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Modelling local and general guantum mechanical
properties with attention-based pooling
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Atom-centred neural networks represent the state-of-the-art for approximating the quantum
chemical properties of molecules, such as internal energies. While the design of machine
learning architectures that respect chemical principles has continued to advance, the final
atom pooling operation that is necessary to convert from atomic to molecular representations
in most models remains relatively undeveloped. The most common choices, sum and average
pooling, compute molecular representations that are naturally a good fit for many physical
properties, while satisfying properties such as permutation invariance which are desirable
from a geometric deep learning perspective. However, there are growing concerns that such
simplistic functions might have limited representational power, while also being suboptimal
for physical properties that are highly localised or intensive. Based on recent advances in
graph representation learning, we investigate the use of a learnable pooling function that
leverages an attention mechanism to model interactions between atom representations. The
proposed pooling operation is a drop-in replacement requiring no changes to any of the other
architectural components. Using SchNet and DimeNet++ as starting models, we demon-
strate consistent uplifts in performance compared to sum and mean pooling and a recent
physics-aware pooling operation designed specifically for orbital energies, on several data-
sets, properties, and levels of theory, with up to 85% improvements depending on the
specific task.
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eometric deep-learning (GDL) approaches are increas-

ingly used across the life sciences, with remarkable

potential and achievements in computational biology
(analysing single-cell sequencing datal2), structural biology
(prediction of protein structures® and protein sequence design?),
drug discovery” and simulating rigid and fluid dynamics® being
only a few examples. The simple but powerful formulation of
GDL methods such as graph neural networks (GNN) motivated
the investigation of long-standing problems from a new per-
spective, particularly in fields such as computational chemistry
where the GDL abstractions can be naturally applied to objects
like atoms and molecules (nodes and graphs), as well as their
interactions (edges).

Approximating quantum mechanical properties using machine
learning (ML) is of significant interest for applications in cata-
lysis, material and drug design’-8. However, traditional physics-
based methods are severely limited by computational require-
ments that scale poorly with system size®. In the pursuit of
accurate, scalable, and generalisable ML models, several different
strategies have been proposed. So-called semiempirical
methods!®!1, such as the Neglect of Diatomic Orbital Overlap
(NDDO'?) and modern related methods!3, tight-binding DFT
(xTB!4), or ‘quantum force fields'!>, can greatly improve the
scaling of traditional quantum chemistry methods through sim-
plification or approximation of the underlying physics, without
restrictions on the domain of applicability imposed by purely
data-driven methods. Nonetheless, there is great interest in sup-
porting this vision by taking a purely data-driven approach and
developing quantum machine learning (QML) models based on
accurate physical methods such as density functional theory
(DFT) combined with large and diverse collections of data (e.g.,
QM9!6, QMugs!7, nablaDFT!® and QM7-X19). Another
approach is to devise transfer learning datasets and algorithms
that can extract useful patterns from less accurate, but cheaper
and more scalable simulations that ultimately benefit predictions
at a higher fidelity level®17:20.21 At the same time, advances in
GNN architectures and the ability to exploit specific features of
quantum data such as atom positions and directional information
such as bond angles and rotations are active areas of research that
have produced state-of-the-art models?2-25,

Most of the GNN advances have focused on more expressive
ways of defining atom (node) representations and local interac-
tions in increasingly large neighbourhoods centred on each of the
nodes (‘k-hops’). For example, SchNet?? starts with atom
embeddings based on the atom type. These initial representations
are then processed by atom-wise layers which are implemented as
linear transformations. The atom-wise layers are also combined
with convolutional layers that satisfy rotational invariance to
form interaction blocks. The interaction blocks are modular ele-
ments and can be stacked for a more expressive architecture.
DimeNet?3 formulates the task as a message-passing exercise,
while also introducing directionality by considering the angles
between atoms. Instead of atom embeddings, DimeNet computes
directional embeddings between pairs of atoms j, i that incorpo-
rate atomic distances and angles by aggregating other embeddings
directed towards the source atom j. The construction also guar-
antees invariance to rotations. Furthermore, instead of using raw
angles, DimeNet represents distances and angles through a
spherical 2D Fourier-Bessel basis, a physics-inspired decision that
was also empirically found to be preferable. The original DimeNet
architecture was subsequently updated to a faster and more
accurate model denoted DimeNet++ by replacing costly opera-
tions with fast and expressive alternatives?*. Recently, GDL
architectures that are invariant to translations, rotations, and
reflections such as E(n) GNNs have proven competitive in the
prediction of quantum mechanical properties?’.

Even with the accelerated development of QML methods and
the heterogeneity of recent approaches, a common element for
most QML models is that they naturally operate at the level of
atom representations, for example through message-passing
steps. However, many prediction targets of interest are for-
mulated at the molecular level, e.g., total energy, dipole moment,
highest occupied molecular orbital (HOMO) energy, lowest
unoccupied molecular orbital (LUMO) energy, etc. Thus, an
aggregation scheme must be used to combine the atom repre-
sentations into a single molecule-level representation. This task is
typically handled with simple fixed pooling functions like sum,
average, or maximum. Despite their appealing simplicity, there
are growing concerns regarding the representational power of this
class of functions2%27, In the following section, we also discuss the
concurrently developed orbital-weighted average (OWA), a
physics-based method designed specifically for orbital properties
and which also seeks to improve upon the standard pooling
operators by exploiting the local and intensive character of the
target property?’. Buterez et al. also highlighted the lacklustre
performance of standard pooling functions in a variety of settings,
particularly on challenging molecular properties?8. As an alter-
native to standard pooling, the authors proposed replacing the
fixed functions with learnable functions implemented as neural
networks. When applied to conventional message passing archi-
tectures (GCN?2%, GAT?0 and GATv23!, GIN32, PNA33) that
operate on the molecular graph with node features extracted
from the SMILES?* representation, neural pooling functions
provided significant uplifts in performance and faster con-
vergence times.

