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A B S T R A C T

Nowadays it is advisable for buildings to be thermally resilient, so as to passively resist to the daily external air
temperature fluctuations, reducing the interventions of air conditioning systems to a minimum. The decrement
factor and time lag are parameters notoriously used to evaluate the responses of the building envelope to periodic
oscillations in external air temperature. However, in their traditional definition, these parameters do not consider
the effects of internal elements, such as partition walls and slabs, which instead influence the passive thermal
behaviour of the building. For this reason, a choice of the external wall stratigraphy, made exclusively on the
basis of the traditional decrement factor and time lag, seems to be simplistic. In this paper, problems concerning
the passive behaviour of buildings, in case of sinusoidal outdoor air temperature variations, are investigated.
Within a lumped-capacitance scheme and using the heat transfer matrix method, the problem of the determi-
nation of a wall stratigraphy minimizing the decrement factor for given values of the overall thermal resistance
and capacity, usable for the realization of both external and internal walls of a given room, is solved. After
developing an analysis on the influence of the internal walls and slabs on the room thermal balance, the
resistance-capacity distribution, within the external wall, minimizing the decrement factor is determined, for
assigned thermal resistances and capacities of internal elements and the external wall. Results indicate that there
is no resistance-capacity distribution that is absolutely better than the others, but it is dependent on the thermo-
physical characteristics of the internal elements. The optimized external wall stratigraphy can be composed of an
even number of resistive and capacitive layers, alternating with each other, or of an odd number of layers (with
one more resistive layer than the capacitive ones). Even the number of layers that makes optimized the passive
behaviour of the external wall varies with the characteristics of the internal elements, the results show that
already with a number of layers varying from 2 to 5 high performances can be obtained.

1. Introduction

In the last few years an ever-growing need to reduce energy con-
sumption has occurred in order to limit the CO2 emissions and the
impact on the environment, especially for the building sector, aiming to
achieve a fully decarbonised building stock by 2050 [1]. Therefore, the
energy saving achievable with an accurate energy design of buildings is
very relevant, for both new constructions and renovations [2,3]. In the
accurate energy design of buildings, a key role is played by the building
envelope, that should be thermally resilient, so as to passively resist to
the daily external air temperature fluctuations, reducing the in-
terventions of air conditioning systems [4–6]. In mild climates, a
building well designed, from a thermal point of view so as to show an

optimal passive behaviour, can assure an acceptable comfort level even
in absence of heating/cooling plants with consequent energy saving
[7,8].The aspects of greatest consideration in the design phase for an
opaque building envelope with high thermal resilience are summarized
below.

• With particular reference to the steady state conditions (represen-
tative, with good approximation, of winter season), the building
thermal insulation of the building envelope has to be obviously high,
in order to reduce energy consumption: the higher the thicknesses of
the insulating layers are, the lower the heat power to be supplied by
the heating plant in order to keep the rooms at the wished temper-
ature, under steady conditions, will be [9–11].
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• With reference to the dynamic conditions (representative of the in-
termediate seasons and summer, with periodic fluctuation of
external temperature), thermal resistance and capacity of the opaque
envelope will have to be taken into careful consideration [12–14].

• The thermal behaviour of buildings under dynamic conditions is of
greater scientific interest than the steady-state one and it can be
investigated from two different points of view: the first concerns the
interaction between the building and the heating/cooling plants
[15,16]; the second concerns the building passive behaviour [17,18].

The building passive behaviour is the subject of the present study. To
improve passive behaviour and hence the thermal resilience of a
building, multi-layer walls are generally used, i.e. non-homogeneous
walls consisting of a sequence of layers made of different materials,
some with essentially resistive thermal properties (light and insulating
layers), other with essentially capacitive properties (heavy and me-
chanically resistant layers). The sequence in which such layers are
disposed within both external walls and internal elements is essential for
assuring a good passive behaviour of the building [12,17].

2. Literature framework, research gap and aim of the study

The distribution of the resistive and capacitive layers of a multi-layer
wall, to optimize its passive behaviour, was analysed in an analytical
and numerical way in many studies in the literature. It was proposed to
evaluate the passive behaviour using decrement factor and time lag,
parameters currently known and also defined in the technical standards
[19]. Following, a brief description of the relevant literature which
constitutes the scientific basis of the present study is reported.

In 2000, Asan [20] considered 18 different configurations of an
opaque envelope wall, each of which composed of the same layers of a
capacitive material and a resistant material but with a different layer
sequence. Considering an external temperature periodically variable, by
solving the heat transfer problem with finite-difference approach and
the Crank–Nicolson method, he was able to formulate some important
observations on the optimization of the stratigraphy. In particular, he
observed that placing half of the insulation in the mid-centre plane of the
wall and the half of it in the outer surface of the wall gives very high time
lags and low decrement factors. In 2006, the same author [12] extended
his study focusing on determinations of time lags and decrement factors
of twenty-six different common building materials with various
thickness.

In 2011, Osel [21] used an implicit finite difference method to solve
the transient heat conduction problem in multi-layer walls, in order to
determine the thermal performance and optimum insulation thicknesses
of building walls, constructed of five different structure materials and
two different insulation materials. In 2014, in subsequent study with the
same approach, Ozel [22] also dealt with the evaluation of the decre-
ment factor and time lag of different opaque envelope walls. analysing
three different walls, composed of the same thickness of insulating
material and capacitive material (brick), as well as plaster. The walls
were differentiated by the different layer sequence, positioning the
insulation once inside (covered by plaster), once outside (covered by
plaster), once at the middle (squeezed between two bricks of half the
thickness compared to the other). Results showed that yearly trans-
mission loads were unaffected by insulation location, whereas insulation
location had a significant effect on the yearly averaged time lag and
decrement factor, pointing out the wall with insulation at the middle

Nomenclature

cs s-th layer thermal capacity per surface unit, J m− 2 K− 1

c external wall thermal capacity per surface unit, J m− 2 K− 1

C=Σcs total thermal capacity per surface unit, J•m− 2•K− 1

Cp specific heat at constant pressure, J kg− 1 K− 1

D=r∣Λ∣ dimensionless quantity
E, F, G, H elements of the transmission matrix of external wall
e, f, g, h elements of the transmission matrix of inner structure
Im imaginary part
I0, K0 modified Bessel functions
j=√-1 imaginary unit
k thermal conductivity, W m− 1 K− 1

P period, s− 1

QS specific heat flux supplied by the air-conditioning system,
W m− 2

Qint specific heat flux overall supplied by the internal elements,
W m− 2

q specific heat flux, W/m− 2(-|-)
r external wall thermal resistance per surface unit, m2 KW− 1

rs s-th layers thermal resistance per surface unit, m2 K W− 1

Re real part
R total thermal resistance, m2 K W− 1

S external wall surface, m2

T temperature, K
T0 temperature of adiabatic surface for the m-th internal

element, K
Tw wall inner surface temperature, K
U air thermal capacity per surface unit, J m− 2 K− 1

x thickness, m

Greek symbols
αm = Sm/S dimensionless weight of m-th interior partition

β thermal diffusivity, m2 s− 1

γ = ωrc dimensionless parameter
ζ = Tint/Text dimensionless parameter
θ phase of λ, degree
λ complex admittance of inner wall, W m− 2 K− 1

Λ0 complex admittance defined, W/m− 2(-|-) K− 1

λ∞ = (ωξ)0.5 conductance, W m− 2 K− 1

Λ complex overall admittance of the room inner walls, W
m− 2 K− 1

μ = ωRC dimensionless parameter
ν = (2β/ω)0.5 penetration depth of a thermal oscillation within a

semi-infinite solid, m
ξ = ρCpk thermal effusivity, W2 s m− 4 K− 2

ρ density, kg m− 3

σ modified dimensionless damping factor, for taking into
consideration the effect of partition walls

τ time, s
τR time lag, s
ϕn=∣H∣2 relating to the structure characterized by the number n
φ phase of Λ, degree
ω = 2π / P angular frequency, rad/s

Subscripts
ext exterior
int interior
I resistive layer
L capacitive layer
m relating to the m-th

Superscripts
′ relating to adjacent room
‾ (over bar) relating to a semi-wall
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those with maximum temperature swings and the wall with insulation
outside those with the smallest fluctuation.

