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Abstract
Complex networks are made up of vertices and edges. The latter connect the vertices.
There are several ways to measure the importance of the vertices, e.g., by counting the
number of edges that start or end at each vertex, or by using the subgraph centrality of
the vertices. It is more difficult to assess the importance of the edges. One approach
is to consider the line graph associated with the given network and determine the
importance of the vertices of the line graph, but this is fairly complicated except for
small networks. This paper compares two approaches to estimate the importance of
edges of medium-sized to large networks. One approach computes partial derivatives
of the total communicability of the weights of the edges, where a partial derivative of
large magnitude indicates that the corresponding edge may be important. Our second
approach computes the Perron sensitivity of the edges. A high sensitivity signals that
the edgemaybe important. The performance of thesemethods and some computational
aspects are discussed. Applications of interest include to determine whether a network
can be replaced by a network with fewer edges with about the same communicability.

Keywords Network analysis · Sensitivity analysis · Edge importance

Mathematics Subject Classification (2010) 05C82 · 15A16 · 65F15

1 Introduction

Networks are helpful for modeling complex interactions between entities. A network
can be represented by a graph G = 〈V, E,W〉, which consists of a set of vertices or
nodes V = {v1, v2, . . . , vn}, a set of edges E , with |E | = m, that connect the vertices,
and a set of nonnegative edge weights W = {w11, w21, . . . , wnn}. The weight wi j
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is positive if there is an edge pointing from vertex vi to vertex v j ; while wi j = 0
signifies that there is no such edge. Edges may be directed (and then model one-way
streets) or undirected (and then model two-way streets). If the graph models a road
network in which the vertices model intersections and the edges model roads, then the
weights may, e.g., be proportional to the amount of traffic along each road. A network
in which all positive weights are one is said to be unweighted. Descriptions and many
applications of networks are provided by, e.g., Estrada [11] and Newman [19].

We say that vertex vi is directly connected to vertex v j if there is a single edge from
vertex vi pointing to vertex v j . Vertex v j is then said to be adjacent to vertex vi . When
the edge between these vertices is undirected, vertex v j also is directly connected to
vertex vi , and vi is adjacent to vertex v j . Vertex vi is said to be indirectly connected
to vertex v j if the latter vertex can be reached from the former by following at least
two edges from vi . We will consider graphs without multiple edges and without edges
that start and end at the same vertex.

Let e(vi → v j ) denote an edge from vertex vi to v j . If there also is an edge
e(v j → vi ) and wi j = w j i > 0, then the edge is said to be undirected and denoted
by e(vi ↔ v j ). A sequence of edges (not necessarily distinct)

{e(v1 → v2), e(v2 → v3), . . . , e(vk → vk+1)}

forms a walk. The length of a walk is the sum of the weights of the edges that make up
the walk, i.e.,

∑k
i=1 wi,i+1. If the edges in a walk are distinct, then the walk is referred

to as a path.
Introduce the adjacency matrix A = [wi j ]n

i, j=1 ∈ R
n×n associated with the graph

G. The adjacency matrix A is sparse in most applications, i.e., the matrix has many
more zero entries than positive entries. The matrix is symmetric if for each edge there
also is an edge in the opposite direction with the same weight. The graph determined
by such an adjacency matrix is said to be undirected. If at least one edge of a graph
is directed, or if wi j �= w j i for at least one index pair {i, j}, then the graph is said to
be directed. The adjacency matrix associated with a directed graph is nonsymmetric.
Since we assume that there are no edges that start and end at the same vertex, the
diagonal entries of the adjacency matrix A vanish.

A graph is said to be connected if for every pair of vertices vi and v j , there is
a path from vertex vi to vertex v j and from vertex v j to vertex vi . Directed graphs
with this property are sometimes referred to as strongly connected. A directed graph
is said to be weakly connected if the undirected graph that is obtained by replacing all
directed edges by undirected ones is connected. A graph is strongly connected if and
only if the adjacency matrix associated with the graph is irreducible. This provides a
computational approach to determine whether a graph is strongly connected. Further,
an undirected graph is connected if and only if the second smallest eigenvalue of the
associated graph Laplacian is positive; see e.g., [11, 19].

Let exp0(t) = exp(t) − 1 and consider the power series expansion

exp0(A) = A + A2

2! + A3

3! + . . . . (1)
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Let Ak = [a(k)
i j ]n

i, j=1 for k = 1, 2, . . . , where a(1)
i j = wi j for 1 ≤ i, j ≤ n. A

nonvanishing entry a(k)
i j for some k > 0 indicates that there is at least one walk of k

edges from vertex vi to vertex v j . In case of an unweighted network, a(k)
i j represents

the number of walks of length k from vertex vi to vertex v j . The denominators in
the terms of the expansion (1) ensure that the expansion converges and that terms
Ak

k! with k large contribute only little to exp0(A). It follows that short walks typically
are more important than long ones, which is in agreement with the intuition that
messages propagate better along short walks than along long ones. This led Estrada
and Rodriguez-Velazquez [13] to use exp(A) to study properties of a graph; we use
the function exp0(A) because the term with the identity matrix I in the expansion
of exp(A) has no natural interpretation in the context of network modeling. Other
functions also can be used such as a resolvent or a Mittag-Leffler function; see Estrada
and Higham [12] and Arrigo and Durastante [2] for discussions.

Estrada and Rodriguez-Velazquez [13] define for graphs with a symmetric adja-
cency matrix the communicability matrix exp(A); we will use the matrix

C = [ci j ]n
i, j=1 = exp0(A).

The entry ci j , i �= j , is referred to as the communicability between the vertices
vi and v j . A relatively large value implies that it is easy for the vertices vi and v j to
communicate. Estrada and Rodriguez-Velazquez [13] measure the importance of the
vertex vi of an undirected graph by the subgraph centrality cii + 1; we will use cii .
Related measures of communicability can be defined when the adjacency matrix A is
nonsymmetric; see [6].

We define the total communicability of the graph G as

TG(w11, w21, . . . , wnn) = eT exp0(A)e, (2)

where e = [1, 1, . . . , 1]T ∈ R
n denotes the vector with all entries 1 and the superscript

T stands for transposition. Benzi and Klymko [3] introduced the related measure
eT exp(A)e, which differs from (2) by the additive constant n. Note that the expression
(2) is invariant under transposition. We have

TG(w11, w21, . . . , wnn) = eT exp0(A
T )e = 1

2
eT (exp0(A) + exp0(A

T ))e.

The graph associated with the adjacency matrix AT is known as the reverse graph
to G. Thus, the total communicability of the graph G and of the reverse graph are the
same.

We are interested in investigating the importance of the edges of a graph G and, in
particular, in determining which edge weights can be reduced or set to zero without
significantly affecting the total communicability.Apossible approach to investigate the
importance of edges is to consider the line graph associated with the graph. The edges
ofG correspond to vertices in the associated line graph, and the importance of the edges
in G can be measured by the subgraph centrality of the vertices of the line graph. This
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approach is investigated in [7, 8]. However, it is quite cumbersome to construct the line
graph except for small graphs. A simple heuristic technique was proposed by Arrigo
and Benzi [1], who define the edge total communicability and seek to remove edges
whose removal does not reduce the edge total communicability much. This approach
is quite easy to implement for networks that are small enough to allow the computation
of the singular value decomposition of the associated adjacency matrix; however, it is
not straightforward to use for large-scale networks. Moreover, the importance of an
edge is assumed to depend on the importance of the vertices that it connects. This holds
for some networks, but not for others. Therefore, this approach to edge removal may
result in removals that are not in agreement with intuition. More recently an approach
that uses the right and left Perron vectors of the adjacency matrix in combination with
theWilkinson perturbation to determine which weights to increase in order to increase
the total communicability has been described in [4, 21]. An analogous technique is
applied in [10] to discern which weights in a weighted multilayer network can be
decreased without affecting the total communicability significantly.

Another approach to study the importance of edges is to evaluate the Fréchet deriva-
tives of the total communicability (2) with respect to the weights. This approach was
advocated by De la Cruz Cabrera et al. [4] and recently Schweitzer [27] described
how to speed up the computations. Introduce the gradient

∇TG(w11, w21, . . . , wnn) =
[

∂

∂w11
eT exp0(A)e,

∂

∂w21
eT exp0(A)e, . . . ,

∂

∂wnn
eT exp0(A)e

]T

.

(3)

When the partial derivative

∂

∂wi j
eT exp0(A)e (4)

is (relatively) large, a small increase in the positive weight wi j results in a substantial
change in the total communicability. We will show below that the partial derivatives
(4) are nonnegative.

