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Diffusion properties of self-propelled particles in
cellular flows

Lorenzo Caprini, *ab Fabio Cecconi,c Andrea Puglisid and
Alessandro Sarracino e

We study the dynamics of a self-propelled particle advected by a steady laminar flow. The persistent

motion of the self-propelled particle is described by an active Ornstein–Uhlenbeck process. We focus

on the diffusivity properties of the particle as a function of persistence time and free-diffusion

coefficient, revealing non-monotonic behaviors, with the occurrence of a minimum and a steep growth

in the regime of large persistence time. In the latter limit, we obtain an analytical prediction for the

scaling of the diffusion coefficient with the parameters of the active force. Our study sheds light on the

effect of a flow-field on the diffusion of active particles, such as living microorganisms and motile

phytoplankton in fluids.

1 Introduction

In recent years, great interest has been raised by the complex
dynamics of biological microorganisms or artificial microswimmers,
which convert energy from the environment into systematic
motion.1,2 Nowadays, these non-equilibrium systems are classified
as self-propelled particles (SPP), a subclass of dry active matter.
The behavior of SPP without environmental constraints has been
largely studied and has shown a very fascinating phenomenology,
such as: swarming, clustering,3–5 phase-separation,6–11 spontaneous
velocity alignments12–14 and vortex formation.15 These phenomena
have not a passive Brownian counterpart, because of the intrinsic
non-equilibrium nature of the self-propelled motion, characterized
by a persistence time t, and, in particular, due to the peculiar
interplay between active forces and interactions among particles.
Even in non-interacting cases, the diffusive properties of SPP have
been a matter of intense study both experimentally and numerically
since the self-propulsion enhances the diffusivity with respect to any
passive tracers.16–21

The dynamics of SPP in complex environments constitutes a
central issue for its great biological interest. Indeed, in Nature,
microswimmers or bacteria, when encounter soft or solid
obstacles22 or even hard walls,23 accumulate in front of them
producing interesting patterns.24–28 Moreover, the swimming

in porous soil,29 blood flow30 or biological tissues31 constitutes
other contexts of investigation. Thus, the description of the
active dynamics beyond homogeneous environments represents a
great challenge towards the comprehension of the life of micro-
organisms in their habitat. Moreover, the recent technological
advances have led to the possibility of manufacturing complex
patterns of irregular or regular structures of micro-obstacles that
mimic the cellular environment or, more generally, the medium
where SPP move.32–36 The dynamics in complex environments has
been studied for instance in mazes,37 pinning substrates,38 arrays
of funnels,39–43 comb lattices,44 fixed arrays of pillars45–48 or even
in systems with random moving obstacles,49,50 leading in some
cases to anomalous diffusion.51–53

Another important issue concerns the dynamics and diffusion
properties of SPP in the presence of a non-uniform velocity field.
In the case of passive Brownian particles, the problem has been
largely studied, both for laminar and turbulent flows.54 The
simplest example of the interplay between advection and mole-
cular diffusion is the Taylor dispersion55 which is observed in a
channel with a Poiseuille flow. In the case of SPP, similar studies
have great relevance in describing the behavior of microscopic
living organisms such as certain kinds of motile plankton and
microalgae. For instance, the distribution of SPP in convective
fluxes is a problem that comes from the observations that
plankton is subject to Langmuir circulation.56,57 For gyrotactic
swimmers, such as certain motile phytoplanktons and microalgae,
the motion in the presence of flow fields, both in laminar and
turbulent regimes, has been studied in ref. 58 and 59, showing that
strong heterogeneity in the distribution of particles can occur.
Interaction between laminar flow and motility has been studied
also in bacteria, with the observation of interesting trapping
phenomena60 and complex particle trajectories.61
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From the theoretical point of view, in the passive Brownian
case, the effective diffusion coefficient, Deff, of a tracer advected
by a laminar flow has been computed analytically in the limit of
small diffusivity by Shraiman.54 In this case, Deff is larger than
the free-diffusion coefficient D0 (the diffusivity in the absence
of convective flow). A first-order correction accounting for
the noise persistence has been computed by Castiglione and
Crisanti,62 who estimated asymptotically Deff for vanishing
persistence time, finding a further enhancement of diffusivity.

