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In many practical applications of real-time computing (avionics, 
switching systems) a message-passing inter-processes 
communication approach is adopted for both modularity and 
reliability aims. 

In the present paper, the problem of adding fault-tolerance in 
a message passing multiprocesses environment is examined. 
Recovery blocks implementation schemes for both asyn- 
chronous and synchronous communications are proposed, with 
the aim of avoiding domino-effects and exploiting the message 
oriented system structure. 

When a sender process produces a message, an acceptance 
test is performed on the message by system procedures, which 
in sequence: i) transfer the message on the receiving process 
working memory, ii) save present process status, or in case of 
error, restore some previous process status, and iii) discard no 
longer needed status informations. 

A PURGE procedure managing recovery points deletion is 
also proposed and described in some detail. 

Keywords: Recovery blocks, communicating systems, real- 
time computing, fault-tolerance, system procedures, PURGE 
procedure. 

1. Recovery Blocks in Communicating Processes 

In real-time applications of  multiprocessing 
systems, processes can be devoted to particular 
tasks (task sharing) or they can cooperate by shar- 
ing the overall system load (load sharing). In either 
case, a communicat ion exists between the pro- 
cesses, either via shared data areas, or via explicit 

* This work was carried out at the Fondazione Ogo Bordoni 
under agreement with the Istituto Superiore P.T. and the 
Fondazione Ugo Bordoni. 

information exchanges. Recovery block implemen- 
tation in this environment presents particular 
problems. 

Usually when an error is detected, a recovery 
procedure is activeted. In systems where processes 
communicate  among them, the recovery procedure 
concernes every process that has cooperated with 
the failed process. The action for the recovery of  a 
consistent state in the cooperating processes with 
the failed one is recovery propagation. 

A typical undesired effect due to interprocesses 
communicat ion is the occurence of  an uncontrolled 
propagat ion of  state restoration amongst  the pro- 
cesses, during a recovery procedure; this is com- 
monly known as the 'domino effect ' .  Fig. 1 shows 
an example of  this effect; a restoration of state ay in 
the process P,  leads to a restoration of state bj in 
process Pb; this further involves a restoration of 

state aj_ l in P, ,  etc. 
To avoid this effect Randell [3] proposed the so 

called 'conversation structure'  method.  An im- 
provement  to this method was devised by Kim [4]. 
To obtain greater advantages f rom parallel pro- 
cessing, a higher degree of independence between 
processes should be pursued; this is obtained if 
communicat ions take place only between pairs o f  
processes. The systems adopting this communica-  
tion scheme are known as 'massage-passing'  
systems. 
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Fig. 1. Domino Effect. 
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Message-passing systems have the following 
advantages: 
a) no resources or common variables are shared by 

processes, as information is directly exchanged 
between processes. Each process operates then 
in a closed environment; this greatly helps errors 

confinement.  
b) communications between processes occur by 

means of  a well stated message-passing protocol  
[6,9]; protocol  respect control is therefore an 
implicit error detection mechanism. 

Recovery blocks implementat ion in a message- 
passing environment was dealt with by Russell [7], 
where solutions are proposed to avoid the domino 
effect for the case of  asynchronous communica- 
tions. Each process P~ keeps a record of  received 
messages; in this way, no backword recovery is 
needed for a sender p rocess /~  if the receiver pro- 
cess Pi fails; during restoration, P~ simply rereads 
messages f rom its 'message history'  list. 

Russell also proposed a domino-free recovery 
scheme for particular systems, summarized by the 
expression: 

(MARK (state); RECEIVE (mess)*; SEND 
(mess)*)* (where MARK (state) denotes memoriza-  
tion command  of  the process state). In this scheme 
a recovery point is established by means of  the 
MARK command  before the occurence of  any se- 
quence of  RECEIVE and SEND commands  not 
mutually interleaved. 

This brief investigation of  the 'state of  the ar t '  
leads to some considerations; all proposed solution 
state an upper limit to the propagat ion of  state 
restoration, but in all cases, error-free process roll- 
back is not avoided. Moreover,  the number  of  
communicat ions is increased, as processes need to 
exchange information concerning recovery points 
management  and recovery propagat ion (as an ex- 
ample, in the solution proposed by Kim, messages 
must be sent between processes engaged in the same 
conversation, to update their 'potential  recaller' 
list). 