For example, let the graph represent a road map, where the edges model roads and
the vertices represent intersections of roads. Let vertex v j be adjacent to vertex vi . Then
widening an existing road from vi to v j may result in a significant increase in the total
communicability of the graph; the widening of this road is modeled by increasing the
weight wi j . Also, when (4) is relatively large, and vertex v j is not adjacent to vertex
vi , i.e., there is no road from vi to v j , building such a road may increase the total
communicability substantially. This is modeled by making the vanishing weight wi j

positive.
Conversely, if the partial derivative (4) is relatively small and the weight wi j > 0 is

small, then settingwi j to zero, i.e., removing the edge from vertex vi to vertex v j , will
not affect the total communicability (2)much. This implies that blocking the road from
vertex vi to v j , e.g., due to construction, does not change the total communicability
of the network significantly.
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This paper is organized as follows. Section 2 discusses how the gradient can be
applied to assess the importance of edges. The first part of the section is concerned
with small to medium-sized problems for which it is feasible to evaluate the gradient
(3). The latter part of the section discusses the application of Krylov subspacemethods
to project large-scale problems to problems of fairly small size. The computations use
a result by Schweitzer [27] on the evaluation of Fréchet derivatives, but differ in
various aspects that speed up the computations. Section 3 reviews methods described
in [4, 10, 21] based on evaluating the right and left Perron vectors and the Wilkinson
perturbation to determine important and unimportant edges. One of the aims of this
paper is to compare themethods discussed inSections 2 and 3. This is done inSection 4,
where we also report timings. Section 5 contains concluding remarks.

We conclude this section with comments on some related methods. A scheme that
combines regression, soft-thresholding, and projection is applied in [5] to approximate
an unweighted network by a simpler unweighted network. This scheme performs well
but may be expensive and is restricted to unweighted networks. Massei and Tudisco
[17] consider the problem of determining a low-rank perturbation E ∈ R

n×n to the
adjacency matrix A so that the perturbed matrix A + E maximizes or minimizes the
robustness of the network. For instance, E may be chosen to maximize or minimize
the trace of f (A+E)− f (A) for a user-specified matrix-valued function f . Thus, this
method seeks tomodify a few edgeweights so that the trace is increased or decreased as
much as possible. The perturbation E is determined by a greedy algorithm for solving
an optimization problem that can be quite expensive to solve. A careful comparison
with this method is outside the scope of the present paper.

2 Networkmodifications based on the gradient

This section discussesmethods for modifying, adding, or removing edges of a network
by using information furnished by the gradient (3).We first describemethods for small
to medium-sized networks for which all entries of the gradient (3) can be evaluated.
Subsequently, we will consider Krylov subspace methods that can be applied to large-
scale networks.

2.1 Methods for small to medium-sized networks

Let thematrix function f : A ∈ R
n×n → f (A) ∈ R

n×n be continuously differentiable
sufficiently many times in a region in the complex plane that contains all eigenvalues
of A. Then the function f has a Fréchet derivative L f (A,E) ∈ R

n×n at A in the
direction E ∈ R

n×n\{0}. The Fréchet derivative satisfies

f (A + E) = f (A) + L f (A,E) + o(‖E‖), (5)

as ‖E‖ → 0, where ‖ · ‖ is any matrix norm; see, e.g., [15] for details. Schweitzer
described an efficient approach to evaluate L f (A,E) in several directions E simulta-
neously.
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Theorem 1 (Schweitzer [27, Theorem 2.3]) Let A ∈ R
n×n and u, v ∈ R

n\{0},
and assume that f is Fréchet differentiable at A. Define Ei j = ei eT

j , where

ek = [0, . . . , 0, 1, 0, . . . , 0]T ∈ R
n denotes the kth column of the identity matrix.

Then
uT L f (A,Ei j )v = eT

i L f (AT , uvT )e j . (6)

Thus, the entries of the matrix L f (AT , uvT ) furnish Fréchet derivatives in all
directions Ei j = ei eT

j , 1 ≤ i, j ≤ n. We are primarily interested in the situation when
f (t) = exp0(t) and

u = v = e = [1, 1, . . . , 1]T ∈ R
n . (7)

Theorem 2 All entries of the gradient (3) are nonnegative.

Proof Let Ei j = ei eT
j . Then for f (t) = exp0(t), we have

∂

∂wi j
eT exp0(A)e = eT L f (A,Ei j )e.

It follows from (5) that

L f (A, hEi j ) = exp0(A + hEi j ) − exp0(A) + o(h) as h ↘ 0.

The power series expansion of f (t) = exp0(t) gives

L f (A, hEi j ) = h

(

Ei j + AEi j + AEi j

2! + A2Ei j + AEi jA + Ei jA2

3! + . . .

)

+ o(h)

= h

( ∞∑

�=1

1

�!
�−1∑

k=0

1

�!A
kEi jA�−1−k + o(1)

)

.

Each term in the above sum is amatrix with nonnegative entries. Hence, the sum is a
matrix with nonnegative entries. The term o(1) vanishes as h ↘ 0. Since L f (A, hEi j )

is linear in h, we obtain

L f (A,Ei j ) = lim
h↘0

L f (A, hEi j )

h
=

∞∑

�=1

1

�!
�−1∑

k=0

1

�!A
kEi jA�−1−k . (8)

This completes the proof.

A possible way to evaluate the matrix L f (AT , uvT ) in (6) when AT ∈ R
n×n is to

use the relation

f

([
AT uvT

0 AT

])

=
[

f (AT ) L f (AT , uvT )

0 f (AT )

]

; (9)

see, e.g., [15, p. 253]. However, when f (t) = exp0(t), the computation of f (AT )

requires O(n3) arithmetic floating point operations (flops). Therefore, the evaluation
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of the left-hand side of (9) demands about 8 times more flops than the calculation
of f (AT ). It is cheaper to approximate L f (AT , uvT ) by using the finite-difference
approximation

L f (AT , uvT ) ≈ f (AT + huvT ) − f (AT − huvT )

2h
(10)

for some h > 0. We will use h = 2
n · 10−4 in the computed examples in Section 4.

This is suggested by the following simple computations. We have used the fact that
‖uvT ‖2 = n, which holds for the vectors (7). Here and throughout this paper ‖ · ‖2
denotes the spectral matrix norm or the Euclidean vector norm.

Example 2.1. Let f (t) = exp0(t) be evaluated with a relative error δt bounded by
δ > 0 and let h > 0 be a small scalar. Then

f (t + h) − f (t − h)

2h
≈ fexact(t + h) + δt+h fexact(t) − ( fexact(t − h) + δt−h fexact(t))

2h

≈ f ′
exact(t) + h2

6
f ′′′
exact(t) + δt+h − δt−h

2h
fexact(t).

Thus, the error is bounded by about

(
h2

6
+ δ

h

)

exp(t).

Minimization over h > 0 yields

h ≈ (3δ)1/3.

The computation of the scalar exponential is carried out with high relative accuracy
inMATLAB.However, evaluation of thematrix exponential exp(AT ) is more difficult.
It can be computed in several ways; see, e.g., [15, Chapter 10] as well as [24, 30]. The
accuracy achieved depends on the method used as well as on the size and properties of
thematrixAT ; see, e.g., [15,Chapter 10] and [24] for computed examples.We therefore
include a factor 103 in the bound δ for the relative accuracy. This bound is valid for
most matrices of sizes of interest to us. Letting δ ≈ 103εmach with εmach ≈ 2 · 10−16

gives h ≈ 2 · 10−4. �

Proposition 1 Let f (t) = exp0(t). Then

f (AT + hEi j ) − f (AT − hEi j )

2h
= L f (AT ,Ei j ) + O(h2).
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Proof The right-hand side of (10) with uvT replaced with Ei j can be expressed as

f (AT + hEi j ) − f (AT − hEi j )

2h
= Ei j + 1

2! (A
TEi j + Ei jAT )

+ 1

3! ((A
T )2Ei j + ATEi jAT + Ei j (AT )2)

+ 1

4! ((A
T )3Ei j + (AT )2Ei jAT + ATEi j (AT )2 + Ei j (AT )3)

+ . . . + O(h2). (11)

The result now follows from (8) with A replaced by AT .

The above proposition is a corollary of the well-known series representation of the
Fréchet derivative; see, e.g., [15]. It can be stated for an arbitrary direction matrix E
by just replacing the last term O(h2) in (11) with O(‖E‖2 h2). The evaluation of the
right-hand side of (10) with f (t) = exp0(t) gives approximations of all the entries of
the gradient (3).Wewill refer to ‖∇TG(w11, w21, . . . , wnn)‖2 as the total transmission
of the graph G.