Apart from expressive power, the standard pooling functions
are also widely used thanks to being permutation invariant with
respect to the order of the atom representations that are being
aggregated. Furthermore, these simple operations are also usually
aligned with fundamental physical principles. For example, the
total energy, a molecular property, can be obtained as the sum of
the atom energies. In general, molecular properties that scale
linearly with the number of atoms can be well approximated by
fixed functions such as sum or average. However, it is not
uncommon for the target property to behave non-linearly or be
localised around a small subset of atoms which determines its
value. Bioaffinity (the achieved level of inhibition or activation of
a drug-like molecule against a protein target) is a property where
we can reasonably expect that most of the effect comes from an
active group of atoms?®. In QML, a canonical example of a
property that can be delocalised as well as localised is the HOMO
energy, since it corresponds to a specific molecular orbital that
may involve contributions from multiple atomic orbitals.

The attention mechanism that is now ubiquitous in deep
learning thanks to its success in a wide range of fields, including
the life sciences3>~38, can be considered a natural step forward in
the search for expressive aggregation functions. In this work, we
investigate the use of an attention-based pooling function on
atomistic systems for the prediction of general and localised
quantum properties with state-of-the-art 3D-coordinate aware
models (the high-level workflow is illustrated in Fig. 1). The
chosen design satisfies a collection of desirable features, some of
which were previously mentioned, namely (i) permutation
invariance with respect to node (atom) order, (ii) increased
representational power compared to standard pooling operators
thanks to the underlying neural networks, (iii) the ability to
model arbitrary, potentially long-range or localised relationships
due to the attention mechanism, and (iv) generality and simpli-
city; the proposed method is applicable to any molecular property
(including quantum properties), and can be used as a drop-in
replacement on any architecture that uses traditional pooling
methods without any modifications to the model itself. Attention-
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Fig. 1 A high-level overview of attention-based pooling for atom-centred networks. A common step in most atom-centred neural networks is the
aggregation or pooling of learnt atom features into a molecule-level representation through a dedicated function (highlighted with a dashed box).
Traditionally, simple functions that satisfy permutation invariance such as sum, mean, or maximum are used for this step. Alternatively, a more expressive
molecular representation can be computed by neural networks, for example using attention to discover the most relevant atomic features.

based pooling is also applicable to equivariant message-passing
architectures (e.g., refs. 2>39).

The current work represents an extension to previous work
which considered only 2D molecular graphs but demonstrated
the potential of attention-based pooling for predicting properties
such as the HOMO energy?8. Previous work considered
attention-based pooling for GNNs in a general setting, including
molecular and non-molecular data. For molecular data, atom
representations were generated from the SMILES representation
using RDKit#0 and covered properties such as the atomic number,
formal charge, the hybridisation type, number of bonded
hydrogens, and other similar properties. We did not use edge
(bond) features. Learning occurs by message passing according to
the graph connectivity and the specific operator (e.g., GCN, GIN,
GAT, PNA, etc). Readout functions that leverage attention
showed considerable uplifts, particularly for molecular tasks such
as bioaffinity and a wide range of quantum properties. However,
state-of-the-art architectures for modelling quantum properties
leverage, at the very least, the 3D atomic coordinates available for
each molecule, with more advanced models also considering
directional information such as the angles between bonds. Hence,
the potential benefits of attention-based pooling remain unex-
plored for this class of widely used neural networks.

Here, we demonstrate consistent uplifts in performance (as
measured by the mean absolute error—MAE) compared to sum
and mean pooling, chosen as representatives of the established
methods, on a selection of standard datasets of different sizes and
simulated at different levels of theory, including QM7b (7211
molecules)#1-43, QM8 (21,786 molecules)***>, QM9 (130,831
molecules) 044, QMugs (665K molecules)!7, and the CCSD and
CCSD(T) datasets from MD17 (1500 molecules for Aspirin,
Benzene, Malonaldehyde, Toluene, and 2000 for Ethanol)4.

The chosen target properties ensure a diverse selection of tasks,
also enabling comparisons with previous work. QM7b covers a
range of molecular properties, from extensive atomisation energy
to intensive excitation energies, frontier orbital properties and
polarizability. These provide a comprehensive set of properties
corresponding to the stability and reactivity of molecules. Fron-
tier orbital properties (LUMO, HOMO) are examples of localised
properties, i.e., specific atoms are involved in the definition of
these orbitals - even if their orbitals can be spread over large
portions of the molecule in some cases, in contrast to constitu-
tional energies, which are inherently functions of all atoms. QM8
provides ground state and excitation energies at different levels of
theory. For QM9 and QMugs, being larger datasets, we selected
frontier orbital properties (HOMO and LUMO) as representative
properties to investigate, and also for comparison with the OWA
method which is derived specially for orbital properties. For
QMugs, we additionally include the global extensive total energy.

While the frontier orbital localisation can vary quite a bit and in
some extreme cases be a large part of the structure, it still has a
defined spatial extent and that corresponds to a subgraph of the
original nodes. In fact, OE62 contains molecules where the spatial
extent of the HOMO has been studied?”. This is contrastable with
total energy, which involves every atom in all cases.

Sum pooling is the default choice in many implementations
(e.g., SchNet, DimeNet), usually outperforming mean and max-
imum pooling?® or matching them?8. We also evaluate the pro-
posed methods against OWA on the OE62% dataset and
conclude that attention-based pooling can match and outperform
OWA depending on the configuration (e.g., number of attention
heads). While our method introduces a large number of learnable
parameters, this is normal for a standard attention implementa-
tion and does not significantly affect training times or introduce
overfitting, as discussed later in Resuls.

Overall, we conclude that attention-based pooling (ABP) is an
excellent drop-in replacement for standard readout functions in
atom-centred neural networks. ABP is general and applicable to
any quantum property, in most cases outperforming existing
methods, and is particularly suitable for localised properties. ABP
incurs a small computational resource penalty that can be further
reduced on modern hardware.