In 2013, Kontoleon [23] carried out a more complex analysis
compared to previous studies, determining the time lag and the decre-
ment factor for walls, still made of the same thicknesses of insulating and
capacitive material (concrete in this case, with variable density), but not
limited to exploration of middle, outer and inner position of the insu-
lation. The results showed how the concrete density and conductivity
variations as well as the relative placement of concrete and insulation
(in one or two layers within the wall assembly) affect the decrement
factor and time lag, identifying the best wall assembly (among the 6
overall considered). In 2016, Kontoleon [24] continued the study by
analysing the moisture storage effects on decrement factor and time lag
of different walls.

In 2018, Leccese et al. [17] by using an analytical model based on
heat transfer matrix, explored the effects of continuous variations in the
positioning and thickness distribution of the insulation material on the
dynamic thermal performance (decrement factor and time lag) of
different constructive solutions (from a light-weight wall with a surface
mass of 85 kg/m2 to a massive wall with a surface mass of 294 kg/m2).

In 2018, also Gori et al. [25], using a similar approach of [17],
investigated if effective thermophysical properties can be determined
for arbitrary multilayer walls, in order to represent them through
equivalent homogeneous models, to be used in evaluations relating to
the optimization decrement factor and time lag for opaque building
envelopes. The obtained results indicated that, on the one hand, the
equivalent thermal conductivity is determined simply by imposing the
equivalence of the steady-state behaviour. On the other hand, the
equivalent volumetric heat capacity (parameter that comes into play in
dynamic conditions) is less immediate to determine and the authors
propose two types of approximations to replace its exact value.

In 2022 Lu et al. [26] used the thermal quadrupole method to opti-
mize (with reference to decrement factor and time lag) the location and
distribution of the insulation layers of an external wall. In 2024, again
Lu et al. [27] provided the analytical solutions of the wall’s decrement
factor and time lag using the auxiliary function method. The results the
results obtained provided interesting insights for the passive thermal
design of the building envelope, especially showing the influence of
various parameter (i.e. dimensionless thickness, dynamic Biot number,
thermal resistance, thermal diffusion, outdoor air temperature fluctua-
tion period) on decrement factor and time lag of single layer wall.

As is evident, most studies have focused on providing solutions of the
heat transfer equations and design criteria for optimizing the dynamic
thermal behaviour of the external (envelope) walls, considering the
decrement factor and time lag as intrinsic characteristics of the external
walls. However, the passive thermal behaviour of a building is influ-
enced also by the presence of internal elements (partition walls, slabs,
furniture), for this reason a choice of the external wall assembly, made
exclusively on the basis of the traditional decrement factor and time lag,
seems to be a little simplistic [28].

In this paper the authors try to fill this research gap, providing amore
complex calculation model, with which the dynamic thermal perfor-
mance of the building envelope can be studied, also considering the
presence of internal partitions (walls and floors) and furnishings.
Furthermore, using the calculation model, detailed analysis of the in-
fluence of the internal elements and of the furnishings on the room
thermal balance is reported. Then, the resistance-capacity distribution
minimizing the decrement factor, in the external wall, is determined
once the internal elements and the external wall’s thermal resistance
and capacity have been assigned. Finally, practical examples are shown.
The results shown may be relevant for technicians dealing with the
design of the building envelope, in order to understand the passive
behaviour of the building more completely and to select the most
appropriate technological solutions, in terms of wall assembly, in order
to minimize the interventions of air conditioning systems.

3. Heat transfer model of the room and problem statement

The scheme representing the room being here examined is reported
in Fig. 1. The external wall has area S. The sol–air temperature Text is
assumed to be the outdoor air temperature. The interior of the room is
assumed to be composed of M internal elements (partitions, floor and
ceiling) the generic of which is assumed to have area Sm. Inside the room
there is a heat source provided, for instance, with a heating/cooling
plant. Let QS be the heat power, per surface unit of the external wall,
supplied by the above-stated heat source. Heat transfer is assumed to be
one dimensional; any effect due to the thermal bridges will be
disregarded.

Under conditions of periodic thermal regime, the external thermal
field Text and the internal one Tint, the heat power QS, the heat fluxes qext
and qint, respectively on the outer and inner surface of the external wall,
are to be considered periodic functions of the time τ developable in
Fourier series; farther on by Text, Tint, QS, qext and qint the generic har-
monic components of angular frequency ω (with period P=2π/ω) of the
above-mentioned series will be meant.

The linear relation, subsisting between the temperature Tint, the heat
flux qint and the analogous quantities Text and qext, can be determined
using the heat transfer matrix method according to Eq. (1):
(
Tint
qint

)

=

(
E F
G H

)

×

(
Text
qext

)

(1)

The heat transfer matrix method, also referenced as thermal quadrupole
method [29–31], is well known in the scientific and technical literature
[32,19] and widely used for describing heat conduction in
one—dimensional structures [33,34]. The method was the subject of
numerous validations, which have proven its effectiveness for this type
of analysis [35–37]. By reference, essential details of the method are
reported in Appendix 1. The matrix in Eq. (1) has unitary determinant
(EH− FG=1) and will have to be calculated as ordered product of the
transmission matrices of the single layers making up the wall; the first
and the last of these layers will be purely resistive ones, representing,
respectively, the wall inner surface thermal resistance rint and the wall
outer surface thermal resistance rext.. Farther on, the external wall
overall thermal resistance and capacity will be indicated, respectively,
by r and c.

For the m-th internal element the following equation, analogous to
the Eq. (1), is still valid:
(
Tʹ
int

qʹ
m

)

=

(
em fm
gm hm

)

×

(
Tint
qm

)

(2)

Fig. 1. Scheme of the examined room.
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having marked by the apex the temperature and flux relating to the
adjacent room. In the Eq. (2) the matrix has unitary determinant and
will have to be calculated as ordered product of the transmission
matrices of the single layers making up the structure being here dis-
cussed; the outer layers will be purely resistive ones, representing the
opportune wall inner and outer surface thermal resistances.

For the room, if the effects due to the air change are disregarded,
with reference to the angular frequency ω and period P and with regard
to the surface unit of the external wall, the following balance equation
subsists [15]:

qint + jωUTint = Qint +QS (3)

where Qint is the total flux concerning the internal elements, while the
air lying in the room is schematized with a pure thermal capacity U, per
surface unit of the external wall. From the Eq. (1) it follows that:

qint =
H • Tint − Text

F
(4)

From the Eqs. (2), if the temperature in the adjacent rooms is supposed
to oscillate, as it generally happens, with the same amplitude and phase
as that of the examined room, T′int = Tint, the following is obtained:

qm = −

(
em − 1
fm

)

⋅Tint = − λm • Tint

having introduced the admittance λm of the m-th internal element:

λm =
em − 1
fm

(5)

The quantity ωIm(1/λm), product of the angular frequency ω by the
imaginary part of 1/λm, can be meant as the inverse of the thermal ca-
pacity per surface unit of the m-th internal element with regard to the
face turned towards the examined room [19].

