ 𝑜𝐿𝑖𝑠𝑡;
5 Topologically sort 𝑜𝐿𝑖𝑠𝑡;
/* Topological-path length order */

6 for 𝑖 ∉ 𝛹 do
7 𝑙𝑒𝑛𝑔𝑡ℎ𝑖 ← maximum length between all paths containing 𝑖;
8 for 𝑖 ∉ 𝛹 do
9 sort 𝑗 ∈ 𝑢𝑠𝑒𝑠(𝑖) decreasingly according to 𝑙𝑒𝑛𝑔𝑡ℎ𝑗 ;
10 Fill 𝑙𝑖𝑠𝑡 with the Deep-First Search order ∀𝑖 ∉ 𝛹 ;
11 topologically sort 𝑙𝑖𝑠𝑡;
12 𝑜𝐿𝑖𝑠𝑡 ← 𝑜𝐿𝑖𝑠𝑡 + 𝑙𝑖𝑠𝑡;

/* Filling the MRT with 𝑜𝐿𝑖𝑠𝑡 */
13 calculate the ASAP schedule;
14 for 𝑖 ∈ 𝑜𝐿𝑖𝑠𝑡 do
15 𝑚0 ← (𝑡𝐴𝑆𝐴𝑃𝑖 %𝐼𝐼 + 𝑑𝑒𝑙𝑎𝑦𝑖)%𝐼𝐼 ;
16 if 𝑖 is not resource constrained then
17 MRT(𝑚0, 0) ← 𝑖;
18 else
19 𝑚 ← 𝑚0; 𝑖𝑛𝑐 ← 0;
20 while 𝑖 is not allocated do
21 for 𝑟 ∈ 0 to 𝑎𝑘 | 𝑖 is type 𝑘 do
22 if MRT(𝑚, 𝑟) is available then
23 MRT(𝑚, 𝑟) ← 𝑖;
24 set 𝑖 as allocated;

25 𝑖𝑛𝑐 ← 𝑖𝑛𝑐 + 1; 𝑚 ← 𝑚 + 1;
26 recursively propagate 𝑖𝑛𝑐 to all 𝑖 successors;

27 Calculate the schedule for the MRT using Formulation 3;
28 return isFeasible(MRT);

path’’, all uses of 𝑐𝑖 are searched to check if one of them leads to 𝑏𝑖
(line 6 to 18 loop).

While searching if 𝑐𝑖 leads to 𝑏𝑖, two cases must be considered. The
first case is when 𝑐𝑖 leads directly to 𝑏𝑖 (lines 6 to 12), then a new
cycle is created (line 7), the cycle slack is deduced from the delays
of instructions 𝑏𝑖 and 𝑐𝑖 (line 8), which are added the cycle (lines 9
and 10). The newly created cycles are added to the return cycles array
(created on line 1) The second case is when 𝑐𝑖 does not lead directly
o 𝑏𝑖, then, the function 𝑔𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝐴𝑛𝑑𝑆𝑙𝑎𝑐𝑘𝑠 is called recursively on all
ses of 𝑐𝑖 (line 14). Each call will return an array of cycles, to which
𝑖 is added (lined 15 and 16). All cycles are added to the return cycles
rray (created in line 1).

If no path between 𝑐𝑖 and 𝑏𝑖 is found, 𝑐𝑖 is set as ‘‘not in the path’’.
his step saves some computation time by avoiding re-visiting sub-
aths (lines 19 and 20). In the end, the return cycles array (line 21)
s returned to the calling function.

It is worthy to note that the proposed approach applies to any
ptimization that can be mapped in the SDC form, e.g. instruction
haining [4], without loss of generality.

Table 1 presents examples of MRTs, targeting 𝐼𝐼 = 5, created with
he proposed approach following the DFG presented in Fig. 1 and the
𝐿𝑖𝑠𝑡 in Eq. (5). Table 1(a) corresponds to the ASAP schedule, which is
btained with 4 FUs. Tables 1(a) and Tables 1(b) present the cases with
and 3 FUs, respectively, which have some instructions delayed. Note
hat the instructions within DFG cycles are less likely to suffer delays.

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.
Algorithm 2: 𝑔𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝐴𝑛𝑑𝑆𝑙𝑎𝑐𝑘𝑠 function.
input : 𝑐𝑖, 𝑏𝑖, 𝑝𝑠, 𝑏𝑖,𝑗𝐼𝐼
output: An array of 𝐶𝑦𝑐𝑙𝑒𝑉 𝑒𝑐
/* A 𝐶𝑦𝑐𝑙𝑒𝑉 𝑒𝑐 is an array of instructions 𝐼 and a

slack values 𝑠𝜓 */
1 create 𝐶𝑦𝑐𝑙𝑒𝑉 𝑒𝑐 𝑟𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝑠 ← new 𝐶𝑦𝑐𝑙𝑒𝑉 𝑒𝑐;
2 if 𝑐𝑖 is not in the path then
3 return 𝑟𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝑠;
4 define 𝑖𝑛𝑜𝑑𝑒𝑆𝑙𝑎𝑐𝑘 ← -1;
5 for each 𝑖 ∈ 𝑢𝑠𝑒𝑠(𝑐𝑖) do
6 if 𝑖 == 𝑏𝑖 then
7 create 𝑐𝑦𝑐𝑙𝑒 ← new instructions array;
8 𝑖𝑛𝑜𝑑𝑒𝑆𝑙𝑎𝑐𝑘← 𝑏𝑖,𝑗𝐼𝐼 − (𝐷𝑏𝑖 +𝐷𝑐𝑖 + 𝑝𝑠);
9 add 𝑖 in 𝑐𝑦𝑐𝑙𝑒;
10 add 𝑐𝑖 in 𝑐𝑦𝑐𝑙𝑒;
11 𝑐𝑦𝑐𝑙𝑒𝑠𝑙𝑎𝑐𝑘 ← 𝑖𝑛𝑜𝑑𝑒𝑆𝑙𝑎𝑐𝑘;
12 add 𝑐𝑦𝑐𝑙𝑒 to 𝑟𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝑠;
13 else
14 create

𝑡𝑒𝑚𝑝𝐶𝑦𝑐𝑙𝑒𝑠 ← 𝑔𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝐴𝑛𝑑𝑆𝑙𝑎𝑐𝑘𝑠(𝑖, 𝑏𝑖, 𝑝𝑠 +𝐷𝑐𝑖, 𝑏𝑖,𝑗𝐼𝐼);
15 for each 𝑒𝑛𝑡𝑟𝑦 ∈ 𝑡𝑒𝑚𝑝𝐶𝑦𝑐𝑙𝑒𝑠 do
16 add 𝑐𝑖 to 𝑒𝑛𝑡𝑟𝑦;
17 add all cycles from 𝑡𝑒𝑚𝑝𝐶𝑦𝑐𝑙𝑒𝑠 to 𝑟𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝑠;
18 delete 𝑡𝑒𝑚𝑝𝐶𝑦𝑐𝑙𝑒𝑠;

19 if 𝑟𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝑠 is empty then
20 set 𝑐𝑖 as not in the path;
21 return 𝑟𝑒𝑡𝐶𝑦𝑐𝑙𝑒𝑠;

Table 1
Examples of MRTs obtained with the proposed method for the DFG in
Fig. 1 and different nFUs.

(a) The schedule with 4 FUs is the ASAP.