Methodology

Pooling functions. We start by assuming an atomistic model that
operates on positional inputs (distances, angles, etc.) and com-
putes individual representations that require aggregation into a
single molecule-level embedding. The specifics of the architecture
or the implementation do not matter as long as the assumptions
hold. For example, many message-passing neural networks can be
summarised into the following generic formulation that computes
node-level features h,%8:

h = ) a’r “*vy
a ¢<xa Vﬁnw(x x))

where a, v are nodes (atoms), x; denotes atom representations, N/,
is the 1-hop neighbourhood of atom i, @ is a node-level aggre-
gation function such as sum or average, and ¢, ¥ are learnable
functions such as multi-layer perceptrons (MLPs). It should be
noted that there are many variations and extensions of Eq. (1),
and this is only an example of a possible architecture. Impor-
tantly, once the message passing steps or equivalent updates are
done, the atom-level representations are aggregated into a
molecule-level representation h,, = @®;.,,(h;), where V is the
collection of atoms in the molecule (note that this @ can be dif-
ferent from the one in Eq. (1)). This operation is often called an
aggregation, pooling, or readout function.
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Attention-based pooling. To design an expressive pooling
function that considers the entire context of the molecule (i.e., all
computed atom representations) and is self-contained (does not
require any additional inputs), we leverage the existing Set
Transformer framework introduced by Lee et al. for set
modelling?®, and proposed by Buterez et al. for use in node
aggregation®8. In other words, the pooling operation is reframed
as a set summarisation task, with an output that corresponds to
the desired molecular embedding. This is achieved by assembling
building blocks defined using a standard multihead attention
mechanism:

Attention(Q, K, V) = w(QK")V )

MultiHeadAttention(Q, K, V) = Concatenate(H, ..., H m)WO

(€)
where H, = Attention(QWS, KWK, viwY) (4)
The standalone attention module Attention( -, -, - ) receives input

query, key, and value vectors, of dimension dj, di, and d,
respectively (queries and keys have the same dimension) and
gathered in  matrices Q,K,V,  respectively.  With
w(-) = softmax(-/ \/a), the attention operation computes a
weighted sum of the values where a large query-key dot product
assigns a larger weight to the corresponding value. In multihead
attention, Q, K,V are projected to new dimensions by learnt
projections W, WX, WY, respectively, for a total of m inde-
pendent times. The results are processed by an attention module,
with the concatenated output attention heads being projected
with WO.

Following the original Set Transformer implementation, we
use the lower-level multihead and self-attention blocks (MABs,
respectively SABs) and pooling by multihead attention (PMA)
to define an encoder-decoder architecture that embeds input
atom vectors into a chosen dimension d, then learns to
aggregate or compress the encoded representations into a

single vector, the molecule representation. The encoder is
defined as

MAB (X, Y) = H + Linear,(H) (5)
where H = X 4+ MultiHeadAttention(X, Y, Y) (6)
SAB(X) = MAB(X, X) ?)
Encoder(X) = SAB"(X) (8)
with a decoder:
PMA,(Z) = MAB (sk, Linear¢(Z)) 9)

Decoder(Z) = Linear, (SAB" (PMA(2)) ) (10)

Here, Lineary denotes a linear layer followed by an activation
function ¢, SAB"(-) represents n consecutive applications of
SABs, and S; is a collection of learnable k seed vectors that
are randomly initialised (PMA; outputs k vectors). The
resulting Set Transformer module can be used as a pooling
function by following two sequential steps. Firstly, by proces-
sing all the atomic representations into features Z with the
encoder. The decoder is then tasked with transforming
the features into a single-vector representation of the set. Here,
we refer to this pooling function as attention-based pooling
(ABP):

ABP(X) = Decoder(Encoder(X)) (11)

Orbital-weighted average pooling. Chen et al.2’ have con-
currently observed that the standard pooling functions (sum,
average, maximum) might not accurately describe physical
properties that are highly localised and intensive, such as orbital
properties, and in particular the HOMO energy. Instead, they
discuss the importance of pooling functions that can attribute
different weights or ‘importance’ for a subset of atomic repre-
sentations. For  example, the softmax  function

.\ exp(e;) ) : _
€,) = =1 5T, exp(c)’ where ¢; are atomic repre

sentations of an n-atom system that in this case are assumed to be
scalars. The general form is given by weighted average (WA)
pooling:

softmax(e,, ...,

n
fwa= l; Wi€i (12)
where additionally we assume that the learnable weights w; are
normalised by softmax to sum to 1.

From a physical perspective, the weights that the neural
network will learn for HOMO energy prediction should tend
towards the orbital coefficients [; that describe the fraction of the
orbital that is localised on a given atom i. To incorporate this idea
into the pooling function, Chen et al.?” propose the following
strategy:

1. Pre-compute the orbital coefficients for the dataset (offline)

2. Use a separate atomistic model to learn the weights for fiya,
which are forced to be close to the pre-computed
coefficients by an updated loss function:

1 Myrain A ny 2
Lowa = [0‘ 2 (EHOMO -2 W(A.z‘)e(A,i))
train A=1 i=1
n, n (13)
train ""A 2
+B AZ:ZI 1; (Taiy = Waiy)

where #,;, denotes the number of training systems A in the
dataset, n, is the number of atoms in a system A, Ejjoyo is the
target HOMO energy for a system A, and «a and  are global
parameters that indicate the relative contributions of orbital
energies and localisations to the loss. The resulting pooling
function with the learnt weights is denoted by fowa (orbital-
weighted average).

Design and implementation

As stated in Methodology, the proposed attention-based pooling
function can be applied to a variety of atomistic modelling
algorithms. Here, we chose to evaluate our methods using two
architectures: SchNet and DimeNet-++, which were briefly dis-
cussed in the introduction. Both models are widely known and
used, making them easily accessible in general-purpose deep-
learning libraries such as PyTorch Geometric (used here)*%-L.
Furthermore, DimeNet++ is a particularly competitive model
which outperforms both contemporary and newer models (e.g.,
E(n) GNNs2%).

For our evaluation, we chose sum pooling as a representative of
the standard pooling methods. It is the default choice for SchNet
and DimeNet++, and in our previous extensive evaluation of
graph pooling functions, we did not observe significantly better
performance for any of the three functions on bioaffinity tasks?3.
Furthermore, from a physical perspective sum pooling can be
considered a natural choice for approximating certain quantum
properties. Nonetheless, we also report results for mean pooling
in Supplementary Table 3.

