
287

North-Holland
Microprocessing and Microprogramming 11 (1983) 287-294

Recovery Blocks for Communicating Systems*

Paola Velardi
Fondazione Ugo Bordoni, V. le Trastevere 108, 00153 Rome,
Italy

and

Bruno Ciciani
lstituto di Automatica, Universita d/Roma, via Eudossiana 18,
08184 Rome, Italy

In many practical applications of real-time computing (avionics,
switching systems) a message-passing inter-processes
communication approach is adopted for both modularity and
reliability aims.

In the present paper, the problem of adding fault-tolerance in
a message passing multiprocesses environment is examined.
Recovery blocks implementation schemes for both asyn-
chronous and synchronous communications are proposed, with
the aim of avoiding domino-effects and exploiting the message
oriented system structure.

When a sender process produces a message, an acceptance
test is performed on the message by system procedures, which
in sequence: i) transfer the message on the receiving process
working memory, ii) save present process status, or in case of
error, restore some previous process status, and iii) discard no
longer needed status informations.

A PURGE procedure managing recovery points deletion is
also proposed and described in some detail.

Keywords: Recovery blocks, communicating systems, real-
time computing, fault-tolerance, system procedures, PURGE
procedure.

1. Recovery Blocks in Communicating Processes

In real-time applications of multiprocessing
systems, processes can be devoted to particular
tasks (task sharing) or they can cooperate by shar-
ing the overall system load (load sharing). In either
case, a communicat ion exists between the pro-
cesses, either via shared data areas, or via explicit

* This work was carried out at the Fondazione Ogo Bordoni
under agreement with the Istituto Superiore P.T. and the
Fondazione Ugo Bordoni.

information exchanges. Recovery block implemen-
tation in this environment presents particular
problems.

Usually when an error is detected, a recovery
procedure is activeted. In systems where processes
communicate among them, the recovery procedure
concernes every process that has cooperated with
the failed process. The action for the recovery of a
consistent state in the cooperating processes with
the failed one is recovery propagation.

A typical undesired effect due to interprocesses
communicat ion is the occurence of an uncontrolled
propagat ion of state restoration amongst the pro-
cesses, during a recovery procedure; this is com-
monly known as the 'domino effect ' . Fig. 1 shows
an example of this effect; a restoration of state ay in
the process P, leads to a restoration of state bj in
process Pb; this further involves a restoration of

state aj_ l in P, , etc.
To avoid this effect Randell [3] proposed the so

called 'conversation structure' method. An im-
provement to this method was devised by Kim [4].
To obtain greater advantages f rom parallel pro-
cessing, a higher degree of independence between
processes should be pursued; this is obtained if
communicat ions take place only between pairs o f
processes. The systems adopting this communica-
tion scheme are known as 'massage-passing'
systems.

a

a j-2

aj- I

aj

b j

Fig. 1. Domino Effect.

288 Paola Velardi / Recovery Blocks for Communicating Systems

Message-passing systems have the following
advantages:
a) no resources or common variables are shared by

processes, as information is directly exchanged
between processes. Each process operates then
in a closed environment; this greatly helps errors

confinement.
b) communications between processes occur by

means of a well stated message-passing protocol
[6,9]; protocol respect control is therefore an
implicit error detection mechanism.

Recovery blocks implementat ion in a message-
passing environment was dealt with by Russell [7],
where solutions are proposed to avoid the domino
effect for the case of asynchronous communica-
tions. Each process P~ keeps a record of received
messages; in this way, no backword recovery is
needed for a sender p rocess /~ if the receiver pro-
cess Pi fails; during restoration, P~ simply rereads
messages f rom its 'message history' list.

Russell also proposed a domino-free recovery
scheme for particular systems, summarized by the
expression:

(MARK (state); RECEIVE (mess)*; SEND
(mess)*)* (where MARK (state) denotes memoriza-
tion command of the process state). In this scheme
a recovery point is established by means of the
MARK command before the occurence of any se-
quence of RECEIVE and SEND commands not
mutually interleaved.

This brief investigation of the 'state of the ar t '
leads to some considerations; all proposed solution
state an upper limit to the propagat ion of state
restoration, but in all cases, error-free process roll-
back is not avoided. Moreover, the number of
communicat ions is increased, as processes need to
exchange information concerning recovery points
management and recovery propagat ion (as an ex-
ample, in the solution proposed by Kim, messages
must be sent between processes engaged in the same
conversation, to update their 'potential recaller'
list).

An increase of interprocess communicat ions is
unsuitable mainly for two reasons:
1) communicat ion in a multiprocessor environ-

ment involves the control of shared hardware
and software resources, process context swit-
ching and system procedure intervention;

2) the exchange of informations /s the main error
propagation source.

