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A B S T R A C T   

Despite the proven effectiveness of cochlear implant (CI) in the hearing restoration of deaf or hard-of-hearing 
(DHH) children, to date, extreme variability in verbal working memory (VWM) abilities is observed in both 
unilateral and bilateral CI user children (CIs). Although clinical experience has long observed deficits in this 
fundamental executive function in CIs, the cause to date is still unknown. Here, we have set out to investigate 
differences in brain functioning regarding the impact of monaural and binaural listening in CIs compared with 
normal hearing (NH) peers during a three-level difficulty n-back task undertaken in two sensory modalities 
(auditory and visual). The objective of this pioneering study was to identify electroencephalographic (EEG) 
marker pattern differences in visual and auditory VWM performances in CIs compared to NH peers and possible 
differences between unilateral cochlear implant (UCI) and bilateral cochlear implant (BCI) users. The main re-
sults revealed differences in theta and gamma EEG bands. Compared with hearing controls and BCIs, UCIs 
showed hypoactivation of theta in the frontal area during the most complex condition of the auditory task and a 
correlation of the same activation with VWM performance. Hypoactivation in theta was also observed, again for 
UCIs, in the left hemisphere when compared to BCIs and in the gamma band in UCIs compared to both BCIs and 
NHs. For the latter two, a correlation was found between left hemispheric gamma oscillation and performance in 
the audio task. These findings, discussed in the light of recent research, suggest that unilateral CI is deficient in 
supporting auditory VWM in DHH. At the same time, bilateral CI would allow the DHH child to approach the 
VWM benchmark for NH children. The present study suggests the possible effectiveness of EEG in supporting, 
through a targeted approach, the diagnosis and rehabilitation of VWM in DHH children.   

1. Introduction 

Sensory perception results from the interaction between sensory 
input and ongoing brain cortical activity (Yusuf et al., 2017), and it is 
widely understood that the lack of input from one sensory modality 
profoundly impacts brain development (Bavelier and Neville, 2002; 
Bonna et al., 2021). In the case of congenital deafness, there is evidence 
from animal and human studies that early auditory deprivation leads to 
an atypical organisation of the auditory nervous system (Kral and 
Sharma, 2012; Gilley and Sharma, 2008). Indeed, congenital deafness 

deprives the child of acoustic input during a sensitive developmental 
period that requires auditory experience to acquire fundamental skills 
such as language (Kral, 2013). However, the effects of impaired hearing 
go far beyond just difficulty in speech recognition (Wingfield and Peelle, 
2015). In fact, auditory deprivation impacts numerous pathways such as 
brain structure, neural processing, and behaviour (Köse et al., 2022), 
affecting neurocognitive development in children across several related 
domains, including auditory, linguistic, cognitive, social, literacy, and 
academic functioning (Fitzpatrick, 2015). The Cochlear Implant (CI), a 
prosthetic device that electrically stimulates the auditory nerve via a set 
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of electrodes placed in the cochlea (Zeng, 2011), is universally consid-
ered to be the standard of care for the medical treatment of 
severe-to-profound sensory-neural hearing loss in children and adults 
(Pisoni et al., 2018). 

Although CI allows stimulation of the auditory nerve and thus the 
development of the brain cortices in children who are deaf or hard of 
hearing (DHH) (Wilson and Dorman, 2008), enabling communication 
skills (Geers and Nicholas, 2013; Kronenberger et al., 2018; Sharma 
et al., 2020), there are notable variations in language and neuro-
cognitive outcomes (Tamati et al., 2022; Szagun and Schramm; 2016; 
McCreery and Walker, 2022). The factors contributing to this are not yet 
fully understood (Clearly et al., 2000; McCreery and Walker, 2022). In 
fact, although the differences present in many clinical outcomes can be 
attributed to several factors such as age at implantation (Kral, 2007), 
length of device use (Calmels et al., 2004), binaural or monoaural CI 
(Litovsky and Gordon, 2016), type of bilateral CI surgery (e.g. simulta-
neous or sequential, Killan et al., 2019), the onset of hearing loss 
(Dowell et al., 2002), residual hearing (Zwolan et al., 1997), speech 
processing strategy (Hu et al., 2011) and non-verbal intelligence (Cas-
tellanos et al., 2016), considerable unexplained variability remains 
today (Faulkner and Pisoni, 2013). 

Consequently, in recent years, neurocognitive factors contributing to 
language outcomes have been of considerable interest to researchers and 
clinicians because they offer a potential target for intervention that can 
help explain and improve language outcomes in DHH children (Jamsek 
et al., 2022). 

One domain of neurocognitive functioning that supports language 
development in DHH populations concerns a broad set of neurocognitive 
abilities (executive functions) including working memory, inhibition, 
and shifting (Suchy et al., 2009; Miyake et al., 2000; Solís-Campos et al., 
2023). 

Working memory (WM) is a system within the brain necessary for 
holding and manipulating information while performing various tasks 
(Baddeley and Hitch, 1974; Baddeley and Della Sala, 1996; Baddeley, 
2010). It is fundamental to higher cognitive functions, including 
reasoning and reading comprehension (Engle et al., 1999; 2002; Just 
and Carpenter, 1992; Kyllonen and Christal, 1990), and is linked to the 
development of academic abilities (Hitch et al., 2001; Thomason et al., 
2009). 

Regarding the interaction of sensory and cognitive systems, the 
amount and nature of auditory input after receiving a CI affects the 
encoding and processing of verbal material in WM, especially for chil-
dren (Burkholder and Pisoni, 2003; Pisoni and Cleary, 2004). Specif-
ically, verbal working memory (VWM)—commonly defined (Schwering 
and MacDonald, 2020) as the temporary maintenance of verbal infor-
mation (i.e. some aspects of language)—is comprised of two compo-
nents: phonological storage which allows for the brief repository of 
speech content and an articulatory rehearsal mechanism allowing for 
silent rehearsal to occur in order for stored information to be main-
tained. Research has shown that VWM has a vital function during the 
language acquisition process facilitating the extended learning of new 
vocabulary (Baddeley et al., 1998). As Akçakaya et al. (2019, p.2) noted, 
when a perceptual limitation such as hearing loss occurs, difficulties in 
coding may affect the language functions of storage, recall and pro-
cessing, thereby affecting the relationship between VWM and vocabu-
lary knowledge. Moreover, VWM for both auditory signals and visual 
text is expected to engage the phonological loop, in which verbal in-
formation can be stored using active rehearsal or subvocalization of 
inner speech. (Baddeley, 2000; Baddeley et al., 1974). 

An extensive body of research has demonstrated that groups of 
children with CI show VWM delays relative to matched groups of normal 
hearing (NH) peers (Herran et al., 2023). Furthermore, significant 
variability and individual differences in VWM skills are found within the 
population of CI users (Pisoni et al., 2018; Kronenberger and Pisoni, 
2018). Specifically, some results of studies show that in children with CI, 
a moderate correlation between VWM and speech perception, 

production and comprehension (Pisoni and Geers, 2000) and a strong 
positive correlation between speech perception and VWM (Pisoni and 
Cleary, 2003) even when statistical analysis is controlled for de-
mographic and audiological variables. Consequently, VWM has been 
identified as a key neurocognitive risk domain and a potential target for 
intervention to improve spoken language outcomes in CI users (Romano 
et al., 2021). It is becoming evident in the international field of CI 
research that individual differences and variations in speech and lan-
guage outcomes following CI are not merely an “ear issue” that deals 
with sensory coding and processing operations, reflecting the upstream 
contributions from the peripheral auditory pathways (Pisoni et al., 
2017): the sources of that variability will not be understood until the 
interactions between spoken language and cognitive functions can be 
taken into account (Nittrouer et al., 2017). However, despite such robust 
evidence regarding the involvement of deficit and increased variability 
in VWM performance in children with CI, the underlying neural pro-
cesses still remain obscure. In fact, previously cited studies have 
addressed WM deficits in children with CI by psychometric (e.g. digit 
span) and speech test assessments (Pisoni and Cleary 2003; Di Stadio 
et al., 2020; Herran et al., 2023). Furthermore, despite the validated 
perceptual benefits provided by cochlear implantation to the perceptual 
and cognitive development of children with deafness, to our knowledge, 
no study has compared the performance of children with one and two 
cochlear implants in VWM tasks. In our opinion, such comparison is a 
crucial point for understanding cortical plasticity in subjects with sen-
sory deficits such as hearing loss or deafness. 

Indeed, binaural hearing gives three major cues: head shadow effect 
(HSE), binaural squelch effect (BSQ) and binaural summation effect 
(BSU), which enhance hearing performance in patients with normal 
hearing (Brown and Balkany, 2007), providing better sound source 
localization and better speech-in noise understanding (Ching et al., 
2007). Considering this evidence, it is intuitable how brain activity can 
be significantly different between UCI and BCI users, raising the ques-
tion of whether the contribution of two implants develops VWM 
neurophysiological patterns comparable to those of a typically devel-
oping brain. 

Thanks to the recent use of electroencephalography (EEG), a 
powerful, accessible and versatile neuroimaging tool for exploring 
human brain physiology, cognition and behaviour (Biasiucci et al., 
2019), it has been possible to neurophysiologically investigate percep-
tual and cognitive deficits in children with CI obtaining quantitative 
data on brain activity during VWM tasks while avoiding the bias 
inherent in face-to-face psychometric tests administration. Specifically, 
EEG provides an especially rich set of features for allowing the assess-
ment of cognitive processes (Šneidere et al., 2020) and for indexing the 
complex set of brain correlates that underline listening (Wisniewski 
et al., 2018). 