Here, we have used the PyTorch Geometric implementations
of SchNet and DimeNet++-, modified to support attention-based
pooling. As of PyTorch Geometric version 2.3.0 (available at the

4 COMMUNICATIONS CHEMISTRY | (2023)6:262 | https://doi.org/10.1038/s42004-023-01045-7 | www.nature.com/commschem


www.nature.com/commschem

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01045-7

ARTICLE

time of writing), the proposed pooling function is natively
available as SetTransformerAggregation (based on our
implementation). Unless otherwise noted, we use relatively deep
models to ensure that the atom-level representations learnt before
pooling are expressive enough. In particular, we use SchNet
models with 256 filters, 256 hidden channels (hidden embedding
size), and 8 interaction blocks, and otherwise default parameters
(total parameter count before pooling: 2.3 million), and DimeNet
++ models with 256 hidden channels (hidden embedding size), 6
interaction blocks, an embedding size of 64 in the interaction
blocks, a basis embedding size of 8 in the interaction blocks, an
embedding size of 256 for the output blocks, and otherwise
default parameters (total parameter count before pooling: 5.1
million). The models chosen here are larger than the defaults in
PyTorch Geometric and the original DimeNet study?3. In addi-
tion, while it is common to output scalar representations for the
atoms, we keep the same dimension for the atom representations
as used inside the models (before output), i.e., 256. This ensures
that the attention-based pooling can benefit from the full repre-
sentation, although in principle it is possible to apply it to scalars.
We follow the output of attention-based pooling with a small
MLP, obtaining a scalar prediction.

We evaluate our methods on all the properties of the QM7b
and QMBS datasets, on HOMO and LUMO energy prediction for
QM9 and QMugs, as well as on energy prediction tasks from
MD17, which provide a challenging setting due to the limited
amount of data. We have also considered total energy prediction
for QMugs as an example of a non-local property on the largest
and most diverse of the available datasets. Results are provided
for both SchNet and DimeNet++-, with sum and attention-based
pooling, i.e., 4 results per (property, dataset) pair. A batch size of
128 is used for all models. To ensure an accurate and self-
contained comparison, we randomly generate 5 different train,
validation, and test splits for each dataset using a ratio of 80%/
10%/10%, and report the average MAE + standard deviation. The
MAE is used as it is widely used in the literature to evaluate
atomistic models on quantum property prediction. Since ABP
introduces several hyperparameters compared to standard func-
tions, we evaluate a small set of common hyperparameter choices
and select the best configurations according to the validation set.

We also compare attention-based pooling with OWA on the
OE62 dataset used by Chen et al.*” on both HOMO and LUMO
energy. For this comparison, we use the provided OWA source

code as a starting point, and use the same underlying SchNet
implementation provided by the schnetpack 1.0.1 library”?,
including the same SchNet hyperparameters (embedding size of
128, 128 filters, 64 Gaussian functions, 6 interaction blocks, a cutoff
radius of 5, followed by 4 atom-wise layers with an input of 128
features). A batch size of 40 was used, as larger models would run
out of memory when using hardware equipped with 32GB of video
memory. For attention-based pooling, we modified the atom-wise
component to output representations of the same dimensionality as
the inputs, as described above. We also generated 5 random splits
using the same ratio as Chen et al.?” (32,000 molecules for train,
19,480 for validation, and 10,000 for test), and report both the MAE
and the RMSE (root mean squared error).

Results

Our results indicate that attention-based pooling outperforms
sum pooling on the majority of datasets and quantum properties,
including properties computed at different levels of theory (Fig. 2
and Table 1). Training and validation metrics are reported in
Supplementary Tables 1 and 2. On QM?7b, using ABP on top of
SchNet results in an average decrease (across all tasks) in MAE of
50.5%, with the highest decrease on the ‘Polarizability (self-con-
sistent screening)’ task (85.13%). The smallest decrease in MAE is
observed for ‘Atomisation energy (DFT/PBE0)’ (23.98%). When
using DimeNet++, there is a more modest average decrease in
MAE of 14.64%, with the most improved task being ‘Atomisation
energy (DFT/PBEO0)’ (58.41%). The only QM7b task where ABP
does not improve performance is ‘Maximal absorption intensity
(ZINDO)’ (—0.37%) when using DimeNet++. The ABP-based
DimeNet++ models generally match the ABP-based SchNet
models, suggesting that we are reaching the performance ceiling
for these model configurations and tasks.

On QMS, there is an average decrease in MAE of 19.23% across
all tasks for SchNet, and all tasks are improved when using ABP.
The most improved task is ‘E2-PBE0/def2SVP’ (25.07%), and the
least is ‘f2-CC2’ (13.15%). When using DimeNet++-, the average
decrease in MAE due to ABP is of 2.31%, with the most improved
task being ‘E1-CAM’ (7.69%). We observed slightly worse per-
formance when using ABP for only two tasks: ‘f2-CAM’
(—1.11%) and ‘f2-PBE0/def2TZVP’ (—0.48%). In general, for
both SchNet and DimeNet++, the least improved tasks when
using ABP involve the oscillator strength f,.

HOMO energy prediction
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Fig. 2 Performance of attention-based pooling versus sum pooling on HOMO energy prediction tasks. SchNet and DimeNet++ models evaluated on
HOMO energy prediction on different datasets (QM7b with different levels of theory, QM9, and QMugs), with the mean absolute error reported on test
sets corresponding to five different random splits for each dataset. The metrics of some datasets are scaled by 10 to ensure a similar scale for all datasets
(indicated by “(x10)' or *(+10)"). The exact metrics are reported in Tables 1 and 2.
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Table 1 Test set results for pooling methods on a wide range of datasets and tasks.