In this manuscript, we generalize the study of the diffusion
of SPP in the presence of laminar flows, for large values of the
persistence time t. The effect of an underlying cellular flow has
been considered for instance in ref. 63, revealing non-trivial
effects such as negative differential and absolute mobility when
the particles are subject to external forces.64–69 At variance with,63

where concentration in some flow regions was investigated, we
focus here on the transport properties, such as the diffusion
coefficient and the mean square displacement. Our analysis
unveils a rich phenomenology, characterized by a nonmonotonic
behavior of Deff as a function of the persistence time of the active
force. This implies that, in some cases, the coupling of the active
force with the underlying velocity field can trap the SPP, resulting
in a decrease of diffusivity. The dynamics of active particles in
convective rolls has recently been considered in ref. 70 where the
authors focus on the role of chirality.

The paper is structured as follows: after the introduction of
the model in Section 2, we present our numerical results in
Section 3, focusing on the mean square displacement and
effective diffusion coefficient as a function of the model para-
meters. In Section 4, we present an analytical computation which
explains the behavior of Deff in the large persistence regime. Then,
we summarize the result in the conclusive section.

2 The model

We consider a dilute system of active particles in two dimensions
diffusing in a cellular flow. The position, r = (x,y), of the tagged SPP
is described by the following stochastic differential equation:

:r = A(r) + w, (1)

where we have neglected the thermal Brownian motion due to
the solvent and also any inertial effects, as usual in these
systems.1 The self-propulsion mechanism is represented by the
term w, evolving according to the Active Ornstein–Uhlenbeck
particle (AOUP) dynamics. AOUP is an established model to
describe the behavior of SPP71–77 or passive particles immersed
into an active bath.78,79 The colored noise, w, models the
persistent motion of a SPP conferring time-persistence to a single
trajectory and evolves according to the equation

t _w ¼ �wþ
ffiffiffiffiffiffiffiffiffi
2D0

p
x; (2)

where t is the auto-correlation time of w and sets the persistence
of the dynamics, while the constant D0 represents the effective
diffusion due to the self-propulsion in a homogeneous environment.
The ratio

ffiffiffiffiffiffiffiffiffiffiffi
D0=t

p
determines the average velocity induced by the

self-propulsion, being D0/t the variance of w.

The cellular flow, A, is chosen as a periodic, divergenceless
field obtained from the stream function

cðrÞ ¼ U0

k
sinðkxÞ sinðkyÞ; (3)

where U0 sets the maximal intensity of the field, while k = 2p/L
determines the cell periodicity, with L the cell size. The flow is
obtained from the stream function as

(Ax,Ay) = {qyc(r), �qxc(r)}. (4)

In practice, the flow is a square lattice of convective cells
(vortices) with alternated directions of rotation. The boundary
lines separating neighboring cells are called ‘‘separatrices’’:
along a separatrix, the flow has a maximal velocity in the parallel
direction and zero in the perpendicular one. The structure of
the cellular flow introduces a time-scale in the dynamics of the
system, the turnover time TU = L/U0, i.e. the time needed by a
particle, in the absence of any other forces, to explore the whole
periodicity of the system. The self-propulsion is characterized
by the typical time t, whose interplay with TU determines a
complex phenomenology, both at the level of a single particle
trajectory and at the diffusive level, as it will be illustrated in the
next sections.