𝑚 𝐹𝑈0 𝐹𝑈1 𝐹𝑈2 𝐹𝑈3

0 𝐼1
1 𝐼3 𝐼2 𝐼5 𝐼7
2 – 𝐼8 𝐼9
3 𝐼4
4 𝐼6

(b) Schedule with 2 FUs. Instructions {𝐼5 , 𝐼7 , 𝐼8 , 𝐼9} are delayed.

𝑚 𝐹𝑈0 𝐹𝑈1

0 𝐼1 𝐼8
1 𝐼3 𝐼2
2 – 𝐼5
3 𝐼4 𝐼7
4 𝐼6 𝐼8

(c) Schedule with 3 FUs. Instructions {𝐼7 , 𝐼8 , 𝐼9} are delayed.

𝑚 𝐹𝑈0 𝐹𝑈1 𝐹𝑈2

0 𝐼1
1 𝐼3 𝐼2 𝐼5
2 – 𝐼7
3 𝐼4 𝐼8 𝐼9
4 𝐼6

6. Performance evaluation

This section presents a comparison between SDCS, ILPS, GAS, SMS,
and the proposed NIS methodology in five parts. First, Section 6.1
compares the main characteristics of the modulo schedulers. Second,
Section 6.2 compares the achieved quality of the produced sched-
ules and computation time. Third, Section 6.3 elaborates on the re-
6

lationships between the modulo schedulers quality and final design
Table 2
Loops benchmark characterization.

Name Short
name

Loop
size

Operations
Constraints
(+/*/%/f+/f*/f%/[])

RecMII/ResMI-
I/MII

multipliers mt 28 8/2/0/0/0/0/7
3/1/x/x/x/x/1

3/4/4

dividers dv 72 12/0/4/0/0/0/11
3/x/2/x/x/x/2

3/6/6

faddtree fat 81 7/0/0/21/0/0/22
3/x/x/1/x/x/2

27/11/27

add int ai 82 0/0/0/21/9/0/12
x/x/x/3/3/x/2

1/12/12

complex cp 98 21/7/2/0/0/0/25
3/3/1/x/x/x/2

20/13/20

adderchain ac 92 48/0/0/0/0/0/24
3/x/x/x/x/x/2

3/12/12

hardware usage. Fourth, Section 6.4 demonstrates how the modulo
schedulers influence the computation time and quality of results when
performing a design-space exploration. Fifth, Section 6.5 compares the
resulting hardware resources utilization and maximum frequency over
increasingly large benchmarks.

The results and analysis presented in this section are the first, to
the best of our knowledge, to provide valuable insights between the
nFUs definition, the modulo schedulers, and the final hardware quality,
complementing and providing explanations for the results observed
in [10].

Two sets of benchmarks are used for the evaluation of the modulo
schedulers. The first set, presented in Table 2, is composed of synthetic
benchmarks designed to test modulo scheduler algorithms in an HLS
environment and were used in [4,5,9,10,26], where the constraints are
chosen following [4]. Differently from HLS benchmarks, these codes
are composed of a single loop, preventing the hardware inferred for
the non-loop parts to influence the loop-related results.

The second set is presented in Table 3, which is a subset of the
CHStone benchmark set containing traditional HLS applications, and
aims to demonstrate the impact of the schedulers on source codes which
are not solely composed by loop structures. Note that not all the loops
from this benchmark set can be pipelined due to compiler specific re-
strictions. As such, the benchmark sets provide complementary results
to each other.

Tables 2 and 3 provide the loop sizes, number of operations per
type ({+/*/%/f+/f*/f%/[]}, where ‘‘f’’ and ‘‘[]’’ indicates floating point
and memory access operations, respectively), resource constraints for
each operation type, and minimum 𝐼𝐼 . Results considering other nFUs
constraints are presented in Sections 6.3 and 6.4 .

All discussed schedulers were implemented as part of LegUP [20]
infrastructure, where the SDCS is natively implemented, as LLVM 3.5
opt passes, using Gurobi 7.5 solver [27]. LegUP imposes that all loop
bounds and array sizes are statically determined, only the innermost
loops can be pipelined, and conditional paths have to be merged
into a single basic-block. As a LegUP 4.0 specific restriction, local
memories can only be inferred in the main function, which is obtained
by fully ‘‘inlining’’ the benchmarks. It should be noted that the above
restrictions are due to LegUP infrastructure and not due to the proposed
method.

The results were obtained on a computer with Ubuntu 14.04, 16 GB
of RAM, and an Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz. SDCS is
set with 𝐼𝑁𝐶𝑅𝐸𝑀𝐸𝑁𝑇𝐴𝐿_𝑆𝐷𝐶 = 1 and time budget set to 6 (empir-
ically found by [4,28]). ILPS time budget is set to 10 minutes, which
represents a significant computation time by being orders-of-magnitude
more than the other modulo schedulers require to elaborate a schedule
in our tests. The GAS hyper-parameters that control the computation
time and results quality trade-off (𝛼, 𝛽) were empirically tuned in [9]

to the benchmarks in Table 2, avoiding under or over-exploration.

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.

w
i
T

Table 3
CHStone benchmark characterization.

Name Short name Loop sizes # Operations (+/*/%/f+/f*/f%/[]) RecMII/ResMII/MII

adpcm ad 13, 13, 298 {2/x/x/x/x/x/2}, {2/x/x/x/x/x/2}, {54/x/1/x/x/x/33} 1/1/1, 1/1/1, 2/17/17
aes ae 13, 96, 25,

90, 25
{2/x/x/x/x/x/2}, {8/x/x/x/x/x/5}, {4/x/x/x/x/x/8},
{5/x/x/x/x/x/12}, {5/x/x/x/x/x/8}

1/1/1, 1/3/3, 1/4/4,
1/6/6, 1/4/4

blowfish bf 14, 36 {2/x/x/x/x/x/4}, {1/x/x/x/x/x/6} 1/2/2, 1/3/3
gsm gs 67 {18/x/x/x/x/x/9} 1/5/5
jpeg jp 13, 9 {2/x/x/x/x/x/3}, {1/x/x/x/x/x/2} 1/2/2, 1/1/1
mips mi 7 {1/x/x/x/x/x/1} 1/1/1
sha sh 25, 27, 25,

26
{1/x/x/x/x/x/6}, {1/x/x/x/x/x/6}, {1/x/x/x/x/x/6},
{1/x/x/x/x/x/5}

1/2/2, 1/2/2, 1/2/2,
1/2/2
b
o
g
a

m
w
p
f

Table 4
Comparison between the state-of-the-art and proposed schedulers.

SDCS ILPS GAS SMS NIS

Type SDC ILP SDC Heuristic SDC
Complexity Poly. Expo. Poly. Lin. Poly.
Constraints  (𝑛) 

(

𝑛2
)

𝑛 N/A 𝑛
Problems 

(

𝑛2
)

1  (𝑛) 1 2
Optimal 𝐼𝐼 No Yes No No No
Optimal latency No Yes No No No

To evaluate the different schedulers effects in the produced hard-
are quality, all designs in the scaling tests have been implemented us-

ng Quartus II 16.1, targeting a Stratix V FPGA, with OPTIMIZATION_
ECHNIQUE=speed, auto_dsp_recognition off, dsp_

block_balancing ‘‘logic elements’’, and max_
balancing_dsp_blocks 0 to remove the usage of hardcore DSPs,
avoiding as such its influence in the ALMs and Registers usage during
the comparison.