These considerations lead to the following conclu-
sions, related respectively to the previous
statements 1) and 2):

C1) a higher degree of independence should exists
between processes in recovery point
management;

C2) a tight control should be exercised on messages

to be exchanged.
To attain requirement C1 the following rule is

proposed:
R1) A recovery point on a process Pi must be
created only as a consequence of an action per-
formed by the process Pi itself. This rule involves
that recovery block generation in the process Pi is
transparent to the other processes.

To attain requirement C2 more steps are needed.
Error propagat ion in a message passing system is

due to either an incorrect use of communicat ion
paths or to a wrong message. The first error source
is avoided by adopting the following rule:
R2) Message transfers f rom a sender process to a
receiver process are respectively accomplished by
SEND and RECEIVE system Kernel procedures.
This statement implies that a sender process simply
produces a message and a receiver consumes this
message, while communicat ion paths are managed
by procedures assumed to be fail safe; the Kernel is
in fact a system hardcore.

The second cause of error propagat ion is more
difficult to deal with; this problem can be solved by
assuming a third rule:
R3) An acceptance test concerning the message
itself is performed before calling the SEND
procedure.

This rule implies that only correct messages can
be sent, and is obviously very strict.

In the next sections rules R1, R2 and R3 are
adopted to define a recovery blocks scheme for
both asynchronous and synchronous communica-
tions; the proposed procedure matches the follow-
ing characteristics:
1) recovery propagat ion among error-free pro-

cesses is avoided, or at least no error-free
messages are undone.

2) overhead due to process context switching and
system procedures intervention is limited by

Paola Velardi / Recovery Blocks for Communicating Systems 289

means of a suitable test point generation policy.

2. A recovery block structure for asynchronous
communicatinns

When an asynchronous communication takes place
between two processes, the sender process Pi can

restart normal activity as soon as the message has
been stored in the appropriate communication buf-

fer. No acknowledgement is needed by receiver
process Pj; conversely, P9 can read a message from
the buffer at any time without affecting P~.

For these systems, the 'message history' list in-
troduced in [7] can be implemented as follows: with
each communication channel is associated a buffer

list; once a message has been read by the receiver,
the buffer location where the message was stored is
not released; a pointer moves on the following buf-
fer location, and a 'buffer free' indicator is set.
Messages in a buffer are tagged with a 'recovery

block identifier'. When the PURGE (xj) procedure

is called to eliminate a recovery point which is no
longer needed, the buffer locations tagged with 'xf
are set free. As shown in the previous section, since
the messages related to any recovery block are
memorized, no recovery propagation occurs when
a RECEIVE command is revoked.

Yhe actual cause of error propagation is then the
sending operations. The problem is then to define
a recovery blocks generation scheme complying

with the rules RI, R2 and R3 previously stated; as
rule RI is certainly satisfied by adopting rule R3,
rule R2 is considered first.

This rule can be satisfied by adopting a com-
munication protocol as proposed in the MuTEAM
operating system [6,8,9]. In this system a com-

munication buffer is univocally identified by the
triad: (name of sender process; name of receiver
process; type of message). Any process Pj producer
of a message specifies the communication channel
it refers to; a SEND system procedure is then
started, whose purpose is:

1) to exercise a control on protocol correctness, by
verifying the existence of the specified buffer;

2) to transfer the message onto the buffer.
To attain both rules R1 and R3 an extension of the

described SEND procedure is here proposed.

Let Pi be the sender process; once the message

has been produced, Pi specifies the triad identifying

the communication channel, and then enters a
waiting state. A Kernel procedure uses the ' type '
information in an extended way to vector onto a
predefined system table enclosed in the calling pro-
cess descriptor. This table associates each ' type'

word with the address of a suitable routine, which

evaluates message correctness. If this test accepts
the message, steps 1) and 2) of the SEND procedure

are executed. Once the message has been stored, P,
is woken up. We call this routine 'ENSURE-
SEND' procedure.

The proposed structure is summarized in Table
1.

Table 1

ENSURE-SEND (mess j) ; :accep tance test on

message

;; and communica t ion

;; protocol assurance

M A R K ix) ' a new recovery

point is

;; establ ished
PURGE ;; el iminates no longer

needed

;; status informat~ons
by: begin: < s ta tement ;; this is the recovery

list:> ;; block body

produce (mess/)

end

else by: RESTORE(x)

< 1 st al ternate >

; ; in case of error x /
;; is restored and

;; an alternate brock

;; is executed

else by .