EEG measures the electric potential on the surface of the scalp 
generated (in part) by neural activity originating from the brain during 
communications between neurons. EEG power is typically split into 
bands defined as the delta (δ:1–4 Hz), theta (θ:4–8 Hz), alpha (α: 8–13 
Hz), beta (β:13–20 Hz), and gamma (γ: >20 Hz) which correspond to 
different spectral peaks that relate to behaviour or cognitive state 
(Nunez et al., 2016) depending on the brain regions considered (see 
Poldrack, 2010 about understanding the functional anatomy of mental 
functions). For example, alpha oscillations have been shown to play a 
key role in inhibiting nonessential processing, which in turn facilitates 
task performance (Klimesch et al., 2007). This rhythm is related to the 
gating of perceptual awareness and attentional control (Grimshaw et al., 
2014) and so could be considered an index of top-down processing 
(Bazanova and Vernon, 2014). Delta oscillations are prominent in early 
developmental stages and in slow-wave sleep and are implicated in 
salience detection and subliminal perception (Knyazev, 2012). 

Theta rhythm has shown its relevance in spatial navigation (Do et al., 
2021) ostensibly in memory processes (Klimesch et al., 1994, 1997; 
Osipova et al., 2006; Jensen and Tesche, 2002; Sederberg et al., 2003) 
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and attention (Pennekamp et al., 1994; Gevins et al., 1997; Sauseng 
et al., 2007). Specifically, memory-related theta activity is most 
consistently reported in episodic long-term memory and working 
memory (Sauseng et al., 2010), for a review on functional correlates of 
theta waves see (Karakaş, 2020). 

Regarding the beta-band, many classical observations have linked 
this rhythm to motor functions (Engel and Fries, 2010; Barone and 
Rossiter, 2021). Finally, gamma band has been found to reveal corre-
lates of processes associated with binding phenomena (Herrmann, 
2003). Because the power in the gamma band increases during complex 
and attention-demanding tasks, induced gamma activity is often inter-
preted as the neural substrate of cognitive processes (Tallon-Baudry and 
Bertrand (1999) playing an important role in attention and both work-
ing and long-term memory (Jensen et al., 2007). Specifically, some of 
the abilities relevant to working memory performance have been asso-
ciated with oscillatory neural activity, especially in the gamma band 
(Thomson et al., 2021). Moreover, it has been demonstrated that gamma 
reflects local excitatory–inhibitory cortical interactions which may 
support communications between cortical areas and in turn support a 
number of cognitive processes (Thomson et al., 2021), and greater 
gamma-band activity means greater facilitation for attended auditory 
stimuli (Golumbic et al., 2013). Furthermore, the left hemisphere 
compared to the right exhibits a more widely distributed and more 
engaged language network: in most people, the left cerebral hemisphere 
plays a dominant role in speech (Qi and Legault, 2020) and hemispheric 
specialization has been investigated through EEG (Donchin et al., 1977; 
Morillon et al., 2010). 

In line with the non-exhaustive features described so far, EEG in 
recent times has also been considered a useful tool for interdisciplinary 
investigation into the cortical dynamics underlying cognitive and 
perceptual processes in CI patients. Alpha activity for example would 
predict both the ability to perceive speech in noise and listening effort 
(LE) — defined as the deliberate allocation of mental resources to 
overcome obstacles in goal pursuit when carrying out a listening task 
(Pichora-Fuller, 2006; Dimitrijevic et al., 2019; Wisniewski and Zakr-
zewski, 2023), while Wisniewski et al., 2015 identified frontal midline 
theta power as an LE index. Moreover, theta and alpha connectivity 
were used to differentiate performances between different CI processors 
(Maglione et al., 2017), while Wöstmann et al. (2015) observed that 
alpha power varied proportionately with self-reported LE in a listening 
task that altered speech spectral detail. Furthermore, during a 
word-identification task, a lower level of activity in parietal alpha was 
observed in the most challenging listening condition (Marsella et al., 
2017) while neural entrainment to speech envelope has been associated 
with successful selective attention in dichotic listening tasks (Petersen 
et al., 2017). Furthermore, Cartocci et al. (2019) showed a correlation 
between the period of deafness and the asymmetry of cortical activity 
towards the side of the hearing ear in the frontal, parietal and occipital 
areas. Moreover, an EEG workload index (theta/alpha ratio) showed 
higher values in situations of excessive noisy environment during a word 
recognition task (Cartocci et al., 2015). It has also been applied in 
studies on music perception in CI users (Inguscio et al., 2022b). 
Furthermore, in the field of affective auditory neuroscience, hemi-
spheric gamma activation has been shown to suggest a sensitive period 
for CI intervention for the better development of emotion recognition 
skills (Cartocci et al., 2021). 

Focusing more on EEG and WM, it has been proposed that brain 
oscillations likely play a significant role in the storage of information in 
WM (Li and Curtis, 2023; Pavlov and Kotchoubey, 2022). Experimen-
tally, oscillations in various frequency bands (alpha, theta, gamma) have 
been shown to be modulated differently during WM tasks, but their 
exact functional role remains to be determined (Jokisch and Jemsen, 
2007; Jensen, 2006; Roux and Uhlhaas, 2014). Furthermore, VWM 
research strongly supports the hypothesis as to the involvement of theta 
oscillations in WM maintenance processes (Pavlov and Kotchoubey, 
2022) although some studies have found no observable and/or 

statistically significant gradual increases (Kwon et al., 2015; Schack and 
Klimesch, 2002). Moreover, EEG oscillations in the theta frequency 
range are related to WM tasks (Sauseng et al., 2004); for a review of 
evidence, see (Klimesch, 1999). Specifically, theta power enhancement 
is related to memory performance (Itthipuripat et al., 2013), as well as to 
task difficulty (Gevins et al., 1997; Jensen and Tesche, 2002) and WM 
maintenance processes (see the recent systematic review by Pavlov and 
Kotchoubey et al., 2022). Notably, as is well documented in the litera-
ture, in the frontal scalp theta band power increases with memory load 
and mental effort (Raghavachari et al., 2001; Jensen and Tesche, 2002; 
Onton et al., 2005; Zakrzewska and Brzezicka, 2014; Smith and Jonides, 
1999; Berger and Saunseng, 2022). Moreover, attentional processes 
engage frontal areas involved in the generation of theta oscillations 
(Klimesh, 1999; Gevins et al., 1997; Smith and Jonides, 1999) and the 
frontal theta amplitude is linearly correlated with WM load (Xie et al., 
2021): therefore frontal theta band power is a promising neural measure 
to assess attentional processing (Meyer et al., 2023). 

WM retention also has an effect on alpha power, although the di-
rection of this effect is inconsistent across studies (Pavlov and Kotch-
oubey, 2022). Most studies indeed report gradual changes in alpha 
power in line with theta but evidence suggest that alpha modulation 
depends on the type of stimulus presentation (Okuhata et al. 2013). 
Moreover given the association between the alpha rhythm and cortical 
inhibition, these findings are consistent with greater activation of 
task-relevant cortical areas with higher WM demands (Kosachenko 
et al., 2023). Finally, in children (< 14 years old), alpha oscillations 
have been linked to patterns of lateralization in the maintenance of 
working memory (Sander et al., 2012). 

Beta oscillations in VWM research are much less studied than alpha 
and theta oscillations and show a wide diversity of effects (Pavlov and 
Kotchoubey, 2022) in addition to being associated more with spatial 
WM (Proskovec et al., 2018). Activity in the gamma band has been 
hypothesized to directly reflect the neuronal correlate of maintained 
working memory representations (Jokish and Jensen, 2007) and appears 
to have a universal role for sensory and cognitive processing (Karakaş 
and Başar, 1998; Başar et al., 2000; Miller et al., 2018). Moreover, some 
of the abilities relevant for working memory performance have been 
associated with oscillatory neural activity, especially in the gamma band 
(Thomson et al., 2021). Specifically, it has been demonstrated that 
gamma reflects local excitatory–inhibitory cortical interactions which 
may support communications between cortical areas and in turn support 
a number of cognitive processes (Thomson et al., 2021) and greater 
gamma-band activity means greater facilitation for attended auditory 
stimuli (Golumbic et al., 2013). 

Focusing briefly on the brain areas most related to WM processing, a 
widely held view of prefrontal cortex (PFC) function is that it encodes 
task relevant information in working memory (Goldman-Rakic, 1987). 
Specifically, the dorsolateral PFC, due to its connection with the parietal 
cortex plays a crucial role in both verbal and visuospatial WM (Barbey 
et al., 2013; Sauseng et al., 2005) see Lara & Wallis (2015) for a review 
on the role of PFC in WM. Furthermore, it would appear that powerful 
frontoparietal synaptic connectivity may be one of the mechanisms 
involved in the development of WM ability during infancy (Edin et al., 
2009). In addition, mapping PFC and sensory cortices, some areas 
showed specificity for the modality of sensory stimuli (Linden, 2007; 
Klingberg, 2010), while studies have shown involvement of occipital 
cortices in task-modulated mnemonic representations (Yu and Shim, 
2017). 

Furthermore, it has been observed that children and adults exhibited 
similar hemispheric asymmetry during WM activation, greater on the 
right for spatial WM and on the left for VWM (Thomason et al., 2009; 
Nagel et al., 2013). Finally, the left hemisphere compared to the right 
exhibits a more widely distributed and more engaged language network 
in most people; it playing a dominant role in speech (Qi and Legault 
2020) and hemispheric specialization having been frequently investi-
gated through EEG (Donchin et al., 1977; Morillon et al., 2010). 
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While investigation of the neural correlates of WM in children is rare, 
particularly in clinical groups of children (Inguscio et al., 2021), no 
study to our knowledge specifically investigates bimodal VWM perfor-
mance simultaneously in children with one and two cochlear implants. 

For example, in one previous study conducted by our group an 
electrophysiological benchmark of the VWM in typical NH children was 
sought for auditory and visual stimuli, while in another, we compared 
the neurophysiological correlates of VWM between NH and UCI 
(Inguscio et al., 2021, 2022a). 