In many cases, the internal elements, with the exception of roof and
ceiling, are symmetrical (em = hm). The surface passing through the
centre plane of the m-th partition can be schematized as adiabatic with
the temperature T0m; consequently, just half of the partition turned to-
wards the room turns out to be concerned with the room heat problem.
In these conditions, instead of the Eq. (2), the following can be written:
(
T0m
0

)

=

(

em fmgmhm

)

×

(
Tint
qm

)

(6)

In the Eq. (6) the matrix elements refer to half of the examined partition.
From the Eq. (6) it follows:

qm = −
gm
hm
⋅Tint = − λm • Tint

It can be concluded that the admittance λm of a symmetric partition can
be easily calculated as:

λm =
gm
hm

(7)

In any case, the term Qint of the Eq. (3) can be calculated by the
following relation:

Qint =
1
S
∑M

m=1
(Smqm) = − Tint •

∑M

m=1
(λmαm) (8)

with αm = Sm/S the “weight” of the m-th internal element.
In absence of heating/cooling plant, wishing to study the room

purely passive behaviour, from the Eq. (3) with QS=0, the ratio ζ be-
tween the indoor air temperature and the outdoor one can be calculated;
this ratio turns out to be, for the Eqs. (4) and (8), the following:

ζ =
Tint

Text
=

1
H+ FΛ

(9)

having introduced the quantity Λ, depending on the structure and ge-
ometry of the room, defined by:

Λ = jωU+
∑M

m=1
(λmαm) (10)

This quantity can be meant as the overall admittance of the internal
elements, since in an electric analogy it represents the inverse of the
impedance of the grid formed by a parallel to the branches of which the
indoor air and the internal elements contribute. Obviously, the admit-
tance relating to the air jωU (pure imaginary term) is just a corrective
term; to a first approximation, we could think of lumping together in this
term the capacitive effects of the objects (furniture, furnishings, etc.)
lying in the room. For a more careful evaluation of the influence of the
furnishings see the Appendix 2. The quantity |Λ|/ω is sometimes indi-
cated as thermal capacity of the internal elements.

The following can be posed:

ζ = σ⋅e− jωτR

having introduced the decrement factor σ of the amplitude of the out-
door air temperature variation imposed on the outside and the time lag
τR defined by:

σ = |ζ| τR =
1
ω⋅arctan

[
Im(ζ)
Re(ζ)

]

(11)

Obviously, σ and τR depend on the following factors: the external wall
thermal properties due to the matrix elements H and F; the internal el-
ements’ thermal properties due to Λ, and the period P of the outdoor
temperature variation. The smaller σ is, the higher the room dynamic
thermal insulation will be, i.e. the less the indoor conditions will depend
on the outdoor ones.

As far as the time lag τR is concerned, it can be observed that the
thermal loads being involved are essentially due to the solar radiation
transferred through windows, to the energy required for the thermal
treatment of the exchanged air, and, finally, to the heat transfer through
the building envelope opaque wall. The first two thermal loads are
substantially in phase with the outdoor temperature variation; an
outstanding reduction in the maximum thermal load could then occur by
designing the walls so as to delay favourably, as to the outdoor tem-
perature variations, the thermal load due to the heat transfer through
the building external walls. The periods P of practical interest are the
following: P=1h, which corresponds to very short time variations, such
as the ones relating to temperature control systems; P=24 h, which
corresponds to daily weather and temperature variations; a week cor-
responding to longer-term averaging of the building, and a year, useful
for the treatment of the heat transfer through the ground.

4. Resistance-capacity distribution optimization

This problem consists in minimizing the decrement factor σ, for
given values of the overall thermal resistance (R) and capacity (C), for
the realization of both external walls and internal elements. This prob-
lem is very simple and can be easily solved analytically. Under steady
conditions, from an energy point of view, the convenience of distrib-
uting the overall resistance as much as possible within the external wall
is evident. Under these conditions, the internal elements can be sche-
matized as a pure thermal capacity cint.

For the external wall a lumped-capacitance scheme is considered
subdividing the wall into n capacitive layers, each of them with capacity
cs (s = 1..n), and into n resistive layers, each of them with resistance rs;
the capacity of the innermost layer of the external wall is indicated by ĉn.
The room can be, then, represented by the following scheme [17]:

F. Leccese et al.
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[cint] [int] [ĉn] [rn]….…...[r2] [c1] [r1] [ext]

The indoor air temperature and the internal wall temperature are
identical in the adopted schematization. Writing cn= ĉn + cint, the pre-
vious scheme (named Γn because it is composed of n resistive layers and
n capacitive layers) can be posed in the following form:

[int] [cn] [rn]….…...[r2] [c1] [r1] [ext]

It is easy to verify that, under such conditions, we simply have:

σ = 1
|H|

where H is the second-raw and second-column of the transmission ma-
trix of the wall represented with the scheme Γn.

The optimal sequence of resistances and capacities in the scheme Γn
will be that maximizing the module of H by the following conditions: Σrs
= R and Σcs = C. Farther on, the square of the module of H, relating to
the scheme Γn will be indicated by ϕn. Under these hypothesis, the
choice of the wall optimal scheme is completely determined by a single
parameter μ = ωRC. According to the value of μ, optimal schemes with
very different characteristics can be obtained. The analysis can be
developed beginning from the lowest values of n, looking for the con-
ditions being able to maximize the quantity ϕn.

For n = 1 the scheme Γ1 (composed of one resistive and one capac-
itive layers) is unique and turns out to be of the following type:

[int] [C] [R] [ext]

characterized by the transmission matrix
(

1 0
jωC 1

)

×

(
1 R
0 1

)

It follows that:

H = 1+ jμ ϕ1 = 1+ μ2 σ = 1̅̅
̅̅̅̅
ϕ1

√ =
1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+ μ2

√

and the decrement factor σ decreases rapidly with μ.
It is easy to guess that the scheme Γ1, in which all the available

thermal resistance is disposed on the external wall outer face, turns out
to be the optimal one just for low values of μ. This is confirmed by the
analysis of the case with n = 2 (scheme Γ2, wall composed of two
resistive and two capacitive layers).

In the case n = 2 we have the following scheme Γ2:

[int] [c2] [r2] [c1] [r1] [ext]

with r1 + r2 = R; c1 + c2 = C. After developing calculations, the
following is obtained:

H = 1 − μ2c1c2r1r2
C2R2 + jμ c1r1 + c2r1 + c2r2

CR

If a maximum exists for the module of H, it obviously has to occur for c2/
C=r1/R; indicating this common value by z (z = c2/C=r1/R), it will be
enough to look for the maximum of

ϕ2 = 1+ μ2z2(2 − z2)+ μ4z4(1 − z)4

For low values of μ, this function is increasing with z (0 < z < 1); for μ
lower than 11 a relative maximum arises whose value is lower than the
absolute maximum localized in z= 1; for μ> 11 the value of the interior
maximum exceeds the value in z = 1 (i.e. it becomes an absolute
maximum). More precisely, for μ = 11 the maximum value of the
module of H is reached for z = 0.618.

In other words, 11 turns out to be the value of μ for which the scheme
with n = 2 becomes more convenient than that with n = 1. For such a
value, the resistances and capacities of the optimal schemes are the

following r1/R=c2/C=z≈0.618, r2/R=c1/C=1–z≈0.382. The scheme Γ2
remains optimal as long as the parameter μ does not exceed a new
threshold value, which can be analysed studying analogously the
scheme Γ3 (wall composed of three resistive and three capacitive layers)
and so on. The calculations obviously become increasingly heavy as n
increases, and for n > 2 it results to be easier to proceed numerically.
The obtained results are summarized in Table 1. The values of the
resistance (rs/R) and capacity (cs/C) ratios of the various layers,
necessary for the realization of the corresponding optimal schemes,
versus μ are represented in Fig. 2. The trend of the so optimized decre-
ment factor σ versus μ is shown in Fig. 3.

A simple approximated solution of the problem consists in assuming
as nearly-optimal schemes, those with the resistance-capacity ratios
equal for all the layers

rs
R
=

cs
C
=

1
n

It is easy to calculate for the schemes, with n from1 to 3, the expressions
for the element H of the transmission matrix. The calculation results are
summarized in Table 2, where pn = μ/n2.

The first of them is clearly exact, the other ones provide values of the
optimal decrement factor σ with the approximation of the 3 % for μ <
60; this shows that the subdivision into equal parts of the available
resistance and capacity represents, in each of the above-indicated in-
tervals of μ, a reasonable practical realization of the optimal conditions.

The influence of the thermal resistances relating to the internal ele-
ments and, in particular, of the surface thermal resistance, localized
between such elements and the indoor air, can result to be remarkable;
the presence of this surface thermal resistance determines, in some
cases, an increase in the decrement factor σ, while, in other cases, it
determines a small reduction of σ.

