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Abstract: Accumulating evidence links the microbial communities inhabiting the gut to the patho-
physiological processes underlying multiple sclerosis (MS). However, most studies on the microbiome
in MS are correlative in nature, thus being at risk of confounding and reverse causality. Mendelian
randomization (MR) analyses allow the estimation of the causal relationship between a risk factor
and an outcome of interest using genetic variants as proxies for environmental exposures. Here,
we performed a two-sample MR to assess the causality between the gut microbiome and MS. We
extracted genetic instruments from summary statistics from three large genome-wide association
studies (GWASs) on the gut microbiome (18,340, 8959, and 7738 subjects). The exposure data were
derived from the latest GWAS on MS susceptibility (47,429 patients and 68,374 controls). We pin-
pointed several microbial strains whose abundance is linked with enhanced MS risk (Actinobacteria
class, Bifidobacteriaceae family, Lactobacillus genus) or protection (Prevotella spp., Lachnospiranaceae
genus, Negativibacillus genus). The largest risk effect was seen for Ruminococcus Torques (OR, 2.89,
95% C.I. 1.67–5, p = 1.51 × 10−4), while Akkermansia municiphila emerged as strongly protective (OR,
0.43, 95% C.I. 0.32–0.57, p = 1.37 × 10−8). Our findings support a causal relationship between the
gut microbiome and MS susceptibility, reinforcing the relevance of the microbiome–gut–brain axis in
disease etiology, opening wider perspectives on host–environmental interactions for MS prevention.

Keywords: gut microbiota; multiple sclerosis; Mendelian randomization

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease
of the central nervous system (CNS), commonly diagnosed in young adults, leading to
physical disability and cognitive impairment. The causes of MS remain unclear, but many
genetic and environmental factors (such as low vitamin D levels, obesity, tobacco smoking,
and, most importantly, Epstein–Barr virus infections) have been pointed out as risk factors,
supporting the complex nature of MS etiology [1,2].

During the past decade, there has been great scientific excitement around the gut micro-
biome in human health and disease, with special regard to inflammatory and autoimmune
conditions, including multiple sclerosis [3].

Alterations in the gut microbiota pleiotropically impact immune function and the
course of neuroinflammatory diseases such as MS. First, the microbiome regulates the
host’s B cell and T cell maturation and activity: briefly, a healthy microbiota promotes
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immune homeostasis through the release of Treg cells and IgA antibodies in the blood-
stream, while dysbiosis enhances neuroinflammation through the boosting of Th17 cell
differentiation. In turn, these subsets shape microbiota composition through maintenance
of the intestinal barrier, and they keep microbial translocation at a low grade to other body
sites, defining a scenario characterized by a constant bidirectional interaction of crucial im-
portance [4]. Additionally, the composition of the gut microbiota influences the production
of serotonin in the gut, which, in turn, impacts the systemic serotonin-mediated regulation
of immune subsets.

The evidence of an association between gut microbiota alterations and MS relies on
a broad literature [5–9]. A first study performed metagenomic analyses on the gut mi-
crobiome of 71 patients and 71 controls, identifying specific bacterial taxa which were
significantly enriched in patients with MS (Akkermansia muciniphila and Acinetobacter cal-
coaceticus), while others were reduced (Parabacteroides distasonis). Fecal transplants from
patients with MS into germ-free mice resulted in more severe symptoms of experimen-
tal autoimmune encephalomyelitis and reduced proportions of IL-10+ Tregs, compared
to control-derived transplants [10]. Breakthrough evidence recently came from a large
multi-center study in which the gut microbiome of 576 patients with MS and household
healthy controls (1152 total subjects) was analyzed, highlighting some species which were
significantly increased (Akkermansia muciniphila, Ruthenibacterium lactatiformans, Hungatella
hathewayi, and Eisenbergiella tayi) and other which were significantly decreased (Faecalibac-
terium prausnitzii and Blautia species) in patients with MS. The authors related these gut
microbiome alterations to both MS risk and MS course and progression. Furthermore,
distinct microbe–microbe interactions and metabolic pathways were found in patients with
MS compared to the healthy controls (HCs), and the gut microbiome’s modulation with a
disease-modifying therapy was pointed out [5].

A limit of most published studies on the microbiome in MS is their observational
design, which is correlative in nature and, thus, intrinsically prone to confounding factors
and reverse causality [11]. Mendelian randomization (MR) represents a novel epidemio-
logical study design, which has become increasingly common since the broad diffusion of
genome-wide association studies. MR aims to assess the causal association between an en-
vironmental risk factor (exposure) and a disease (outcome) [11]. Unlike clinical randomized
trials, in which the two study groups are determined by random assignment to an exposure
factor (cases) or not (controls), in MR studies, the two groups are defined in function of a
genetic variant (called instrumental variable, IV), assuming that randomization relies on
Mendel’s law of the random assortment of genetic variants. Instrumental variables rely on
single-nucleotide polymorphisms (SNPs) strongly associated with exposure, representing a
proxy of exposure to infer the causal association between this and the disease [12]. Given
their genetic nature, IVs are independent from confounders that may influence exposure
and outcome [13].