< s ta tement

list > : : -

else error

I {s tatement}~, ; I RECEIVE (mess k)

consume (mess k)}~,;
I s ta tement]~ }~

290 Paola Velardi / Recovery Blocks for Communicating Systems

Pa
Pa Pb Pc Pd

i

m

0 acceptance test
X recovery point

message

l process activity

Fig. 2. Recovery Block Scheme.

As an example, we can refer to fig. 2. I f the ac-
ceptance test on message m and on communicat ion
protocol correctness fails, then the process Pa
rollback to recovery point a2 and P~ executes the
first alternate, reading the received messages (j and
1) f rom its message history. I f the acceptance test is
performed with success, then P~ sends the message
m, else tries again with another alternate and so on.

This recovery scheme is claimed to present the
following advanl~ages:
a) checks on communicat ion protocol correctness

and recovery blocks execution are united in one
procedure thus limiting the overhead due to pro-
cess context switching and external procedures
intervention;

b) no recovery propagat ion occurs, if the accep-
tance test is assumed to be reliable;

c) when a new recovery block is opened, the
preceding one can be purged.

A peculiarity of this recovery scheme is that
SEND and RECEIVE procedures do not belong to
the process recovery block body; they are external
procedures supposed to be error-free.

However, a disadvantage to this procedure can
be found. When a process Pi produces a list of N
consecutive messages, the overhead due to recovery
blocks creation and delation can be unacceptable.
In this case, the acceptance test can be activated
when the last message of the list has been produc-
ed; this test must concern the overall message se-
quence correctness.

Since only communicat ion protocol has been
controlled for the first (N - 1) messages, error pro-
pagation may occur, during the time which elapses
between the dispatching (SEND procedure) of a

aj

bk+l

Y

1

d m

Fig. 3. Recovery Block Scheme with Recovery Propagation
Amongst Processes.

mistaken message and the detection of the error
(ENSURE procedure).

Nevertheless if sending actions are not interleav-
ed with receiving actions, the system lies under con-
ditions stated in [7], and is therefore domino-free.
This can be seen by observing Fig. 3. Let Pa be a
failed process; at time tx an error is detected and
RESTORE (aj) is issued. All the actions following
aj must be revoked by Pa. Let y be the first message
sent by Pa to be rescinded. I f Pb is the receiver of
the message y, Pb must roll back to the first
recovery point, say bk+ 1 preceding the command
RECEIVE (y). All the message-exchange com-
mands included between MARK (bk~ ~) and
RECEIVE (y) are assumed to be RECEIVE com-
mands. Recovery propagat ion takes place only for
messages sent by Pb in a time after ty. As a general
rule, recovery propagat ion is caused only by
messages sent after the message y. The state
restoration for all system processes will then stop at
the first recovery point immediately preceding (or
at the same time as) the recovery point aj restored
by the failed process P~. The system is thus
domino-free.

In this last recovery scheme rule R3 is neglected
as far as overhead limitation requirements are con-
cerned; however, only process activity involved
with some wrong received or sent message has to be

Pao/a Velardi / Recovery Blocks for Communicating Systems 291

undone. The restoration then does not affect fail-
free program blocks.

In this section a recovery scheme for asyn-
chronous communications has been proposed; this
scheme adopts a particular view of the message-list
concept proposed by Russell, and accepts the
message passing scheme of the MuTEAM

operating-system. The proposed structure is mainly

based on a suitable test point generation policy
which avoid error propagation between processes.

Yt Pb

3t>k, I

i<

(f l

Fig. 4. Recovery Propagation in Synchronous Systems.

3. A recovery b lock structure for synchronous

c o m m u n i c a t i o n s

Synchronous communications are now taken into

account. Two types of synchronism can be con-

sidered [9]. In the "tight rendez-vous" communica-

tion, once the message has been stored in the buf-
fer, the sender process Pj remains in a waiting state
until the conversation partner P; executes a receive
command. In the case of "extended rendez-vous"
communication, the waiting time for the sender

process is extended until the receiver process pro-
duces and sends an answering message; a complete

symmetry is then obtained.
When synchronism is required between pro-

cesses, the revocation of a RECEIVE command

necessarily involves the revocation of the cor-

responding SEND command; keeping a message
history has then no practical use in such a system.