5. Analysis of the room internal elements influence

In the previous section room internal elements have been schema-
tized as a pure thermal capacity. Such a schematization is drastic. In fact,
if several insulating materials (e.g. polyurethane, polystyrene, etc…) are
assimilable, with optimal approximation, to pure thermal resistances,
currently there are very few materials (e.g. phase-change materials)
assimilable to pure thermal capacities. Besides, the inner and outer
surface thermal resistances relating to the internal elements are not
negligible and can have a remarkable influence. In this section, the in-
fluence of the internal elements on the periodic heat transfer is analysed,
considering the complex quantity Λ, and some examples are shown to
discuss this influence.

The influence of the internal elements on the quantity Λ, according
to its definition through Eq. (10) is exerted by the complex admittance λ.
For determining λ, a partition wall composed of a homogeneous layer
with thickness x was considered. The partition wall has equal inner and
outer surface thermal resistances rint = 0.13 m2•K•W− 1 (symmetric
partition) [38]. In such conditions, the transmission matrix results to be

Table 1
Calculation results: ranges of μ for which each wall scheme is convenient.

Scheme
ID

Number of
layers

Layers features Range of μ for which
the scheme is
convenient

Γ1 2 one resistive (disposed on
the outside) and one
capacitive layers

0 < μ ≤ 11

Γ2 4 two resistive and two
capacitive layers
(alternated)

11 < μ ≤ 31

Γ3 6 three resistive and three
capacitive layers
(alternated)

31 < μ ≤ 60

F. Leccese et al.
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the following:
(

e fgh
)

×

(
1 rint
0 1

)

=

(

e erint + fggrint + h
)

The admittance λ can be calculated according to Eq. (7), resulting in

λ =
λ0

1+ rintλ0
(12)

with λ0 =
̅̅
j

√
λ∞ tanh

( ̅̅̅̅̅
2j

√
x
ν

)
.

By way of example, some commonly used materials for the creation
of building partitions were considered. The thermophysical character-
istics of the considered materials are summarized in Table 3, where: ρ
(kg•m− 3) is density, Cp (kJ•kg− 1•K− 1) the specific heat at constant
pressure, k (W•m− 1•K− 1) the thermal conductivity, ξ = ρCpk
(J•W•m− 4•K− 2) the thermal effusivity and β = k/(ρCp) (m2•s− 1) the
thermal diffusivity. In Table 3 the penetration depth values of a tem-
perature variation within a semi-infinite solid ν =

̅̅̅̅̅̅̅̅̅̅̅
2β/ω

√
and the

conductance λ∞ =
̅̅̅̅̅̅
ωξ

√
(both calculated for a 24 h period) are also

reported.
In the Fig. 4 and Fig. 5, the trends of |λ| and θ versus the thickness x

are respectively reported. The trends, for the different materials that
build-up the partition wall, were obtained from Eq. (12) considering an
oscillation period P=24 h. The trend for the material brick-2 (see Tab. 3)
is similar to those of the other bricks and placed between the trends
brick-1 and brick-3. The same happens for the material concrete-2 (see
Tab. 3) with respect to the other concretes. As can be seen from the
trends, for low values (approximately lower than 0.1 m) of x, |λ| tends to
increase (and θ to decrease) with the increase of x, leading to an increase
of Λ, keeping constant admittance relating to the air and constant ge-
ometry of the room (see Eq. (10)). For medium values of x (generally

Fig. 2. Variation of rs/R and of cs/C with μ. Zone Γ1: the segment shows r1/
R=c1/C=1. Zone Γ2: the upper curve shows r1/R=c2/C, the lower curve shows
r2/R=c1/C. Zone Γ3: from the top to the down the curves show r1/R=c3/C; r3/
R=c1/C; r2/R=c2/C. Zone Γ4: from the top to the bottom the curves show r1/
R=c4/C; r4/R=c1/C; r2/R=c3/C; r3/R=c2/C.

Fig. 3. Variation of optimized decrement factor σ with μ.

Table 2
Expressions for the element H of the transmission matrix, in the case of rs/R=cs/
C=1/n and n ranging from 1 to 3.

n pn Hn

1 μ 1 + j pn
2 μ/4 1 + j pn (3-pn)
3 μ/9 1 + j pn (6-5pn-pn2)

Table 3
Thermal properties of the considered materials.

Material ρ
(kg/m3)

Cp (kJ/kgK) k
(W/mK)

ξ⋅10-5

(J2/sm4K2)
β 107

(m2/s)
ν
(m)

λ∞

(W/m2K)

Brick-1 600 0.84 0.25 1.26 4.96 0.117 3.03
Brick-2 1000 0.84 0.35 2.94 4.17 0.107 4.62
Brick-3 1200 0.84 0.43 4.33 4.27 0.108 5.61
Concrete-1 (cellular) 400 0.88 0.15 0.528 4.26 0.108 1.96
Concrete-2 (cellular) 600 0.88 0.20 1.06 3.79 0.102 2.77
Concrete-3 (lightweight) 1600 0.88 0.70 9.86 4.97 0.117 8.47
Pine wood 550 1.66 0.15 1.37 1.64 0.067 3.16

Fig. 4. Trends of |λ| (W•m− 2•K− 2) versus x (m), for P=24 h and with rint =
0.13 m2

•K•W− 1.
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between 0.1 m and 0.3 m), |λ| reaches the maximum value and then
decreases as x increases. The maximum of |λ |, even if not very signifi-
cant from a practical point of view, involve a minimum for the room
decrement factor, and point out resonance effects due to the internal
elements [39]. For large values of x (generally higher than 0.3 m, rather
large compared to the typical thicknesses of partition walls realized in
contemporary building), |λ| reaches a saturation value independent of
x, but dependent on the material. For the different materials, the satu-
ration values can be predicted considering that, for x≫ν, |λ| and θ are
given by:

|λ| =
λ∞

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
̅̅̅
2

√
rintλ∞ + (rintλ∞)2

√ θ = arctan
(

1
1+

̅̅̅
2

√
rintλ∞

)

(13)

The saturation values, calculated using Eqs. (13) are shown in Table 4,
for all the considered materials. For completeness, in Figs. 6 and 7 the
saturation values are shown, considering the possible values of the
surface thermal resistance on the face of the partition looking onto the
considered room (i.e. 0.13 m2•K•W− 1 for horizontal heat flux, 0.10
m2•K•W− 1 for upward heat flux, 0.17 m2•K•W− 1 for downward heat
flux, indicated by the technical standards [38]).

In some cases, for essentially aesthetical reasons, the partitions
(horizontal and vertical) are covered with layers made of particular
materials: plaster, wood, carpeting etc. For the investigation of the ef-
fects caused by these coverings, as examples two Brick-3 walls were
considered, the first being 25 cm in thickness, the second 12 cm. In both
cases the coverings are assumed as symmetrically applied on the two
faces of the wall, and calculations were developed for P=24 h, with
equal surface thermal resistances rint = 0.13 m2•K•W− 1. The following
three types of covering material were considered: a material with
essentially capacitive properties, such as the lime-mortar plaster with

thermal effusivity higher than that of the Brick-3; a material with
essentially resistive properties, such as the polyurethane with thermal
effusivity sensibly lower than that of the Brick-3, and, finally, a material
with resistive and capacitive thermal properties, such as fir-wood, with
thermal effusivity lower than that of the Brick-3. The thermal properties
of the covering materials are shown in Table 5.

In Fig. 8, the trends of |λ| versus the thickness y of the additional
layer for the two considered walls is reported. In the figure, the bold
curves are referred to the 25 cm thick wall, and the thin curves are
referred to the 12 cm thick wall. The curves relating to the addition of
plaster, fir-wood and polyurethane were marked by the following let-
ters: PL, FW, and PO respectively.