We remark that a self-propelled particle immersed in flow
cannot be studied employing any suitable approximations,
such as the unified colored noise approximation,80,81 except
for the small persistence regime, defined for values of t such
that to t* = 1/kU0 = TU/2p, as shown in Appendix A. Indeed, the
form of the velocity dynamics in the large persistence regime
prevents the possibility of adapting the adiabatic elimination,
except in the limit of small t.82

3 Numerical results

We carry out a numerical study of the active dynamics (1) and
(2) that are integrated via a second order stochastic Runge–
Kutta algorithm83 with a time step h = 10�3 and for a time at
least 2 � 102t. Simulations are performed keeping fixed the
cellular structure, L = 1, U0 = 1, in such a way that TU = 1, i.e.
measuring positions and times in unit of L and TU. We evaluate
the influence of the parameters t and D0 on the dynamics. The
generality of this procedure is shown in Appendix B: introducing
dimensionless variables, a change of L or U0 can be recast onto a
variation of the self-propulsion parameters.

3.1 Single particle trajectories

We start by studying qualitatively the typical trajectories of the
SPP in different relevant regimes. These observations will help
us to understand the average properties showed by the mean
square displacement and by the diffusion coefficient. In particular,
in Fig. 1(a), we compare different single-particle trajectories
obtained for three different values of t = 10�1, 1, 10 at fixed
D0 = 10�2. For t { TU (yellow trajectory), the persistence feature
of the self-propulsion is not relevant since w changes direction many
times inside a single cell. As a consequence, the self-propulsion is
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indistinguishable from a thermal noise with diffusivity D0 (see
Section (3.3)).

For t c TU (black trajectory), the self-propulsion changes
only after that the particle has crossed many cells. In these
regimes, the average speed of self-propulsion is very small and
decreases as 1=

ffiffiffi
t
p

since D0 is fixed. As shown in panels (b) and
(d) of Fig. 1, the particle proceeds along the separatrix between
different vortices, and explores the regions where the cellular
flow assumes its maximal value. The particle does not explore
the region inside the cell and quite rarely becomes trapped
in a vortex. This event becomes rarer as t increases. As a con-
sequence, the self-propelled particle moves in a zig-zag-like way
with a trajectory displaying an almost deterministic behavior that

follows the flow field as shown in Fig. 1(d). Due to the small value
of the self-propulsion compared to U0, w plays a role only in a
small region near the nodes of the separatrix (where the flow field
is zero). In those regions, the direction of w determines which
one of the two separatrices the particle will follow. Moreover,
since the average change of the self-propulsion direction is ruled
by t, the same separatrix will be preferred for times smaller than
t. This results in a unidirectional motion (along the separatrices)
for small times (ot), in analogy with a free active particle with
velocity U0, while a diffusive-like behavior will be obtained for
times larger than TU.

For intermediate values of t, i.e. when t B TU, the trajectory
is more complicated, as illustrated in Fig. 1(c). The self-propulsion
can deviate the trajectory from the streamlines, pushing the SPP
inside a vortex. The exit from the vortex can be determined by a
fluctuation of the self-propulsion. A particle needs more time
with respect to the thermal case to escape and proceed along the
separatrix.

3.2 Mean square displacement

The rescaled mean square displacement (MSD) of the SPP, h[r(t)
� r(0)]2i/2t, averaged over thousands of realizations, is reported
for several values of t and three values of D0 (Fig. 2(a)–(c)). The
MSD(t) reflects the behaviors of the single-particle trajectories:
we identify a short-time ballistic growth, an intermediate-time
nonmonotonic crossover and a final long-time diffusive regime.
In the small-t limit, such that to t*, ballistic regimes occur for
t o t (not shown in the figure), in analogy with active particles
in a homogeneous environment.21 When t4 t*, deviations from
ballistic regimes occur for t 4t*, as reported in Fig. 2(a)–(c). As
shown in each panel, this regime weakly depends on t and D0

since for small t the MSD collapses onto the same curve, at
variance with active particles in homogeneous environments. A
second regime occurs in the range of times t* o t o t, until a
maximum of h[r(t) � r(0)]2i/2t is observed for t B t. After this
maximum, the diffusivity slows down and approaches normal
diffusion asymptotically. The comparison between the different
panels of Fig. 2 suggests that the intermediate crossover regimes

Fig. 1 (a and b) panels: Snapshot of the trajectories for different values of
t = 0.1, 1, 10. (c and d) panels: Enlargement for t = 1 (c) and for t = 10 (d). In
panel (c) the arrows represent the velocity of the particle. In panel (c), the
black arrows denote the velocity, while the red arrows denote the self-
propulsion. The self-propulsion is rescaled for presentation reasons but
here is B10�2 smaller than U0. Simulations are realized with D0 = 10�2. The
other parameters are U0 = 1 and L = 1.