6.1. High-level comparison

Table 4 presents a high-level comparison between SDCS, ILPS, GAS,
NIS, and SMS. ILPS has exponential solution time according to prob-
lem size, and its problem size scales quadratically with the loop
size, 𝑛. GAS and NIS problem size scale better than the SDCS
one, as GAS and NIS do not add allocation-related constraints to their
problems as SDCS. SMS is a heuristic that calculates a single solution
for the loop-pipelining problem, in contrast to the other methods which
are based in optimization formulations.

It is worth to note that even though NIS utilizes an ordered list
to create the MRT, it is not classified as a list-based schedule since
it considers the scheduling of all instructions concurrently by solving
an SDC problem. Next, we highlight concisely the main differences
between the modulo scheduler algorithms evaluated in this paper.

SDCS: It is based on SDC formulation problems. However, it does not
consider the allocation stage in its formulation, leading to a
subset of its solutions to have invalid MRTs. To compensate for
that, it implements a heuristic that modifies and solves several
SDC problems in an attempt to find a valid MRT.

ILPS: It is based on an ILP formulation problem. It represents for-
mally all the allocation and scheduling information, guaran-
teeing to find the optimal solution. However, the quadratic
problem size and exponential solving time makes it not a
viable solution for large applications.

GAS: It is based on SDC formulation problems. It includes the alloca-
tion stage information in its formulation. The allocation infor-
mation is represented as valid MRTs. However, the generated
MRTs might lead to infeasible schedules. To handle this prob-
lem, a Genetic Algorithm (GA) is used to evolve MRTs, aiming
to find a valid one while minimizing the schedule latency.
7

NIS: It is based on an SDC formulation problem. Uses a heuristic to
construct an MRT which is valid and has a feasible schedule by
construction.

SMS: It uses heuristics to schedule and allocate instructions one at a
time. However, the lack of a more elaborated search results in
SMS failing to find schedules and allocations often.

Note that a key difference between SMS and NIS is that the first cre-
ates an ordering for the instructions to be scheduled, while the second
creates an ordering for allocating the instructions in the MRT and then
perform the schedule by solving an SDC optimization problem.

6.2. Comparing generated schedules

Tables 5 and 6 present the number of problems solved, achieved 𝐼𝐼 ,
loop latency 𝑙, 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠, and time required to find a schedule for the
enchmarks presented in Tables 2 and 3, respectively. The last column
n each table is the geomean normalized with respect to the SDCS
eomean. The results for SDCS, ILPS, and NIS are integers since they
re deterministic methods, while GAS has a random nature.

On Table 5, SDCS, ILPS, GAS, and NIS were able to find the mini-
um 𝐼𝐼 for all benchmarks. NIS solves only 2 SDC problems per loop,
hile SDCS and GAS solve several problems. ILPS solves only one ILP
roblem per loop per candidate 𝐼𝐼 . SMS fails for all benchmarks apart
rom cp, for which it achieves a larger 𝐼𝐼 than the other approaches.

Further investigation on the failing cases reveals that SMS fails in its
second heuristic (i.e., the schedule construction). This happens in the
case where back-edge instructions have conflicts in the MRT, forcing
their reallocation in a way that violates the back-edge constraints,
forcing the algorithm to stop and return a failure. The obtained SMS
results are not unexpected since list-based schedulers do not explore
multiple solutions, making them unable to handle loops with complex
data-flows, leading to no solutions or to schedules with larger 𝐼𝐼s
when compared with methods that explore multiple solutions as shown
in [25].

GAS and NIS achieve 20% and 16% worse latency than SDCS,
making the total number of cycles for loop completion to be affected
by 5% and 1%, respectively. When considering the total computation
time, NIS is 100× faster than SDCS due to its constant number of SDC
problems solved. GAS is 3.17 times faster than SDCS.

On Table 6 (CHStone benchmark), ILPS, GAS, and NIS were able
to find the minimum 𝐼𝐼 for all benchmarks, while SDCS fails to find
the minimum 𝐼𝐼 for one loop on benchmark ad, resulting in designs
with larger latency and increased computation time for the scheduler.
SMS fails for 7 out of 19 loops. However, SMS being successful to most
loops demonstrates the simpler nature of CHStone benchmarks, moti-
vating the usage of benchmarks on Table 2 to test modulo scheduler
algorithms.

Furthermore, GAS achieves 5% increased latencies when compared
to SDCS, resulting in 1% increased 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠. NIS achieves 0.4% less
latency than SDCS, resulting in 1% fewer cycles for loop completion.
Cases where NIS achieves a smaller latency than the other methods are
expected given the fact that SDCS, GAS, and SMS are also heuristics and

ILPS can easily expire its time-budget leading to sub-optimal solutions.

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.

9
o
l

Table 5
Performance and computation time results (50 repetitions average) for the loops benchmarks (Table 2). ‘‘x’’ values indicate that the modulo
scheduler failed to find a schedule.

Name mt dv fat ai cp ac geo. rate

problems solved

SDCS 40 201 175 155 380 661 1
ILPS 1 1 1 1 8 1 0.01
GAS 17 71 174 62 120 95.64 0.37
NIS 2 2 2 2 2 2 0.01
SMS x x x x n/a x n/a

𝑇 𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠 (103)

SDCS 0.38 0.31 1.15 0.19 1.81 1.09 1
ILPS 0.38 0.31 1.15 0.19 1.80 1.08 0.99
GAS 0.38 0.32 1.17 0.23 1.84 1.10 1.05
NIS 0.38 0.31 1.17 0.20 1.82 1.10 1.01
SMS x x x x 1.82 x n/a

Initiation interval

SDCS 4 6 27 12 20 12 1
ILPS 4 6 27 12 20 12 1
GAS 4 6 27 12 20 12 1
NIS 4 6 27 12 20 12 1
SMS x x x x 21 x n/a

Latency (cycles)

SDCS 24 72 101 95 127 25 1
ILPS 23 71 101 91 122 12 0.86
GAS 26.0 84.0 118.38 138.73 155.29 28.00 1.20
NIS 28 73 120 102 141 36 1.16
SMS x x x x 121 x n/a

Time (s)

SDCS 1.34 12.35 17.08 18.23 35.61 32.92 1
ILPS 1.79 3.42𝑒2 1.19𝑒3 1.14𝑒2 1.17𝑒3 1.13𝑒3 1.62𝑒3
GAS 0.46 2.23 5.51 1.76 5.24 3.36 0.18
NIS 0.07 0.08 0.07 0.06 0.12 0.11 0.01
SMS x x x x 1𝑒−3 x n/a
Table 6
Number of problems solved (50 repetitions average) for CHStone benchmarks (Table 3). ‘‘x’’ values indicate that the modulo scheduler failed to find a schedule.