From the figure it is clear that the application of a plaster layer al-
ways involves an increase in |λ| with consequent increase in |Λ| and
decrease in σ (see Eqs. (9) and (10)). On the contrary, the application of
a covering layer with an effusivity lower than that of the brick (poly-
urethane and also fire-wood) always involves a decrease in |λ |, with
consequent decrease in |Λ| and increase in σ. The trends of the phase θ
versus y is more complex and the curves referred to the addition of
plaster, wood and polyurethane may show some minimums. In any case,
the addition of a material with thicknesses of practical interest (y < 5
cm) always leads to a slight decrease in θ. Obviously, according to the
Eq. (10), the admittance λ of the internal elements has to be weighed by
the corresponding geometrical factor α, which becomes very important
for the determination of the final value of Λ. Generally, for the most
common elements and for P=24 h, the values |Λ| are in the range 5÷ 50
Wm-2K, and they are significantly dependent on the parameters dis-
cussed in this section.

6. Optimization of the external wall considering the room
internal elements influence

This problem consists in determining the resistance-capacity distri-
bution within the external wall minimizing the decrement factor σ,
having assigned: the room internal elements (and then Λ), the external
wall overall thermal resistance r and overall thermal capacity c.

According to Eqs. (9) and (11), the decrement factor σ can be
calculated as

σ = 1
|H+ FΛ|

(14)

Introducing F̃ = F/r and D=r | Λ |, Eq. (14) can be rewritten as:

σ = 1
⃒
⃒
⃒H+ F̃D

⃒
⃒
⃒

(15)

From equation (15) and the definitions of H and F (indicated in the
technical standards [19] and also deducible from Appendix 1), it is
possible to demonstrate that optimal external wall stratigraphy turns out
to depend only on the three dimensionless parameters D, γ (γ= ωrc) and
φ (phase of Λ). The optimization methodology can be discussed by
treating the following three cases separately.

6.1. Optimization for heavy internal elements

In the case of internal elements with |F•Λ|≫|H| (this condition is
generally satisfied when elements are heavy and with remarkable
thermal capacity), according to the Eq. (14), the following can be
considered:

σ ≈ 1
|FΛ|

Considering a fixed value of | Λ|, the optimal external walls are those
maximizing |F |.

This problem was already addressed in previous studies [15,40], in

Fig. 5. Trends of θ (deg) versus x (m), for P=24 h and with rint =

0.13 m2•K•W− 1.

Table 4
|λ| and θ saturation values for different materials, for P¼24 h and with rint
¼ 0.13 m2•K•W¡1.

Material |λ|
(Wm2K)

θ
(deg)

Brick-1 2.15 37.83
Brick-2 2.80 29.50
Brick-3 3.11 26.05
Concrete-1 (cellular) 1.56 47.47
Concrete-2 (cellular) 1.86 42.24
Concrete-3 (lightweight) 3.79 19.16
Pine wood 2.21 36.95

F. Leccese et al.
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in which it was highlighted that the optimized resistance-capacity dis-
tributions within the external wall are representable by the following
scheme (named Tn and composed of n capacitive layers and n + 1
resistive layers):

[int] [rn+1] [cn] [rn]….…...[r2] [c1] [r1] [ext]

The wall has been subdivided into n purely capacitive layers, each of
them with thermal capacity cs (s = 1..n), and into n + 1 purely resistive
layers, each of them with thermal resistance rs (s = 1..n + 1); the
different layers are disposed in sequence, alternating a resistive layer
and a capacitive one.

The transmission matrix of a wall representable with the scheme (Tn)
is given by the following product:

(
1 rn+1
0 1

)

×

(
1 0

jωcn 1

)

×

(
1 rn
0 1

)

× ...×

(
1 r2
0 1

)

×

(
1 0

jωc1 1

)

×

(
1 r1
0 1

)

Obviously, for large n the scheme (Tn) can approximate well any
distributed-parameter real wall.

Introducing the parameter γ, such optimization results can be briefly
resumed as follows.

For γ < 18, the symmetrical scheme T1 (with n = 1) turns out to be
optimal, that is, a three-layer wall with the capacitive layer (c) disposed
between two equal resistive ones (r/2):

[int] [r/2] [c] [r/2] [ext]

For 18 < γ < 42 a scheme with n = 2 results to be optimal, that is to
say, a five-layer wall with three resistive and two capacitive ones:

[int] [r3] [c2] [r2] [c1] [r1] [ext]

For 42 < γ < 76 a scheme with n = 3 (seven-layer wall) turns out to
be optimal. The optimal resistance and capacity values to be assigned to
the different layers are analysed in [40]; a good approximation is ob-
tained assuming the same values for all the resistances and capacities of
the different layers [40].

For γ→∞ the optimal wall tends to a homogeneous wall with uni-
formly distributed resistive and capacitive parameters.

Fig. 6. Values of |λ| (W•m− 2
•K− 2) obtained from Eq. (13) for different materials: a) rint = 0.10 m2

•K•W− 1
, b) rint = 0.13 m2

•K•W− 1
, c) rint = 0.17 m2

•K•W− 1.

Fig. 7. Values of θ (deg) obtained from Eq. (13) for different materials: a) rint = 0.10 m2•K•W− 1
, b) rint = 0.13 m2•K•W− 1

, c) rint = 0.17 m2•K•W− 1.

Table 5
Thermal properties of the considered covering materials.

Material ρ
(kg/
m3)

Cp
(kJ/
kgK)

k
(W/
mK)

ξ⋅10-5

(J2/
sm4K2)

β
107

(m2/
s)

ν
(m)

λ∞
(W/
m2K)

Lime-mortar
plaster

1800 0.91 0.8 13.1 4.88 0.116 9.762

Polyurethane 35 1.6 0.035 0.0196 6.25 0.131 0.378
Fir-wood 450 1.38 0.12 0.745 1.93 0.073 2.328
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In South Europe the walls composing the building envelope show
very often values of γ < 18; just in the case of particularly massive walls
with remarkable thicknesses of the resistive layer it can results γ > 18.
However, in these cases, almost in all the situations of interest, it results
γ < 42.

6.2. Optimization for light internal elements

In the case of internal elements with |F•Λ|≪|H| (this condition is
generally satisfied if elements are light and with small thermal capacity)
the following can be written according to the Eq. (14),

σ ≅
1
|H|

The optimal external walls are those maximizing |F |. This problem was
already addressed in previous Section 4 and coincide with those with the
scheme Γn (composed of n capacitive layers and n resistive layers), on
condition that γ will be replaced with μ (see Section 4 for full details).

6.3. Optimization for generic internal elements

When |F•Λ|and |H| are comparable, the complex numbers, which
are at the denominator in the definition of σ (see Eqs. (14) and (15)), add
and the phase of Λ (φ) also plays a relevant role. In this case, the optimal
solution could be either a Tn scheme or an Γn scheme, according to the
value of γ. Hence, the optimization problem consists in determining, for
given D and φ, the resistance-capacity distribution within the external
wall capable to minimize σ, in function of γ, according to the schemes Tn
and Γn.

The method adopted to solve this problem is the same as that used in
Section 4; in this case calculations become very heavy even for small
values of n. The problem was numerically solved for an outdoor air
temperature variation with P=24 h. Some of the obtained results are
summarized in Figs. 9 and 10, in order to show the considerations that
should be conducted for the purpose of determining the optimal
resistance-capacity distribution within the external wall.

In Fig. 9, the trends of σ with γ for two values of D (D=5, D=20) and
for φ= π/4 are reported. For D=5 (solid-line curve) the optimal external
walls are: Γ1 for 0< γ< 2.1; T1 for 2.1< γ< 11.1; Γ2 for 11.1< γ< 17.8;
T2 for γ> 17.8. For D=20 (dashed curve) the optimal external walls are:
Γ1 for 0 < γ < 0.7; T1 for 0.7 < γ < 17.1; T2 for γ > 17.1.