Fig. 2 MSD(t)/t as a function of t for different values of t, namely t = 1, 4, 7, 10, 13, 16, 20 from the bottom to the top as shown in the legend. Panels (a–c)
are obtained with three different values of D0 = 10�1, 10�2, 10�3 from the left to the right. Dashed black lines mark linear and constant behaviors
(corresponding on the ballistic and diffusive regimes of the MSD(t), respectively). The other parameters are U0 = 1 and L = 1.
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are less pronounced as D0 increases even if, in all the cases, the
nonmonotonic crossover region enlarges as t grows. At large
times, after t 4 tD, the diffusive behavior is reached. Remarkably,
the transient regime has a quite long duration, and the typical
time tD increases with t and decreases with D0. We remark that
the slowing down of the dynamics at intermediate times is
related to the trapping effect due to the vortices of the cellular
flow, which confines the particle motion in a limited region for a
certain time.

3.3 Diffusion coefficient

To unveil the effect of the self-propulsion force on the long-time
diffusive dynamics, we study the diffusion coefficient

Deff ¼ lim
t!1

1

4t
rðtÞ � rð0Þ½ �2

D E
; (5)

as a function of the activity parameters, t and D0. The case t = 0
corresponds to the passive Brownian limit, where the leading
contribution to the diffusion comes from the particles moving
along the separatrices, and for which an analytical prediction
has been computed by Shraiman in:54

Deffðt ¼ 0Þ ¼ Sðk ¼ 1Þffiffiffi
p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0LD0

2p

r
: (6)

Here, the factor S(k) depends on the cell geometry and is
reported in ref. 54. For the square-cell setup employed in the
numerical study of this manuscript, we have Sðk ¼ 1Þ=

ffiffiffi
p
p
’ 1:07.

We remark that the cellular flow enhances the diffusivity at small
D0, with respect to the case of homogeneous environments,
producing a scaling �

ffiffiffiffiffiffi
D0

p
instead of BD0.

In Fig. 3, we plot Deff(t)/Deff(0) as a function of t for four
values of D0 to show the role of the self-propulsion persistence. As
expected, at small values of t, the prediction (6) is in agreement
with numerical simulations since the self-propulsion acts as an
effective thermal noise in this regime. Depending on the value of

D0, we observe a different phenomenology. In particular, at larger
values of D0, for instance D0 Z 10�1, Deff grows with t and, thus,
the increase of the persistence time enhances the diffusivity, even

if the effective velocity decreases as
ffiffiffiffiffiffiffiffiffiffiffi
D0=t

p
. More surprisingly, for

smaller values of D0, we obtain a non-monotonic behavior: in a
regime of t comparable with TU, starting from t* = 1/kU0, we
observe that Deff decreases down to a minimum value which is
reached at times close to TU. We remark that t* is the value of t
for which the overdamped approach for small t does not hold, as
shown in detail in Appendix A. After the minimum is reached,
Deff grows indefinitely. In particular, for t large enough we
observe Deff 4 Deff(t = 0) as in the cases with larger D0.

These observations are in agreement with the phenomenology
characterizing the single-particle trajectories (Fig. 1). Indeed, the
possibility for a particle to be trapped into a vortex for long times -
seen for values of tB TU – is coherent with the observed reduction
of Deff in a range of t. Also, the existence of trajectories running
fast along the separatrices for large values of t is consistent with
the final growth of Deff (asymptotically for large t). Using this
information, in the next section, we will derive an analytical
prediction for Deff, in the regime t c TU.