In this study, a two-sample MR was conducted to assess the causal link between
microbiome composition and MS risk. Our aim was to strengthen the existing evidence on
dysbiosis as a risk factor for MS by performing an MR analysis, intrinsically able to confer
a causal meaning to an association between an exposure and a disease.

2. Materials and Methods

With respect to data sources, exposure data were extracted from summary statistics of
three large GWAS assessing the influence of host genetics on gut microbiome composition:

(1) The most comprehensive study in this domain, by the MiBioGen consortium, in
which 16S rRNA sequencing profiles were collected from 24 cohorts, for a total of
18,340 individuals [14];

(2) The work by Qin and colleagues, in which metagenomic sequencing was performed
in a single population-based cohort of 5959 subjects [15];
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(3) The work by Lopera-Maya and colleagues, which assessed SNP-to-taxon and SNP-to-
microbial function associations from stool shotgun metagenomic studies of
7738 participants in the Dutch Microbiome Project [16].

Outcome data were extracted from summary statistics of the 2019 IMSGC GWAS on
MS susceptibility, performed on 47,429 people with MS and 68,374 controls [17].

Regarding data analysis, we selected SNPs associated with exposure with a p-value
threshold of 1 × 10−8. For IVs, we retained independent SNPs performing clumping with
a linkage disequilibrium (LD) threshold of 0.001 and a 10 Mb clumping window (using the
1000 Genomes European data as a reference). SNPs with an F-statistic below 10, indicating
insufficient strength, were excluded [18]. Data harmonization was performed between the
gut and MS datasets, and SNPs with a minor allele frequency (MAF) ≤ 0.01, ambiguities,
and palindromes were excluded.

MR causality tests were assessed using Wald’s ratio, and, where possible (i.e., with
multiple IVs for the same exposure), we pooled the Wald ratios through a meta-analysis,
using the inverse-variance-weighted (IVW) method. To exclude reverse causality, we used
the MR Steiger directionality test [19].

A nominal p-value of 0.05 was used as the threshold for statistical significance.
MR analyses were conducted using the TwoSampleMR package [20] in the R software
(version 4.2.1).

3. Results

We performed two-sample MR analyses to explore the causal link between gut micro-
bial composition and MS. Following stringent selection criteria and after harmonization,
we held a total of 123 IVs for analysis. Figure 1 summarizes the statistically significant
results (see Supplementary Table S1 for the complete results).
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Figure 1. Forest plot of significant associations from MR analysis on gut microbiota composition and
MS susceptibility. Protective strains (OR < 1) are shown in green and risk-enhancing strains in red
(OR > 1). OR: odds ratio. The complete results are available in Supplementary Table S1.

We observed a consistently positive causal effect of species from the Actinobacteria
class on MS risk. Among the Bifidobacteriaceae family, an increase of one standard deviation
(SD) in the abundance of Bifidobacterium adolescentis was associated with a 31–47% increased
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risk of MS, consistent in two different association sources. A similar effect was seen for
Bifidobacterium bifidum abundance (OR, 1.39; 95% C.I. 1.03–1.86, p = 0.03).

Also, the Lactobacillus_B genus (OR, 2.30; 95% C.I. 1.09–4.86, p = 0.03) and the relative
species Ruminis from the same genus (OR, 1.94, 95% C.I. 1.07–3.53, p = 0.03) were positively
associated with MS.

The strongest causal association was seen for the species Ruminococcus Torques (O.R.
2.89, 95% C.I. 1.67–5, p = 1.51 × 10−4), pertaining to the Clostridia class.

Conversely, we found a negative association between the abundance of Prevotella and
MS: an increase of one standard deviation ( SD) in the abundance of Prevotella sp002933775
corresponded to a 54% reduction in MS risk. Other microbial strains from the Clostridia
class appeared to be protective: Lachnospira rogosae (OR, 0.61, 95% C.I. 0.40–0.95, p = 0.03),
Faecalicatena lactaris from the Lachnospiranaceae genus (OR, 0.51, 95% C.I. 0.51–0.95, p = 0.02),
and the Negativibacillus genus from Ruminococcaceae (OR, 0.51, 95% C.I. 0.28–0.92, p = 0.03).
Another protective signal came from a Turibacter strain from Firmicutes (OR, 0.56, 95% C.I.
0.34–0.94, p = 0.03).

The strongest protective association was seen for the species Akkermansia Municiphila_B
(OR, 0.43, 95% C.I. 0.32–0.57, p = 1.37 × 10−8).

Steiger’s test confirmed, for all associations, the correct directionality, i.e. the exposure
(microbial strain abundance) causes the outcome (MS) (p < 0.05 for all IVs).

4. Discussion

This two-sample MR study pinpointed that the relative abundance of Ruminococcus
torques, Actinobacteria, Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus
enhanced MS risk, while Akkermansia muciniphila and Prevotella exerted protective effects.
Additionally, our analysis highlighted protective signals from commonly understudied
bacterial strains, such as the Negativibacillus genus, Lachnospira rogosae and Faecalicatema
lactaris—components of the Lachnospiraceae family—Turibacter, and Alisteps shahii.