An increase of  interprocess communicat ions is 
unsuitable mainly for two reasons: 
1) communicat ion in a multiprocessor environ- 

ment involves the control of  shared hardware 
and software resources, process context swit- 
ching and system procedure intervention; 

2) the exchange of informations /s the main error 
propagation source. 

These considerations lead to the following conclu- 
sions, related respectively to the previous 
statements 1) and 2): 

C1) a higher degree of  independence should exists 
between processes in recovery point 
management;  

C2) a tight control should be exercised on messages 

to be exchanged. 
To attain requirement C1 the following rule is 

proposed: 
R1) A recovery point on a process Pi must be 
created only as a consequence of  an action per- 
formed by the process Pi itself. This rule involves 
that recovery block generation in the process Pi is 
transparent to the other processes. 

To attain requirement C2 more steps are needed. 
Error  propagat ion in a message passing system is 

due to either an incorrect use of  communicat ion 
paths or to a wrong message. The first error source 
is avoided by adopting the following rule: 
R2) Message transfers f rom a sender process to a 
receiver process are respectively accomplished by 
SEND and RECEIVE system Kernel procedures. 
This statement implies that a sender process simply 
produces a message and a receiver consumes this 
message, while communicat ion paths are managed 
by procedures assumed to be fail safe; the Kernel is 
in fact a system hardcore. 

The second cause of  error propagat ion is more 
difficult to deal with; this problem can be solved by 
assuming a third rule: 
R3) An acceptance test concerning the message 
itself is performed before calling the SEND 
procedure. 

This rule implies that only correct messages can 
be sent, and is obviously very strict. 

In the next sections rules R1, R2 and R3 are 
adopted to define a recovery blocks scheme for 
both asynchronous and synchronous communica- 
tions; the proposed procedure matches the follow- 
ing characteristics: 
1) recovery propagat ion among error-free pro- 

cesses is avoided, or at least no error-free 
messages are undone. 

2) overhead due to process context switching and 
system procedures intervention is limited by 
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means of a suitable test point generation policy. 

2. A recovery block structure for asynchronous 
communicatinns 

When an asynchronous communication takes place 
between two processes, the sender process Pi can 

restart normal activity as soon as the message has 
been stored in the appropriate communication buf- 

fer. No acknowledgement is needed by receiver 
process Pj; conversely, P9 can read a message from 
the buffer at any time without affecting P~. 

For these systems, the 'message history' list in- 
troduced in [7] can be implemented as follows: with 
each communication channel is associated a buffer 

list; once a message has been read by the receiver, 
the buffer location where the message was stored is 
not released; a pointer moves on the following buf- 
fer location, and a 'buffer free' indicator is set. 
Messages in a buffer are tagged with a 'recovery 

block identifier'. When the PURGE (xj) procedure 

is called to eliminate a recovery point which is no 
longer needed, the buffer locations tagged with 'xf  
are set free. As shown in the previous section, since 
the messages related to any recovery block are 
memorized, no recovery propagation occurs when 
a RECEIVE command is revoked. 

Yhe actual cause of error propagation is then the 
sending operations. The problem is then to define 
a recovery blocks generation scheme complying 

with the rules RI, R2 and R3 previously stated; as 
rule RI is certainly satisfied by adopting rule R3, 
rule R2 is considered first. 

This rule can be satisfied by adopting a com- 
munication protocol as proposed in the MuTEAM 
operating system [6,8,9]. In this system a com- 

munication buffer is univocally identified by the 
triad: (name of sender process; name of receiver 
process; type of message). Any process Pj producer 
of  a message specifies the communication channel 
it refers to; a SEND system procedure is then 
started, whose purpose is: 

1) to exercise a control on protocol correctness, by 
verifying the existence of the specified buffer; 

2) to transfer the message onto the buffer. 
To attain both rules R1 and R3 an extension of  the 

described SEND procedure is here proposed. 

Let Pi be the sender process; once the message 

has been produced, Pi specifies the triad identifying 

the communication channel, and then enters a 
waiting state. A Kernel procedure uses the ' type '  
information in an extended way to vector onto a 
predefined system table enclosed in the calling pro- 
cess descriptor. This table associates each ' type'  

word with the address of a suitable routine, which 

evaluates message correctness. If this test accepts 
the message, steps 1) and 2) of the SEND procedure 

are executed. Once the message has been stored, P, 
is woken up. We call this routine 'ENSURE- 
SEND' procedure. 