In panel (a) of Fig. 4, we show Deff as a function of D0 for
several values of t to test Shraiman’s scaling with D0. As shown
in panel (b) of Fig. 4, for t{ TU, Deff �

ffiffiffiffiffiffi
D0

p
, in agreement with

eqn (6). Shraiman’s scaling breaks down for large values of D0,
where Deff p D0, occurring when w becomes comparable with

Fig. 3 Effective diffusion coefficient as a function of t, for several values
of D0 as shown in the legend. The constant Deff(0) is calculated from
eqn (6). The two dashed black lines are eye-guides to mark the value of t*
and TU. The other parameters are U0 = 1 and L = 1.

Fig. 4 Effective diffusion coefficient, Deff, vs. D0 for different values of t,
as shown in the legend (panel (a)). The dashed black lines are eye guides
showing the behavior BD0 and �

ffiffiffiffiffiffi
D0

p
. Panels (b–d) compare a curve of

Deff (for a given t) with the behavior /
ffiffiffiffiffiffi
D0

p
. The other parameters are

U0 = 1 and L = 1.
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U0 and the cellular-flow plays a marginal role in the transport
process. In Fig. 4(c), we observe that Shraiman’s scaling does
not hold for the intermediate values of t (the region of t
corresponding to the minimum in Fig. 3), while it is recovered
in the regime of large t, namely for tc TU, even if the values of
Deff are quite larger with respect to eqn (6), see panel (d).

4 Analytical prediction of Deff for large
persistence

In the large persistence regime, t c TU, the study of the single-
particle trajectory has revealed that the SPP runs almost deter-
ministically along the separatrices choosing the ‘‘same’’ direction
for a time of order t. The change of direction occurs after a
time Bt, like for active particles in homogeneous environment.
In this simple case, the MSD, at large times, is given by

MSDðt� tÞ �L2n ¼
ffiffiffiffiffiffiffiffi
D0t

p� �2 t
t
; (7)

where L ¼
ffiffiffiffiffiffiffiffi
D0t
p

is the persistence length and n = t/t counts the
number of persistence lengths covered by the free-particle in the
time t.

To estimate the MSD of a SPP in the cellular flow, we replace
L in eqn (7) with the effective persistence length, Leff , of a
particle moving along the separatrices, with velocity U0 sin(kx)
for x A [0,L/2] (obtained from eqn (1)). Thus, at large times,
we get the estimate

MSDðt� tÞ �Leff
2 t

t
¼ L

2
ffiffiffi
2
p t

ts

� �2
t

t
; (8)

where ts is the typical time to run for a distance L/2 along a
separatrix and is calculated in Appendix C. We remark that the
validity of eqn (8) is restricted to the regime tc TU, where w plays
a role only on the nodes of the separatrices because |w| o U0.

This argument suggests that the diffusion coefficient increases
linearly with t and does not depend on D0, except for a dependence
contained in ts. In particular, we get (see Appendix C)

ts �
L

U02p
log

2

b

t
D0

U0
2

� �
; (9)

in the limit
ffiffiffiffiffiffi
D0

p 	 ffiffiffi
t
p
� U0. The parameter b is a numerical factor

independent of t, D0 and TU. In this regime, the prediction for
the diffusion coefficient, for t c ts (calculated for t ct), reads:

Deff /
U0

2t

log2
2

b
U0

2
t
D0

� �: (10)

The comparison between prediction and numerical data is
reported in Fig. 5 as a function of t for three different values
of D0. The results are in good agreement for t c TU, while
marked deviations emerge for tB TU, where the main hypothesis
behind eqn (10) does not apply.

5 Conclusion

In this manuscript, we have studied the diffusive properties of a
self-propelled particle moving in a steady laminar flow, assessing
the effect of the self-propulsion. The diffusion coefficient displays a
non-monotonic behavior as a function of the persistence time t. In
particular, a minimum occurs for a large range of D0 when t is
comparable with the turnover time, followed by a sharp increase,
faster than t, such that the value of the diffusion coefficient exceeds
Shraiman’s prediction valid in the passive Brownian case. Such a
mechanism is discussed and connected with the single-particle
trajectory, specifically to the occurrence of a trapping mechanism
into the vortices. Additionally, Shraiman’s scaling with the diffu-
sion coefficient is tested in the active case, revealing an intriguing
scenario.