In Fig. 10, an analysis of the way in which the resistance-capacity
distribution varies as D and γ vary, is shown for φ = π/4. In the figure,
the zones characterized by different schemes are pointed out; such zones
are delimited by limit curves showing the change from an optimal
scheme to another. For low values of D, the optimal scheme Γn is

Fig. 8. Brick-3 wall with P=24 h. Variation of |λ| with y: wall 25 cm in
thickness, bold curves; wall 12 cm in thickness, thin curves. The curves relating
to the addition of plaster, wood and polyurethane were marked by the
following letters: PL, FW, and PO respectively. Fig. 9. Optimal schemes and variation of σ with γ for φ = π/4 and for two

values of D (D=5 and D=20).

Fig. 10. The case of φ = π/4. The zones Γ1, T1, Γ2, T2 are delimited by limit
curves showing the change from an optimal scheme to another.

F. Leccese et al.
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convenient; in particular, for γ < 11 the scheme Γ1 turns out to be
optimal, while, for γ> 11 the scheme Γ2 is to be preferred, in accordance
with Section 4. For high values of D (D>≈20), the scheme Tn is conve-
nient; in particular for γ<≈18, the scheme T1 turns out to be optimal,
while, for γ>≈18, the scheme T2 is to be preferred, in accordance with
Section 6.1. For mean values of D, for instance, D=5, it turns out to be
clear that, as γ increases, the external wall optimal scheme varies as
follows: for γ< 2.1 it is of the type Γ1, for 2.1< γ< 11.1 it is T1, for 11.1
< γ < 17.8 it is Γ2 and, for γ > 17.8, it is T2. For D higher than 10, the
scheme Γ2 is never optimal, and a direct change occurs from T1 to T2 (Γ1
is optimal only for very low and of little practical interest values of γ).

Note that the results shown in the figure refer to the input data used
by the authors, but the approach followed has general validity and can
be repeated for various φ. An analogous analysis was made for example
for values of φ differing from π/4. It is clear that the most remarkable
differences occur for the central part of the Fig. 10 (mean values of D).
By way of example, for D=5, the transition from the optimal scheme Γ1
to the T1 occurs at γ = 0.9 for φ = π/8, at γ = 2.1 for φ = π/4, and at γ =
4.1 for φ = 3π/8. Analogously, the transition from the scheme T1 to the
Γ2 occurs at γ = 5.9 for φ = π/8, at γ = 11.1 for φ = π/4, and at γ = 14.2
for φ = 3π/8. The values of σ calculated under optimal conditions for
such phase values differ from each other by few percentage units (less
than 5 %). Fig. 9 (and analogous graphs that can be made with different
φ values) can be considered as a selection abacus, useful for identifying
the optimal scheme. It can constitute an effective support tool for de-
signers in the early design stage when the technical solutions to maxi-
mize the thermal resilience of the building are selected.

7. Limitations and future developments

The present study is a contribution to the ongoing discussion, in the
scientific community, about the optimization of the opaque envelope to
enhance thermal resilience of the buildings. In accordance with the
complexity of the analytical treatment of the problems faced, this study
presents the following limitations.

The oscillations of external environmental conditions (in particular
sol–air temperature) of the present study are considered purely sinu-
soidal with a period of 24 h. The results shown and described in this
paper refer exclusively to these conditions. Actually, the oscillations of
external environmental conditions are, as is known, different from pure
sinusoids. However, the validity of the method is not compromised,
because results similar to those shown can be obtained, with the use of
the described method, for generic fluctuations of external conditions,
breaking down the generic fluctuation into a sum of sinusoidal fluctu-
ations using harmonic analysis.

The materials used for the analyses in the present study (see in
particular Table 3 and Table 5), obviously, do not cover all the
commercially available solutions. They should be considered as signif-
icant examples. Nowadays, designers have a vast range of products at
disposal with which to compose their own technical solutions. However,
the proposed optimization methodology remains valid regardless of the
material used.

To date, no experimental validations of the described results are
available. This element represents a possible future development of the
study. However, as indicated in the text (see Section 3), the heat transfer

matrix method on which this study is based has been validated by
numerous studies and its effectiveness widely proven by the scientific
literature.

8. Conclusions

In the present paper, the distribution of given thermal resistance and
capacity between the external wall and the internal elements was
studied within a lumped-capacitance schematization and in absence of
heating/cooling plants. More precisely, the distribution minimizing the
decrement factor σ and then optimizing the building purely passive
behaviour was sought. The obtained result indicates the optimal situa-
tion to be that in which the internal elements results to be completely
capacitive, while the external wall should be realized alternating resis-
tive layers with capacitive ones by a sequence depending on a single
parameter μ (product of angular frequency of external temperature os-
cillations, overall thermal resistance and overall thermal capacity of
both external wall and internal elements). Such a solution clearly seems
to be hardly realizable, even in an approximated way, in the building
practice.

For a higher closeness to practical applications, the internal elements
(partition wall and slabs) of the room were schematized with a
distributed-parameter structure provided with complex admittance Λ.
After analysing the influence of the internal elements on the room
admittance, the optimal stratigraphy of the external wall (having ther-
mal resistance r and thermal capacity c assigned) was determined, in
order to minimize the decrement factor σ. The results obtained highlight
how the optimal resistance-capacity distribution within the external
wall turns out different for very heavy, very light and generic walls. In
particular, for generic walls, the optimal solution (characterised by the
combination of the number of layers to be used and their sequence) can
be determined on the basis of an abacus proposed in an original way in
this paper. The abacus, drawn for fixed thermal and geometric charac-
teristics of the internal elements and hence knowing the value of com-
plex admittance Λ (in modulus and phase), reports the product r|Λ| in
ordinates and the product ωrc (ω angular frequency of the outdoor
temperature variation) in abscissae. It is divided into a series of regions,
each of which corresponds to the set of ωrc − r|Λ| pairs for which the
optimal solution is the same, based on the calculations carried out.
Consequently, the designer, using the abacus, is able to determine the
optimal solution for the external wall for each ωrc − r|Λ| pair. The
abacus, if drawn according to the indication of the paper, can constitute
an effective support tool for designers in the early design stage when the
technical solutions to maximize the thermal resilience of the building
are selected.
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Appendix 1. Essential details on heat transfer matrix method

Consider an external wall of a building, which separates an internal room from the external environment. The external temperature is assumed to
oscillate in time with an angular frequency ω and a period P=2π/ω. The internal room temperature will also generate oscillations, exhibiting the same
angular frequency and a complex amplitude of the external temperature. In free running behaviour of the building, the internal wall surface complex
amplitudes Tint (related to the temperature) and qint (related to the heat flux) are linearly linked to the corresponding external wall surface quantities
Text and qext, as follows:
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(
Tint
qint

)

=

(
E F
G H

)

×

(
Text
qext

)

= Z
(
Text
qext

)

(A1.1)

where Z represents the wall transfer matrix. In the case of a multi-layered wall consisting of a sequence of N homogeneous layers, the transfer matrix
can be evaluated as:

Z = Zint

(
∏N

s=1
Zs

)

Zext (A1.2)

where Zs is the transfer matrix of the generic s-th layer, and Zint, Zext are defined as:

Zint =

(
1 Rint
0 1

)

; Zext =

(
1 Rext
0 1

)

with Rint and Rext the internal and external surface thermal resistances respectively.
If xs, ρs, ks and cs are the values of thickness (m), density (kg/m3), thermal conductivity (W/mK) and specific heat at constant pressure (J/kgK)

respectively, related to the s-th homogeneous layer (with thermal resistance Rs = xs/ks and surface thermal capacity Cs = ρs•xs•cs), the corresponding
Zs matrix elements will be given by

Es = Hs = cosh((j⋅ω⋅Rs⋅Cs)0.5); Fs = Gs = Rs2⋅(j⋅ω⋅Rs⋅Cs)− 1

Appendix 2. Details on the influence of furnishings

Furnishings can significantly contribute to the room total admittance Λ, and this contribution is usually much more remarkable than that of the
room indoor air. We often think, to a first approximation, that the contribution of the furnishings could be included in the term U we find in the Eq.
(10). It would involve the above-mentioned objects to be considered as sufficiently thin objects so that their inner conductive resistance could be
disregarded (i.e. to be considered as purely capacitive) and the influence of the surface thermal resistances to be disregarded.