2.1.1 Network simplification by edge removal

One of the aims of this paper is to discuss how to reduce the complexity of a network
by removing edges without changing the total transmission or total communicability
significantly. A simple way to achieve the former is to set positive weights wi j to zero
when the associated entries of the gradient (4) are (relatively) small, thus removing the
corresponding edges e(vi → v j ). This determines a new network G̃ with fewer edges
than G with about the same total transmission. However, in order for the network G̃
also to have about the same total communicability as G, we also have to require that the
removed weights be small. We therefore introduce the vector EL f ∈ R

m , whose kth
entry is the edge importance of ek = e(vi → v j ), defined as the product of the weight
wi j and the corresponding partial derivative (4) normalized by the total transmission.
Observe that ||L f (AT , eeT )||F = ||∇TG ||2, where ‖ · ‖F stands for the Frobenius
norm. We refer to the norm ‖EL f ‖2 as the total edge importance.

The following simple procedure can be used to construct the edge importance vector
EL f for undirected graphs:

Procedure 1:

1. Multiply the adjacency matrix A element by element by the matrix L f (AT , eeT ).

2. Divide the elements of the so obtained matrix that correspond to edges of G by the
total transmission ||∇TG ||2 and put them column by column into the vector EL f .

If the graph is undirected, then the kth entry of the vector EL f ∈ R
m gives the

importance of the edge ek = e(vi ↔ v j ). We obtain the following procedure:
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Procedure 2:

1. Extract the strictly lower triangular portion L of the adjacency matrix A, and
multiply L element by element by the strictly lower triangular portion of the
matrix L f (AT , eeT ).

2. Divide the elements of the matrix so obtained that correspond to the edges e(vi →
v j ) of G with i > j by ||∇TG ||2

2 and put them column by column into the vector
EL f .

Consider the cone A of all nonnegative matrices in R
n×n with the same sparsity

structure as A and letM|A denote a matrix inA that is closest to a given nonnegative
matrix M ∈ R

n×n with respect to the Frobenius norm. It is straightforward to verify
that M|A is obtained by setting all the entries outside the sparsity structure of A to
zero.

In the first step of the Procedure 1, one considers the matrix L f (AT , eeT )|A,
whereas in the first step of the second procedure one considers the projected matrix
L f (AT , eeT )|L with L the cone of all nonnegative matrices in R

n×n with the same
sparsity structure as L. It follows that L = A|L.

In computations, we order the entries of EL f from smallest to largest and set the
weights wi j (or wi j = w j i if the graph is undirected) associated with the first few of
the ordered edge importances to zero. Some post-processing may be necessary if the
reduced graph G̃ obtained by removing the edges associated with the weights that are
set to zero is required to be connected.

2.1.2 Network modification to increase or decrease total communicability

We turn to the task of increasing or decreasing the total communicability of a network
by changing a few weights. The weights to be changed are chosen with the aid of the
entries of the vector EL f ∈ R

m . We obtain a relatively large increase/reduction in the
total communicability by slightly increasing/reducing the weights associated with the
largest entries of EL f . To this end, we order the entries of EL f from the largest to the
smallest. More than one of the weights can be modified to achieve a desired increase
or reduction in the total communicability.

Assume that the given graph G is strongly or weakly connected, and that we would
like the modified graph to have the same property. Consider the situation when remov-
ing an edge ek associated with one of the first few of the ordered entries of the vector
EL f results in a graph that does not have this property. Then typically the total commu-
nicability can be decreased considerably by reducing the corresponding edge-weight
wi j to a small positive value (or both the weights wi j and w j i to the same small posi-
tive value if the graph is undirected), with the perturbed graph so obtained having the
same connectivity property as the original graph.

2.1.3 Network modification by inclusion of new edges

The partial derivatives (4) reveal which edges would be important to add to a given
graph to increase the communicability of the network significantly, namely nonexistent
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edges,whose associated partial derivative is large. Let Â denote the cone of the nonneg-
ative matrices inRn×n with sparsity structure given by the zero entries ofA except for
the diagonal entries. The virtual importance of the nonexistent edge e(vi → v j ) /∈ E
is given by the corresponding entry of L f (AT , eeT ) normalized by the total trans-

mission. The construction of the virtual edge importance vector ÊL f ∈ R
n2−n−m ,

which makes use of matrix entries in the sparsity structure associated with Â, can be
summarized as follows:

Procedure 3:

1. Construct the matrix L f (AT , eeT )|Â.
2. Divide the entries of the matrix so obtained that belong to the sparsity structure

associated with Â by the total transmission ||∇TG ||2 and put them column by
column into the vector ÊL f .

If the graph is undirected, then the virtual importance of the virtual edge e(vi ↔
v j ) /∈ E is defined as twice the corresponding entry in L f (AT , eeT ) normalized by
the total transmission. Let L̂ be the cone of the nonnegative matrices in Â, where all
the entries in the strictly upper triangular portion are set to zero. The procedure for the
construction of the virtual edge importance vector ÊL f ∈ R

(n2−n−2m)/2, which makes
use of matrix entries in the sparsity structure associated with L̂, becomes:

Procedure 4:

1. Construct the matrix L f (AT , eeT )|L̂.
2. Divide the entries of the matrix so obtained that belong to the sparsity structure

associated with L̂ by ||∇TG ||2
2 and put them column by column into the vector ÊL f .

In case ‖L f (AT , eeT )|A‖F � ||∇TG ||2 many large partial derivatives (4) corre-
spond to zero extra-diagonal entries of A. Then making suitable zero weights wi j

positive, or if the graph is undirected giving suitable pairs of zero weights {wi j , w j i }
the same positive value, might be beneficial. We recall that replacing a zero weight
wi j with a positive weight wi j is equivalent to including a weighted edge e(vi ↔ v j )

into the graph.
In computations, we order the entries of ÊL f from largest to smallest and add the

positive weights wi j (or pairs of positive entries wi j = w j i if the graph is undirected)
associated with the first few of the virtual ordered edge importances.

2.2 Methods for large networks

Recently, Kandolf et al. [16] derived a method for evaluating approximations of the
Fréchet derivative of a matrix function by Krylov subspace methods. Applications of
this technique to network analysis have recently been discussed by De la Cruz Cabrera
et al. [4] and Schweitzer [27]. We first outline this method and subsequently discuss
some alternatives.
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Let A ∈ R
n×n and assume that the function f is analytic in an open simply con-

nected set � in the complex plane that contains the spectrum of A. Then

f (A) = 1

2π i

∫

�

f (z)(zI − A)−1dz,

where� is a curve in� thatwinds around the spectrumofA exactly once and i = √−1.
In this paper, we are primarily interested in the situation when f (z) = exp0(z), but
the techniques discussed apply to other analytic functions as well. Let u, v ∈ R

n be
nonvanishing vectors. The Fréchet derivative of f at A in the direction uvT can be
expressed as

L f (A, uvT ) = 1

2π i

∫

�

f (z)(zI − A)−1uvT (zI − A)−1dz;

see, e.g., [15]. Kandolf et al. [16] determine an approximation of this expression by
using Krylov subspace techniques to approximate the vectors

s(z) = (zI − A)−1u, t(z) = (zI − A)−H v, z ∈ �,

where the superscript H denotes transposition and complex conjugation. Specifically,
Kandolf et al. [16] and Schweitzer [27] approximate the vectors s(z) and t(z) by a
Krylov subspace technique based on the Arnoldi process. Application of 1 ≤ � � n
steps of the Arnoldi process to A with initial vector u, and to AT with initial vector v,
generically, yields the Arnoldi decompositions

AV� = V�G� + ṽ�+1eT
� , ATW� = W�M� + w̃�+1eT

� , (12)

where the matrices G�,M� ∈ R
�×� are of upper Hessenberg form, the matrix V� ∈

R
n×� has orthonormal columns with initial column u/‖u‖2, the vector ṽ�+1 ∈ R

n is
orthogonal to the range of V�, the matrix W� ∈ R

n×� has orthonormal columns with
initial column v/‖v‖2, and the vector w̃�+1 ∈ R

n is orthogonal to the range ofW�; see,
e.g., Saad [26, Chapter 6] for details on the Arnoldi process. Here we only note that
the computation of the decompositions (12) requires the evaluation of � matrix-vector
products with the matrix A and � matrix-vector products with the matrix AT . This
is the dominating computational work when the matrix A is large and the number of
Arnoldi steps is fairly small. We assume here that the Arnoldi processes do not break
down when computing (12); in case of breakdown, the formulas (12) simplify.

Kandolf et al. [16] propose to use the Arnoldi approximation

L f ,Arnoldi(A, uvT ) = V�X�WT
� , (13)

of L f (A, uvT ), where X� is the upper right � × � submatrix of the 2� × 2� matrix

f

([
G� ‖u‖2‖v‖2 e1eT

1
0 MT

�

])

=
[

f (G�) X�

0 f (MT
� )

]

(14)
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with e1 = [1, 0, . . . , 0]T . Schweitzer [27] applies formulas (12), (13), and (14) withA
replaced by AT and u = v = e; cf. (6). Convergence results are provided by Kandolf
et al. [16].