We found that the genetically predicted abundance of Ruminococcus torques is causally
linked to MS. Our finding converges with evidence from the large multi-center International
Multiple Sclerosis Microbiome Study (iMSMS), which found this bacterium to be enriched
in untreated patients with MS [5]. Furthermore, the bacterial expansion of the genus
Ruminococcus has also been highlighted during experimental autoimmune encephalomyeli-
tis (EAE), a well-accepted animal model for MS [21]. Finally, Ruminococcus abundance
was found to decrease in patients with MS following treatment with DMTs (interferon
beta1a or teriflunomide) [22]. Ruminococcus spp., including R. torques, are abundant in the
gastrointestinal tract, endowed with diverse metabolic functions, and are potent mucus
degraders [23]; still, a mechanistic interpretation of Ruminococcus torques’ role in MS is far
from being revealed.

We found causal links between MS and the abundance of Bifidobacterium adolescentis,
Bifidobacterium bifidum, and, higher in the taxonomic hierarchy, the Actinobacteria class.
Intriguingly, a recent work unraveling the gut microbiota of pediatric MS cases highlighted
an MS-specific enrichment of both Actinobacteria, at the class level, and Bifidobacterium, at
the genus level [24]. Similarly, in an Egyptian cohort of patients with MS, an increase in
Actinobacteria was found compared to the healthy controls [25]. Looking at the underlying
pathobiology, there is some evidence regarding the ability of both Bifidobacterium adoles-
centis [26] and Bifidobacterium bifidum [27] to boost Th17 cell differentiation, potentially
enhancing neuroinflammation. Conversely, other works have suggested anti-inflammatory
effects of these strains, which might be exerted through metabolic modulation and induc-
tion of Treg differentiation [28]. As for R. Torques, Bifidobacterium adolescentis abundance
was found to be influenced by DMTs in the iMSMS study [5].

We found that the genetically predicted abundance of Akkermansia muciniphila rep-
resented a protective factor for MS susceptibility. At a first glance, this result could be
surprising, since a relative abundance of Akkermansia in the gut microbiome of patients with
MS is one of the most recognized patterns in studies of gut dysbiosis and MS [5,6,10,29,30].
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Among the possible explanations for this is the fact that Akkermansia muciniphila abundance
represents an adaptive, compensatory response to promote eubiosis recovery rather than
an underlying pathogenic event [31]. In a recent study on the gut microbiota of patients
with progressive MS, Akkermansia was linked to lower disability and, consistent with this,
ameliorating EAE [29]. Relevant to this is the fact that the microRNA miR-30d, enriched in
the feces of people with MS and animals with EAE, was shown to expand the commensal
Akkermansia muciniphila subsets, which, in turn, promoted regulatory T cells induction and
ameliorated EAE; fecal transfer from the EAE model at peak disease (i.e., after Akkermansia
expansion) was capable to prevent disease onset in susceptible mice [32]. As for the Epstein–
Barr virus, Akkermansia epitopes were found to elicit autoreactive CD4+ T cell clones in MS
in association with the HLA-DR15 risk haplotype, driving cross-reactive neuropathology
through molecular mimicry [33,34]. A similar pattern has been found for the humoral
response: increased levels of IgG against A. muciniphila were found in the CSF of patients
with RRMS compared to the controls [35]. Our results may also suggest that an increased
abundance of A. municiphila antigens before disease onset may favor immune tolerance or
ignorance and limit an efficient, antigen-specific, and potentially cross-reactive response.

Finally, worth mentioning is Prevotella’s protective effect on MS. In observational
studies, Prevotella is frequently found to be reduced in patients with MS compared to the
healthy controls [36–38]. In the iMSMS study, in the part dealing with interacting microbial
communities defining MS and healthy control (HCC) networks, Prevotella emerged among
the 45 species enriched in the healthy controls [5]. Among the Prevotella species, Prevotella
histicola has been linked to an improved EAE course [39]. Contrariwise, there are studies
highlighting a possible proinflammatory role of Prevotella strains [40]. Further experimental
evidence is needed to test such an association.

A limitation of this study is that, to keep stringent IV selection criteria, associations are
supported by single IVs, possibly influencing precision. However, the consistency of the
results coming from different exposure sources, performed through different genotyping
techniques, supports our findings. In the future, a larger sample size for the microbial
GWAS could ensure greater power for detecting genetic and epidemiological links to
complex diseases, especially with preventive aims. Additionally, to date, generalizability
to genetic ancestries other than European is limited, and cross-ancestry efforts for both
microbiota and disease mapping are awaited.

Furthermore, knowledge on the genetic influence of microbial composition in body
sites other than the gut is extremely limited to date and is awaited to extend our view on
host–microbiome interactions in health and disease.

5. Conclusions

Our findings provide evidence for a causal relationship between some gut micro-
biota strains and MS risk, reinforcing the relevance of the microbiome–gut–brain axis in
disease etiology and the crucial importance of host–environmental interactions in MS.
Targeted modulation of the gut microbiota may hold promise for the development of novel
therapeutic strategies aimed at mitigating MS risk.
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