To date, as far as we are aware, no study has investigated the 
neurophysiological correlates of auditory and visual VWM, comparing 
children with unilateral and bilateral cochlear implantation. Consid-
ering the crucial role of VWM in the development of essential skills such 

as language, and the importance of sensory stimulation for the proper 
structuring of high-level cognitive processes and the cross-modal plas-
ticity that DHH children go through, in this study, we investigated for 
the first time the cortical activation pattern of VWM on unilateral and 
bilateral CI children with the primary pioneering aim of exploring as to 
whether and how the EEG and behavioural correlates of visual and 
auditory verbal stimuli in children with CI:  

i. differ or not from children with normal hearing depending on the 
sensory modality of the stimulation;  

ii. differ between unilateral and bilateral implant recipients. 

The secondary aim was to test whether any differences found in the 

Table 1 
Demographic and clinical data concerning 16 patients (P) and demographic data concerning the 11 normal hearing children (NH) assigned to the control group. In 
particular the table indicates gender (M=male; F=female), chronological (CHRON.) age, unilateral or bilateral cochlear implant (CI) use, receiver (REC.) and processor 
(PROC.) model (MOD) of CI, onset, degree and aetiology of deafness (O.D.), age at CI, auditory (AUD.) age (years of CI use since implantation), schooling level (SCH.) 
and year attended.   

Gender CHRON. 
AGE 

CI CI REC. 
MOD. 

CI PROC. 
MOD 

Onset O.D. DEGREE 
O.D. 

Aetiology O.D. Age at 
CI 

AUD. 
AGE 

SCH. 

P1 F 12.00 Unilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Homozygous Cx26 gene 
mutation 

2.90 9.09 Secondary (first 
year) 

P2 F 10.73 Unilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Homozygous Cx26 gene 
mutation 

1.86 8.87 Primary (fifth 
year) 

P3 F 11.49 Unilateral CI24RE Nucleus CP 
1000 

Congenital Profound Homozygous Cx26 gene 
mutation 

1.41 10.07 Secondary (first 
year) 

P4 F 11.14 Unilateral CI24RE Nucleus CP 
1000 

Congenital Profound Homozygous Cx26 gene 
mutation 

1.41 10.07 Secondary (first 
year) 

P5 F 11.58 Unilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Homozygous Cx26 gene 
mutation 

1.16 9.97 Secondary (first 
year) 

P6 M 10.09 Unilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Usher syndrome 0.79 10.78 Primary (fourth 
year) 

P7 F 8.97 Unilateral CI24RE Nucleus CP 
1000 

Congenital Profound Unknown 1.79 8.30 Primary (third 
year) 

P8 M 8.97 Bilateral CI24RE Nucleus CP 
1000 

Congenital Profound Homozygous Cx26 gene 
mutation 

1.6 7.66 Primary (third 
year) 

P9 M 10.79 Bilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Unknown 4.17 6.63 Primary (fifth 
year) 

P10 M 13.89 Bilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Unknown 3.25 10.68 Secondary (first 
year) 

P11 M 7.35 Bilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Homozygous Cx26 gene 
mutation 

1.41 5.79 Primary (second 
year) 

P12 F 9.93 Bilateral sincrony 
sonnet 

Sonnet 2 Congenital Profound Homozygous Cx26 gene 
mutation 

1.58 10.52 Primary (fourth 
year) 

P13 M 11.95 Bilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Homozygous Cx26 gene 
mutation 

2.08 9.84 Secondary (first 
year) 

P14 F 8.56 Bilateral AB HiRes 
90K 

Naida CIQ 
90 

Congenital Profound Cytomegalovirus 
infection 

2.17 6.7 Primary (third 
year) 

P15 M 7.59 Bilateral Mi10 
Flex28 

Sonnet 2 Congenital Profound Homozygous Cx26 gene 
mutation 

2.17 6.39 Primary (second 
year) 

P16 F 8.07 Bilateral Mi10 
Flex28 

Rondo 2 Congenital Profound Homozygous Cx26 gene 
mutation 

2.58 6.56 Primary (second 
year) 

NH1 F 10.1 − − − − − − − − Primary (fourth 
year) 

NH2 M 12.64 − − − − − − − − Secondary 
(second year) 

NH3 M 10,91 − − − − − − − − Primary (fifth 
year) 

NH4 M 9.20 − − − − − − − − Primary (fourth 
year) 

NH5 F 12.75 − − − − − − − − Secondary 
(second year) 

NH6 M 10.99 − − − − − − − − Primary (fifth 
year) 

NH7 F 7.97 − − − − − − − − Primary (second 
year) 

NH8 F 11.51 − − − − − − − − Secondary (first 
year) 

NH9 M 13.93 − − − − − − − − Secondary (third 
year) 

NH10 M 8.26 − − − − − − − − Primary (second 
year) 

NH11 F 10.84 − − − − − − − − Primary (fifth 
year)  
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investigation into the primary aim were related to deficiencies in lexical 
comprehension. 

Investigating, through EEG, the relationship between the nervous 
system and mental processes and discovering whether there are any 
different patterns between UCI and BCI, could provide quantitative data 
on the effectiveness of bilateral vs unilateral CI in allowing for a more 
typical development of brain functions that are crucial for language and 
academic skills. In addition, it could provide evidence for concrete 
neurophysiological support for rehabilitation in CI users, ultimately 
contributing to auditory neuroscience research. 

2. Materials and methods 

2.1. Participants 

A total of 30 children were recruited into the present study, all native 
Italian speakers and right-handed, who were divided into three groups: 
unilateral CI users (UCI), bilateral CI users (BCI), and hearing control 
(NH). The age of the participants was determined according to previous 
studies (Pelegrina et al., 2015; Yaple and Arsalidou, 2018; Inguscio 
et al., 2021). Three participants were subsequently excluded because of 
their lack of cooperation in the task training accomplishment. Therefore, 
the final experimental population was composed of 2 clinical samples: 7 
UCI with CI on their right side (mean age 11.222±0.634 years); 9 BCI 
(mean age 9.678±2.189 years) and a control group of 11 NH (mean age 
10.831±1.872 years). Clinical data of patients are presented in Table 1. 

Raven’s standard progressive matrices (RPM) (Raven, 1998), a test of 
non-verbal spatial reasoning, was used at screening for participant se-
lection. Finally, exclusion criteria for enrolment in the study were: 
diagnosis of neuropsychiatric disorders; scores below the standard 
average for their age (taken from the test norm) on RPM; left-handed 
children due to past evidence of handedness influence on cerebral lat-
erality (Lux et al., 2008), the presence of visual sensory deficits in pa-
tients and finally presence of visual and/or auditory deficits in controls. 

Participants and their parents were informed about the study before 
the experimental session. We obtained informed written consent from 
the parents and verbal assent from the children. Participation in the 
study was voluntary; children received a present after their involve-
ment. The eligibility criteria for the clinical groups included congenital 
severe/profound deafness (Pure Tone Average in the better ear ≥ 80 dB 
HL for 500–4000 Hz), first CI by 3.5 years of age and second CI if 
bilaterally implanted, by six years of age. The age at CI criteria was 
chosen based on physiological studies suggesting that in the absence of 
typical auditory stimulation, there is a period of about 3.5 years during 
which the central auditory system retains its maximum plasticity and 
that this can extend up to 6–7 years after which it is significantly 
reduced (Sharma et al., 2002; 2005). Good speech perception abilities, 
defined as bisyllabic word recognition and sentence comprehension 
(Cutugno et al., 2000) >90 % in a silent room at the moment of the EEG 
test; none of the UCI participants wore any hearing aid in the contra-
lateral ear to the one with the CI. On the day of the EEG registration 
session, all the patients previously underwent variable-tone free-field 
and speech audiometry to ensure their hearing abilities were adequate. 
There were no significant differences between the clinical and control 
groups in terms of age [Kruskall Wallis H test: H(2)=3.667, p = 0.160] 
and between clinical groups for Age at CI [Mann Whitney U test: U =
49.000, p = 0.071] and for auditory age [Mann Whitney U test: U =
15.000, p = 0.090]. The EEG recordings were performed at Centro 
Impianti Cocleari of Policlinico Umberto I, Rome, according to the 
principles outlined in the Helsinki Declaration of 1975, revised in 2000, 
and approved by the Institutional Ethics Committee of Policlinico 
Umberto I- Rome (no. 259/2020). 

2.2. Lexical comprehension 

Lexical comprehension was assessed using the Italian version () of 

the Peabody Picture Vocabulary Test (PPVT) (Dunn and Dunn, 1981). 
PPVT has been used in a variety of typically and atypically developing 
pediatric populations, and it has been used in numerous studies exam-
ining the vocabulary outcomes of children with hearing impairment 
(Cleary et al., 2000; Rudge et al., 2022). PPVT consisted of 175 
black-and-white stimulus items, displaying four pictures per page with 
increasing difficulty. The examiner said a word, and then the examinee 
responded by pointing out the picture that she/he thought corresponded 
to the word presented by the examiner. PPVT is a test used in the 
assessment of language in Italian children with hearing impairment 
(Guerzoni et al., 2020; Nicastri et al., 2023). 

2.3. Verbal working memory task 

During the EEG recording, participants performed two verbal n-back 
tasks (Kirchner, 1958), a popular measure of working memory (Yaple 
and Arsalidou, 2018) already used in children with CI (Inguscio et al., 
2022a) with different memory loads from 0-back to 2-back: an auditory 
n-back task (AUD-task) in which stimuli were presented orally, and a 
visual n-back task (VID-task) in which stimuli were presented visually. 
The elegant properties of the n-back task have led to its extensive, 
wide-spread use as a tool to manipulate workload in neuroimaging (for a 
meta-analysis of brain regions involved in working memory, see Owen 
et al., 2005) and as a tool to measure cognitive performance under 
various conditions (e.g. Moore et al. 2009; Brouwer et al., 2012). The 
order of the task administration and the order of the n-back blocks 
presentation were randomised across participants. 