An alternative approach to compute an approximation of the Fréchet derivative
L f (AT , eeT ) is to apply finite-difference approximations analogously as (10). Appli-
cation of � steps of the Arnoldi process to the matrixAT with initial vector e gives the
Arnoldi decomposition

ATU� = U�H� + ũ�+1eT
� ,

where the columns of U� ∈ R
n×� are orthonormal and span the Krylov subspace

K�(AT , e) = span{e,AT e, (AT )2e, . . . , (AT )�−1e}

and the first column of U� is e/
√

n. Moreover, the vector ũ�+1 ∈ R
n is orthogonal to

K�(AT , e) and H� ∈ R
�×� is an upper Hessenberg matrix. Then

UT
� A

TU� = H�.

We will use the approximations

AT ≈ U�H�UT
� (15)

and
f (AT ) ≈ U� f (H�)UT

� . (16)

The approximation (16) is quite accurate when f (AT ) can be approximated well
by a matrix of low rank. This is the case for many real-life undirected networks when
f (t) = exp(t); see [14].
It follows from (15) that

AT + heeT ≈ U�H�UT
� + heeT = U�(H� + hne1eT

1 )UT
�

and from (16) that

f (AT + heeT ) ≈ U� f (H� + hne1eT
1 )UT

� ,

where h is a scalar of small magnitude and e1 = [1, 0, . . . , 0]T ∈ R
m . Hence,

f (AT + heeT ) − f (AT − heeT )

2h
≈ U�

f (H� + hne1eT
1 ) − f (H� − hne1eT

1 )

2h
UT

� .

(17)
We will use the expression on the right-hand side as an approximation of

L f (AT , eeT ) in computed examples with h the same as in Example 2.1. Note that
the evaluation of this expression only requires the computation of � matrix-vector
products with the matrix AT . For large-scale problems for which the evaluation of
matrix-vector products is the dominant computational work, under the assumption
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that both methods require the same number of iterations, the use of the right-hand side
of (17) halves the computational burden when compared with the evaluation of (13).

We turn to the situation when the matrix A ∈ R
n×n is symmetric and first review

the computations described by Kandolf et al. [16] of the analogue of the expression
(13) when the direction is eeT . Then the calculation of the Arnoldi decompositions
(12) can be replaced by application of � steps of the symmetric Lanczos process to A
with initial vector e. Generically, we obtain

AU� = U�T� + ũ�+1eT
� ,

where the matrix T� ∈ R�×� is symmetric and tridiagonal, the matrix U� ∈ Rn×�

has orthonormal columns with initial column e/‖e‖2, and the vector ũ�+1 ∈ Rn is
orthogonal to the range ofU�; see, e.g., Saad [25] for details on the symmetric Lanczos
process.

The analogue of the expression (13) is given by

L f ,Lanczos(A, eeT ) = U�X�UT
� , (18)

where X� is the upper right � × � submatrix of the 2� × 2� matrix

f

([
T� ne1eT

1
0 T�

])

=
[

f (T�) X�

0 f (T�)

]

; (19)

see [16] for further details.
It remains to discuss how to determine approximations of the elements of

L f (AT , eeT ) of largest and smallestmagnitude by using the right-hand sides of (13) or
(17).We first consider the former. To determine an approximation of an entry of largest
magnitude of L f (AT , eeT ), we first locate an entry xi j of the matrix X� of largest
magnitude and then determine entries of largest magnitude of columns i and j of the
matrices V� and W�, respectively. The product of these entries furnishes an approxi-
mation of an entry of L f (AT , eeT ) of largest magnitude. We proceed analogously to
determine an approximation of an entry of L f (AT , eeT ) of smallest magnitude. Other
entries of closest to largest or smallest magnitudes can be computed similarly.

We turn to the use of the right-hand side of (17). To determine an approximation
of an entry of largest magnitude of L f (AT , eeT ), we first locate an entry of the

matrix
f (H�+hne1eT

1 )− f (H�−hne1eT
1 )

2h of largest magnitude. Assume it is entry {i, j}.
Then determine entries of largest magnitude of columns i and j of the matrix U�. The
product of these entries yields an approximation of an entry of largest magnitude of
L f (AT , eeT ).

3 Networkmodifications based on Perron root sensitivity

Themethods of this section require right and left Perron vectors of the adjacencymatrix
A. When the matrix A is of small to moderate size, these vectors can be determined
with the MATLAB function eig, which computes all eigenvalues and eigenvectors of
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A. For large networks, we can compute the Perron vectors with theMATLAB function
eigs or with the two-sided Arnoldi method. The latter method was introduced by Ruhe
[23] and improved by Zwaan and Hochstenbach [31].

Our interest in the method of this section stems from the fact that it is easy to
implement because the required computations are quite straightforward. However, the
method does not identify edge weights whose modification yields a relatively large
change in the total communicability (2). Instead, it identifies edge weights whose
modification gives a relatively large change in the Perron root of the adjacency matrix.
Computed examples in Section 4 indicate that modifications of edgeweights identified
by this method also results in relatively large changes in the total communicability.

3.1 Perron communicability for small to medium-sized networks

Let the adjacency matrix A for the graph G be irreducible and let ρ be its Perron
root. Then there are unique right and left eigenvectors x = [x1, x2, . . . , xn]T ∈ R

n

and y = [y1, y2, . . . , yn]T ∈ R
n , respectively, of unit Euclidean norm with positive

entries associated with ρ, i.e.,

Ax = ρx, yTA = ρyT .

They are referred to as Perron vectors. Let F ∈ R
n×n be a nonnegative matrix of unit

spectral norm, ‖F‖2 = 1. Introduce the small positive parameter ε and denote the
Perron root of A + εF by ρ + δρ. Then

δρ = ε
yTFx

yT x
+ O(ε2)

and
yTFx

yT x
≤ ‖y‖2‖F‖2‖x‖2

yT x
= 1

cos θ
, (20)

where θ is the angle between x and y. The quantity 1/ cos θ is referred to as the
condition number of ρ and denoted by κ(ρ); see [29, Section 2]. Note that when A is
symmetric, we have x = y, hence θ = 0. Equality in (20) is attained when F is the
Wilkinson perturbation W = yxT associated with ρ; see [18, 29] for details.

The total communicability (2) of the graph G can be approximated by the Perron
communicability of G [4]:

PG(w11, w21, . . . , wnn) = exp(ρ)eT yxT e = exp(ρ)eTWe (21)

with
TG(w11, w21, . . . , wnn) ≈ κ(ρ) PG(w11, w21, . . . , wnn).

Typically, exp(ρ) is a fairly accurate indicator of the Perron communicability and,
consequently, of the total communicability. In fact, one has [4]:

exp(ρ) ≤ PG(w11, w21, . . . , wnn) ≤ n exp(ρ). (22)
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Perturb the entry wi j with i �= j of A by ε �= 0 and let

F = ei e
T
j ∈ A (23)

for some index pair {i, j}. The perturbation δρ of ρ due to the perturbation εF of A is

δρ = ε
yi x j

yT x
+ O(ε2). (24)

3.1.1 Network simplification by edge removal

To reduce the complexity of a network by removing edgeswithout changing the Perron
communicability significantly, we choose the matrix (23) so that ρ (and hence exp(ρ))
changes as little as possible and, therefore, choose the indices i and j so that

wi j yi x j = min
1≤h,k≤n
whk>0

whk yh xk,

and use A − εF with ε = wi j and F given by (23).
If the graph is undirected, then we choose the matrix

F = ei eT
j + e j eT

i

2
∈ A,

with the indices i and j determined as above, and useA−εFwith ε = 2wi j = 2w j i .
Introduce the vector Eρ ∈ R

m , whose kth entry is the Perron edge importance of
the edge ek = e(vi → v j ), defined as the product of the edge-weight wi j and the
corresponding entry yi x j ofW. Observe that ||W||F = ||W||2 = 1. The procedure to
construct the Perron edge importance vector Eρ consists of two steps:

Procedure 5:

1. Multiply the adjacency matrix A element by element by W|A.
2. Put column by column the m nonvanishing entries of the matrix so obtained into

the vector Eρ .

If the graph is undirected, then thePerron edge importance of edge ek = e(vi ↔ v j )

is defined as twice the product of the edge-weight wi j and the corresponding entry
yi x j of W, so that the procedure to construct the Perron edge importance vector Eρ

becomes:

Procedure 6:

1. Multiply A|L element by element by W|L.
2. Multiply by 2 the m nonvanishing entries of the matrix so obtained and put them

column by column into the vector Eρ .