We expect our results are still valid (at least qualitatively) for
another popular model which describes the behavior of self-
propelled particles, i.e. the active Brownian particles model.6,16

Its connection with the AOUP model, employed in this work,
has been shown in ref. 71 and 84 and results from the shape of
the time-autocorrelation of the self-propulsion which decays
exponentially in both cases. Additionally, we remark that the
observed phenomenology is mainly caused by the short-time
persistence of the trajectory, a feature shared by both models.

Our study shows that the presence of the self-propulsion affects
the diffusion in a steady laminar flow and could represent a
mechanism naturally developed by self-propelled agents to improve
the efficiency of the transport mechanism. Testing the presence of
similar nonmonotonic behaviors in other laminar flow fields, going
beyond the specific functional form adopted in this manuscript,
could be a promising research line to understand the behavior of
self-propelled microorganisms in their complex habitats.

Conflicts of interest

There are no conflicts to declare.

Fig. 5 Effective diffusion coefficient vs. t for three different values of D0

(colored data). The solid lines are obtained from numerical fits of the
prediction (10), namely g(t) = at/log2(2U0

2t/D0/b), where a and b are two
parameters. In particular, b C 6 is a constant factor and does not depend
on D0 and TU. The parameters of the numerical study are U0 = 1 and L = 1.
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Appendix
A Failure of the UCNA approximation

By taking the time derivative of the equation of motion (1), we get:

€r ¼ rAðrÞ_rþ _w (11)

t _w ¼ �wþ
ffiffiffiffiffiffiffiffiffi
2D0

p
x; (12)

where the matrix rA reads:

rA ¼ kU0

cos kxð Þ cos kyð Þ � sin kxð Þ sin kyð Þ

sin kxð Þ sin kyð Þ � cos kxð Þ cos kyð Þ

" #

¼ k2
f �c

c �f

" #
;

being w the stream function defined by eqn (3) and

fðrÞ ¼ U0

k
cosðkxÞ cosðkyÞ:

Adopting the usual change of variable v = :r, v = A(r) + w,
we obtain

t _v ¼ Gvþ AðrÞ þ
ffiffiffiffiffiffiffiffiffi
2D0

p
x; (13)

where the matrix G assumes the simple form:

GðrÞ ¼ J� trAðrÞ; (14)

and J is the identity matrix. For those values of t such that the
matrix G is no longer positive-defined, the overdamped limit needed
for UCNA becomes meaningless. We recall that a diagonalizable
matrix is positive-defined when all its eigenvalues are positive. The
eigenvalues of the matrix G (eqn (14)) read:

l1 ¼ 1� tk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � c2

p
l2 ¼ 1þ tk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � c2

p
:

Using the definition of c(x,y) and f(x,y), after some algebraic
manipulations, we obtain

l1 ¼ 1� tkU0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos½kðx� yÞ� cos½kðxþ yÞ�

p
l2 ¼ 1þ tkU0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos½kðx� yÞ� cos½kðxþ yÞ�

p
When t Z t* = 1/(U0k), the eigenvalue l1 has no possibility to
remain positive all over the plane (x,y), then G cannot be positive
definte, and the overdamped regime turns to be undefined. In the
opposite regime, t o t*, which we call small-t limit, the over-
damped regime could be assumed. Only, in the latter case, the
dynamics can be recast onto:

Gv ¼ AðrÞ þ
ffiffiffiffiffiffiffiffiffi
2D0

p
x: (15)

By inversion we obtain:

_r ¼ v ¼ G�1 AðrÞ þ
ffiffiffiffiffiffiffiffiffi
2D0

p
x

� �
; (16)

which corresponds to the UCNA dynamics80 adapted to the
current case.