Total Energy - DFT (Ep)

MD17 (energies)

Aspirin - CCSD (kcal/mol)
Benzene - CCSD(T) (kcal/mol)
Ethanol - CCSD(T) (kcal/mol)
MDA - CCSD(T) (kcal/mol)
Toluene - CCSD(T) (kcal/mol)

9.0511 £ 2.8475

3.9347 £0.1281
0.4863 +£0.2946
0.6761+ 0.0349
0.9369 £ 0.0822
1.5291+0.4943

3.7143 +1.3582

3.4022 £1.8096

QM7b SchNet DimeNet++

Task - level of theory (unit) Sum ABP Sum ABP

Atom. energy - ZINDO/s (meV) 3.8594 +1.5259 3.1129 £ 0.8027 4.2682 £ 0.8056 2.6945 + 0.4007
Electron affinity - ZINDO (meV) 2.0445+0.2396 1.2602 + 0.1764 13579 £0.0739 1.2362 + 0.0568
Exc. energy at MA - ZINDO (meV) 40.1961+2.0175 29.9163 £ 1.1184 32.3594 + 0.6809 29.6964 + 0.6585
First exc. energy - ZINDO (meV) 2.4291+0.1244 1.4933 £ 0.0635 1.5712 £ 0.1302 1.4225 £ 0.0492
HOMO - GW (meV) 3.3114 £ 0.1898 2.405 £ 0.0653 2.4745 +0.0851 2.3425 £ 0.0368
HOMO - PBEO (meV) 3.0388 +0.1313 2.1782 + 0.078 2.2241+0.0555 2.022 + 0.0546
HOMO - ZINDO/s (meV) 2.6389 +0.1907 1.7517 + 0.0985 1.8492 £ 0.2358 1.6779 + 0.0462
lon. potential - ZINDO/s (meV) 41453 £ 0.3259 2.6968 + 0.1829 3.1309 £ 0.2063 2.6465 + 0.1521
LUMO - GW (meV) 3.1983 £ 0.3127 2.201+0.1799 2.2671£0.1794 2.1901+ 0.1435
LUMO - PBEO (meV) 2.0418 £ 0.1531 1.4993 + 0.052 1.6098 + 0.1364 1.4843 £ 0.0918
LUMO - ZINDO/s (meV) 1.7833+0.1637 1.0079 + 0.0914 1.022+0.0834 0.9466 + 0.0611
MA intensity - ZINDO (arbitrary u.) 0.0621+0.0043 0.0499 + 0.0036 0.0504 + 0.0027 0.0506 £ 0.0025
Polarizability - DFT/PBEO (A3) 0.0545 + 0.0131 0.0313 £+ 0.0023 0.0414 +£0.0072 0.0339 + 0.0058
Polarizability - SCS (A3) 0.0402 +0.0102 0.0217 + 0.0017 0.0376 £0.0067 0.0286 + 0.0027
QM8

ET-CAM (meV) 2.5281+0.1053 2.0662 + 0.0543 2.0174 £0.1371 1.8733 £ 0.0418
E1-CC2 (meV) 2.9611+£0.0892 2.4858 + 0.0577 2.356£0.0874 2.2682 + 0.0453
E1-PBEO/def2SVP (meV) 2.7438 £ 0.0984 2.2815 + 0.0326 2.2133+0.0924 2.1114 + 0.0681
E1-PBEQ/def2TZVP (meV) 2.811+0.1223 2.3284 + 0.0476 2.198 £ 0.0604 2,121+ 0.0411
E2-CAM (meV) 3.6754 £ 0.0665 2.9817 + 0.0661 2.9757 £ 0.1292 2.9061+ 0.0635
E2-CC2 (meV) 4.7751+0.3393 3.9243 + 0.0775 3.8655+£0.1533 3.8595 + 0.1065
E2-PBEO/def2SVP (meV) 3.9925 +0.1757 3.1921+ 0.038 3.2751+0.1098 3.1367 + 0.0773
E2-PBEQ/def2TZVP (meV) 3.8727 £ 0.1213 3.1896 + 0.0757 3.1725+0.0666 3.1336 + 0.0631
f1-CAM (meV) 8.8874+£0.7468 7.5481 + 0.4352 6.7815+£0.3782 6.7211+ 0.4862
f1-CC2 (meV) 10.1161+£0.2368 8.5145 £ 0.612 7.7868 + 0.2583 7.7728 + 0.3966
f1-PBEQ/def2SVP (meV) 8.5+0.5847 7.2271+ 0.3896 6.6124 £ 0.56 6.4726 + 0.4533
f1-PBEO/def2TZVP (meV) 8.3752 +0.5421 7.309 + 0.5944 6.9194 £ 0.2837 6.5475 + 0.4608
f2-CAM (meV) 21171+ 0.8133 17.7844 + 0.6103 16.1078 + 0.7989 16.2888 £ 0.5456
f2-CC2 (meV) 25.0288 + 0.8254 22,1203 + 0.6011 20.6984 +1.0388 20.4243 +1.1357
f2-PBEQ/def2SVP (meV) 19.1633 £ 1.1406 16.329 +1.1011 14.9302 £0.7617 14.9229 + 0.693
f2-PBEQ/def2TZVP (meV) 19.6788 + 0.4903 17.0492 +1.0804 15.4548 £ 0.7086 15.5292 +0.7807
QM9

HOMO - DFT (meV) 35.9852 +1.0706 29.5771+ 0.5172 23.7112 £0.3027 21.5772 + 0.4591
LUMO - DFT (meV) 33.5047 £ 0.8853 26.96 + 0.8733 20.8319 + 0.6665 20.4879 + 0.5223
QMugs

HOMO - DFT (meV) 65.0941+£1.2428 52,1722 + 0.475 24.536+0.26 23.6096 * 1.2122
LUMO - DFT (meV) 62.0224 +0.83 47.3707 + 0.9157 21.4916 + 0.5581 20.9528 + 0.3756

2.7445 +1.6937

3.414 £ 0.0582 2.5373+0.0609 2.327 + 0.0738
0.297 = 0.029 0.2899 +0.0339 0.2665 + 0.0552
0.6848 £0.0272 0.5757+0.026 0.5667 + 0.009
0.897 + 0.0279 1.0579 £0.0262 1.0484 + 0.0356
0.95 + 0.0483 11317 £ 0.0461 1.1035 + 0.0541

Test MAE (mean * standard deviation from 5 data random splits) for QM7b, QM8, QM9, QMugs, and MD17 (best MAEs and table headers in bold).
MA maximal absorption, SCS self-consistent screening, atom. atomisation, exc. excitation, ion. ionisation, u. units, MDA malondialdehyde.