Name ad ae bf gs jp mi sh geo.
rate

problems
solved

SDCS 10, 10, 10173 10, 33, 27, 45, 27 16, 21 69 12, 8 6 16, 16, 16, 16 1
ILPS 1, 1, 1 1, 1, 1, 1, 1 1, 1 1 1, 1 1 1, 1, 1, 1 0.04
GAS 14, 14, 3098.32 14, 266.67, 34,

243.67, 34
14, 63 145.32 14, 10 6 34, 34, 34, 34 1.68

NIS 2, 2, 2 2, 2, 2, 2, 2 2, 2 2 2, 2 2 2, 2, 2, 2 0.12
SMS x, x, x x, x, x, x, x x, x x x, x x x, x, x, x n/a

𝑇 𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠 (103)

SDCS 101, 51, 1003 17, 48, 18, 25, 18 1027, 57 762 2, 5209 32 22, 22, 22, 21 1
ILPS 101, 51, 917 17, 45, 16, 24, 16 1027, 57 762 2, 5209 32 21, 21, 21, 21 0.97
GAS 101, 51, 940.54 17, 46.34, 18.54,

30, 22
1027, 59 763 2, 5209 32 21, 21, 21, 21 1.01

NIS 101, 51, 969 17, 47, 16, 30, 16 1027, 57 763 2, 5209 32 21, 21, 21, 21 0.99
SMS 101, 51, x 17, x, x, x, x 1026, x x 2, 5209 32 21, 21, 21, 21 n/a

Initiation
interval

SDCS 1, 1, 19 1, 3, 4, 6, 4 2, 3 5 2, 1 1 1, 1, 1, 1 1
ILPS 1, 1, 17 1, 3, 4, 6, 4 2, 3 5 2, 1 1 1, 1, 1, 1 0.99
GAS 1, 1, 17 1, 3, 4, 6, 4 2, 3 5 2, 1 1 1, 1, 1, 1 0.99
NIS 1, 1, 17 1, 3, 4, 6, 4 2, 3 5 2, 1 1 1, 1, 1, 1 0.99
SMS 1, 1, x 1, x, x, x, x 2, x x 2, 1 1 1, 1, 1, 1 n/a

Latency
(cycles)

SDCS 2, 2, 72 2, 39, 6, 7, 6 5, 6 7 4, 3 1 3, 3, 3, 2 1
ILPS 2, 2, 84 2, 36, 4, 6, 4 5, 6 7 4, 3 1 2, 2, 2, 2 0.89
GAS 2, 2, 101.23 2, 37.42, 7, 12, 10 5, 8 8.42 4, 3 1 2, 2, 2, 2 1.05
NIS 2, 2, 136 2, 38, 4, 12, 4 5, 6 8 4, 3 1 2, 2, 2, 2 0.96
SMS 2, 2, x 2, x, x, x, x 4, x x 4, 3 1 2, 2, 2, 2 n/a

Time (s)

SDCS 1.31, 1.07,
1.15𝑒4

1.3, 16.28, 4.34,
13.45, 4.36

4.05, 4.59 19.94 3.22, 0.78 0.72 4.43, 4.10, 3.57,
2.40

1

ILPS 2.29, 0.38,
2.34𝑒6

0.62, 0.13𝑒3, 0.30𝑒3,
9.48𝑒3, 0.30𝑒3

11.44, 1.02𝑒2 4.79𝑒6 4.41, 0.26 0.12 1.41, 1.17, 1.02,
0.91

5.39

GAS 1.43, 1.41,
2.76𝑒3

2.25, 64.81, 3.54,
57.61, 5.90

1.67, 11.72 28.73 1.53, 0.88 0.67 5.62, 5.63, 5.48,
5.46

1.25

NIS 0.45, 0.35, 2.89 0.44, 0.86, 0.39,
0.64, 0.32

0.47, 0.58 0.74 0.50, 0.40 0.43 1.00, 0.71, 0.50,
0.44

0.11

SMS 0.17, 0.10, x 0.18, x, x, 0.35, x x 0.45, 0.15 0.16 0.25, 0.20, 0.19,
0.17

n/a
On Table 6 when considering the total computation time, NIS is
.09× faster than SDCS. The smaller speed gain, when compared to the
ne on Table 5, is expected since NIS is designed to speed-up larger
oops. GAS is 1.25× slower than SDCS, which indicates that its (𝛼, 𝛽)

parameters tuning are adequate to the benchmarks on Table 3
8

The results on Tables 5 and 6 show that NIS and GAS have little
impact on the 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠, even though their impact on the latency is
considerable, which can lead to hardware designs with increased regis-
ter and logic requirements [29]. Furthermore, the previously reported
results are based on specific configurations of the nFUs as presented
in Tables 2 and 3. Section 6.3 evaluates the robustness of the modulo

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.

a
t

6

n
i
i
c
e
c
u

c
h
r

h
s
a
a
n
t
r
d

w

N
I
f
c
o

v
c
i

l

t
a
b
c

𝐴

Table 7
Schedulers configurations to obtain schedules with different latencies.

ILP* Unrestricted time ILPS (optimal solution)
ILP-10 ILPS with 10 minutes time budget
GAS-{0.5,1,2,3} GAS with 𝛼 = {0.5, 1, 2, 3}, respectively
NIS NIS with the proposed topological order
NIS-DFS NIS with Deep-First Search topological order

schedulers on their impact on the overall hardware resource usage and
𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠 for various configurations of nFUs. Section 6.4 completes this
nalysis by focusing the evaluation on configurations that are part of
he Pareto-front between resource usage and 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠.

.3. Impact on hardware resources usage

Section 6.2 considers the case of generating a design with a fixed
umber of Functional Units (nFUs). However, the modulo schedul-
ng processes depend on the nFUs configuration. Increasing the nFUs
ncreases the number of MRT’s columns, which tends to reduce the
onflicts, making the allocation part of the modulo scheduling problem
asier. Furthermore, the number of required resources for sharing de-
reases, diminishing the necessity of registers and multiplexers, which
ltimately mitigate the hardware usage overheads [29].

The investigation of the modulo schedulers over different nFUs
onfigurations indicates their robustness regarding their impact in the
ardware resources usage and the 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠 for different nFUs configu-
ations.

First, we analyse the impact of the modulo schedulers on the
ardware resource usage. Given a FUs configuration (𝑐), each modulo
cheduler will assign an instruction to be computed in a FU and define

certain scheduler for the instructions. Depending on the schedule
nd FUs assignments, partial results have to be kept in registers for a
umber of cycles and require multiplexers to route the results between
he nFUs. As such the designs generated by each modulo scheduler
equire different amounts of hardware resources and will achieve a
ifferent latency 𝑙 and 𝐼𝐼 .

Modulo schedulers generally consider optimizing either the hard-
are resources usage ([5] and SMS) or to optimize the generated 𝑙.

Recent works have attacked the problem by reducing the loop latency
(SDCS, ILPS, GAS, and the proposed NIS). In fact, targeting the resource
usage leads to schedules which partial results are stored for less time,
indirectly reducing the execution time between instructions. As such,
the loop latency is expected to be reduced as the hardware usage is
mitigated [29,30].

To demonstrate the correlation between 𝑙 and hardware resources
usage, we selected the benchmark dv as an example, whose ALMs and
register utilization are strongly affected by the loop latency according
to empirical tests. An unroll factor of 2 is used to the original dv bench-
mark to make the problem large enough for the modulo schedulers to
return significantly different schedules, as the target latency is varied.

To create schedules with different latencies (𝑙), ILPS, SDCS, GAS
and NIS were used with the configurations as described in Table 7.
Fig. 2 presents the ALMs (on the left) and the register (on the right)
usage, respectively, as a function of the latency for each schedule.
The figures demonstrate the relationship between resource usage and
achieved latency.

To analyse the robustness of the modulo schedulers regarding vari-
ations on the nFUs we evaluate all possible nFUs configurations for the
benchmarks in Table 2 as follows: First, we create pipelines for the
benchmarks using ILPS, SDCS, GAS, and NIS for each possible nFUs
configuration and calculate the area-latency for each solution, which
is used as a metric of quality. Second, the area-latency product for
9

SDCS, GAS, and NIS is normalized according to the respective ILPS
result, as captured in Eq. (6), where 𝑐𝑖 is a configuration of nFUs, and
𝑠 ∈ {SDCS,GAS,NIS}.