In computations, we order the entries of Eρ from smallest to largest, and set the
entries wi j (or the pair of entries wi j = w j i if the graph is undirected) associated
with the first few of the ordered edge importances to zero. As mentioned before some
post-processing may be necessary if the reduced graph is required to be connected.
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3.1.2 Network modification by edge-weight tuning

We describe how to increase the total communicability and use the notation of Sub-
section 3.1.1. The discussion follows [21]. We would like to choose a perturbation εF
of A, where ε > 0 and F is of the form (23), so that the Perron root ρ increases as
much as possible. This suggests that we choose the indices i and j in (23) so that

wi j yi x j = max
1≤h,k≤n,

whk>0

whk yh xk .

Thus, we choose the weight associated with the largest entry of the vector Eρ that
yields the Perron edge importance of each edge.

We turn to the reduction of the total communicability. Define the matrix F as above
and consider the perturbed matrix A − εF. The parameter ε > 0 should be chosen
small enough so that this matrix has nonnegative entries only. Moreover, if removing
an edge ek = e(vi → v j ) associated with one of the first few of the ordered entries
of Eρ results in a disconnected graph and this is undesirable, then we choose ε > 0 so
that 0 < ε < wi j . Analogously, if removing the edges e(vi ↔ v j ) of an undirected
graph G makes the graph disconnected and this is undesirable, then we choose ε > 0
so that ε < 2wi j = 2w j i .

3.1.3 Network modification by inclusion of new edges

Let F ∈ A be a nonnegative matrix with ‖F‖F = 1, and let ε > 0 be a small constant.
Then

yTFx

yT x
≤ ‖y‖2‖‖yxT |A‖F‖x‖2

yT x
= ‖W|A‖F

cos θ
,

with equality for the A-structured analogue of the Wilkinson perturbation,

F = W|A
‖W|A‖F

.

This is the maximal perturbation for the Perron root ρ induced by a unit norm
matrix F ∈ A; see [10, 20]. The quantity

‖W|A‖F

cos θ
= κ(ρ)‖W|A‖F

is referred to as theA-structured condition number of ρ and denoted by κA(ρ). Thus,
κA(ρ) ≤ κ(ρ).

To increase the Perron communicability, we would like to modify the edges of the
graph G so that the Perron root is increased as much as possible; cf. (22). In case the
m edges of G are such that

‖W|A‖F ≈ ‖W‖F = 1, (25)
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i.e., when κA(ρ) ≈ κ(ρ), increasing positive entries of A should be a successful
strategy to increase the Perron communicability. In fact, thematrixS = [si j ]n

i, j=1 ∈ A,

with entries si j = yi x j

yT x
, if wi j > 0 and si j = 0 otherwise, referred to as the structured

Perron sensitivity matrix, is such that

S = κ(ρ)W|A = κ(ρ)‖W|A‖F
W|A

‖W|A‖F
,

so that ‖S‖F = κA(ρ) ≈ κ(ρ). If F is of the form (23), the perturbation (24) of ρ

induced by εF can be written as δρ = εsi j + O(ε2).
Conversely, if κA(ρ) � κ(ρ), then the addition of a suitable edge with weight

wi j > 0 (or a suitable pair of edges with weights wi j = w j i > 0, if the graph
is undirected) that increases the ratio κA(ρ)/κ(ρ) may be an appropriate strategy to
increase the Perron communicability. Recall that Â denotes the cone of the nonnegative
matrices in Rn×n whose sparsity structure is given by the zero entries of A except for
the diagonal entries. Perturb the entry wi j with i �= j of A and assume that

F = ei e
T
j ∈ Â

for some index pair {i, j}. The entries of the Wilkinson perturbation W reveal which
edges should be added to the network to increase the communicability, namely edges
whose associated entries of the matrixW are large. The procedure for the construction
of the vector Êρ ∈ R

n2−n−m that gives the Perron virtual importance of the virtual
edges is the following:

Procedure 7:

1. Construct the matrix W|Â.
2. Put column by column the entries of the matrix so obtained that belong to the

sparsity structure associated with Â into the vector Êρ .

If the graph is undirected, then the Perron virtual importance of the nonexistent edge
e(vi ↔ v j ) /∈ E is defined to be twice the corresponding entry in W. The procedure

for the construction of the Perron virtual edge importance vector Êρ ∈ R
(n2−n−2m)/2

is given by:

Procedure 8:

1. Construct the matrix W|L̂.
2. Multiply by 2 the entries of the matrix so obtained that belong to the sparsity

structure associated with L̂ and put them column by column into the vector Êρ .

3.2 Networkmodification criteria for large-scale networks

Introduce the structured Perron communicability of G:

PA
G (w11, w21, . . . , wnn) = exp(ρ)eTW|A e.
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One has, entry-wise, W|A ≤ W, so that the structured Perron communicability
PA
G (w11, w21, . . . , wnn) is a lower bound for the Perron communicability (21). When

κA(ρ) ≈ κ(ρ), i.e., when (25) holds, the two measures are very close.
Additionally, if G is undirected, then one has

PA
G (w11, w21, . . . , wnn) = 2 exp(ρ)eTW|L e,

with L the cone of all nonnegative matrices in R
n×n with the same sparsity structure

as the strictly lower triangular portion of A.
If our aim is to perturb or set to zero suitable positive entries of A ∈ A, then the

Wilkinson perturbation W does not have to be constructed, since one only needs the
entries of W|A ∈ A. The Perron edge importance vector Eρ ∈ R

m , associated with
the m edges of G, can be evaluated as discussed in Subsection 3.1.1.

4 Computed examples

The numerical tests reported in this section have been carried out using MATLAB
R2023a on a 3.2 GHz Intel Core i7 6 core iMac.

4.1 A synthetic example

The following example explains why we might be interested in estimating the total
communicabilitywithout evaluating the exponential of the adjacencymatrix associated
with the given network.

Example 1 Consider the undirected and connected graph where each vertex represents
a person in a line. Each person can communicate only with the following and the pre-
ceding persons. The adjacencymatrix associated with such a network is the symmetric
tridiagonal Toeplitz matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ

σ σ

σ ·
· ·

· σ

σ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n, (26)

with σ > 0. It is intuitive that the closer the vertices are to the center of the graph, the
better connected they are and, therefore, the more important. Also, it is immediate to
observe that the best strategy to improve communication in this network is to make the
two vertices at the ends adjacent by adding the new undirected edge e(v1 ↔ vn) with
weight σ , which makes the adjacency matrix a circulant. This scenario is consistent
with the structure of the Wilkinson matrix W associated with the Perron root of A,
which we show in Fig. 1(b). This matrix is independent of σ ; see [20, Proposition 1].
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Fig. 1 Example 1. Structure of Lexp0 (A, eeT ) (left picture (a)) and of W (right picture (b)) for the matrix

A ∈ R
50×50 in (26) with σ = 1

Therefore the network modifications based on the Perron root sensitivity described in
Section 3 are in agreement with the previous observations and considerations.

Instead, due to round-off errors introduced in the representation and evaluation of
the matrix exponential, we have that the the structure of the matrix Lexp0(A

T , eeT )

(see Fig. 1(a)) does not completely reflect the scenario described above. In fact, the
techniques based on the gradient (3) described in Section 2 do not identify the same
edge as the Wilkinson perturbation. For instance, let n be even and σ = 1. Then we
obtain for n ≥ 36 that the computed gradient does not identify the undirected edge
e(vn/2 ↔ vn/2+1) as the most important one.

4.2 Medium-sized networks

Example 2 Consider the adjacencymatrixA ∈ R
500×500 for the networkAir500 in [9].

This data set describes flight connections for the top 500 airports worldwide based on
total passenger volume. The flight connections between airports are for the year from
1 July 2007 to 30 June 2008, and the network is represented by a directed unweighted
connected graph G with n = 500 vertices and m = 24009 directed edges. Vertices of
the network are airports and edges represent direct flight routes between two airports.

The total communicability in (2) is TG = 1.9164 · 1038. The gradient ∇TG in
(3) has been computed by evaluating the matrix L f (AT , eeT ) in (8) using (9). The
total transmission is ‖∇TG‖2 = 1.9205 · 1038. Also, the gradient ∇TG has been
approximated by evaluating L f (AT , eeT ) using (10) with h = 2

n · 10−4 = 4 · 10−7,
obtaining ∇̃TG . The resulting total transmission is ‖∇̃TG‖2 = 1.9205 · 1038 with

‖∇TG − ∇̃T G‖2
‖∇TG‖2 = 1.9688 · 10−9.
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For both the edge importance vector EL f and the virtual edge importance vector ÊL f ,
the same results are obtained regardless ofwhether∇TG or ∇̃T G is used; see below.We
remark that evaluating L f (AT , eeT ) by (9) required the average time t1 ≈ 3.4 · 10−1

in 104 tests, while evaluating L f (AT , eeT ) using (10) required the average time t2 ≈
1.5 · 10−1 in the same tests, with a relative average time saving

t1 − t2
t1

≈ 5.6 · 10−1.