For the larger quantum datasets (QM9 and QMugs), we train
and evaluate models for the HOMO and LUMO energy predic-
tion tasks. For HOMO, on QM9 we notice decreases in MAE of
21.67% and 9.89% for SchNet and DimeNet++, respectively. On
QMugs, the decreases are of 24.77% and 3.92% for SchNet and
DimeNet++, respectively. Similar uplifts are observed for
LUMO. Interestingly, total energy prediction on QMugs is
improved by a large amount (58.97%) on SchNet, and by a
moderate amount on DimeNet++ (19.34%), despite not being a
local property like the HOMO or LUMO energies.

For the small MD17 datasets, we observe a decrease in MAE
for Aspirin of 15.46% and 9.04% for SchNet and DimeNet++,
respectively, for Benzene of 63.71% and 8.79%, for Ethanol of
—1.26% and 1.57%, for Malonaldehyde of 4.44% and 0.91%, and

for Toluene of 60.95% and 2.56%. For these smaller datasets, we
used SchNet with 128 filters, 128 hidden channels, and 4 inter-
action blocks, and DimeNet+-+ models with 128 hidden chan-
nels, 4 interaction blocks, and an embedding size of 128 for the
output blocks. For the cases where using ABP did not improve the
MAE (e.g., SchNet on Ethanol), we noticed that different
underlying architectures can help improve upon the sum pooling
result (usually more complex models with more interaction
blocks).

To further validate the performance of ABP compared to sum
pooling for each algorithm (ie., SchNet and DimeNet++ in
Table 1), we performed Wilcoxon signed-rank tests as the data is
not normally distributed according to scipy’s normaltest
function : p=9.65x10716 (SchNet sum), p=2.12x10"16
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Table 2 Test set results for pooling methods and HOMO energy prediction on the OE62 dataset (SchNet).

Readout MAE RMSE # ABP parameters
Sum 0.2656 +0.0177 0.4032+0.0168 N/A

Average 0.1437 £ 0.0016 0.2043 £+ 0.0009 N/A

OWA 0.1135+0.0019 0.1670 £ 0.0021 N/A

ABP(64, 4, 2) 0.1158 £ 0.0020 0.1697 £ 0.0021 995,456

ABP(64, 8, 2) 0.1130+£0.0019 0.1660 £ 0.0028 3,694,720

ABP(64, 16, 2) 0.1119 £ 0.0022 0.1655 £ 0.0045 14,205,056
ABP(64, 16, 3) 0.1124 £ 0.0006 0.1648 + 0.0015 18,403,456

Test MAE and RMSE (mean * standard deviation from 5 data random splits) for SchNet-based HOMO energy prediction on the OE62 dataset, including the number of learnable parameters for the
attention-based pooling (ABP). The ABP configuration is reported as 'ABP(embedding size, number of attention heads, number of SABs)'. The number of learnable parameters for the underlying SchNet

model (not including the readout) is 480,002. The smallest MAE/RMSE values and table headers are highlighted in bold. The unit used for energy is eV, as used by Chen et al.?’.

Table 3 Test set results for pooling methods and LUMO

energy prediction on the OE62 dataset (SchNet).

Readout MAE RMSE

Sum 0.1654 +0.0083 0.2374 £ 0.0097
Average 0.1393+0.0059 0.2037 £0.0097
OWA 0.1281+0.0030 0.1858 £ 0.0056
ABP(64, 8, 2) 0.1050 £0.0024 0.1630 + 0.0047
ABP(64, 16, 2) 0.1010 = 0.0011 0.1580 + 0.0033

Test MAE and RMSE (mean # standard deviation from 5 data random splits) for SchNet-based
LUMO energy prediction on the OE62 dataset. The smallest MAE/RMSE values and table
headers are highlighted in bold. The unit used for energy is eV, as used by Chen et al.27. The
naming conventions and numbers of parameters are reported in Table 2.

(SchNet  ABP), p=8.19x10"1* (DimeNet++  sum),
p=2.73x10"13 (DimeNet++ ABP). The Wilcoxon tests indi-
cated statistical significance for SchNet (p=1.14x 107%) and
DimeNet+-+ (p = 6.69 x 1079).

In contrast to sum pooling, mean pooling performed similarly
but generally slightly worse for the majority of properties (Sup-
plementary Table 3) for both SchNet and DimeNet++. HOMO
and LUMO energy prediction is generally improved when using
mean pooling, especially for larger datasets (QM9, QMugs). For
example, when using SchNet on QM7b for HOMO energy pre-
diction, mean pooling leads to a decrease in MAE, on average, of
15.44% (GW), 13.85% (PBEO0), and 8.55% (ZINDOQ/s), while for
DimeNet++ we noticed an increase in MAE by 5.1% (GW),
0.75% (PBEO), and a decrease of 0.44% for ZINDO/s. Mean
pooling decreased the MAE for the QM9 HOMO task by 9.75%
for SchNet and 2.26% for DimeNet++, and by 16.57% for
SchNet and 0.83% for DimeNet++ on the LUMO energy pre-
diction task. However, ABP achieves lower prediction error than
both sum and mean pooling.

When compared to OWA pooling for HOMO energy predic-
tion (Table 2), attention-based pooling matches or even slightly
outperforms OWA depending on the ABP configuration, despite
not leveraging pre-computed orbital coefficients. This can be
observed both in terms of RMSE (the metric chosen by Chen et
al.) and MAE (used throughout the rest of the paper). Here, we
also study LUMO energy prediction which is not considered by
Chen et al.?7, but is available in the OE62 dataset. We find that
OWA offers a smaller improvement with respect to average
pooling on LUMO energy prediction (8.04%) compared to
HOMO energy (21.02%), as given by the MAE, with similar
trends for the RMSE (Table 3). Furthermore, whereas for HOMO
the attention-based pooling offered a small but noticeable
improvement compared to OWA, for LUMO we observe a more
significant improvement of 21.16% for ABP.

When not using orbital coefficients for a dataset such as QM7b
(Table 4) where they are not readily available, we find that
weighted average pooling still outperforms sum pooling by a

noticeable amount (around 10%); however, ABP improves even
further, with decreases in MAE between 41% and 57%.