Stimulus materials: verbal material consisted of auditory and visual 
stimuli, referring to seven consonants (c, g, k, p, q, t, v) already used in 
previous experimental protocols (Jaeggi et al., 2007, 2008, 2009, 2010). 
Vowels were excluded to reduce the likelihood of participants devel-
oping chunking strategies which reduce mental effort (Grimes et al., 
2008). We conducted a stimuli exposure pretest before involvement in 
the study to ensure correct perception by clinical and control groups. 
Visual stimuli (Consolas font—130) with a duration of 500 ms and an 
interstimulus interval (ISI) of 3000 ms (Pelegrina et al., 2015) were 
presented one at a time on a grey background in the centre of a monitor 
screen placed at eye level, 50 cm from the participant. Auditory stimuli 
(duration 500 ms; ISI 2500) (Jaeggi et al., 2007) consisted of a recorded 
female voice, set at a 65 dB SPL intensity to ensure comfortable audi-
bility to both NH and CI users (Cartocci et al., 2021), transmitted by two 
audio speakers placed at face level 1 m in front of the participant. 

Task execution: For each stimulus, participants in the ISI had to 
respond by pressing a previously identified key (D/K) on the keyboard to 
indicate whether the letter was a target (K) or a nontarget (D); thus, 
there was a behavioural response in either case. In the 0-back condition, 
the letter X was the target. In the 1-back condition, a letter was a target 
when it was the same as the one presented immediately before. In the 2- 
back condition, a letter was a target when it was the same as the two 
letters before. With this version of the n-back task, the difficulty level 
varies without varying visual/auditory input or frequency and type of 
motor output (button presses). A 3-back condition was not used due to 
evidence that many adults find it too difficult and tend to give up (Ayaz 
et al., 2007; Izzetoglu et al., 2007). Participants received detailed in-
structions on how to perform the task correctly, and a training session 
was undertaken before the practical measurement session to familiarise 
themselves with the experimental procedure. 

Task structure: Load levels (0, 1, 2-back) were presented in six blocks 
(2 for each level) for each task (auditory and visual). The blocks con-
sisted of 21 randomised stimuli (30 % target) (Pelegrina et al., 2015). In 
the baseline phase, participants were asked to remain relaxed with no 
task to perform other than to look at the screen. At the same time, 
auditory or visual stimuli were presented, anticipating the task phase. 
During the baseline phase, the seven stimuli were repeated randomly 
three times (500 ms with 3000 ms ISI), creating a 21-item block anal-
ogous to the experimental blocks. The task phase then consisted of 2 
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randomised presentations of the three blocks. Thus, each session con-
sisted of 3-n back levels per 2 presentations for six blocks in randomised 
order for audio and visual tasks. Half of the participants started with the 
visual stimuli task, and the other half with the auditory task (see Fig. 1 
for task structure schematisation). A Lenovo PC (monitor resolution 
1024 × 768) displayed and controlled stimuli presentation and collected 
participants’ responses in terms of reaction times (RTs) and correct re-
sponses (CRs) through the software package E-Prime (Psychology Soft-
ware Tools, Pittsburgh, PA, USA, Version 3.0). 

Procedure: the participant was seated on a chair in an audiometric 
test room while the experimental design was fully explained. Partici-
pants were instructed to take a comfortable position and avoid unnec-
essary movement to reduce muscular artefacts in the EEG signal. After 
each task phase, the participant indicated the perceived task difficulty 
(easy–medium–hard) on a stylised image; at the end of the entire 
experimental session, they were asked to rate, through a stylised image 
of the level of difficulty, which of the two tasks (visual or auditory) was 
the most difficult. 

2.4. Measures collections 

2.4.1. Behavioural and language measures 
We collected response latencies in terms of the following: Reaction 

Times (RTs, measured from the time of stimulus offset); performances in 
terms of accuracy (ACC) calculated as the percentage of correct re-
sponses for each task condition (each n-back level for auditory and vi-
sual modality tasks). A speech and language therapist administered 
PPVT. 

2.4.2. EEG measures 
EEG data was recorded from 20 electrodes (Fpz, Fz, F3, F4, F7, F8, 

Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, Cp5, Cp6, O1 and O2) placed over 
the scalp at standard 10–20 locations (International Standard configu-
ration, Jasper, 1958) referred to the participants’ earlobes. The data 
were acquired at 256 Hz through each channel from a digital ambula-
tory monitoring system (BePlus System-EBNeuro, S.p.A., Firenze, Italy), 
the impedance was kept below 10kO and to remove power interference 
we applied a notch filter. The raw EEG signals were then filtered through 
a 5thorder Butterworth band pass filter [1–45 Hz] to reject continuous 

Fig. 1. Experimental design with the trial timeline. Schematic illustration for each n-back task (audio-AUD and video-VID) performed by participants divided into 3 
groups (UCI=Unilateral cochlear implant; BCI=bilateral cochlear implant users; NH=normal hearing) during electroencephalography (EEG) recording. Each mo-
dality task started with the baseline phase, followed by the task phase and the subject’s difficulty rating. Note: ISI= interstimulus interval. 
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components and high-frequency interferences like muscular artifacts. 
REBLINCA algorithm (Di Flumeri et al., 2016) was applied on the Fpz 
channel to eliminate eye-blink contributions without losing data. Spe-
cific procedures of the EEGLAB toolbox (Schwartz Foundation, Halesite, 
NY, USA) (Delorme and Makeig, 2004) were used to depurate the signal 
from other artefacts. The EEG dataset was segmented into epochs 
starting at 500 ms before stimulus onset and ending at 2500 ms after the 
offset. This temporal windowing was adopted to respect the condition of 
stationary of the EEG signal and allow for a high number of observations 
for the number of variables considered in the analysis (Elul, 1969). To 
identify artefacts, three validated criteria according to published pro-
cedures (Cartocci et al., 2023a; Inguscio et al., 2022b) were employed: 
(i) threshold criterion (±80 µV); (ii) trend estimation criterion (slope 
higher than 40 µV/s or less than 0.3 µV/s); and (iii) sample-to-sample 
criterion (when, in terms of absolute amplitude, the signal sample-to 
sample >30 µV/s). Finally, all epochs marked as ‘artefacts’ were 
removed from the EEG dataset, such that all analyses were based on 
clean EEG signals. Specifically, the percentage of artifacts removed in 
each group was as follows: NH group= 22.171%; UCI group= 31.704 %; 
BCI group= 35.258 %. Individual alpha frequency (IAF), given in Hertz, 
to accurately define EEG bands of interest, was computed for each 
participant on a 60 s long-closed eyes segment, recorded before the 
baseline phase (Klimesch, 1999). Each band was then defined as IAF± x, 
where x was an integer in the frequency domain; thus, the EEG signal 
was filtered in the following frequency bands in Hertz (Hz): theta [IAF – 
6 ÷ IAF – 2 Hz], alpha (IAF – 2 ÷ IAF + 2 Hz), and gamma 
(IAF + 16 ÷ IAF + 30 Hz) (Klimesch, 1999). Finally, the power spectral 
density (PSD) (Welch, 1967) was calculated for each epoch and channel, 
with a Hanning window of 1 s and an overlap of 500 ms. The topo-
graphical distribution of band modulation analysis was based on data 
averages for the following Areas of Interest (AOIs): frontal, parietal, 
occipital and hemisphere electrode locations. The channels considered 
were F3, F4, Fz (frontal); Pz, P3, P4, P7, P8 (parietal); O1, O2 (occipital); 
F3, C3, T7, P3, O1 (left hemisphere); F4, C4, T4, P4, O2 (right hemi-
sphere). Of course, for the calculation of the AOIs for the left and right 
hemispheres, some channels were partially embedded in the calculation 
of other AOIs. However, autocorrelation risks were avoided because the 
correlation analysis between hemispheres and other AOIs was not 
performed. 

To limit bias on scores due to subjective stimuli perception on VWM 
n-back task recording, before statistical analysis, PSD data were nor-
malised subtracting the PSD calculated for the EEG signal acquired 
during the baseline phase of the audio and video tasks described above 
and also reported in Fig. 1 (Cohen, 2014). 

2.5. Statistical 

We tested the assumption of normality distribution for all variables 
(neurophysiological, linguistic and behavioural) using the Shapiro-Wilk 
normality test (Shapiro and Wilk, 1965) and the Levene test (Levene, 
1960) to examine the assumption of variance of groups’ equality. We 
could not use parametric ANOVA because most of the variables were not 
normally distributed, but the homogeneity assumption of the variance 
was met; therefore, the Kruskal-Wallis (KW) H test (Kruskal, 1952; 
Kruskal and Wallis, 1952) with a significance of p = 0.05 was used to test 
for any differences between the three independent samples for each 
dependent variable. The dependent variables considered were: receptive 
language results (PPVT); Performances (RTs; PE) n-back results for each 
n-back level (LOAD) (0,1,2) in each modality (MOD) of task (audio--
AUD; video-VID); Alpha, Theta, and Gamma EEG activation in the AOIs 
considered for each LOAD in each MOD. Post hoc analysis was further 
conducted using Dunn’s pairwise multiple comparisons with the Holm 
corrected significant p-value. The KW effect size was calculated with 
Epsilon Squared (Ɛ2) (Kelley, 1935) because it is a better choice than 
other tests when the sample size is small (Tomczak and Tomczak, 2014; 
Hays, 1978; Maxwell et al., 2017). Epsilon-Squared is also a more 

conservative effect size estimate than the better-known eta-squared 
measure (Keppel, 1982). 

Finally, nonparametric Spearman’s correlation coefficient rho (ρ) 
was applied to measure the association between variables. Statistical 
analyses were performed using the computer software JASP (Version 
0.17.2.1). 

3. Results 

3.1. Language results 

The results of the Kruskal-Wallis test performed on the PPVT scores 
revealed significant differences between groups H(2)=13.162, p = 0.001 
Ɛ2 = 0.506. Post hoc comparisons using the Dunn test with Holm cor-
rections indicated that NH scores were observed to be significantly 
higher than those of group UCI (p = 0.043) and BCI (p = 0.001). The 
comparison between BCI and UCI groups was not significant (p = 0.355) 
(Fig. 2). 