𝐴𝐿𝑐𝑖𝑠 =
(𝐴𝐿𝑀𝑠 × 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠)

𝑐𝑖
𝑠

(𝐴𝐿𝑀𝑠 × 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠)
𝑐𝑖
𝐼𝐿𝑃𝑆

(6)

Third, Fig. 3 plots the 𝐴𝐿 values for all configurations of nFUs
as histogram distributions for the benchmarks presented in Table 2,
which gives information on the general behaviour of the schedulers.
Fig. 3 shows that SDCS, GAS, and NIS can lead to designs with an area-
latency product up to 4.6× higher when compared to ILPS for a few
specific configurations of nFUs, but most cases present an 𝐴𝐿 < 1.41.

ote that 𝐴𝐿 < 1 values (Fig. 3(c)) can be achieved in cases which
LPS fails to find the optimal solution given the time budget. Results
or ai benchmark are not presented since it leads to more than 1𝑒5
onfigurations, making it impractical to perform an exhaustive search
ver the nFUs.

Fig. 3 shows that all schedulers have a peak of 𝐴𝐿𝑁𝐼𝑆 for similar
alues of 𝐴𝐿, meaning that the typical performance degradation in
omparison to ILPS is comparable through all schedulers. Since mt
s the simplest of the benchmarks tested, it is natural that the 𝐴𝐿

is generally smaller, making the differences in the distribution more
noticeable.

Furthermore, it can be seen that all schedulers can result in designs
as 𝐴𝐿 > 2 for all benchmarks apart from mt. As such, the results
indicate that the 2× hardware resources usage by the designs generated
by NIS in the scalability tests (Section 6.5, benchmark dv) are not the
general trend, and similar results could have been observed for any
scheduler depending on the nFUs configuration.

Further investigation shows that this situation occurs when the nFUs
is small, leading the ILP solver to fail to find a solution within the 10
minutes time-budget, which makes ILPS increase the candidate 𝐼𝐼 . The
arger 𝐼𝐼s result in an increased 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠, which leads to a larger 𝐴𝐿

as compared to the other schedulers.

6.4. Impact on a design space exploration

Sections 6.2 and 6.3 evaluate the modulo schedulers with a fixed
nFUs, and over all possible configurations of nFUs, respectively, show-
ing that the results strongly depend on the nFUs definition given
by the designer. Hence, the nFUs configurations that lead to higher
performance per hardware resource usage, which form the Pareto-
fronts of resources and speed, are the most interesting ones from
the designer point-of-view. In order to define the nFUs configurations
that lead to Pareto-front designs a Design Space Exploration (DSE) is
necessary, which is a time-consuming process requiring the evaluation
of many different configurations [31,32]. This section complements the
evaluation of modulo scheduler approaches by evaluating the impact of
the modulo schedulers on the computation time and quality of solutions
of a DSE process.

To compare the quality of the design points produced by each mod-
ulo scheduler belonging to the Pareto-front, we calculate the Average
Distance from the Reference Set (ADRS) [33] as presented in Eq. (7).

The ADRS calculates the average distance of a set of points in
𝛺 to a reference 𝛤 , where 𝛤 set is composed by the Pareto-front
designs obtained with ILPS, which is chosen as a reference due to its
optimality. 𝛺 set is composed by the Pareto-front designs obtained by
he other modulo schedulers. The distance selects only the points that
re the closest to each other (min𝜔∈𝛺) and considers as the distance
etween two points the maximum normalized difference between the
oordinates of each point in percentage (max{} term).

𝐷𝑅𝑆(𝛤 ,𝛺) = 1
|𝛤 |

∑

𝛾∈𝛤
min
𝜔∈𝛺

[

max
{𝑎𝜔 − 𝑎𝛾

𝑎𝛾
,
𝑙𝜔 − 𝑙𝛾
𝑙𝛾

}]

(7)

Table 8 presents the ADRS for all modulo schedulers, showing that
their impact on the quality of designs obtained by the DSE is less than
1%. NIS results in ADRS values in the range between 0.704 and 1.505

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.

I

T
A
P

Fig. 2. Registers (on the left) and ALMs (on the right) usage scaling with achieved latency for benchmark dv.
Fig. 3. Distribution of the area-latency product for the benchmarks presented from Table ?? considering all possible configurations of nFUs. The 𝐴𝐿 is normalized according to
LPS.
able 8
DRS (%) between ILPS Pareto-optimal solutions and SDCS, GAS, and NIS
areto-optimal solutions compiled with ILPS.
Benchmark mt dv fat cp ac Average

SDCS 0.000 0.957 0.597 0.322 0.000 0.375
GAS 0.170 0.584 0.308 1.026 1.887 0.795
NIS 1.481 1.505 0.704 0.467 0.804 0.992

for the used benchmarks (as reference, a 1.7% value is considered ‘‘ex-
tremely low’’ [3]), demonstrating that the modulo schedulers result in
much smaller overheads for designs with optimal nFUs configurations.

Table 9 shows the computation time to evaluate the whole design
space. It should be noted that the DSE processes typically consider
other directives (e.g.loop unrolling, memory partition), which increase
the number of designs that need to be evaluated hence increasing
the speed gains in the DSE process. Furthermore, the loop unrolling
directive increases the number of instructions in the loop, increasing
10
Table 9
DSE time (complete HLS and hardware elaboration). Speed-up indicates the geomean
speed-up against ILPS.

mt dv fat cp ac Speed-up

Time (hours)

SDCS 1.6 6.9 8.9 156 2.7 2.21
ILPS 1.9 8.3 26.3 251 20.9 1.00
GAS 1.6 6.7 8.8 146.5 2.6 2.27
NIS 1.6 6.6 6.6 137.8 2.5 2.46

the NIS speed-ups when compared against ILPS, SDCS, and GAS as
demonstrated in Sections Section 6.1, and 6.5.

Fig. 4 presents the ADRS with respect to the DSE speed-up obtained
for SDCS, GAS, and NIS, against to ILPS, showing up to 8× speed-
up. The obtained speed-up is a function of the loop size given the
computation time scaling of NIS is in comparison with SDCS, GAS, and
ILPS.

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.

b
p
c
w
t
o

l
b
w
S

i
n
t

b

I
t
c
r
f
s
M
s
h
s
h

8

w
S
o
s
o

m
e
f
a
t
i
w

Fig. 4. ADRS and DSE speed-up for SDCS, GAS, and NIS when compared to ILPS.

Table 10
Loop size and computation time (measured by the solver) to find the
optimal solution using ILPS for the mt benchmark when loop unrolling
is applied. ILPS was not able to find the optimal solution for the test
using unroll factor 3 with its 36 h budged expiring.

Unroll factor 1 2 3
Loop size 28 50 70
Time for optimal solution 1 s 2.4 h 36 h (expired)

6.5. Scalability

This section investigates the performance of the schedulers concern-
ing their required computation time to produce a solution, the obtained
𝐼𝐼 , the hardware resources, and the maximum frequency of the pro-
duced solution as the loop size increases. To create large loops,
we apply loop unrolling to the benchmarks and resource constraints
presented in Table 2 before the loop pipeline creation.

It should be noted that unrolled loops are created by copying
their instructions multiple times within the loop body, leading to two
patterns in the growth of the DFG according to the unroll factor, making
the problem more challenging for the proposed NIS. First, the copied
instructions share the same FUs as the original ones, which increases
the allocation difficulty since more MRT conflicts need to be solved.
Second, the DFG cycles also increase in length, making the conditions
for feasibility (Eq. (4)) more difficult to be satisfied since their slack is
reduced.