Resource utilisation and scaling. Since attention-based pooling
is a relatively new direction for neural networks, it is important to
characterise the amount of resources used in addition to the
underlying model (here, SchNet and DimeNet++). The main
implementation of ABP that is used throughout the paper exhi-
bits quadratic time and memory scaling in the number of atoms
of a molecule, as the standard attention mechanism computes
pairwise scores between all atom representations outputted by
SchNet or DimeNet++. Currently, all molecules have to be
padded with zeros to the maximum number of atoms per
molecule in the used dataset, since otherwise the tensor dimen-
sions would not match across different molecules. Although
recent versions of PyTorch (2.0+) support ragged tensors where
the dimensions might not match, the implementation is still an
early prototype at the time of writing and not all tensor opera-
tions required by ABP are available. It is also worth highlighting
that inside ABP, the SABs can be trivially replaced with induced
self-attention blocks (ISABs), an alternative that computes
attention between the original set of size n and a small set of
learnable parameters of size m (typically m < 16), scaling as n - m
in terms of memory instead of quadratically in n. We have not
investigated the potential impact of this approximation on the
predictive performance.

We have recorded the time spent per epoch (using PyTorch
Lightning’s Timer callback function) and the maximum amount
of allocated memory using PyTorch’s torch.cuda.max me-
mory allocated function, for SchNet and DimeNet++
models with sum and ABP readouts in Fig. 3 (QM9, QMugs)
and Supplementary Fig. 1 (QM7b, QM8). On QM9, the model
with the largest ABP readout (16 attention heads and 64
embedding dimensions per head) adds, on average, 27.57 seconds
of training per epoch for SchNet (79.54% relative to sum pooling)
and 14.05 (9.77% relative) for DimeNet++. On QMugs, ABP
added 11 minutes and 37 seconds for SchNet (101.75% relative)
and 9 minutes and 43 seconds (18.33% relative) for DimeNet++-.
Despite ABP increasing the training time per epoch by similar
amounts (e.g., around 10 min for QMugs), the relative change for
SchNet is considerably larger since SchNet is 4 to 5 times faster
than DimeNet++ in our experiments.

Unlike the time spent training, the available memory is a fixed
quantity and is thus often a more important consideration. We
observe that ABP only increases the amount of allocated memory
by 0.63 GB for QM9 when using SchNet (37.47% relative to sum
pooling) and by 0.43 GB for DimeNet++ (4.60% relative). On
QMugs, there is an increase of 2.75 GB for SchNet (28.82%
relative) and 2.49 GB for DimeNet++ (9.19% relative). As can
also be seen in Fig. 3, the majority of the allocated memory is for
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Table 4 Test set results for pooling methods including weighted average pooling for HOMO energy prediction on QM7b.

QM7b SchNet

Task (level of theory) Sum WA ABP

HOMO (GW) 3.311+£0.190 2.951£0.112 2.342 £ 0.037
HOMO (PBEO) 3.039+0.131 2.748+0.174 2.022+ 0.055
HOMO (ZINDO/s) 2.639+0.191 2.353+0.163 1.678 £ 0.046

Test MAE for the QM7b dataset (HOMO energies) including WA pooling, which does not use pre-computed orbital coefficients (best MAEs and table headers in bold). The energy unit is meV.
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Fig. 3 Analysis of the time and memory consumption of the ABP and sum readouts on all datasets. Time spent training per epoch (minutes) and
memory consumption (GB) of SchNet and DimeNet++ models with sum and ABP readouts (standard attention) for different datasets. Several
configurations of ABP (hidden dimension per attention head, number of attention heads) are included for comparison, and all ABP readouts use 2 self
attention blocks (SABs). Results are reported for 10 different runs of the same model configuration on a single NVIDIA V100 GPU with 32GB memory.
QMugs models use a batch size of 64, while all other models use a batch size of 128. Error bars represent a 95% confidence interval.

the underlying SchNet or DimeNet++ model, with only a minor
penalty associated with ABP.

Despite the quadratic time and memory scaling of ABP, it is
important to note that the first limiting factor when training large
models is the underlying model. We were unable to run DimeNet+
+ on QMugs (the largest molecule has 228 atoms) with the same
batch size (128) as for the other datasets even when using standard
readouts (sum). Even with a batch size of 64, the model used 27.10
GB and almost hit the memory limit of professional-grade NVIDIA
V100 graphics processing units with 32GB of memory (Fig. 3).
DimeNet exhibits quadratic scaling within some molecular
operations°3, which can exacerbate the time and memory utilisation
for datasets with large and complex molecules such as QMugs.

Although the standard attention implementation used
throughout the paper can be considered memory efficient and
even time efficient for models such as DimeNet++, recently
many alternatives have been proposed that scale sub-
quadratically with the number of atoms and with severalfold
reductions in training time, without relying on approximations.
Such techniques include FlashAttention®*>> (linear in sequence
length for natural language processing applications—here, in the
number of atoms) and memory efficient attention® (scales with
the square root of the sequence length and it has been tested with
sequences of over 1 million tokens). We have used the official
FlashAttention implementation (https://github.com/Dao-AILab/

Table 5 Time and memory utilisation of a sum readout
DimeNet-+-+ model compared to an ABP implementation
leveraging the recent FlashAttention method (‘ABP-Flash')
on the QMugs dataset and a single NVIDIA RTX 3090 GPU
with 24GB memory.

Readout Time (min) Memory (GB)
Sum 23.0816 £ 0.055 15.2246 £ 0
ABP-Flash(64, 16, 2) 25.3882+0.0732 15.4809 + 0.00M
ABP-Standard(64, 16, 2) N/A OOM

The sum readout DimeNet++ model is also considerably faster than in Fig. 3 thanks to the
newer GPU architecture and half-precision training (the wide dynamic range bfloat16 tensor
type was used), which generally halves the training time and memory consumption. Standard
attention (‘ABP-Standard’) is not applicable ('N/A’) in this case as a model with the same
settings does not fit within the memory of a single RTX 3090 GPU (out-of-memory, ‘'OOM").
Results are reported for 5 different runs of the same model configuration. Table headers are
presented in bold.

flash-attention), which is currently experimental and only
optimised for the most recent hardware architectures, to replace
the standard attention mechanism used within ABP (Table 5).
Differently from the previous measurements, we now use an
NVIDIA RTX 3090 graphics card to fully benefit from the latest
architectural advancements. At the time of writing, the
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FlashAttention implementation is only available for half-precision
floating point numbers, which can generally already halve the
memory consumption. We further use an 8-bit Adam optimiser
as a further modern optimisation to reduce memory usage”>8.
Opverall, the increase in memory cost for the largest ABP readout
is just 1.68% compared to sum pooling (Table 5), and the training
time increase per epoch is reduced to just 2 minutes and
18 seconds (9.99% relative). Although using half-precision
floating point numbers might reduce stability when training, this
is generally addressable by improvements in the prototype
implementations of attention and techniques such as gradient
clipping®. This demonstrates that advances in the implementa-
tion of attention methods stand to alleviate most of the increased
computational complexity associated with ABP.