The Perron communicability in (21) is PG = 1.9132 · 1038. The Perron root and
left and right Perron vectors were evaluated with the MATLAB function eig.

In Table 1 the 10 smallest entries of both the edge importance vector EL f and the
Perron edge importance vector Eρ are shown along with the corresponding edges. This
is useful for determining which edges to remove in order to reduce the complexity
of the Air500 network (cf. Subsections 2.1.1 and 3.1.1). One can observe that the
elimination of the connection from Santos Dumont Airport, Rio de Janeiro, Brazil
(SDU) to Congonhas Airport, S. Paulo, Brazil (CGH), at the third position in the
ranking given by Eρ , would disconnect the network. We therefore only remove the
two edges in bold face in Table 1, i.e., the two most irrelevant edges - according to
edge importance determination based on both gradient and Perron root sensitivity.
These edges correspond to the flight connection between San Antonio International
Airport, San Antonio, Texas (TSA) and Penghu Airport, Taiwan (MZG). This results
in the network G1, for which we have:

TG1 = 1.9164 · 1038; TG − TG1

TG
= 1.8014 · 10−7; PG1 = 1.9132 · 1038; PG − PG1

PG
= 1.8014 · 10−7.

Table 1 Example 2

EL f e(vi → v j ) Eρ e(vi → v j )

9.0980 · 10−8 TSA → MZG 3.1829 · 10−9 TSA → MZG

9.0980 · 10−8 MZG → TSA 3.1829 · 10−9 MZG → TSA

5.1931 · 10−7 UKB → ISG 1.5705 · 10−8 SDU → CGH

5.8446 · 10−7 ISG → UKB 1.5705 · 10−8 CGH → SDU

8.8771 · 10−7 SDU → CGH 6.9399 · 10−8 UKB → ISG

9.2224 · 10−7 CGH → SDU 8.5792 · 10−8 ISG → UKB

9.6419 · 10−7 GMP → HND 1.2677 · 10−7 HND → GMP

9.7169 · 10−7 HND → GMP 1.2979 · 10−7 GMP → HND

1.0369 · 10−6 DUR → PLZ 1.7020 · 10−7 UKB → HND

1.0376 · 10−6 PLZ → DUR 1.9511 · 10−7 HND → UKB

The first 10 flight connections to remove in order to reduce the complexity of Air500 without changing the
network communicability significantly, according to the determination of the edge importance based on
gradient and on Perron root sensitivity, respectively
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Table 2 shows the 10 largest entries of both the edge importance vector EL f and
the Perron edge importance vector Eρ along with the corresponding edges. In order
to obtain a relatively large reduction in the total communicability, we set to zero the
weights associated with the two largest entries of both EL f and Eρ . This means we
remove the edges that represent the air route between John F. Kennedy International
Airport, NewYork City (JFK) and Atlanta Hartsfield-Jackson Airport, Georgia (ATL).
This results in the network G2, for which, as it is apparent, the reduction in the total
communicability is much larger than in G1:

TG2 = 1.8423 · 1038; TG − TG2

TG
= 3.8680 · 10−2; PG2 = 1.8392 · 1038; PG − PG2

PG
= 3.8689 · 10−2.

Following the discussion in Subsections 2.1.2 and 3.1.2, in order to obtain a rela-
tively large increase in the total communicability, we increase by 1 the edge-weights
associated with the two largest entries of both EL f and Eρ (i.e., the air route between
John F. Kennedy International Airport, New York City (JFK), and Atlanta Hartsfield-
Jackson Airport, Georgia (ATL)). For the so obtained network G3, one has

TG3 = 1.9943 · 1038; TG3 − TG
TG

= 4.0658 · 10−2; PG3 = 1.9910 · 1038; PG3 − PG
PG

= 4.0661 · 10−2.

Finally, following the discussion in Subsections 2.1.3 and 3.1.3, we display in
Table 3 the 10 largest entries of the total virtual edge importance vector ÊL f and the
10 largest entries of the Perron virtual edge importance vector Êρ , along with the
corresponding nonexistent edges. Notice that the edges associated with the two largest
entries of both ÊL f and Êρ cannot be considered because they model the missing air

Table 2 Example 2

EL f e(vi → v j ) Eρ e(vi → v j )

1.9810 · 10−2 JFK → ATL 2.0038 · 10−2 JFK → ATL

1.9757 · 10−2 ORD → JFK 1.9987 · 10−2 ORD → JFK

1.9660 · 10−2 JFK → ORD 1.9882 · 10−2 JFK → ORD

1.9625 · 10−2 ATL → JFK 1.9861 · 10−2 ATL → JFK

1.9152 · 10−2 JFK → LAX 1.9369 · 10−2 JFK → LAX

1.9068 · 10−2 EWR → JFK 1.9280 · 10−2 EWR → JFK

1.8959 · 10−2 JFK → EWR 1.9239 · 10−2 ORD → ATL

1.8945 · 10−2 ORD → ATL 1.9165 · 10−2 JFK → EWR

1.8727 · 10−2 LAX → JFK 1.8970 · 10−2 ATL → ORD

1.8677 · 10−2 ATL → ORD 1.8936 · 10−2 LAX → JFK

The first 10 flight connections to increase/decrease in order to increase/decrease the network communica-
bility in Air500 according to the determination of the edge importance based on gradient and on Perron
root sensitivity, respectively
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Table 3 Example 2

ÊL f e(vi → v j ) Êρ e(vi → v j )

1.3153 · 10−2 JFK → LGA 1.3385 · 10−2 JFK → LGA

1.3102 · 10−2 LGA → JFK 1.3328 · 10−2 LGA → JFK

1.2402 · 10−2 LHR → ATL 1.2383 · 10−2 MDW → JFK

1.2276 · 10−2 AMS → DFW 1.2278 · 10−2 LHR → ATL

1.2252 · 10−2 ATL → LHR 1.2264 · 10−2 JFK → MDW

1.2160 · 10−2 MDW → JFK 1.2212 · 10−2 AMS → DFW

1.2039 · 10−2 JFK → MDW 1.2136 · 10−2 ABQ → JFK

1.1915 · 10−2 ABQ → JFK 1.2093 · 10−2 ATL → LHR

1.1581 · 10−2 DFW → AMS 1.1775 · 10−2 ORD → MDW

1.1525 · 10−2 ORD → LGW 1.1472 · 10−2 DFW → AMS

The first 10 flight connections that should be added, in order to enhance the communicability in Air500,
according to determination of the virtual edge importance based on gradient and on Perron root sensitivity,
respectively

route between John F. Kennedy International Airport, New York City, (JFK), and La
Guardia Airport, New York City, (LGA), and are too close to justify a flight route.
The entries of the table suggest that there should be a shuttle service between these
vertices and, indeed, such a shuttle service exists. We proceed to consider the third
and fourth best nonexistent edges according to the edge importance based on the
gradient, that is we consider the routes from Heathrow Airport, London, England,
(LHR) toAtlantaHartsfield-JacksonAirport, Georgia, (ATL) and from theAmsterdam
Schiphol Airport, Netherlands, (AMS) to Dallas/Fort Worth International Airport,
Texas, (DFW), and set their weights to 1. This way, we obtain the network G4, for
which one has

TG4 = 1.9643 · 1038; TG4 − TG
TG

= 2.5020 · 10−2.

Conversely, setting to 1 the weight of the third and the fourth best nonexistent
edges according to Êρ , i.e., the edges that represent flights fromMidway International
Airport, Chicago, Illinois, (MDW) to John F. Kennedy International Airport, New
York City, (JFK) and from Heathrow Airport, London, England, (LHR) to Hartsfield-
Jackson Airport, Atlanta, Georgia (ATL), we obtain the network G5 with

PG5 = 1.9609 · 1038; PG5 − PG
PG

= 2.4915 · 10−2; TG5 = 1.9641 · 1038; TG5 − TG
TG

= 2.4908 · 10−2.

In this example, edge addition is less effective than increasing theweights of existing
edges. We observe that the matrix inA that is closest to the Wilkinson perturbationW
associated to the Perron root ρ ofAwith respect to the Frobenius norm, i.e.,W|A, has
Frobenius norm ‖W|A‖F = 7.5920 · 10−1, meaning that the A-structured condition
number κA(ρ) is approximately 76% of the condition number κ(ρ).
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Example 3 Consider the undirected unweighted graph G that represents the German
highway system networkAutobahn. The graph, which is available at [9], has n = 1168
vertices representing German locations and m = 1243 edges that represent highway
segments connecting them. Therefore, the adjacency matrix A ∈ R

1168×1168 for this
network has 2486 nonvanishing entries.