3.2. Behavioral results 

Statistical analysis showed no significant differences between the 
three groups for reaction times for each n-back condition (p > 0.05). 

Concerning performance during the visual task, no statistically sig-
nificant differences emerged among the 3 groups (p > 0.05). Statistically 
significant results emerged in performance for the auditory task. 

Indeed the KW test unveiled a group effect both for performance at 
level 2 during audio MOD H (2)=7.807, p = 0.020, Ɛ2 =0.323 and 
considering overall performance at the auditory n- back H(2)=10.580, p 
= 0.005, Ɛ2 =0.438. Pairwise comparisons using Dunn’s test corrected 
indicated that in audio level 2 performance was significantly better for 
NH than UCI and BCI (p = 0.048 for both clinical groups), while no 
significant differences emerged between UCI and BCI (p(BCI vs 

UCI)=0.960) (Fig. 3). Better performance persisted in NH compared to 
both UCI and BCI even when considering the entire audio task p(NH vs 

UCI)=0.037 and p(NH vs BCI)=0.007); even in this condition, the two 
clinical groups did not differ from each other (p(BCI vs UCI)=0.649) 
(Fig. 4). 

3.3. EEG results 

We constructed topoplots to visually represent the distribution of 
average PSD across the EEG scalp. Fig. 5 shows the topographic 

Fig. 2. Differences between groups (NH=Normal Hearing; UCI=Unilateral 
Cochlear Implant users; BCI=Bilateral Cochlear Implant users groups) for the 
Peabody Picture Vocabulary test (PPVT). Significant differences between 
groups emerging from post hoc test are indicated (** p ≤ 0.01; *** p ≤ 0.001). 
Data are shown as scatterplots, boxplots and raincloud plots. The thick lines in 
the middle of the box are the median; the box itself spans the range from the 
25th percentile to the 75th percentile. 
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configurations of theta (a), alpha (b) and gamma (c) activity calculated 
in each condition for the three groups. 

Descriptively, the topoplots show globally for the BCI group similar 
electrocortical activities as for the NH group in the three bands 
considered. However, in the theta band the BCI group show more ac-
tivity in the electrodes considered for the parietal and occipital temporal 
AOIs, especially for auditory modality. This pattern is also maintained in 
the gamma band for the auditory task, while in visual modality the ac-
tivity increases during task difficulty in the occipital electrodes, in line 
with the control group. Alpha activity in the BCI group appears lower in 
the central areas than in the controls. 

Considering the UCI group compared to the other two groups, an 
overall lower theta activity in all cortical areas, except in the temporal 
electrodes in the right hemisphere (particularly during the auditory 
task), clearly emerges from the topographic representation. Focusing on 
the gamma band, we again observe, when compared to the other two 
groups, greater diffuse activity on the electrodes placed on the right 
hemisphere (in particular for the auditory modality) and simultaneously 
lower activation with respect to the electrodes placed on the left hemi-
sphere in addition to milder activity in the occipital areas in all condi-
tions. With regard to the alpha band, it appears that the unilaterally 
implanted CI group have globally lower activity than the controls and 

the bilaterally implanted children. 
Regarding the statistical analysis performed on electrocortical acti-

vations during n-back audio and video, statistically significant results 
emerged for theta and gamma rhythms, while no significant results 
emerged for alpha rhythms (p > 0.05). 

3.3.1. Theta results 
Concerning theta activity in frontal AOI, the KV test indicated a 

significant difference between groups in the 2 audio conditions H(2)=
8.625, p = 0.013, Ɛ2 =0.357 and in the audio condition in total H(2)=
6.231, p = 0.044, Ɛ2 =0.258. Post hoc Dunn’s test corrected revealed, for 
the first analysis, significantly less theta activity for UCIs compared with 
both NH (p = 0.019) and BCI (p = 0.027) while there was no statistically 
significant difference between the NH and BCI groups (p = 0.872) 
(Fig. 6). Considering the second analysis, the only significant difference 
was between UCI and BCI, in favour of the latter (p = 0.040), while no 
statistically significant difference was observable between BCI and NH 
groups (p = 0.362) and between UCI and NH groups (p = 0.168) (Fig. 7). 

A difference in theta activity also emerges from the analysis con-
ducted on the left hemisphere H(2)=5.997, p = 0.050, Ɛ2 =0.248 
(Fig. 8). Here, the post hoc shows less activity in UCI group than in BCI 
group (p = 0.043). No other differences between groups were statisti-
cally significant (p = 0.280). 

3.3.2. Gamma results 
Significant differences in electroencephalographic activity in the left 

hemisphere also emerged in the gamma band, where they are observed 
for the total audio task H(2)=7.350, p = 0.025, Ɛ2 =0.304. The post hoc 
test shows less activity in the UCI group than in both the BCI and NH 
groups (p = 0.041 and p = 0.041, respectively), while the comparison 
between NH and BCI was not significant (p = 0.998) (Fig. 9). 

A significant difference in the gamma band was also found in the 
parietal AOI in the total audio condition H(2)=7.833, p = 0.020, Ɛ2 

=0.324. Dunn’s post hoc test corrected revealed significantly less 
intense activity in the UCI group in comparison with both NH (p =
0.039) and BCI (p = 0.026), while no statistically significant differences 
emerged between NH and BCI (p = 0.671) (Fig. 10). 

Finally, also in occipital AOI, the KW test indicated significant dif-
ferences between groups in gamma rhythm during the total audio con-
dition H(2)=10.002, p = 0.007, Ɛ2 =0.414. Dunn’s post hoc test 
corrected revealed significantly less intense gamma rhythm in the UCI 
group in comparison with both NH (p = 0.006) and BCI (p = 0.034), 
while no statistically significant difference emerged between NH and 
BCI (p = 0.526) (Fig. 11). 

3.4. Correlations between variables 

The results from Spearman’s correlation coefficient applied to 
investigate possible linear relationships between the variables showed 
some significance within the three groups. 

Within the NH group, a positive correlation is observed between 
audio performance and gamma activation in the left hemisphere and 
performance at the audio task (ρ=0.664, p = 0.026) (Fig. 12a) as well as 
a correlation between PPVT score and chronological age (ρ=0.743, p =
0.009) (Fig. 12b). 

Within the BCI group we also found a relationship between left 
hemispheric gamma activation and performances at the audio task 
(ρ=0.698, p = 0.037) (Fig. 13) 

Within the UCI group, on the other hand, frontal theta activity 
correlated with performance for the auditory task ρ =0.821, p = 0.034 
(Fig. 14a). Furthermore, a relationship was observed between gamma 
activation in parietal AOI and age (ρ = 0.811, p = 0.027) (Fig. 14b). 

4. Discussion 

In the present study, we investigated the behavioural and neural 

Fig. 3. Differences between groups (NH=Normal Hearing; UCI=Unilateral 
Cochlear Implant users; BCI=Bilateral Cochlear Implant users groups) in 2 
audio n-back task performances. Significant differences between groups 
emerged from the post hoc test are indicated (*p ≤ 0.05). Data are shown as 
scatterplots, boxplots and raincloud plots. The thick lines in the middle of the 
box are the median; the box itself spans the range from the 25th percentile to 
the 75th percentile. 

Fig. 4. Differences between groups (NH=Normal Hearing; UCI=Unilateral 
Cochlear Implant users; BCI=Bilateral Cochlear Implant users groups) in per-
formances for total levels in the audio n-back task. Significant differences be-
tween groups emerged from the post hoc test are indicated (*p ≤ 0.05; ** p ≤
0.01). Data are shown as scatterplots, boxplots and raincloud plots. The thick 
lines in the middle of the box are the median; the box itself spans the range from 
the 25th percentile to the 75th percentile. 
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Fig. 5. Scalp distributions of the Electroencephalographic (EEG) (a) theta, (b) alpha and (c) gamma spectral power respectively during the audio and video n-back 
tasks. For each group (NH=normal hearing; UCI=unilateral cochlear implant users; BCI=bilateral cochlear implant users) from left to right, the scalp maps 
correspond to the sensorial Modality (auditory; visual) and Load (0, 1, 2 level) of the n-back verbal working memory (VWM) task conditions. The black dots 
correspond to the positioning of the 20 electrodes positions according to 10–20 international system. 
Red indicates a higher PSD while blue indicates a lower PSD. 
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correlates of VWM processing during an auditory n-back task and a vi-
sual n-back task by comparing three groups of children with different 
auditory characteristics: normal hearing, unilateral and bilateral CI 
users. While these measurements have already been carried out for vi-
sual WM tasks in groups of hearing adults and children (Jaeggi et al., 
2010; Yaple and Arsalidou, 2018; Pesonen et al., 2007; Palomäki et al., 
2012), no study to date has simultaneously investigated the performance 
and cerebral cortical activations occurring during VWM tasks in two 
sensory modalities (auditory and visual) comparing children with 
different hearing experiences. The main purpose was to investigate 
differences in VWM performance between unilaterally and bilaterally 
implanted children by exploring whether EEG patterns could reveal 
underlying neurophysiological factors for the WM deficits found in CI 
children compared with NH peers, thus providing hypothetical 
brain-based causes for the extreme variability found in clinics and 

rehabilitation settings for the same CI users. 