We remark that t* roughly corresponds to the value of t at
which Deff starts to change consistently with respect to the
Shraiman’s prediction, as shown in Fig. 3.

B Variation of the flow-field parameters

In this appendix, we show the effect of the flow-field para-
meters, L and U0, on the transport properties of self-propelled
particles in a laminar flow, justifying the choice to set L = U0 = 1
in our study.

Rescaling the variables of the dynamics with the parameters
of the flow-field, i.e. introducing dimensionless variables:

r ¼ ~rL; t ¼ ~tTU ¼ ~t
L

U0
; (17)

w ¼ ~wU0; x ¼
~xffiffiffiffiffiffiffi
TU

p ¼ ~x
ffiffiffiffiffiffi
U0

p ffiffiffiffi
L
p ; (18)

the dynamics (1) can be recast onto:

_~r ¼ að~rÞ þ ~w (19)

where a(r̃) = (sin(2px̃)cos(2pỹ), �cos(2px̃)sin(2pỹ)). Eqn (19) no
longer contains any parameter dependence which, instead, is
contained in the active force dynamics:

~t _~w ¼ �~wþ
ffiffiffiffiffiffiffiffiffi
2 ~D0

q
~x: (20)

Now, the dot indicates the time derivative with respect to the
rescaled time t̃ and, in analogy with eqn (2), we have introduced
the dimensionless persistence time, ~t, and the dimensionless
diffusion coefficient, D̃0:

~t ¼ t
TU
¼ t

U0

L
; (21)

~D0 ¼
D0

LU0
: (22)

As a consequence, the variations of L and U0 can be mapped
onto a change of ~t and D̃0, since the dynamics is only controlled
by the ratios (21) and (22). In particular, the growth of L induces
a simultaneous decrease of D̃0 and ~t, while the increase of U0

produces the decrease of D̃0 but the growth of ~t. This observa-
tion justifies our numerical study obtained with U0 = L = 1.

For the sake of completeness, in Fig. 6, we report Deff vs. L at
fixed U0 (main panel) and Deff vs. U0 at fixed L (inset), keeping
fixed t = D0 = 1. The data reported correspond to those of Fig. 3
and 4, with the same values of ~t and D̃0.

C Computation of ts in the regime of
large s

The typical time ts contained in eqn (8) and (9) can be obtained
by integrating eqn (1) without the self-propulsion in a given
direction along a separatrix, for instance:

ts ¼
1

U0

ðL=2
0

dx

sinð2px=LÞ: (23)
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This procedure is justified because the active force is negli-
gible along the separatrices, except for the nodes, in the large
persistence regime. The integral defining ts is not converging,
unless we introduce two cut-offs

ts ¼
1

U0

ðL=2�xm
xm

dx

sinð2px=LÞ:
(24)

The length scale xm is chosen such as:

U0 sin kxmð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2b
D0

t

r
; (25)

i.e. when the force along a separatrix is roughly equal to the
typical value of the activity, estimated by its standard deviation,ffiffiffiffiffiffiffiffiffiffiffi
D0=t

p
. The factor b is a parameter that does not depend on t,

D0 and TU, being just a numerical factor. Inverting eqn (25), we
get

xm ¼
L

2p
arcsin

ffiffiffiffiffiffiffiffiffiffiffi
2bD0

t

r
1

U0

 !
� L

U0p

ffiffiffiffiffiffiffiffiffi
bD0

2t

r
;

where we used the condition
ffiffiffiffiffiffiffiffiffiffiffi
D0=t

p
� U0 ¼ 1, holding in the

large persistence regime. Solving the integral, we obtain the
final expression for ts,

ts
U0p
L
¼ log

1

tan

ffiffiffiffiffiffiffiffiffi
bD0

2t

r
1

U0

" #
0
BBBB@

1
CCCCA �

1

2
log

2U0
2

b

t
D0

� �
;

which is positive since U0

ffiffiffiffiffiffiffiffiffiffiffi
t=D0

p
� 1. Thus, ts contains a

logarithmic dependence on D0/t, as reported in eqn (9).
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