Discussion

The presented results suggest that attention-based pooling is pre-
ferable to sum-based pooling for intensive, localised properties
such as HOMO and LUMO energy prediction. Perhaps less
expected is the uplift in performance on other properties that are
not as localised as the HOMO and LUMO energies, for example,
total energy prediction on QMugs or energy prediction on the
small MD17 datasets. In this latter case, it is also remarkable that a
data-driven method like ABP is able to often outperform standard
pooling when training with around 1,000 data points. Apart from
the physical motivation behind improving localised property pre-
diction, it should be noted that the attention mechanism adds an
additional layer of expressivity to the network, enabling better
approximation of general-purpose properties. Moreover, although
we have presented the ‘main’ network such as SchNet or DimeNet
-++ and the pooling function as separate components, they work
synergistically, especially for highly expressive learnable and dif-
ferentiable pooling functions. It is not unlikely that the patterns
learnt at the pooling level can propagate to the main model, leading
to an improved, holistic model behaviour.

We have also observed that there is generally a large dis-
crepancy in performance between SchNet and DimeNet++ when
using sum pooling, while the performance difference between the
two models when using ABP tends to be lower, particularly for
the smaller datasets. One possible explanation for the perfor-
mance difference between sum pooling models is that DimeNet+
+ is significantly more expressive (in terms of representational
power) compared to SchNet. Similarly, the models used in our
previous work only considered information derivable from the
SMILES encoding, but not the 3D atomic coordinates. Such
models are not competitive with models that leverage this
information, like SchNet. DimeNet++ adds a further layer of
complexity by considering directional information that is not
directly accessible within SchNet (also note that representations
based on spherical Bessel functions and spherical harmonics were
empirically found to be more helpful than the raw angles in
DimeNet++). The fact that ABP SchNet and DimeNet++
models are close in performance, especially for smaller datasets
such as QM7b and QMS, suggests that attention can, to a certain
extent, extract more information from the input data by working
synergistically with the underlying atom-centred model and
increasing the overall expressivity. However, for large and com-
plex datasets such as QMugs, the explicit incorporation of
directional information appears necessary for high performance.

When compared to OWA on the diverse OE62 dataset for
HOMO energy prediction (Table 2), attention-based pooling can
match and even outperform it depending on the attention con-
figuration (i.e., number of attention heads and hidden dimen-
sions). Under the same conditions, we observe an over 20%
improvement for ABP on LUMO energy prediction (Table 3).

This is an interesting conclusion as OWA requires the pre-
computation of orbital coefficients and their explicit incorpora-
tion in the loss function. Since this additional information is not
required by our method, it suggests that most of the information
that is required to reach this level of performance is already
available in the network, but it is not fully exploited. Interestingly,
Chen et al.2” noticed that WA can occasionally outperform OWA
with the actual orbital coefficients, most likely due to the
increased network flexibility. Thus, models that deviate from or
even omit physical references can sometimes be preferable.

Although OWA is an innovative and physically based
approach, its scalability and applicability might limit its full
potential. The method requires the pre-computation of orbital
coefficients, which are not generally available for most published
datasets. Furthermore, the OWA weights are learnt by a second
atomistic model which is inherently not scalable as it imposes a
doubling of the model’s requirements and an additional model
must be added for each new property to be predicted in a multi-
task scenario. Perhaps most limiting, the OWA approach is
engineered specifically for orbital properties, with no straight-
forward analogue for properties that do not have a well-defined
orbital basis.

We illustrate this last point by considering HOMO energy
prediction tasks on the QM7b dataset without pre-computing the
orbital coefficients (Table 4). The OWA method thus takes the
more general, non-orbital specific WA form of Eq. (12). The
results indicate that attention-based pooling outperforms WA by
about the same margin as WA pooling outperforms sum pooling.
We also take the opportunity to highlight the similarity between
the (O)WA methods and the well-known Deep Sets framework
that considers sum-decomposable functions, where individual
items are processed by simple neural networks such as MLPs
before being summed®. Although Deep Sets offer a theoretically
sound construction, our work has previously suggested and
exemplified that Deep Sets-style pooling does not match the
performance of attention-based pooling2®.

Overall, the replacement of simple pooling functions with an
attention-based pooling function (here, the Set Transformer) has
empirically proven to be the optimal choice in the majority of
evaluated settings. Attention is particularly well-suited for tasks
involving non-linear or localised patterns, although it is often
effective for properties of different natures. In theory, an
expressive and permutation-invariant module such as the Set
Transformer can also learn to represent functions like sum,
average, or maximum if necessary, although the amount and
quality of data also becomes a consideration in such a scenario.
Practically, the proposed pooling function acts as a drop-in
replacement for existing pooling operations and does not require
any pre-computations or modifications to the underlying net-
work. Although the standard attention mechanism that we used
here has quadratic time and memory scaling, we did not observe
significantly larger training times or prohibitive increases in
consumed memory for any of the shown experiments. We also
did not notice overfitting or divergence due to the large number
of parameters.

Data availability

All the datasets used throughout the paper are publicly available through different
hosting services, as indicated in the main text. For ease of use, we provide pre-processed
versions of certain datasets which are accessible by following the instructions included in
the source code. The numerical source data for Figs. 2 and 3 (also Supplementary
Information 2) are provided as Supplementary Data 1, respectively Supplementary
Data 2.

Code availability
The source code that enables all experiments to be reproduced is hosted on GitHub:
https://github.com/davidbuterez/attention-based-pooling-for-quantum-properties.
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