4.1. Language outcomes 

In receptive vocabulary, NH children achieve better outcomes than 
peers with CI (Fig. 2), confirming the risk of delays in receptive vo-
cabulary development acquisition in CI users, as reported in several 
studies assessing oral language skills in the CI population (El-Hakim 
et al., 2001; Fagan and Pisoni, 2010; Herran et al., 2023). Moreover, a 
positive correlation of receptive vocabulary with chronological age was 
only found in the NH group (Fig. 12.b), which is consistent with evi-
dence showing that vocabulary, in children without language diffi-
culties, correlates significantly with more advanced levels of schooling 
(Rosselli et al., 2014). In fact, the NH group was not characterized by the 
same schooling level, (see Table 1) a factor that may have affected, in 

Fig. 6. Theta (θ) band activity. The figure shows the differences between 
groups (NH=Normal Hearing; UCI=Unilateral Cochlear Implant users; 
BCI=Bilateral Cochlear Implant users groups) for theta activation in the frontal 
area of interest during 2 audio n-back task conditions. Significant differences 
between groups emerging from post hoc test are indicated (*p ≤ 0.05). Data are 
shown as scatterplots, boxplots and raincloud plots. The thick lines in the 
middle of the box are the median; the box itself spans the range from the 25th 
percentile to the 75th percentile. 

Fig. 7. Theta (θ) band activity. The figure shows the differences between 
groups (NH=Normal Hearing; UCI=Unilateral Cochlear Implant users; 
BCI=Bilateral Cochlear Implant users groups) for theta activation in the frontal 
area of interest during total audio n-back task condition. Significant differences 
between groups emerging from post hoc test are indicated (*p ≤ 0.05). Data are 
shown as scatterplots, boxplots and raincloud plots. The thick lines in the 
middle of the box are the median; the box itself spans the range from the 25th 
percentile to the 75th percentile. 

Fig. 8. Theta (θ) band activity. The figure shows the differences between 
groups (NH=Normal Hearing; UCI=Unilateral Cochlear Implant users; 
BCI=Bilateral Cochlear Implant users groups) for theta activation in the left 
hemisphere area of interest during total audio n-back task condition. Significant 
differences between groups emerging from post hoc test are indicated (*p ≤
0.05). Data are shown as scatterplots, boxplots and raincloud plots. The thick 
lines in the middle of the box are the median; the box itself spans the range from 
the 25th percentile to the 75th percentile. 

Fig. 9. Gamma (γ) band activity. The figure shows the differences between 
groups (NH=Normal Hearing; UCI=Unilateral Cochlear Implant users; 
BCI=Bilateral Cochlear Implant users groups) for gamma activation in the left 
hemisphere area of interest during total audio n-back task condition. Significant 
differences between groups emerging from post hoc test are indicated (*p ≤
0.05). Data are shown as scatterplots, boxplots and raincloud plots. The thick 
lines in the middle of the box are the median; the box itself spans the range from 
the 25th percentile to the 75th percentile. 
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addition to age, the correlation we found. In addition, language devel-
opment during school years, is closely related to the development of 
other non-linguistic skills including individual and family characteris-
tics (Gibson and Petersen, 2010; Armstrong et al., 2016) that were not 
explored in further detail as they were outside of the focus of the present 
study. 

Furthermore, we did not find any significant differences between 
clinical groups, when comparing lexical comprehension levels attained 
by unilaterally or bilaterally implanted children, assessed through the 
PPVT test. Although other authors including (Sarant et al., 2014), when 
using the same test, reported a significant difference in vocabulary 
comprehension, the potential beneficial effect of bilateral hearing in the 
present study could be covered by some important variables— such as 
parenting style (Quittner et al., 2013; Sarant et al., 2009), presence of 
siblings (Barton and Tomasello, 1994), cultural and socioeconomic 

(Piccolo et al., 2016; Ribeiro et al., 2023) family background (Niparko 
et al., 2010; Cutting and Dunn, 1999) —that were not possible to ac-
count for, due to our relatively small sample size. However, we 
controlled the analysis for variables predictive of language perform-
ance—such as chronological age (Campbell, 1998), age at implantation 
(Geers et al., 2009; Schorr et al., 2008), non-verbal IQ (Phillips et al., 
2014; Cejas et al., 2018) and presence of neuropsychiatric disorders. 
Thus, the contribution of one or two CIs to receptive language perfor-
mance could also be affected by other factors, which were not investi-
gated as they were not the subject of the present study. 

4.2. Behavioural results 

In line with several previous studies on VWM (Burkholder and 
Pisoni, 2003; AuBuchon et al., 2019; Romano et al., 2021), performance 
at n-back is affected by cochlear implantation, both unilaterally and 
bilaterally during the auditory tasks when considering average perfor-
mances (Fig. 4) and considering the most difficult auditory level (n2) 
(Fig. 3), as found by Nittrouer et al. (2017) for auditory VWM tasks and 
by Pisoni and Cleary (2004) in the visual-auditory VWM comparison. 
Our findings were as expected, given that DHH children using CI have 
previously been found to have shorter digit spans (Burkholder and 
Pisoni, 2003); however, they do differ from previous studies of our 
group (Inguscio et al., 2022a) that showed no significantly worse per-
formance at auditory tasks for UCI children. The difference in perfor-
mance from the previous sample of UCI that we investigated could be 
due to intervening variables not previously considered and the statistical 
methods used. Globally, behavioural VWM performances significantly 
differed between CI users and hearing controls only during the pro-
cessing of auditory stimuli. Interestingly, there are no differences be-
tween groups regarding the level of task difficulty alone (0;1;2 back). It 
would therefore appear that degraded performance is related to sensory 
rather than cognitive processing difficulties (Pisoni et al., 2017). Indeed, 
the absence of differences between clinical and control groups suggests 
that the difficulty is due precisely to sensory modality rather than VWM 
per se. 

Although we did not assess phonology in participants, the ‘phono-
logical bottleneck hypothesis’ could contribute to understanding our 
results in auditory VWM performance in the clinical groups. This term 
was originally coined for studies of VWM in children with dyslexia 
(Shankweiler et al., 1979, for a discussion review Caylak, E. 2010; 
Knoop-van Campen et al., 2018), and suggests that WM deficits in 
children with CI originate primarily from poor ‘phonological awareness’ 
(PA). PA skills, tapped by tasks requiring the manipulation of phono-
logical structure (Gathercole et al., 2006), refer to the recognition of the 
structure states of heard or read language such as syllables, rhymes and 
single phonemes. The latter are most pertinent to the objective of the 
present study, as they are related to VWM. In fact, as Nittrouer et al., 
observe (2017), several studies on CI users have found more significant 
phonological deficits than deficits for other syntactic and lexical skills 
(see, for example, Nittrouer and Caldwell-Tarr., 2016; Ambrose et al., 
2012; Spencer and Tomblin, 2009). Moreover, studies suggested that 
performance on VWM tasks in CI users could be partly due to fragile, 
underspecified phonological representations of letters in short-term 
memory (Pisoni et al., 2011) and that PA plays a crucial role in 
reading development in the lower grades of primary education (Anthony 
and Francis, 2005). Such evidence could suggest that PA deficits can be 
due to the degraded representation of the auditory signal that children 
with CI must rely on due to CI processing limitations in the spectral 
domain. In fact, while the sensitivity between children with and without 
CI is shown to be similar for temporal and amplitude elements indicating 
phonemic categories, there is a decrease in sensitivity to spectral stimuli 
(Moberly et al., 2016). Consequently, an additional interpretative hy-
pothesis of our findings might be that the processing of the spectral 
component of listening in the n-back stimuli, does not vary between use 
of one or two CI. However, to confirm this interpretative key, a thorough 

Fig. 10. Gamma (γ) band activity. The figure shows the differences between 
groups (NH=Normal Hearing; UCI=Unilateral Cochlear Implant users; 
BCI=Bilateral Cochlear Implant users groups) for gamma activity in the parietal 
area of interest during total audio n-back task condition. Significant differences 
between groups emerging from post hoc test are indicated (*p ≤ 0.05). Data are 
shown as scatterplots, boxplots and raincloud plots. The thick lines in the 
middle of the box are the median; the box itself spans the range from the 25th 
percentile to the 75th percentile. 

Fig. 11. Gamma (γ) band activity. The figure shows the differences between 
groups (NH=Normal Hearing; UCI=Unilateral Cochlear Implant users; 
BCI=Bilateral Cochlear Implant users groups) for gamma activity in the oc-
cipital area of interest during total audio n-back task condition. Significant 
differences between groups emerging from post hoc test are indicated (*p ≤
0.05; ** p ≤ 0.01). Data are shown as scatterplots, boxplots and raincloud plots. 
The thick lines in the middle of the box are the median; the box itself spans the 
range from the 25th percentile to the 75th percentile. 
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audiological study of the type of processor used by patients (Table 1) 
would be appropriate in relation to the spectral analysis of the auditory 
stimuli used in the protocol. Finally, the absence of differences between 
UCI and BCI in performance should be evaluated in light of the EEG 
results discussed below. 

4.3. EEG results 

Considering cortical power spectral density analysis based on elec-
trode distribution, differences are observed between groups in theta 
band (Fig. 5.a) and gamma band (Fig. 5.b). Statistically significant 
electrocortical differences will be discussed below. 

4.3.1. Theta band 
The present results contrast with our previous study that showed no 

difference between NH and UCI in frontal theta AOI during VWM tasks 
(Inguscio et al., 2022a). In fact, here we observe significantly less theta 
activity in UCI than in BCI for the total audio condition (Fig. 7) but also 
significantly less activity when compared to both BCI and NH regarding 
the hardest audio condition (Fig. 6). The results suggest a lack of 
attention in UCI during the (supposed) hardest (for DHH people) VWM 
condition in line with studies which observed increasing attention in 
correspondence to the experimental situation characterised by higher 
memory load and/or effortful cognitive processes in hearing controls 
(Wisnieski et al., 2018). 