The proposed structure is summarized in Table 
1. 

Table 1 

ENSURE-SEND (mess j) ; :accep tance  test on 

message 

;; and communica t ion  

;; protocol  assurance 

M A R K  ix )  ' a  new recovery 

point  is 

;; establ ished 
PURGE ;; el iminates no longer 

needed 

;; status informat~ons 
by: begin: < s ta tement  ;; this is the recovery 

list:> ;; block body 

produce (mess/ )  

end 

else by: RESTORE(x)  

< 1 st al ternate > 

; ; in case of  error x / 
;; is restored and 

;; an alternate brock 

;; is executed 

else by . 

< s ta tement  

list > : : -  

else error 

I {s tatement}~, ;  I RECEIVE (mess k) 

consume (mess k)}~,;  
I s ta tement  ]~ }~ 
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Fig. 2. Recovery Block Scheme. 

As an example, we can refer to fig. 2. I f  the ac- 
ceptance test on message m and on communicat ion 
protocol correctness fails, then the process Pa 
rollback to recovery point a2 and P~ executes the 
first alternate, reading the received messages (j  and 
1) f rom its message history. I f  the acceptance test is 
performed with success, then P~ sends the message 
m, else tries again with another alternate and so on. 

This recovery scheme is claimed to present the 
following advanl~ages: 
a) checks on communicat ion protocol correctness 

and recovery blocks execution are united in one 
procedure thus limiting the overhead due to pro- 
cess context switching and external procedures 
intervention; 

b) no recovery propagat ion occurs, if the accep- 
tance test is assumed to be reliable; 

c) when a new recovery block is opened, the 
preceding one can be purged. 

A peculiarity of  this recovery scheme is that 
SEND and RECEIVE procedures do not belong to 
the process recovery block body; they are external 
procedures supposed to be error-free. 

However,  a disadvantage to this procedure can 
be found. When a process Pi produces a list of  N 
consecutive messages, the overhead due to recovery 
blocks creation and delation can be unacceptable. 
In this case, the acceptance test can be activated 
when the last message of the list has been produc- 
ed; this test must concern the overall message se- 
quence correctness. 

Since only communicat ion protocol has been 
controlled for the first ( N -  1) messages, error pro- 
pagation may occur, during the time which elapses 
between the dispatching (SEND procedure) of  a 

aj 

bk+l 

Y 

1 

d m 

Fig. 3. Recovery Block Scheme with Recovery Propagation 
Amongst Processes. 

mistaken message and the detection of  the error 
(ENSURE procedure). 

Nevertheless if sending actions are not interleav- 
ed with receiving actions, the system lies under con- 
ditions stated in [7], and is therefore domino-free. 
This can be seen by observing Fig. 3. Let Pa be a 
failed process; at time tx an error is detected and 
RESTORE (aj) is issued. All the actions following 
aj must be revoked by Pa. Let y be the first message 
sent by Pa to be rescinded. I f  Pb is the receiver of  
the message y,  Pb must roll back to the first 
recovery point, say bk+ 1 preceding the command  
RECEIVE (y). All the message-exchange com- 
mands included between MARK (bk~ ~) and 
RECEIVE (y) are assumed to be RECEIVE com- 
mands. Recovery propagat ion takes place only for 
messages sent by Pb in a time after ty. As a general 
rule, recovery propagat ion is caused only by 
messages sent after the message y. The state 
restoration for all system processes will then stop at 
the first recovery point immediately preceding (or 
at the same time as) the recovery point aj restored 
by the failed process P~. The system is thus 
domino-free. 

In this last recovery scheme rule R3 is neglected 
as far as overhead limitation requirements are con- 
cerned; however, only process activity involved 
with some wrong received or sent message has to be 
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undone. The restoration then does not affect fail- 
free program blocks. 

In this section a recovery scheme for asyn- 
chronous communications has been proposed; this 
scheme adopts a particular view of  the message-list 
concept proposed by Russell, and accepts the 
message passing scheme of the MuTEAM 

operating-system. The proposed structure is mainly 

based on a suitable test point generation policy 
which avoid error propagation between processes. 