The total communicability in (2) is TG = 1.2563 · 104. The gradient ∇TG in (3)
has been computed by evaluating the matrix L f (AT , eeT ) in (8) using (9). The total
transmission is ‖∇TG‖2 = 1.4464 · 104. The gradient ∇TG has been approximated
by evaluating L f (AT , eeT ) using (10) with h = 2

n · 10−4 = 1.7123 · 10−7, obtaining
∇̃TG . The resulting total transmission is ‖∇̃T G‖2 = 1.4464 · 104 with

‖∇TG − ∇̃T G‖2
‖∇TG‖2 = 5.4537 · 10−9.

Notice that evaluating the matrix L f (AT , eeT ) in 104 tests required the average time
t1 ≈ 1.8 ·100 using (9) and the average time t2 ≈ 3.2 ·10−1 using (10), with a relative
average time saving

t1 − t2
t1

≈ 8.2 · 10−1.

The slight difference in the edge importance vectors computed using (9) or (10)
gives rise to different orderings of the edges corresponding to the 10 smallest entries
(which in fact differ about O(10−12)). This is displayed in Table 4. Removing the
two edges in bold face in the second column of Table 4 results in the (disconnected)
network G1 (see Fig. 2(a)), while removing the two edges in bold face in the third
column of Table 4 yields the disconnected network G̃1 (see Fig. 2(b)). Nevertheless,

Table 4 Example 3

EL f [or ẼL f ] e(vi ↔ v j ) associated with EL f e(vi ↔ v j ) associated with ẼL f

6.5794 · 10−4 Allershausen ←→ Allersberg Wüstenbrand ←→ Wommen

6.5794 · 10−4 Bünde ←→ Bissendorf Thiendorf ←→ Teupitz

6.5794 · 10−4 Zarrentin ←→ Witzhave Zrbig ←→ Wiedemar

6.5794 · 10−4 Wunsiedel ←→ Wolnzach Zarrentin ←→ Witzhave

6.5794 · 10−4 Thiendorf ←→ Teupitz Aitrach ←→ Aichstetten

6.5794 · 10−4 Wüstenbrand ←→ Wommen Wesuwe ←→ Weener

6.5794 · 10−4 Alsfeld ←→ Achern Wunsiedel ←→ Wolnzach

6.5794 · 10−4 Wesuwe ←→ Weener Zwingenberg ←→ Zeppelinheim

6.5794 · 10−4 Zwingenberg ←→ Zeppelinheim Bünde ←→ Bissendorf

6.5794 · 10−4 Zrbig ←→ Wiedemar Alsfeld ←→ Achern

The first 10 highway segments that could be removed in order to reduce the complexity of Autobahnwithout
changing the network communicability significantly, according to the determination of the edge importance
based on the gradient. The edges in the second and third columns are determined by (9) and (10), respectively
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we have the same result for both the graphs G1 and G̃1:

TG1 = 1.2550·104; TG − TG1

TG
= 1.0171·10−3; TG̃1

= 1.2550·104; TG − TG̃1

TG
= 1.0171·10−3.

Conversely, the largest entries of the edge importance vectors computed using (9)
or (10) correspond to the same edges displayed in the first column of Table 5. Setting
to zero the weights associated with the two highway segments Duisburg - Düsseldorf
and München - Kirchheim (both in bold face in the first column of Table 5) results in
the network G2, for which one has

TG2 = 1.2108 · 104; TG − TG2

TG
= 3.6214 · 10−2,

while increasing by one the weights associated with the same edges results in the
network G3, for which one has

TG3 = 1.3359 · 104; TG3 − TG
TG

= 6.3330 · 10−2.

As for Perron communicability in Autobahn, one has PG = 2.2448 · 103. Although
the graph G is irreducible, some entries of the Perron vector x are close to machine
precision. In particular, the edges to remove in order to simplify the network, that are
associated with the two smallest entries of the Perron edge importance vector, are the
highway segmentsWildsdruff - Wildeck andWüstenbrand -Wommen, which connect
four vertices associated with such quasi-zero components of x (see Fig. 2(c)). This
results in the (disconnected) network G4, for which we have

PG4 = 2.2448 · 103; PG − PG4
PG

= −4.8619 · 10−15; TG4 = 1.2547 · 104; TG − TG4
TG

= 1.2521 · 10−3.

Hence, this simplification is slightly less satisfactory than the ones described by G1
and G̃1. Elimination of the edges associated with the two highway segments Duisburg
- Düsseldorf and Essen - Duisburg (both in bold face in the second column of Table 5)
gives the network G5, for which we have

PG5 = 1.2677·103; PG − PG5

PG
= 4.3527·10−1; TG5 = 1.2155·104; TG − TG5

TG
= 3.2513·10−2.

Again the decrease is less than for G2. Conversely, increasing by one the weights
associated with the same edges results in the network G6, for which one has

PG6 = 2.5248·103; PG6 − PG
PG

= 1.2472·10−2; TG6 = 1.3480·104; TG6 − TG
TG

= 7.2982·10−2.
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Fig. 2 Example 3. The vertices (marked in red) that are connected by the edges to be removed in order to
simplify the network according to EL f for (a), according to ẼL f for (b), and according to Eρ for (c)

The increase in this case is greater than for G3.
Wedonot address the issue of adding newhighway segments, because the feasibility

of building new highway segments depends on many issues that are not included in
our model such as the length of the new segments and properties of the regions, e.g.,
the presence of mountains, valleys and lakes, that the new segments would traverse.

Example 4 Consider the directed weighted graph G that represents the network
C.elegans available at [28], i.e., the metabolic network of the Caenorhabditis elegans
worm. The network contains n = 306 vertices that represent neurons and m = 2345
edges. Two neurons are connected if at least one synapse exists between them and the
associated edge-weight is the number of synapses. The network is disconnected.

The total communicability (2) is TG = 3.3401 · 106. The gradient ∇TG (3) has
been computed by evaluating the matrix L f (AT , uvT ) in (8) using (9). The total
transmission is ‖∇TG‖2 = 7.9032 · 106. The gradient ∇TG has been approximated
by evaluating L f (AT , uvT ) using (10) with h = 2

n · 10−4 = 6.5359 · 10−7 to obtain
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∇̃TG . The resulting total transmission is ‖∇̃T G‖2 = 7.9032 · 106, having

‖∇TG − ∇̃T G‖2
‖∇TG‖2 = 4.4914 · 10−9.

As for both the edge importance vector EL f and the virtual edge importance vector
ÊL f , one obtains the same results, displayed in Table 6, regardless of whether ∇TG
or ∇̃TG is used. We remark that evaluating L f (AT , eeT ) by (9) required the average
time t1 ≈ 1.3 · 10−1 in 104 tests, while evaluating L f (AT , eeT ) using (10) required
the average time t2 ≈ 1.7 · 10−2 in the same tests. The relative average time saving is

t1 − t2
t1

≈ 8.6 · 10−1.

Removing the two edges in bold face in the second column of Table 6, associated
with the smallest entries of the edge importance, results in the network G1 for which

TG1 = 3.3401 · 106; TG − TG1

TG
= 5.9879 · 10−7.

Setting to zero the weights associated with the two edges in bold face in the fourth
column of Table 6 results in the network G2, for which one has

TG2 = 2.9282 · 106; TG − TG2

TG
= 1.2332 · 10−1,

while increasing by one the weights associated with the same edges results in the
network G3 with

TG3 = 3.8047 · 106; TG3 − TG
TG

= 1.3909 · 10−1.

Finally, setting to one the (vanishing) entries of A associated with the two virtual
edges in bold face in the sixth column of Table 6 yields the network G4, for which

TG4 = 7.3327 · 106; TG4 − TG
TG

= 1.1954 · 100.