However in the case of 'tight rendez-vous' the
recovery blocks structure proposed in the previous
section can still be used by modifying the 'state-
ment list' executed in the body of the block, as

follows

Pa rollbacks to recovery point aa, Pa executes
another alternate and the process Pb rollbacks to
recovery point bk+ I. The two processes syn-
chronize each other through the new message ex-

change. The system is still domino-free, as shown

in fig. 5. Let Pa be a failed processor; at time t, P,
returns to the first controlled fail-free state, sai a;.
Let y be the first message action to be rescinded
and Pb the producer of y. P~ must roll back to the
first recovery point preceding SEND(y) which is

located immediately after the first message ex-

changed before SEND(y). No messages exchanged

in a time preceding y can then be undone because
of y revocation. The system is thus domino-free.

In this scheme the propagation of restoration
could have been avoided by setting up an accep-

tance test after any received message. There are two
arguments against this solution:

- an acceptance test on a received message can at
best ensure that some expectation is met; a

7, i [><

< statement list > :: { statement lad,;
RECEIVE(mess K)
MARK (K)

consume (mess K)1{~,,;

statement 1{, 1{~

In this structure, the process state is marked after
any RECEIVE command takes place.

As an example, we can refer to fig. 4. If the ac-
ceptance test of P, on message m and on commun-
cation protocol correctness fails, then the process

aj

a j+

tx :7

b k

(i

b~-1

Fig. 5. Recovery Block in Synchronous Systems,

I)T,

292 Paola Velardi / Recovery Blocks for Communicating Systems

Pb Pc

aj

tx : :

I
/

1
/

/

'b k

:bk+ 1
cj

Fig. 6. Recovery Blocks for Extended Rendez-Vous Syn-
chronous Systems.

L

~a 3

P~

"CI

!)3

b 4

P~

c 1

c~

4

~1 (d 3

]

?

~3

t 4

t 5

t 6

t ,

t!

stronger test on the message could be ac-
complished only when a mutual knowledge of
respective activities exists between processes.

- the number of acceptance tests would increase
unacceptably . ,

A solution if found by adopting the 'extended
rendez-vous' communicat ion. The scheme propos-
ed for asynchronous communicat ions can still be
used without modification, as shown in fig. 6.

Let 's suppose that the process Pa issues a
RESTORE (aj) command at time tx, before sending
answers to processes Pb and Pc. The revocation of
the message x and y does not lead to a recovery pro-
pagation, because the processes Pb and Pc are still
blocked in states bk+ l and cj. Therefore, no
recovery propagat ion takes place.

A comparison between different message-ex-
change techniques is not the aim of this paper;
nevertheless the higher fault-tolerance degree is
clearly achieved by adopting an extended rendez-
vous synchronous communicat ion. Major dead-
lock risks and interdependence between processes
are the obvious disadvantages. A suitable choice is
therefore required of the designer.

4. A procedure for recovery point delat ion

The previous sections show that recovery propaga-

Fig. 7. Recovery Points Deletion.

tion between processes takes place only in the
following cases:
i) for asynchronous communication, if recovery

points are generated only when the last message
of a list has been sent;

ii) for synchronous communication, when tight
rendbz-vous communicat ions between processes
are established.

In both cases, if aj is the recovery point restored by
the failed process Pi, roll-back propagat ion for
system processes stops at worst in the first recovery
point preceding (or at the same time as) aj. In fig.
7 an example is shown; at time tx the worst that
could occur would be a failure of the process with
the earliest still open recovery block, say Pz. At
worst, this would lead P~, P3 and P4 to return to
point ao, cl and do respectively. At time tx, only
recovery points bo and Co can therefore be
discarded.

In this section, a PURGE procedure that
manages recovery points deletion for recovery
schemes i) and ii) is proposed. Let S be an N-
processes system, and let P and Q be two arrays
(2 ×N) , defined as follows:
1) P(1,i) (i= 1 ,..-. ,N) represents the latest recovery

point established by Pi, expressed as a time
function;

Paola Velardi / Recovery Blocks for Communicat ing Systems 293

2) P(2,i) (i= I , . - - . ,N) represents a progressive
number associated with the recovery point
P(1 ,i);

3) Q(I ,i) (i= 1,...-,N) is the earliest recovery point
of Pi not yet discarded;

4) Q(2,i) (i= I , ,N) is the progressive number
associated with Q(1,i).

When a proces Pj (j= 1,..--,N) opens or new
recovery block at time tx, a PURGE procedure per-
forming the following action is called:
a) transfer the value t~ into P(I , j) ;
b) find the minimum value train amongst all

elements P(1 ,i)i= 1 ,.... ,N;
c) for all integers j that verifies the condition

P(1,j) = tmin, execute this operation:
~) write the value train into Q(1,j)
/3) discard recovery points of Pj included be-

tween Q(2,j) and P(2,j) .
This procedure can be expressed as in Table 2.