In this appendix three furnishings characterized by a simple geometric shape are studied: a slab, a cylinder and a sphere. The admittance λ0 of each
object is calculated, disregarding the inner and outer surface thermal resistances, as ratio between the heat flux coming into the solid and the thermal
oscillation on its surface; the effective admittance λ will be then calculated with the Eq. (12).

A SLAB
Let us consider a homogeneous vertical slab to have transversal dimensions much larger than thickness d, and to be lapped by the air on both faces,

each of them having area A. What was said in the text with respect to the internal wall delimiting the room can be repeated for each face; it follows that

λ0 =
̅̅
j

√
λ∞tanh

( ̅̅̅
j
2

√

⋅
d
ν

)

The weight α will be: α =S*/S ≅ 2A/S, with S* the object’s area involved in the thermal transfer.
B. CYILINDER
Let us consider a homogeneous vertical cylinder to have length ℓ being remarkable compared to the radius R. If an oscillating solution proportional

to exp(jωτ) is searched for the temperature, the Fourier equation can be written (in cylindrical coordinates) in the following form:

1
w

∂
∂w

(

w
∂T
∂w

)

−
jω
β
T = 0 (A2.1)

with w radial coordinate. Posing, for writing shortness,

ψ =

̅̅̅̅̅
jω
β

√

=

̅̅̅̅̅
2j

√

ν

the general integral in the Eq. (A2.1) can be expressed by the modified Bessel functions I0(ψw) and K0(ψw) in the form [29]:

T = [C1I0(ψw)+C2K0(ψw)]⋅exp(jωτ)

in which, according to the obvious condition that the temperature should remain finite on the symmetry axis, C2 = 0 has to be considered. The inlet
flow turns out to be

qe = k
∂T
∂w = kC1ψI1(ψw)⋅exp(jωτ)

where it was considered that the derivative of the function I0, compared to its argument, is identical to the function I1. From the previous relations the
following is obtained (the weight α will be: α =S*/S=2πR ℓ/S.):
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λ0 =
(qe

T

)

w=R
= kψ I0(ψR)

I1(ψR)
=

̅̅
j

√
λ∞

I0

(
̅̅
j
2

√

⋅Rν

)

I1

(
̅̅
j
2

√

⋅Rν

)

c.SPHERE
A homogeneous sphere with radius R is being considered. The Fourier equation in spherical coordinates has the following form

1
w2

∂
∂w

(

w2 ∂T
∂w

)

−
jω
β
T = 0 (A2.2)

with w radial coordinate. The general integral of Eq. (A2.2) is [29]:

T =
1
w
[C1sinh(ψw)+C2cosh(ψw)]⋅exp(jωτ)

where we should have C2 = 0 to assure the T to be finite in the middle of the sphere. The inlet heat flow is given by

qe = k
∂T
∂w = kC1ψI1(ψw)⋅exp(jωτ)

and then

λ0 =
(qe

T

)

w=R
=

k
R

[
ψR

tanh(ψR)
− 1
]

=

̅̅̅
j

√
λ∞

tanh

(
̅̅
j
2

√

⋅Rν

) −
k
R

The weight will be α=S*/S=4πR 2/S. In this case, in the Eq. (13), an opportunemean value will have to be considered for rint. In any case, when the
characteristic dimensions (d andR) become very large compared to ν , then we shall have λ0→√j λ∞. If, on the other hand, such dimensions tend to
zero, it can be demonstrated that λ0→jωm, where m is the capacity per outer surface unit of the solid under examination; in these conditions, and
disregarding the inner and outer surface thermal resistances, the solid under examination can be assimilated to a pure thermal capacity. Obviously,
according to the Eq. (12), it does not involve that λ is pure imaginary and, then, that λd can be added to U in the Eq. (10).

Let consider, by way of first example, a low internal partition wall made of Brick-1 (face wall) being 3 m in length, 1,6 m in height and 0,12 m
(S*≅9.60 m2) in thickness. Assuming rint= 0.13 m2 K/W and P=24 h, S*λ=7.95+ 17.34 J (W K− 1) is obtained. By way of second example, let consider
a column or a concrete cylindric pilaster being 30 cm in diameter and 3 m (S*≅2.83 m2) in height; assuming rint = 0.13 m2 K/W and P=24 h,
S*λ=9.90 + 7.461 J (W K− 1) is obtained.
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transmittance effect on energy consumption of Mediterranean buildings with
different thermal mass, Appl. Energy 252 (2019) 113437, https://doi.org/
10.1016/j.apenergy.2019.113437.

[5] F. Stazi, G. Ulpiani, M. Pergolini, C. Di Perna, The role of areal heat capacity and
decrement factor in case of hyper insulated buildings: An experimental study,
Energ. Buildings 176 (2018) 310–324, https://doi.org/10.1016/j.
enbuild.2018.07.034.

[6] A. De Gracia, A. Castell, M. Medrano, L.F. Cabeza, Dynamic thermal performance
of alveolar brick construction system, Energ. Conver. Manage. 52 (2011)
2495–2500, https://doi.org/10.1016/j.enconman.2011.01.022.

[7] S.B. Sadineni, S. Madala, R.F. Boehm, Passive building energy savings: a review of
building envelope components, Renew. Sustain. Energy Rev. 15 (2011)
3617–3631, https://doi.org/10.1016/j.rser.2011.07.014.

[8] B. Xu, X. Xie, G. Pei, New method of equivalent energy consumption for evaluating
thermal performance of energy-saving materials in passive buildings, Appl. Therm.
Eng. 230 (2023) 120774, https://doi.org/10.1016/j.
applthermaleng.2023.120774.

[9] Y. Yang, S. Chen, Thermal insulation solutions for opaque envelope of low-energy
buildings: A systematic review of methods and applications, Renew. Sustain.
Energy Rev. 167 (2022) 112738, https://doi.org/10.1016/j.rser.2022.112738.

[10] F. Bisegna, B. Mattoni, P. Gori, F. Asdrubali, C. Guattari, L. Evangelisti,
S. Sambuco, F. Bianchi, Influence of insulating materials on green building rating
system results, Energies 9 (9) (2016) 712, https://doi.org/10.3390/en9090712.

[11] C. Fabiani, A.L. Pisello, Coupling controlled environmental forcing and transient
plane source method: an innovative thermal characterization procedure for
building insulation materials, Appl. Therm. Eng. 130 (2018) 254–263, https://doi.
org/10.1016/j.applthermaleng.2017.10.155.

[12] H. Asan, Numerical computation of time lags and decrement factors for different
building materials, Build. Environ. 41 (2006) 615–620, https://doi.org/10.1016/j.
buildenv.2005.02.020.

[13] N.C. Balaji, M. Mani, B.V. Venkatarama Reddy, Dynamic thermal performance of
conventional and alternative building wall envelopes, J. Build. Eng. 21 (2019)
373–395, https://doi.org/10.1016/j.jobe.2018.11.002.

[14] H. Khaleghi, A. Karatas, Assessing the dynamic thermal performance of
prefabricated wall panels in extreme hot weather conditions, J. Build. Eng. 82
(2024) 108351, https://doi.org/10.1016/j.jobe.2023.108351.

[15] M. Ciampi, F. Leccese, G. Tuoni, Multi-layered walls design to optimize building-
plant interaction, Int. J. Therm. Sci. 43 (2004) 417–429, https://doi.org/10.1016/
j.ijthermalsci.2003.09.006.

[16] G. Barone, A. Buonomano, G.F. Giuzio, A. Palombo, Towards zero energy
infrastructure buildings: optimal design of envelope and cooling system, Energy
279 (2023) 128039, https://doi.org/10.1016/j.energy.2023.128039.

[17] F. Leccese, G. Salvadori, F. Asdrubali, P. Gori, Passive thermal behaviour of
buildings: performance of external multi-layered walls and influence of internal
walls, Appl. Energy 225 (2018) 1078–1089, https://doi.org/10.1016/j.
apenergy.2018.05.090.