The results presented in this section are the average of 10 repeti-
tions, and the unroll factor is presented besides NIS marks. Missing
points mean that the scheduler fails to find a schedule in a 1-hour
udget. ILPS results are not presented for this experiment given its
oor scalability as demonstrated by Table 10, which presents the
omputation time to find the optimal solution for the benchmark mt
hen loop unroll is applied. Note that it is common to set a time limit

o ILPS in order to avoid such long computation times at the cost of its
ptimality guarantee.

Fig. 5 presents the time to find a schedule as a function of the
oop size when Loop Unrolling is applied (unrolled loop size)
efore pipelining. The results show that the NIS speed gains increase
ith the loop size, which is expected given the constant number of
DC problems solved.

Fig. 5 also shows that increasing the resource constraints does not
mpact the computation time for all schedulers strongly. Note that the
umber of functional units is fixed according to Table 2, implying that
11

he extra required hardware resources (ALMs and registers) are purely
overhead caused by extra multiplexes and registers used to route and
save partial data.

Fig. 6 presents the achieved 𝐼𝐼 as a function of the loop size,
showing that NIS and GAS can achieve better 𝐼𝐼s than SDCS for
enchmarks mt and fat (base), and ac (base). Finding smaller 𝐼𝐼

indicates that NIS and GAS can improve the 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠 when compared
to SDC for very large and complex loops.

The missing points in Figs. 5 and 6 show that SDCS fails to produce
solutions for larger problems on benchmarks fat, cp, and ac. The results
show that GAS and NIS are able to explore solutions more efficiently,
indicating the potential of the explicitly MRT exploration approach
using Formulation 3 presented in [9,10].

It is important to note that LegUP 4.0 infers (at best) one memory
per array in the source code, which has a maximum of 2 ports. Unrolling
a loop increases the number of operations that use the same memory,
turning memories into bottlenecks since the compiler does not infer
more memories or more ports to the existing ones. To avoid this
problem, memory buffers [34,35], partition [36], or run-ahead [37]
techniques can be applied.

It should be noted that unrolling loops leads to an increase of their
number of instructions, and as such, also impacting the optimal nFUs
configurations. In order to define a nFUs configuration which leads to
a Pareto-front design, a DSE must be performed for each unroll factor
in consideration, minding that the design space grows large as the
unroll factor increases, making the DSE speed-ups achieved with NIS
more significant. If the nFUs are not properly defined, one can expect
impacts in the final hardware area, as observed in [10], and as expected
according to Sections 6.3 and 6.4.

7. Future work

NIS has shown its capabilities of creating a high-quality sched-
ule faster than the state-of-the-art modulo schedulers. However, we
list a few improvements that can be done: An As-Late-As-Possible
schedule can be used to reduce the delays in Algorithm 1 (line 30);
mprovements in the produced pipeline quality can be achieved thought
he implementation of alternative instruction orderings or better MRT
onstruction methods; Modifying the SDC formulation to optimize for
egister pressure as proposed in [7]; NIS MRT’s can be used as a ‘‘seeds’’
or GAS, improving its convergence rate and quality of results. The DFG
eparation proposed by [18] can benefit NIS and its MRT allocation.
odelling the nFUs as proposed in [19] can help to guarantee the

election of configurations which will not result in designs with a
igh latency-area product. Finally, the NIS extension to rational-IIs
olutions [8] can significantly reduce the 𝑡𝑜𝑡𝑎𝑙𝑐𝑦𝑐𝑙𝑒𝑠 by improving the
ardware usage.

. Conclusions

This paper proposes a heuristic to create a valid and feasible MRT,
hich is used to calculate a schedule for the loop pipeline using an
DC formulation. The proposed approach solves a constant number
f SDC problems, being a massive improvement over the SDC based
tate-of-the-art approaches, which solve a significantly higher number
f optimization problems to find a schedule.

Results show that the increased latency generated by the proposed
ethod has a small impact on the final number of cycles for loop

xecution, demonstrating that our approach of focusing in to find a
easible and valid MRT was advantageous. The proposed method was
lso able to find solutions with a smaller 𝐼𝐼s than SDCS in our scaling
ests. Furthermore, results demonstrate that the proposed approach’s
mpact in the hardware resources usage is minimal for configurations
ith optimal number of functions units.

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.
Fig. 5. Time to find a schedule as function of the loop size for the benchmarks on Table 2.
Fig. 6. 𝐼𝐼 obtained as function of the loop size for the benchmarks on Table 2.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

The authors would like to thank the São Paulo Research Foundation
(FAPESP), Brazil for the financial support to this project (grant number
2014/14918-2).

References

[1] B.C. Schafer, K. Wakabayashi, Divide and conquer high-level synthesis design
space exploration, ACM Trans. Des. Autom. Electron. Syst. 17 (3) (2012) http:
//dx.doi.org/10.1145/2209291.2209302, 29:1–29:19.

[2] Z. Wang, B. He, W. Zhang, S. Jiang, A performance analysis framework for
optimizing opencl applications on FPGAs, in: 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2016, pp. 114–125, http:
//dx.doi.org/10.1109/HPCA.2016.7446058.

[3] B.C. Schafer, Probabilistic multiknob high-level synthesis design space explo-
ration acceleration, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35 (3)
(2016) 394–406, http://dx.doi.org/10.1109/TCAD.2015.2472007.

[4] A. Canis, S.D. Brown, J.H. Anderson, 2014. Modulo SDC scheduling with
recurrence minimization in high-level synthesis, in: 2014 24th International
Conference on Field Programmable Logic and Applications (FPL), 2014, pp. 1–8,
doi:10.1109/FPL.2014.6927490.
12
[5] Z. Zhang, B. Liu, SDC-Based modulo scheduling for pipeline synthesis, in:
Proceedings of the International Conference on Computer-Aided Design, in:
ICCAD ’13, IEEE Press, Piscataway, NJ, USA, 2013, pp. 211–218, http://dl.acm.
org/citation.cfm?id=2561828.2561872.

[6] J. Oppermann, A. Koch, M. Reuter-Oppermann, O. Sinnen, ILP-Based modulo
scheduling for high-level synthesis, in: Proceedings of the International Confer-
ence on Compilers, Architectures and Synthesis for Embedded Systems, in: CASES
’16, ACM, New York, NY, USA, 2016, pp. 1:1–1:10, http://dx.doi.org/10.1145/
2968455.2968512.

[7] P. Sittel, M. Kumm, J. Oppermann, K. Möller, P. Zipf, A. Koch, Ilp-based modulo
scheduling and binding for register minimization, in: 2018 28th International
Conference on Field Programmable Logic and Applications (FPL), IEEE, 2018, p.
2656, http://dx.doi.org/10.1109/FPL.2018.00053, URL https://ieeexplore.ieee.
org/document/8533507/.

[8] P. Sittel, J. Wickerson, M. Kuimm, P. Zipf, Modulo scheduling with rational
initiation intervals in custom hardware design, in: 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), 2020, pp. 568–573.

[9] L. de Souza Rosa, C. Bouganis, V. Bonato, Scaling up modulo scheduling for
high-level synthesis, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (2018)
1, http://dx.doi.org/10.1109/TCAD.2018.2834440.