Table 2

procedure PURGE:

P(2,j) - n

p(1 ,j) = t x
tmi n = rain P(t ,i)
i = l , , N
for i : 1 , . . - , N do:

begin: if P(1 ,i) = tmi n
then

begin < Q(I ,i) = tmi n
M = Q(2, i)

L = P(2,i)

K - L M
if K:#0 then:

begin: Q(2, i) = L

for j = 1,.... ,K
begin: < PURGE

(M)

M = M + 1 >end
end

else continue > end

else continue

end

;; the n th recovery point

;; is stated for P /a t t ime t x

;; f ind the earl iest recovery

;; b lock still open tmi n

;; erase in format ion related

;; w i th recovery point M

As an example, we can still refer to fig. 7; when
process P2 reaches recovery point b2 arrays P and
Q have the following values:

p~(tl3 t21 2t4 t3)l

At time t5 the worst that could occur would be a
failure of PI or P4, owners of the earliest recovery
blocks still open. This would cause at worst a
restoration of Pz and/:'3 in bl and cl respectively.
The recovery points stated by P~, ,°2, ,03 and P4 at
times t3, t2, tl and t3 can still be used, while all
preceding points can be discarted.

The PURGE procedure previously introduced
will therefore perform the following actions:
1) write the value t5 in P(1,2) and the value 2 in

P(2,2)
2) identify t3 as the minimum time tmin amongst the

elements of the first row of P
3) write the value t3 in Q(1,1) and in Q(1,4), and

write the value 1 in Q(2,1) and Q(2,4)
4) discard recovery points a0 and do belonging to

PI and t° 4
Final array situation will therefore be:

t3 t5 t4 13)
P~- 1 2 2 1

5. C o n c l u d i n g r e m a r k s

Recovery block implementation in a com-
municating environment can increase in-
terdependence between processes. The solutions
proposed in the literature generally involve ex-
change of information during the establishment of
recovery points between processes.

In this paper, a recovery block scheme is propos-
ed, with the following features:
- independence amongst processes in the

establishment of recovery points;
- recovery propagation between fail-free pro-

cesses is avoided by means of a suitable recovery
point establishment poiicy;

- communication management is enthrusted to
system hardcore procedures.

Message-passing operating systems are here
recommended as the best environment for a
suitable recovery block implementation. Both syn-

294 Paola Velardi / Recovery Blocks for Communicating Systems

chronous and asynchronous message-passing
techniques are dealt with. A recovery delation
PURGE procedure is also proposed.

More detailed considerations on testing techni-
ques and overhead evaluation are intended to be
subject of further study.

References

[1] J.J. Homing et al., 'A program structure for error detection
and recovery' Lecture Notes in Computing Science vol. 16,
1974

[2] B. Randell, 'System structure for software fault-tolerance'
IEEE trans, on Software Engeneering. vol. SE-1, June 1975.

13] B. Randell et al., 'Reliability issues in computing system
design' Computing Surveys vol. 10 June 1978.

[4] K.H. Kim, 'An approach to programmer-transparent coor-
dination of recovering parallel processes and its efficient im-
plementation' Proceedings of International Conference on
Parallel Processing 1978.

[5] P.B. Hansen, 'The Nucleus of a Multiprogramming System'
Communication of ACM vol. 13 April 1970.

[6] M. Vanneschi, F. Baiardi et al., 'The MuTEAM Kernel

Guidelines for a Message-Passing Multiprocessor'. ISI Inter-
nal Report S-80-23. University of Pisa - 1980.

[7] D.L. Russell, State restoration in Systems of Com-
municating processes'. IEEE Transactions on Software
Engeneering vol. SE-6 March 1980.

[8] M. Vanneschi, F. Baiardi et al., 'Protection and Error Con-
finement in a Message-Passing Environment: the MuTEAM
Kernel' Fault Tolerant Systems and Diagnostics - BRNO,
1981.

[9] M. Boari et al., "Message-passing models for cooperating
processes: analysis and comparison of proposed solutions'
In Italian, MUMICRO Internal Report n. 16, 1979.

Paola Velardi was born in Rome (Italy) on April 26, 1955. She
received the Engineering degree in Electronic Engineering, sum-
ma cum laude, from the University of Rome in the 1978. From
1979 she works as researche~ in the 'Fondazione Ugo Bordoni'.
Her main fields of interest are distributed architectures and
fault-tolerant systems.

Bruno Ciciani was born in Rome (Italy) on February 15, 1955.
He received the Engineering degree in Electronic Engineering,
summa cum laude, from the University of Rome in the 1980.
From 1981 he works at the Institute of Automatica of the
University of Rome, his main fields of interest are distributed ar-
chitectures and fault-tolerant systems.