[18] S. Flores-Larsen, C. Filippín, F. Bre, New metrics for thermal resilience of passive
buildings during heat events, Build. Environ. 230 (2023) 109990, https://doi.org/
10.1016/j.buildenv.2023.109990.

[19] EN ISO 13786, 2017 (Technical Standard) - Thermal performance of building
components. Dynamic thermal characteristics. Calculation methods.

[20] H. Asan, Investigation of wall’s optimum insulation position from maximum time
lag and minimum decrement factor point of view, Energ. Build. 32 (2000)
197–203, https://doi.org/10.1016/S0378-7788(00)00044-X.

[21] M. Ozel, Thermal performance and optimum insulation thickness of building walls
with different structure materials, Appl. Therm. Eng. 31 (2011) 3854–3863,
https://doi.org/10.1016/j.applthermaleng.2011.07.033.

F. Leccese et al.

https://doi.org/10.1016/j.eneco.2023.106865
https://doi.org/10.1016/j.apenergy.2019.113437
https://doi.org/10.1016/j.apenergy.2019.113437
https://doi.org/10.1016/j.enbuild.2018.07.034
https://doi.org/10.1016/j.enbuild.2018.07.034
https://doi.org/10.1016/j.enconman.2011.01.022
https://doi.org/10.1016/j.rser.2011.07.014
https://doi.org/10.1016/j.applthermaleng.2023.120774
https://doi.org/10.1016/j.applthermaleng.2023.120774
https://doi.org/10.1016/j.rser.2022.112738
https://doi.org/10.3390/en9090712
https://doi.org/10.1016/j.applthermaleng.2017.10.155
https://doi.org/10.1016/j.applthermaleng.2017.10.155
https://doi.org/10.1016/j.buildenv.2005.02.020
https://doi.org/10.1016/j.buildenv.2005.02.020
https://doi.org/10.1016/j.jobe.2018.11.002
https://doi.org/10.1016/j.jobe.2023.108351
https://doi.org/10.1016/j.ijthermalsci.2003.09.006
https://doi.org/10.1016/j.ijthermalsci.2003.09.006
https://doi.org/10.1016/j.energy.2023.128039
https://doi.org/10.1016/j.apenergy.2018.05.090
https://doi.org/10.1016/j.apenergy.2018.05.090
https://doi.org/10.1016/j.buildenv.2023.109990
https://doi.org/10.1016/j.buildenv.2023.109990
https://doi.org/10.1016/S0378-7788(00)00044-X
https://doi.org/10.1016/j.applthermaleng.2011.07.033


Applied Thermal Engineering 257 (2024) 124084

13

[22] M. Ozel, Effect of insulation location on dynamic heat-transfer characteristics of
building external walls and optimization of insulation thickness, Energ. Buildings
72 (2014) 288–295, https://doi.org/10.1016/j.enbuild.2013.11.015.

[23] K.J. Kontoleon, T.G. Theodosiou, K.G. Tsikaloudaki, The influence of concrete
density and conductivity on walls’ thermal inertia parameters under a variety of
masonry and insulation placements, Appl. Energy 112 (2013) 325–337, https://
doi.org/10.1016/j.apenergy.2013.06.029.

[24] K.J. Kontoleon, C. Giarma, Dynamic thermal response of building material layers in
aspect of their moisture content, Appl. Energy 170 (2016) 76–91, https://doi.org/
10.1016/j.apenergy.2016.01.106.

[25] P. Gori, L. Evangelisti, C. Guattari, Description of multilayer walls by means of
equivalent homogeneous models, Int. Commun. Heat Mass Transfer 91 (2018)
30–39, https://doi.org/10.1016/j.icheatmasstransfer.2017.11.008.

[26] Y. Lu, J. Hu, K. Zhong, Optimization of insulation layer location and distribution
considering maximum time lag and damping factor, Case Stud. Therm. Eng. 30
(2022) 101766, https://doi.org/10.1016/j.csite.2022.101766.

[27] Y. Lu, J. Hu, J. Yu, L. Yuan, K. Bao, Analytical solutions for decrement factor and
phase shift of wall under periodic fluctuation of outdoor air temperature, Appl.
Therm. Eng. 242 (2024) 122487, https://doi.org/10.1016/j.
applthermaleng.2024.122487.

[28] S. Wang, Y. Kang, Z. Yang, J. Yu, K. Zhong, Numerical study on dynamic thermal
characteristics and optimum configuration of internal walls for intermittently
heated rooms with different heating durations, Appl. Therm. Eng. 155 (2019)
437–448, https://doi.org/10.1016/j.applthermaleng.2019.04.005.

[29] H.S. Carslaw, J.C. Jaeger, Conduction of heat in solids. Oxford University Press, 2nd

edition, ISBN: 0198533683.
[30] J.H. Lienhard IV, J.H. Lienhard V, A heat transfer textbook (5th edition).

Phlogiston Press, Cambridge, USA, 2020.
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Green’s function to thermal response factors for composite planar structure with
experimental validation, Int. J. Therm. Sci. 139 (2019) 129–143, https://doi.org/
10.1016/j.ijthermalsci.2019.01.020.

[38] EN ISO 6946, 2017 (Technical Standard) - Building components and building
elements. Thermal resistance and thermal transmittance. Calculation methods.

[39] G. Tuoni, Behavior of walls in periodic thermal regime and resonance effects (in
Italian), La Termotecnica 1 (1983) 40–48.

[40] M. Ciampi, F. Fantozzi, F. Leccese, G. Tuoni, On the optimization of building
envelope thermal performance. Multi-layered walls design to minimize heating and
cooling plant intervention in the case of time varying external temperature fields,
Civ. Eng. Environ. Syst. 20 (2003) 231–254, https://doi.org/10.1080/
1028660031000140224.

F. Leccese et al.

https://doi.org/10.1016/j.enbuild.2013.11.015
https://doi.org/10.1016/j.apenergy.2013.06.029
https://doi.org/10.1016/j.apenergy.2013.06.029
https://doi.org/10.1016/j.apenergy.2016.01.106
https://doi.org/10.1016/j.apenergy.2016.01.106
https://doi.org/10.1016/j.icheatmasstransfer.2017.11.008
https://doi.org/10.1016/j.csite.2022.101766
https://doi.org/10.1016/j.applthermaleng.2024.122487
https://doi.org/10.1016/j.applthermaleng.2024.122487
https://doi.org/10.1016/j.applthermaleng.2019.04.005
https://doi.org/10.1088/1742-6596/547/1/012011
https://doi.org/10.1016/j.apenergy.2015.11.076
https://doi.org/10.1016/j.apenergy.2015.11.076
https://doi.org/10.1016/j.renene.2019.05.123
https://doi.org/10.1016/j.renene.2019.05.123
https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.086
https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.086
https://doi.org/10.1016/j.enbuild.2013.01.011
https://doi.org/10.1016/j.enbuild.2013.01.011
https://doi.org/10.1016/j.ijthermalsci.2019.01.020
https://doi.org/10.1016/j.ijthermalsci.2019.01.020
http://refhub.elsevier.com/S1359-4311(24)01752-6/h0195
http://refhub.elsevier.com/S1359-4311(24)01752-6/h0195
https://doi.org/10.1080/1028660031000140224
https://doi.org/10.1080/1028660031000140224

	Thermal resilience of buildings: The role of partition walls and slabs in the optimization of the building external envelope
	1 Introduction
	2 Literature framework, research gap and aim of the study
	3 Heat transfer model of the room and problem statement
	4 Resistance-capacity distribution optimization
	5 Analysis of the room internal elements influence
	6 Optimization of the external wall considering the room internal elements influence
	6.1 Optimization for heavy internal elements
	6.2 Optimization for light internal elements
	6.3 Optimization for generic internal elements

	7 Limitations and future developments
	8 Conclusions
	Declaration of competing interest
	Data availability
	Appendix 1 Essential details on heat transfer matrix method
	Appendix 2 Details on the influence of furnishings
	References