Moreover, the frontal deactivation in the theta band could be a sign 
of decreased attentional resource allocation availability due to the 
perceived LE (Cartocci et al., 2018; 2023b) experienced during the 
auditory VWM task solely by UCI compared to BCI. Indeed, mirroring 
that which was observed and proposed by Wisnieski et al. (2018) on 
frontal activation in theta as a sign of LE— frontal theta collapse in the 
UCI group could reflect a VWM component of effortful listening (cf. 
Pesonen et al., 2006). Furthermore, considering the self-report measures 
showing that the most challenging task was the auditory task for 42.85 
% of UCI compared to 77.77 % of BCI and 54.54 % of NH, it becomes 
clear that UCI users explicitly underestimate the difficulty in the audi-
tory tasks while implicit neurophysiological markers and behavioural 
performance suggests the opposite. 

Globally, we might speculate that in the framework of Kahneman’s 
consolidated capacity-constrained resource model (Kahneman, 1973), a 
frontal ‘theta deactivation’ could reflect a withdrawal from cognitive 
engagement (i.e. a fatigue condition due to unsustainable, prolonged 
LE). In fact, the auditory n-back task for CI users could actually be 
considered a near-simultaneous (auditory attention to the stimulus and 
unfolding of the n-back) dual task (Perreau et al., 2017). Consequently, 
the differences we found could be explained by the different tasks 
required in the experimental protocols. Our interpretive hypothesis 
about the frontal activation deficit in theta caused by the auditory 
condition could be further validated by the fact that in the n-back, the 
listening did not occur in the noise. Therefore, less theta activity in 
frontal AOI in the UCI group could be indicative of a subtraction of brain 
resources to the cognitive task because of the increased difficulty in the 
n-back auditory task due to the listening conditions for this clinical 
group. Thus, is it the lack of cognitive resources in the UCI group due to 
fatigue related to the auditory stimulation modality that worsens 

Fig. 12. The relationship between variables in NH. (a) Scatter plot showing a positive correlation between performances and gamma activation in left hemisphere 
(Hem) AOI for audio task. (b) Scatter plot showing a positive correlation between the Peabody picture vocabulary test (PPVT) and chronological Age. Note: 
NH=normal hearing group; AOI=Area of Interest; AUD= audio. 

Fig. 13. The relationship between variables in BCI. Scatter plot showing a 
positive correlation between performances and gamma activation in the left 
hemisphere (Hem) AOI for audio task. Note: BCI=bilateral cochlear implant 
group; AOI=Area of Interest; AUD= audio. 
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performance? This hypothesis seems confirmed by the positive, strong 
correlation observed in UCI between PE audio and frontal theta audio 
(Fig. 14.a). Finally, these significant results, also considering the 
absence of differences between BCI and NH controls, suggests that there 
is a neurophysiological benefit conferred by bilateral implantation in the 
auditory processing of VWM. 

Concerning our results on theta power between UCI and BCI in left 
hemisphere AOI (Fig. 8). It is often assumed that the functional later-
alisation of the human brain has an adaptive value and may even present 
a prerequisite for the full realisation of linguistic potential (Knecht et al., 
2001). In addition, neuroimaging studies (Nagel et al., 2013) suggest left 
hemispheric lateralisation in VWM tasks and right hemispheric lateral-
isation in spatial WM tasks. Moreover, the laterality effect is consistent 
with extensive neuropsychological and neuroimaging studies suggesting 
that verbal tasks, including VWM tasks, predominantly implicate left 
hemisphere activity (Yao et al., 2023; Emch et al., 2019; Owen et al., 
2005). Furthermore, results from language development studies have 
suggested that the brain plasticity mechanisms involved in language 
learning are different from those recruited later for automated, skilled 
language (Stiles et al., 1999). As Spironelli and colleagues highlighted 
(2010), the achievement of the typical left hemisphere specialisation for 
linguistic functioning can only be attained once earlier critical stages of 
learning are completed. Moreover, typical lateralisation also seems to 
require linguistic input during the critical period for language acquisi-
tion: if language learning happens outside of the critical period, cerebral 
asymmetry may not be fully established (Martin et al., 2022). Thus, 
early profound congenital deafness may also alter the pattern of cerebral 
asymmetry for language that has been shown to favour the left hemi-
sphere in the first months of life in typically developing infants with 
normal hearing (Dubois et al., 2009). We report this body of evidence to 
emphasise how hemispheric asymmetry reflects a fundamental principle 
of neuronal organisation and plays a critical role in children’s motor, 
sensorimotor, and cognitive development (Babik, 2023) and that the 
achievement of left hemispheric specialisation for language functioning 
can only be achieved when critical early levels of learning are obtained. 
Moreover, even at the sensory level, functional asymmetry seems to be 
an established feature of the functional organisation of the human brain 
(Geschwind and Galaburda, 1985). For example, verbal sound process-
ing occurs predominantly in the left hemisphere, while nonverbal sound 
processing predominates in the right hemisphere (Tervaniemi and 
Hugdahl, 2003). Furthermore, concerning effective communication 
between different brain regions involved in language processing, theta 

band activity has been shown to be critical in association with better 
VWM capacity (Wu et al., 2007; Sauseng et al., 2010; Jausovec and 
Jausovec, 2014; Koirala et al., 2023) acting as an interface for language 
and memory (Pu et al., 2020). 

Based on the reported scientific evidence, the significant theta 
rhythm differences found in the left hemisphere during all of the audi-
tory conditions for the UCI group compared to the BCI group (Fig. 8), 
could be interpreted as a reduction in left hemisphere activity as a result 
of language depletion due to unilateral cochlear implantation as found 
in neurophysiological studies with NH (Bidelman and Howell, 2016). 
Interestingly, theta activity in UCI’s left hemisphere aligns with the 
deficits found in verbal tasks in children with dyslexia. Such difficulty in 
processing the underlying phonological structure of speech may be 
associated with disruption of the left hemisphere language network 
(Spironelli et al., 2008). Indeed, several studies have linked the 
phonological disorders observed in dyslexic children to VWM deficits 
(Ramus et al., 2003; 2004), while the neurophysiological findings of 
Spironelli et al. (2006, 2010) suggest that theta oscillation in the left 
hemisphere may be considered a marker of the phonological deficit 
found in children with dyslexia. 

Based on our data, we can very cautiously advance the hypothesis — 
concerning children with CI frequently having a PA deficit (Werfel and 
Hendricks, 2023) — that the differences in theta rhythms in the left 
hemisphere between UCI and BCI could be a neurophysiological marker 
of a PA deficit in children with CI also shared by other children with 
atypical development such as dyslexic. Moreover, this theta–EEG 
pattern could be specifically connected to their performances since, for 
UCI, theta activity in frontal areas is strongly correlated with perfor-
mance (Fig. 14.a). It could be hypothesised that for UCI children, the 
hypoactivation of theta related to poor PA fails to support a left- hemi-
spheric network that manifests in a frontal deactivation (Fig. 7) and, 
thus, resulting in poor performance. Furthermore, delving more deeply 
into the phonological characteristics of deafness, in accordance with the 
‘lexical restructuring model’, phonological representations initially form 
holistically and then gradually segment into forms along with children’s 
increasing number of lexical entries (Metsala and Walley, 1998). In fact, 
the majority of evidence suggests that children’s phonological aware-
ness develops sequentially, beginning with a shallow sensitivity to large 
phonological units (e.g. syllables) and proceeds towards a deep aware-
ness of small phonological units (e.g. phonemes) (Kim, 2008), although 
this is not without debate (Carroll et al., 2003). Subsequently, phono-
logical representation is continually shaped and synchronised by 

Fig. 14. The relationship between variables in UCI. (a) Scatter plot showing a positive correlation between performances and theta activation in frontal AOI for audio 
n-back task condition. (b) Scatter plot showing a positive correlation between chronological age and electrocortical gamma activation in parietal AOI during audio n- 
back conditions Note: UCI=unilateral cochlear implant group; AOI=Area of Interest; AUD= audio. 
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continuous exposure to the sounds and structures of language perceived 
in the environment (Zhang et al., 2022). It is not surprising, therefore, 
that DHH children constantly struggle when forming phonological rep-
resentations for specific problems in phonological memory and phono-
logical sensitivity (Ingvalson et al., 2020). Moreover, as Zhang (2022) 
notes, the stability and maturity of phonological representations are 
closely related to PA skills, considering how memory (specifically 
working memory) contains the phonological structure of specific words 
and their constituent segments. Thus, the deficits observed in UCI chil-
dren in PA (Lund, 2020; Lee, 2020; 2012) could be caused by low 
phonological representation due to auditory deprivation or brief audi-
tory experience, in line with a (delayed) developmental trajectory. 

The illustrated literature, also taking into consideration a recent re-
view summarizing neural correlates of PA (Stekić et al., 2023), could 
tentatively support our hypothesis of the left hemispheric theta hypo-
activation found in UCI as a marker of PA deficits and, therefore, the 
possible cause of auditory VWM deficits in this group. 

Furthermore, Lee (2020) observed that age at implantation and 
receptive lexical skills influenced the development of PA skills in chil-
dren with monolateral CI. We did not find these correlations in UCI, but 
this could be because Lee et al. (2012) compared early and late 
implanted CI users to NH. Our UCI participants were implanted early 
(Table 1) and, as anticipated in the introduction, were homogeneous in 
auditory age so that they might be aligned with NH for these variables. 

However, as far as left hemisphere lateralization is concerned, the 
similarity between unilaterally implanted children and dyslexic children 
is not very strong, and further studies with comparisons made between 
more numerous and disparate clinical groups (children with unilateral, 
bilateral cochlear implantation and with dyslexia) and variables (e.g., 
in-depth phonological assessments and learning disabilities), might 
confirm this first interpretative hypothesis. Our findings, indeed, 
although limited, strongly point towards the need to investigate the 
neurophysiological correlates of phonology in children with CI. 