[10] L. de Souza Rosa, C.S. Bouganis, V. Bonato, Scaling Up Loop Pipelining For High-
Level Synthesis: A Non-Iterative Approach, in: The 2018 International Conference
on Field-Programmable Technology, 2018, pp. 8.

[11] J. Cong, Z. Zhang, An efficient and versatile scheduling algorithm based on SDC
formulation, in: 2006 43rd ACM/IEEE Design Automation Conference, 2006, pp.
433–438, doi:10.1145/1146909.1147025.

[12] M. Dossis, G. Dimitriou, Resolving loop pipelining issues in the CCC high-
level synthesis E-cad framework, in: 2018 41st International Conference on
Telecommunications and Signal Processing (TSP), IEEE, 2018, pp. 1–4.

[13] A. Morvan, S. Derrien, P. Quinton, Polyhedral bubble insertion: A method to
improve nested loop pipelining for high-level synthesis, IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 32 (3) (2013) 339–352, http://dx.doi.org/10.
1109/TCAD.2012.2228270.

http://dx.doi.org/10.1145/2209291.2209302
http://dx.doi.org/10.1145/2209291.2209302
http://dx.doi.org/10.1145/2209291.2209302
http://dx.doi.org/10.1109/HPCA.2016.7446058
http://dx.doi.org/10.1109/HPCA.2016.7446058
http://dx.doi.org/10.1109/HPCA.2016.7446058
http://dx.doi.org/10.1109/TCAD.2015.2472007
http://dx.doi.org/10.1109/FPL.2014.6927490
http://dl.acm.org/citation.cfm?id=2561828.2561872
http://dl.acm.org/citation.cfm?id=2561828.2561872
http://dl.acm.org/citation.cfm?id=2561828.2561872
http://dx.doi.org/10.1145/2968455.2968512
http://dx.doi.org/10.1145/2968455.2968512
http://dx.doi.org/10.1145/2968455.2968512
http://dx.doi.org/10.1109/FPL.2018.00053
https://ieeexplore.ieee.org/document/8533507/
https://ieeexplore.ieee.org/document/8533507/
https://ieeexplore.ieee.org/document/8533507/
http://dx.doi.org/10.1109/TCAD.2018.2834440
http://dx.doi.org/10.1145/1146909.1147025
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb12
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb12
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb12
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb12
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb12
http://dx.doi.org/10.1109/TCAD.2012.2228270
http://dx.doi.org/10.1109/TCAD.2012.2228270
http://dx.doi.org/10.1109/TCAD.2012.2228270

Microprocessors and Microsystems 86 (2021) 104334L. de Souza Rosa et al.
[14] J. Liu, J. Wickerson, G.A. Constantinides, Loop splitting for efficient pipelining
in high-level synthesis, in: 2016 IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2016, pp. 72–79,
http://dx.doi.org/10.1109/FCCM.2016.27.

[15] M.F. Dossis, A formal design framework to generate coprocessors with imple-
mentation options, Int. J. Res. Rev. Comput. Sci. 2 (4) (2011) 929–936, URL
https://search.proquest.com/docview/903777239?accountid=14643, Copyright -
Copyright Kohat University of Science and Technology (KUST) Aug 2011; Last
updated - 2012-06-29.

[16] G. Dimitriou, M. Dossis, G. Stamoulis, Minimal-area loop pipelining for high-level
synthesis with CCC, in: Design Automation, Computer Engineering, Computer
Networks and Social Media Conference (SEEDA-CECNSM), 2017 South Eastern
European, IEEE, 2017, pp. 1–8.

[17] G. Dimitriou, M. Dossis, G. Stamoulis, Loop pipelining in high-level synthesis
with CCC, in: 2017 6th International Conference on Modern Circuits and Systems
Technologies (MOCAST), IEEE, 2017, pp. 1–4, URL https://ieeexplore.ieee.org/
document/7937663.

[18] S. Dai, Z. Zhang, Improving scalability of exact modulo scheduling with spe-
cialized conflict-driven learning, in: Proceedings of the 56th Annual Design
Automation Conference 2019, in: DAC ’19, Association for Computing Machinery,
New York, NY, USA, 2019, http://dx.doi.org/10.1145/3316781.3317842.

[19] J. Oppermann, P. Sittel, M. Kumm, M. Reuter-Oppermann, A. Koch, O. Sinnen,
Design-space exploration with multi-objective resource-aware modulo scheduling,
in: R. Yahyapour (Ed.), Euro-Par 2019: Parallel Processing, Springer International
Publishing, Cham, 2019, pp. 170–183.

[20] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S.D.
Brown, J.H. Anderson, Legup: An open-source high-level synthesis tool for FPGA-
based processor/accelerator systems, ACM Trans. Embed. Comput. Syst. 13 (2)
(2013) 24:1–24:27, http://dx.doi.org/10.1145/2514740.

[21] T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J.
Wong, P. Yiannacouras, D.P. Singh, From OpenCL to high-performance hardware
on FPGAS, in: 22nd International Conference on Field Programmable Logic and
Applications (FPL), 2012, pp. 531–534, doi:10.1109/FPL.2012.6339272.

[22] S. Venugopalan, O. Sinnen, ILP Formulations for optimal task scheduling with
communication delays on parallel systems, IEEE Trans. Parallel Distrib. Syst. 26
(1) (2015) 142–151, http://dx.doi.org/10.1109/TPDS.2014.2308175.

[23] G.B. Dantzig, R.J. Duffin, K. Fan, A.W. Mather, Linear Inequalities and Related
Systems, no.38, Princeton University Press, 1956.

[24] J. Llosa, M. Valero, E. Agyuade, A. Gonzalez, Modulo scheduling with reduced
register pressure, IEEE Trans. Comput. 47 (6) (1998) 625–638, http://dx.doi.
org/10.1109/12.689643.

[25] J.M. Codina, J. Llosa, A. González, A comparative study of modulo scheduling
techniques, in: Proceedings of the 16th International Conference on Super-
computing, in: ICS ’02, ACM, New York, NY, USA, 2002, pp. 97–106, http:
//dx.doi.org/10.1145/514191.514208.

[26] J. Liu, S. Bayliss, G.A. Constantinides, Offline synthesis of online dependence
testing: Parametric loop pipelining for HLS, in: 2015 IEEE 23rd Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines, 2015,
pp. 159–162, http://dx.doi.org/10.1109/FCCM.2015.31.

[27] Gurobi, Inc.,‘‘Gurobi optimizer reference manual,’’ 2017, 2017, URL: http://
Www.Gurobi.Com.

[28] B.R. Rau, Iterative modulo scheduling, Int. J. Parallel Program. 24 (1) (1996)
3–64, http://dx.doi.org/10.1007/BF03356742.

[29] J. Llosa, E. Ayguade, A. Gonzalez, M. Valero, J. Eckhardt, Lifetime-sensitive
modulo scheduling in a production environment, IEEE Trans. Comput. 50 (3)
(2001) 234–249, http://dx.doi.org/10.1109/12.910814.

[30] S. Dai, G. Liu, R. Zhao, Z. Zhang, Enabling adaptive loop pipelining in high-level
synthesis, in: 2017 51st Asilomar Conference on Signals, Systems, and Computers,
2017, pp. 131–135, http://dx.doi.org/10.1109/ACSSC.2017.8335152.

[31] A. Mahapatra, B.C. Schafer, Optimizing RTL to c abstraction methodologies to
improve HLS design space exploration, in: 2019 IEEE International Symposium
on Circuits and Systems (ISCAS), 2019, pp. 1–5, http://dx.doi.org/10.1109/
ISCAS.2019.8702355.