Turning to network modifications based on Perron root sensitivity in C.elegans,
one has PG = 9.1975 · 105. The graph G is reducible, some entries of the Perron
vector x are vanishing. In particular, removing the edges in bold face in the second
column of Table 7, which are associated with two vanishing entries of the Perron edge
importance vector, results in the network G5, for which one has

PG5 = 9.1931·105; PG − PG5

PG
= 4.7732·10−4; TG5 = 3.3381·106; TG − TG5

TG
= 6.0666·10−4.
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Table 7 Example 4

Eρ e(vi → v j ) Eρ e(vi → v j ) Êρ e(vi → v j )

0 v53 → v1 2.7208 · 10−2 v73 → v178 1.3484 · 10−1 v305 → v149

0 v11 → v5 2.4126 · 10−2 v71 → v217 1.3000 · 10−1 v305 → v219

0 v12 → v6 2.2348 · 10−2 v72 → v216 1.2205 · 10−1 v305 → v218

0 v11 → v19 2.0573 · 10−2 v72 → v144 1.1067 · 10−1 v305 → v178

0 v11 → v23 1.8951 · 10−2 v76 → v217 1.0811 · 10−1 v305 → v174

0 v12 → v24 1.8489 · 10−2 v71 → v47 1.0128 · 10−1 v305 → v81

0 v12 → v25 1.8419 · 10−2 v75 → v216 9.7793 · 10−2 v305 → v82

0 v8 → v26 1.7529 · 10−2 v74 → v177 9.5414 · 10−2 v305 → v157

0 v11 → v26 1.7392 · 10−2 v216 → v81 8.7441 · 10−2 v305 → v216

0 v12 → v26 1.7269 · 10−2 v78 → v217 8.6713 · 10−2 v305 → v217

The smallest entries of the Perron edge importance vector and the relevant junctions that could be removed
without changing the communicability in C.elegans significantly (displayed in the first two columns). The
largest entries of the Perron edge importance vector and the relevant junctions to increase/decrease in order
to increase/decrease the network communicability inC.elegans (in the third and fourth columns). The largest
entries of the virtual Perron edge importance vector and the relevant junctions to add in order to increase
the network communicability (displayed in the fifth and sixth columns)

Hence, this simplification is less satisfactory than G1. Elimination of the edges in
bold face in the fourth column of Table 7 gives the network G6, for which one has

PG6 = 7.4856·105; PG − PG6

PG
= 1.8613·10−1; TG6 = 2.9298·106; TG − TG6

TG
= 1.2284·10−1.

The decrease is less than that for G2. Conversely, increasing by one the weights
associated with the same edges results in the network G7, for which one has

PG7 = 1.1140·106; PG7 − PG
PG

= 2.1122·10−1; TG7 = 3.7933·106; TG7 − TG
TG

= 1.3569·10−1.

The increase is less than that for G3. Finally, setting to one the (vanishing) entries
of A associated with the two virtual edges in bold face in the sixth column of Table 7
results in the network G8, having

PG8 = 3.5870 · 106; PG8 − PG
PG

= 2.8999 · 100; TG8 = 7.3364 · 106; TG8 − TG
TG

= 1.1965 · 100.

Therefore the result is more satisfactory than that obtained for the network G4.
Notice that ‖W|A‖F = 1.2817 · 10−1.
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4.3 Large networks

Example 5 Consider the unweighted undirected graphG that represents the continental
US road networkUsroads-48. The graph G, which is available at [28], has n = 126146
vertices, which represent intersections and road endpoints. The m = 161950 edges
represent roads that connect the intersections and endpoints. We analyze the network
Usroads-48 with the tools discussed in Subsections 2.2 and 3.2 for large networks.

We would like to determine approximations of the smallest and largest elements of
L f (A, eeT )|L that correspond to edges that should be removed to simplify the network
or whose edge-weight should be modified to increase or decrease the total commu-
nicability. Moreover, we would like to determine approximations of the smallest and
largest elements of L f (A, eeT )|L̂ that correspond to edges that should be added to
increase total communicability. We first carry out 5 steps of the symmetric Lanczos
process, computing the matrices U5 and T5, and make use of the latter to construct
both the matrix X5 in (18) by using (19), and the matrix

X̃5 = f (T5 + hne1eT
1 ) − f (T5 − hne1eT

1 )

2h
,

with h = 2
n · 10−4. Then, proceeding as described in Subsection 2.2, we found that

both the matrices X5 and X̃5 determined the same edges. Regarding the timings (in
seconds) of the two procedures, we remark that, having available the symmetric and
tridiagonal matrix T5 determined by � = 5 steps of the Lanczos process, evaluating
the matrix X5 in (19) required the average time t1 ≈ 2.9 · 10−5 over 104 tests, while
evaluating the matrix X̃5 required the average time t2 ≈ 2.7 · 10−5 in the same tests,
with a relative average time saving

t1 − t2
t1

≈ 7.0 · 10−2.

The smallest element of the computed approximation of L f (A, eeT )|L is 9.7462 ·
10−7 and is associated with the edge e(v123259 ↔ v123258), while the largest element is
1.5008 · 101 and is associated with the edge e(v19694 ↔ v19186); the smallest element
of the computed approximation of L f (A, eeT )|L̂ is 2.2047 ·10−9; it is associated with
edge the e(v25416 ↔ v11651). The largest element is 1.9380 · 101 and is associated
with the edge e(v58080 ↔ v1).

Turning to the the structured Perron communicability, one has PA
G = 1.9138 · 102.

The smallest entries of the Perron edge importance vector Eρ and the relevant edges
are displayed in Table 8 in the first and second columns, while the largest entries
of Eρ and the relevant edges are shown in the third and fourth columns. In order to
increase the network communicability one should add edge e(v44182 ↔ v44035), which
is associated with the largest entry of the L̂-analogue of the Wilkinson perturbation.

Removing the two edges in bold face in the second column of Table 8, associated
with the smallest entries of the edge importance, gives the network G1, for which one
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Table 8 Example 5

Eρ e(vi ↔ v j ) Eρ e(vi ↔ v j )

1.2197 · 10−40 v105751 ↔ v105743 2.2346 · 10−1 v44182 ↔ v44067

3.3336 · 10−40 v42664 ↔ v42479 1.8605 · 10−1 v44182 ↔ v44154

5.0488 · 10−40 v114032 ↔ v42664 1.8090 · 10−1 v44182 ↔ v44087

7.3043 · 10−40 v44150 ↔ v44015 1.5882 · 10−1 v44154 ↔ v44067

8.8379 · 10−40 v68387 ↔ v68213 1.5443 · 10−1 v44087 ↔ v44067

1.0103 · 10−39 v39830 ↔ v39787 1.5077 · 10−1 v44323 ↔ v44182

1.0695 · 10−39 v29088 ↔ v29056 1.4155 · 10−1 v44255 ↔ v44182

1.2043 · 10−39 v90123 ↔ v89379 1.4099 · 10−1 v44356 ↔ v44182

1.2478 · 10−39 v78533 ↔ v78388 1.1663 · 10−1 v44067 ↔ v44035

1.2821 · 10−39 v35630 ↔ v35115 9.2663 · 10−2 v44067 ↔ v44019

The smallest entries of the Perron edge importance vector and the edges associated with the roads that
could be removed in order to reduce the complexity of the network without changing the communicability
in Usroads-48 significantly (displayed in the first two columns). The largest entries of the Perron edge
importance vector and the edges associated with the first ten roads that should be widened/narrowed in
order to increase/decrease the network communicability the most (in the third and fourth columns)

has

PA
G1

= 1.9138 · 102; PA
G − PA

G1

PA
G

= 1.4851 · 10−16.

Setting to zero the weights associated with the two edges in bold face in the fourth
column of Table 8 results in the network G2 with

PA
G2

= 1.7487 · 102; PA
G − PA

G2

PA
G

= 8.6228 · 10−2,

while increasing the weights associated with the same edges by one results in the
network G3, for which one has

PA
G3

= 3.6445 · 102; PA
G3

− PA
G

PA
G

= 9.0435 · 10−1.

Finally, setting to one the (vanishing) entry w44182,44035 of the adjacency matrix A
associated with the virtual edge e(v44182 ↔ v44035) returns the network G4, with

PA
G4

= 2.4540 · 102; PA
G4

− PA
G

PA
G

= 2.8228 · 10−1.

Notice that one has ‖W|A‖F = √
2‖W|L‖F = 2.9318 · 10−1.
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5 Conclusion and comments on related work

The identification of important and unimportant edges is a fundamental problem in
network analysis. Several techniques for this purpose have been described in the lit-
erature; see, e.g., [5, 7, 8, 10, 21, 22]. In [4] the authors propose a method that uses
the gradient of the total communicability, and Schweitzer [27] recently described how
the computational effort required by this method can be reduced. Section 2 of this
paper reviews this method and discusses computational aspects when this technique
is applied to small and medium-sized networks, as well as to large-scale networks. In
particular, further ways to speed up the computations when the method is applied to
large-scale networks are described.

Another approach to identify important and unimportant edges is to determine edge
weights whose modification yields a relatively large change in the Perron root of the
adjacency matrix. This is described in [10, 21]. The computations required are quite
straightforward and the method discussed in the latter reference is easy to implement
also for large-scale problems. We therefore are interested in whether modifications
of the weights of the edges identified by this technique give a relatively large change
in the total communicability. Section 3 reviews the method described in [21] and
extends it to include edge removal. Computed examples reported in Section 4 show
that, indeed, modifications of edge weights identified by the technique discussed in
[21] yield relatively large changes in the total communicability.
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