Yt Pb 

3t>k, I 

i< 

(f l 

Fig. 4. Recovery Propagation in Synchronous Systems. 

3. A recovery b lock  structure for  synchronous  

c o m m u n i c a t i o n s  

Synchronous communications are now taken into 

account. Two types of synchronism can be con- 

sidered [9]. In the "tight rendez-vous" communica- 

tion, once the message has been stored in the buf- 
fer, the sender process Pj remains in a waiting state 
until the conversation partner P; executes a receive 
command. In the case of "extended rendez-vous" 
communication, the waiting time for the sender 

process is extended until the receiver process pro- 
duces and sends an answering message; a complete 

symmetry is then obtained. 
When synchronism is required between pro- 

cesses, the revocation of  a RECEIVE command 

necessarily involves the revocation of the cor- 

responding SEND command; keeping a message 
history has then no practical use in such a system. 

However in the case of  'tight rendez-vous' the 
recovery blocks structure proposed in the previous 
section can still be used by modifying the 'state- 
ment list' executed in the body of the block, as 

follows 

Pa rollbacks to recovery point aa, Pa executes 
another alternate and the process Pb rollbacks to 
recovery point bk+ I. The two processes syn- 
chronize each other through the new message ex- 

change. The system is still domino-free, as shown 

in fig. 5. Let Pa be a failed processor; at time t, P, 
returns to the first controlled fail-free state, sai a;. 
Let y be the first message action to be rescinded 
and Pb the producer of y.  P~ must roll back to the 
first recovery point preceding SEND(y) which is 

located immediately after the first message ex- 

changed before SEND(y). No messages exchanged 

in a time preceding y can then be undone because 
of y revocation. The system is thus domino-free. 

In this scheme the propagation of restoration 
could have been avoided by setting up an accep- 

tance test after any received message. There are two 
arguments against this solution: 

- an acceptance test on a received message can at 
best ensure that some expectation is met; a 

7, i [  >< 

< statement list > :: { statement lad,; 
RECEIVE(mess K) 
MARK (K) 

consume (mess K)1{~,,; 

statement 1{, 1{~ 

In this structure, the process state is marked after 
any RECEIVE command takes place. 

As an example, we can refer to fig. 4. If the ac- 
ceptance test of P, on message m and on commun- 
cation protocol correctness fails, then the process 

aj 

a j+ 

tx :7 

b k 

( i  

b~-1 

Fig. 5. Recovery Block in Synchronous Systems, 

I)T, 
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Fig. 6. Recovery Blocks for Extended Rendez-Vous Syn- 
chronous Systems. 
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stronger test on the message could be ac- 
complished only when a mutual  knowledge of 
respective activities exists between processes. 

- the number  of  acceptance tests would increase 
unacceptably . ,  

A solution if found by adopting the 'extended 
rendez-vous'  communicat ion.  The scheme propos- 
ed for asynchronous communicat ions can still be 
used without modification, as shown in fig. 6. 

Let 's  suppose that the process Pa issues a 
RESTORE (aj) command  at time tx, before sending 
answers to processes Pb and Pc. The revocation of  
the message x and y does not lead to a recovery pro- 
pagation, because the processes Pb and Pc are still 
blocked in states bk+ l and cj. Therefore,  no 
recovery propagat ion takes place. 

A comparison between different message-ex- 
change techniques is not the aim of  this paper; 
nevertheless the higher fault-tolerance degree is 
clearly achieved by adopting an extended rendez- 
vous synchronous communicat ion.  Major  dead- 
lock risks and interdependence between processes 
are the obvious disadvantages. A suitable choice is 
therefore required of  the designer. 

4. A procedure for recovery point  delat ion 

The previous sections show that recovery propaga-  

Fig. 7. Recovery Points Deletion. 

tion between processes takes place only in the 
following cases: 
i) for  asynchronous communication, if recovery 

points are generated only when the last message 
of  a list has been sent; 

ii) for  synchronous communication, when tight 
rendbz-vous communicat ions between processes 
are established. 

In both cases, if aj is the recovery point restored by 
the failed process Pi, roll-back propagat ion for 
system processes stops at worst in the first recovery 
point preceding (or at the same time as) aj. In fig. 
7 an example is shown; at time tx the worst that 
could occur would be a failure of  the process with 
the earliest still open recovery block, say Pz. At 
worst, this would lead P~, P3 and P4 to return to 
point ao, cl and do respectively. At time tx, only 
recovery points bo and Co can therefore be 
discarded. 