[32] D. Reyes Fernandez de Bulnes, Y. Maldonado, L. Trujillo, Development of
multiobjective high-level synthesis for FPGAs, Sci. Program. 2020 (2020).

[33] L. Ferretti, G. Ansaloni, L. Pozzi, Lattice-traversing design space exploration for
high level synthesis, in: 2018 IEEE 36th International Conference on Computer
Design (ICCD), IEEE, 2018, pp. 210–217, http://dx.doi.org/10.1109/ICCD.2018.
00040, URL https://ieeexplore.ieee.org/document/8615690/.
13
[34] J. Cong, P. Wei, C.H. Yu, P. Zhou, Bandwidth optimization through on-chip
memory restructuring for HLS, in: Proceedings of the 54th Annual Design
Automation Conference 2017, in: DAC ’17, ACM, New York, NY, USA, 2017,
pp. 43:1–43:6, http://dx.doi.org/10.1145/3061639.3062208.

[35] J. Cong, Z. Fang, Y. Hao, P. Wei, C.H. Yu, C. Zhang, P. Zhou, Best-effort FPGA
programming: A few steps can go a long way, 2018, arXiv:1807.01340.

[36] N.K. Pham, A.K. Singh, A. Kumar, M.M.A. Khin, Exploiting loop-array depen-
dencies to accelerate the design space exploration with high level synthesis, in:
Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, in: DATE ’15, EDA Consortium, San Jose, CA, USA, 2015, pp.
157–162, URL http://dl.acm.org/citation.cfm?id=2755753.2755788.

[37] S.T. Fleming, D.B. Thomas, Using runahead execution to hide memory latency in
high level synthesis, IEEE, 2017, pp. 109–116, http://dx.doi.org/10.1109/FCCM.
2017.33, URL https://ieeexplore.ieee.org/document/7966661/,

Leandro de Souza Rosa has a B.Sc. (2013) in Computer
Engineering and obtained the Ph.D. in 2019 by the Institute
of Mathematics and Computer Sciences at The Univer-
sity of Sao Paulo (ICMC-USP), Brazil, which was partially
developed at the Department of Electrical and Electronic
Engineering of Imperial College London. His interest areas
are hardware architecture design, high-level synthesis and
compilation tools, and code optimization. He is currently
working as a Post-Doc. researcher at the Istituto Italiano
di Tecnologia (IIT), Genova, Italy, with a focus on event-
driven and neuromorphic sensors for robots. He has also
served as an ad-hoc reviewer of the journals IEEE-TIM,
IEEE-TCADICS, Int. J. of Embedded Systems (IJES), Science
China Information Sciences (SCIS), Elsevier MICPRO, and
IEEE Sensors Journal.

Christos-Savvas Bouganis is a Reader in Intelligent Digital
Systems in the Department of Electrical and Electronic
Engineering, Imperial College London, U.K. He is lead-
ing the iDSL group at Imperial and he is the Director
of Postgraduate Studies in the same department. He has
published over 100 research papers in peer-referred journals
and international conferences, and he has contributed three
book chapters on digital system design. His current research
interests include the theory and practice of reconfigurable
computing and design automation, mainly targeting the do-
mains of Machine Learning, Computer Vision, and Robotics.
He is an Editorial Board Member of the IEEE Transactions
on Image Processing, IET Computers and Digital Techniques,
Journal of Systems Architecture, and ACM Transactions on
Reconfigurable Technology and Systems (TRETS).

Vanderlei Bonato has B.Sc. (2002) and M.Sc. (2004) de-
grees in Computer Science. He obtained the Ph.D. in 2008
by the Institute of Mathematics and Computer Sciences
at The University of Sao Paulo (ICMC-USP), Brazil, which
was partially developed at the Department of Electrical
and Electronic Engineering of Imperial College London. His
interest areas are hardware architecture design, modelling
and synthesis tools, and computational finance. He has
also several years of industrial experience in automation
systems. He is a faculty member of the ICMC-USP since
2009 and became Associate Professor in 2014. Vanderlei
Bonato has lately served the committee of several events,
including ARC (as general chair), WRC, WSCAD, ERAD-SP,
SBESC, FEEC2018, and etc. He has also served as an ad-hoc
reviewer of the journals IEEE TCSVT, IEEE TVLSI, IEEE TIP,
MICPRO, and JSA and is an Associated Editor of the Int. J.
of Embedded Systems (IJES).

http://dx.doi.org/10.1109/FCCM.2016.27
https://search.proquest.com/docview/903777239?accountid=14643
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb16
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb16
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb16
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb16
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb16
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb16
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb16
https://ieeexplore.ieee.org/document/7937663
https://ieeexplore.ieee.org/document/7937663
https://ieeexplore.ieee.org/document/7937663
http://dx.doi.org/10.1145/3316781.3317842
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb19
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb19
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb19
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb19
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb19
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb19
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb19
http://dx.doi.org/10.1145/2514740
http://dx.doi.org/10.1109/FPL.2012.6339272
http://dx.doi.org/10.1109/TPDS.2014.2308175
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb23
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb23
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb23
http://dx.doi.org/10.1109/12.689643
http://dx.doi.org/10.1109/12.689643
http://dx.doi.org/10.1109/12.689643
http://dx.doi.org/10.1145/514191.514208
http://dx.doi.org/10.1145/514191.514208
http://dx.doi.org/10.1145/514191.514208
http://dx.doi.org/10.1109/FCCM.2015.31
http://Www.Gurobi.Com
http://Www.Gurobi.Com
http://Www.Gurobi.Com
http://dx.doi.org/10.1007/BF03356742
http://dx.doi.org/10.1109/12.910814
http://dx.doi.org/10.1109/ACSSC.2017.8335152
http://dx.doi.org/10.1109/ISCAS.2019.8702355
http://dx.doi.org/10.1109/ISCAS.2019.8702355
http://dx.doi.org/10.1109/ISCAS.2019.8702355
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb32
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb32
http://refhub.elsevier.com/S0141-9331(21)00493-2/sb32
http://dx.doi.org/10.1109/ICCD.2018.00040
http://dx.doi.org/10.1109/ICCD.2018.00040
http://dx.doi.org/10.1109/ICCD.2018.00040
https://ieeexplore.ieee.org/document/8615690/
http://dx.doi.org/10.1145/3061639.3062208
http://arxiv.org/abs/1807.01340
http://dl.acm.org/citation.cfm?id=2755753.2755788
http://dx.doi.org/10.1109/FCCM.2017.33
http://dx.doi.org/10.1109/FCCM.2017.33
http://dx.doi.org/10.1109/FCCM.2017.33
https://ieeexplore.ieee.org/document/7966661/

	Non-iterative SDC modulo scheduling for high-level synthesis
	Introduction
	Background
	Related works
	State-of-the-art approaches
	Iterative SDC Modulo Scheduler (SDCS)
	ILP Modulo Scheduler (ILPS)
	Genetic Algorithm Modulo Scheduler (GAS)
	Swing Modulo Scheduler (SMS)

	Non-Iterative Modulo Scheduler (NIS)
	Objective 1: MRT feasibility
	Objective 2: Latency reduction
	Proposed heuristic

	Performance evaluation
	High-level comparison
	Comparing generated schedules
	Impact on hardware resources usage
	Impact on a design space exploration
	Scalability

	Future work
	Conclusions
	Declaration of competing interest
	Acknowledgement
	References