In this section, a PURGE procedure that 
manages recovery points deletion for recovery 
schemes i) and ii) is proposed. Let S be an N- 
processes system, and let P and Q be two arrays 
(2 ×N) ,  defined as follows: 
1) P(1,i)  ( i= 1 ,..-. ,N) represents the latest recovery 

point established by Pi, expressed as a time 
function; 
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2) P(2,i) ( i= I , . - - . ,N)  represents a progressive 
number associated with the recovery point 
P(1 ,i); 

3) Q(I ,i) (i= 1,...-,N) is the earliest recovery point 
of  Pi not yet discarded; 

4) Q(2,i) (i= I , . . . . ,N) is the progressive number 
associated with Q(1,i). 

When a proces Pj ( j=  1,..--,N) opens or new 
recovery block at time tx, a PURGE procedure per- 
forming the following action is called: 
a) transfer the value t~ into P(I , j ) ;  
b) find the minimum value train amongst all 

elements P(1 ,i)i= 1 ,.... ,N; 
c) for all integers j that verifies the condition 

P(1,j)  = tmin, execute this operation: 
~) write the value train into Q(1,j) 
/3) discard recovery points of  Pj included be- 

tween Q(2,j) and P(2,j) .  
This procedure can be expressed as in Table 2. 

Table 2 

procedure PURGE: 

P(2,j) - n 

p( 1 ,j) = t x 
tmi n = rain P( t  ,i) 
i = l , . . . . , N  
for i :  1 , . . - , N  do:  

begin: if P(1 ,i) = tmi n 
then 

begin < Q( I  ,i) = tmi n 
M =  Q(2, i)  

L = P(2,i)  

K - L  M 
if K:#0 then: 

begin: Q(2, i )  = L 

for  j =  1,.... ,K  
begin: < PURGE 

(M) 

M = M +  1 >end  
end 

else continue > end 

else continue 

end 

;; the n th  recovery point  

;; is stated for  P /a t  t ime t x 

;; f ind the earl iest recovery 

;; b lock still open tmi n 

;; erase in format ion related 

;; w i th  recovery point  M 

As an example, we can still refer to fig. 7; when 
process P2 reaches recovery point b2 arrays P and 
Q have the following values: 

p~(tl3 t21 2t4 t3)l 

At time t5 the worst that could occur would be a 
failure of PI or P4, owners of the earliest recovery 
blocks still open. This would cause at worst a 
restoration of  Pz and/:'3 in bl and cl respectively. 
The recovery points stated by P~, ,°2, ,03 and P4 at 
times t3, t2, tl and t3 can still be used, while all 
preceding points can be discarted. 

The PURGE procedure previously introduced 
will therefore perform the following actions: 
1) write the value t5 in P(1,2) and the value 2 in 

P(2,2) 
2) identify t3 as the minimum time tmin amongst the 

elements of the first row of  P 
3) write the value t3 in Q(1,1) and in Q(1,4), and 

write the value 1 in Q(2,1) and Q(2,4) 
4) discard recovery points a0 and do belonging to 

PI and t° 4 
Final array situation will therefore be: 

t3 t5 t4 13 ) 
P~- 1 2 2 1 

5. C o n c l u d i n g  r e m a r k s  

Recovery block implementation in a com- 
municating environment can increase in- 
terdependence between processes. The solutions 
proposed in the literature generally involve ex- 
change of information during the establishment of 
recovery points between processes. 

In this paper, a recovery block scheme is propos- 
ed, with the following features: 
- independence amongst processes in the 

establishment of recovery points; 
- recovery propagation between fail-free pro- 

cesses is avoided by means of a suitable recovery 
point establishment poiicy; 

- communication management is enthrusted to 
system hardcore procedures. 

Message-passing operating systems are here 
recommended as the best environment for a 
suitable recovery block implementation. Both syn-  
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chronous and asynchronous message-passing 
techniques are dealt with. A recovery delation 
PURGE procedure is also proposed. 

More detailed considerations on testing techni- 
ques and overhead evaluation are intended to be 
subject of further study. 
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