An additional, stronger interpretive hypothesis on the lower activa-
tion of theta in UCI, is that based on the ‘maladaptive plasticity theory’ 
proposed by Gordon et al. (2013). Indeed our result, showing lower 
theta activity in AOIs located in the left hemisphere in the UCI group 
(noting that all were with right side implants) corroborates the evidence 
that asymmetric hearing in early life promotes greater representation of 
the better ear (or single ear in the case of single side deafness - SSD) in 
auditory and associative cortices (for review, Gordon and Kral 2019). In 
fact, unilateral hearing in childhood restricts input along the bilateral 
auditory pathways, possibly causing permanent reorganization (Gordon 
et al., 2015) Notably, as Lee et al. (2020) point out, cortical reorgani-
zation driven by unilateral hearing can occur throughout childhood and 
cortical preference for the stimulated ear persists even in children who 
received bilateral CI with delays greater than 2–3 years (Gordon et al., 
2013): the asymmetry of auditory input in these cohorts is similar to that 
found in children with SSD. In the light of this evidence, it could be 
surmised that the continued use of CI promotes the strengthening of 
pathways through the cochlear-implanted ear, but did not protect them 
from the onset of continued impairment due to the deaf ear pathways. 

Our results, discussed in line with the reported scientific evidence, 
and supported by the two interpretative advanced hypotheses above 
could suggest firstly that bilateral implantation grants the child an 
advantage in PA skills. This might explain the variability in VWM tasks 
among implanted children in light of the relationship between phono-
logical detection and WM tasks. A thorough assessment of participants’ 
phonological skills could further support this interpretation of the 
neurophysiological results. Furthermore, the twofold difference found in 
the activation of theta (frontal and left hemispheric) in the UCI group 
could be a sign of an hypo-brain activation network underlying the 
processing of the auditory VWM. We advance this inference in the light 
of the left supramarginal gyrus’s dual involvement in WM and phono-
logical processing (Paulesu et al., 1993; Ravizza et al., 2004; Østby et al., 
2011). However, we clearly cannot draw any hasty conclusions as we 

have not conducted a connectivity analysis. 
Secondly, based on the maladaptive plasticity theory, the asymmetric 

cortical reorganization in unilaterally implanted children could be a 
possible cause of poor performance at the auditory VWM task. 

4.3.2. Gamma band 
Considering the sensory information underling brain function, a pe-

culiarity of the human nervous system is that each cerebral hemisphere 
receives information mainly from the opposite half of the body (Kimura, 
1973). Moreover, it has been accepted that auditory signals are pre-
dominantly processed by the contralateral auditory cortex in typical 
hearing individuals (Gutschalk and Steinmann, 2015; Schönwiesner 
et al., 2007). In fact, although the auditory cortex receives sensory input 
from both ears, there is a large corpus of functional imaging, electro-
physiologic, and behavioural data showing that it is most excited by 
stimulation of the contralateral ear (Langers et al., 2005). Furthermore, 
the effect of the side of implantation on behavioural performance in 
prelingually deafened children with CI is not yet known. Preliminary 
results in a small group of children indicated that, whereas behavioural 
speech perception performance in children with right versus left CI was 
comparable, their brain activation patterns differed (Henkin et al., 
2008). 

Therefore, since the auditory system is predominantly crossed, the 
neural input from the right ear to the left cerebral hemisphere should be 
stronger than that from the right ear to the right cerebral hemisphere. 
And, since the left hemisphere usually contains the neural system for 
speech perception (Kimura, 1973), it is reasonable to assume that speech 
sounds presented to the right ear have more access to the speech 
perception system. Furthermore, there is confirmation in the literature 
of a ‘right cochlear implant advantage’ over the left in speech perception 
in preverbal deaf children (Henkin et al., 2008), while, as anticipated in 
the introduction, numerous studies observed the involvement of the 
gamma band in the perception and maintenance of WM (Jokisch and 
Jensen, 2007; Tallon-Baudry et al., 1998; Howard et al., 2003). 

The statistically significant reduced power of the gamma band in UCI 
compared to BCI and NH in the left hemisphere (Fig. 9) and in parietal 
AOIs (Fig. 10), in addition to confirming previous results of our research 
group (Inguscio et al., 2022a; Cartocci et al., 2021), would seem to 
suggest firstly a ‘non-advantage’ in having right sided CI with regard to 
the development of VWM for unilateral patients (Table 1), and secondly, 
there is a deficit in the processing of auditory stimuli considering that 
the parietal cortex plays a role in the network that integrates auditory 
features for perceptual judgments (Yao et al., 2020) and its involvement 
in the storage of verbal material in WM tasks (Jonides et al., 1998). 

Moreover considering that parietal lobes have traditionally been 
considered ‘association cortex,’ where information from separate sen-
sory processing pathways is combined to form a unified sensory space 
(Andersen, 1997), our findings in parietal AOI (Fig. 10) together with 
those in occipital AOI (Fig. 11) during the auditory task (carried out with 
eyes open at the PC), could suggest in unilaterally implanted children a 
poor interaction between parietal and primary sensory areas (Innes--
Brown et al., 2013). Furthermore, consistent with Zhang’s (2023) study, 
it appears that in children with unilateral implants the visual cortex 
(occipital lobe) decreases its activity probably to allocate more resources 
when responding to auditory stimuli. Therefore, the visual cortex might 
support-rather than hinder-the activity of the auditory cortex (deficient 
due to auditory deprivation) during the auditory VWM task, and this 
phenomenon might be one of the elements that allows the UCI group to 
maintain the same performance at this task when compared with the BCI 
group (Figs. 3; 4). However, we did not find a correlation between 
behavioural outcomes and gamma activity in occipital AOI. Further-
more, the differences we observed for UCI in comparison with BCI and 
NH in the parietal and occipital areas would seem to show that in 
multimodal tasks of complex executive functions such as VWM, the 
auditory and visual systems must support each other rather than 
compete. Notwithstanding this, unilateral CI users showed differing EEG 
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activity patterns in auditory VWM tasks in sensory cortices that could 
point to reorganization in both auditory and visual cortices (Chen et al., 
2016) that could suggest a neurophysiological cause for WM difficulties 
in children with CI. 

Additionally, our findings seem to suggest that right side implanta-
tion does not fully complete the contralateral and parietal cortical de-
velopments that are fundamental for good performance in VWM n-back 
tasks. Support for this assumption is provided by the significant corre-
lations found between left hemispheric activity in gamma and the per-
formance in auditory VWM in BCI, (Fig. 13) as well as in NH (Fig. 12.a). 
Clearly, this interpretative hypothesis can only be confirmed by 
comparing these results with children who have left-sided implantation. 
We can state here, however, that the unilateral right-side implant could 
be deficient in supporting the gamma cortical configuration connected 
with performances during auditory n-back tasks shown by NH children 
and bilaterally implanted children. This deficit seems to be supported by 
the existing relationship between activation in parietal AOI and chro-
nological age in UCI (Fig. 14.b), which suggests that UCI children still 
need to reach a neurophysiological cortical maturation plateau in asso-
ciative areas before they can develop a neurophysiological strategy 
supporting performances in line with NH despite having a (not statisti-
cally significant) higher mean age than the other two groups. Thus, 
although the performances in the VWM task in auditory modality are 
lower in implanted children compared to NH but without significant 
differences between those with one or two implants, the underlying 
neurophysiological patterns show significantly greater differences be-
tween UCI and both NH and BCI, suggesting a more immediate elec-
trophysiological alignment to the VWM benchmark of NH in the 
bilateral group when compared to the unilateral group. 

Finally, looking globally at the results, although no differences in 
mnestic (Figs. 3; 4) and linguistic (Fig. 2) performances were observed 
between the two clinical groups, there were with respect to the control 
group, and the EEG analysis has allowed us to highlight substantial 
differences between the two clinical groups. How advanced is essential 
because it opens up a new perspective in our understanding of VWM 
performance in DHH children that, although not differentiable between 
UCI and BCI, results from significant differences in cortical activation. 

5. Conclusion 

The present study was conducted to explore whether brain electro-
encephalographic responses can provide quantitative data on the 
cognitive VWM deficits present in children with CI and whether bilateral 
implantation results in improved VWM processing compared with uni-
lateral implantation. 

Through a bi-sensory neurocognitive approach, our results showed 
significant modality-dependent differences in EEG patterns during 
auditory VWM between children with and without CI. We generally 
observed cortical hypoactivation for UCI users in AOI (frontal, parietal, 
left hemispheric) critical for VWM abilities. In contrast, BCI users 
showed EEG patterns not significantly different from NH, suggesting 
attainment of the ‘VWM’s benchmark’ of typical auditory development 
(Inguscio et al., 2021). According to these results, restoring bilaterality 
is critical for developing neurophysiological support for VWM. 

Finally, it is worth emphasising how the role of cognition in speech 
perception has been increasingly explored in hearing research, with 
growing evidence that WM measures may provide additional clinical 
guidance for the selection of rehabilitation programs (Hillyer et al., 
2019). Indeed, WM scores may be more sensitive to change and more 
effective in assessing benefits following CI application than traditional 
speech tests, considering that ceiling effects on speech perception are a 
growing clinical phenomenon in CI users (Gifford et al., 2008). While 
the assessment of cognitive abilities in CI users may shed light on why 
some patients achieve better speech outcomes, considering the wide 
variability found in cognitive functions such as WM, the assessment of 
the underlying neurophysiological patterns of VWM that emerged from 

our study could provide clinicians with a means to better select and 
counsel patients on rehabilitation interventions. 

Therefore, our findings may provide support for both the clinical 
diagnosis and rehabilitation programmes of DHH children, opening up 
new neuroscience-based multidisciplinary approaches in assisting the 
developmental pathway of children with cochlear implants. 

6. Limitations and future directions 

Our study, innovative as it is, has its limitations. Although our 
sample is not atypical in the CI literature (Kronenberger et al., 2011; 
Noble et al., 2023; Chitgar et al., 2023), it is relatively small, which may 
have limited our ability to detect minor differences. In addition, it would 
be interesting to add other tests on language skills and parental ques-
tionnaires to the methodology to consider the impact of the family 
environment on the neurocognitive development of the child with 
cochlear implantation (Holt et al., 2013). Thus, with a larger sample 
size, we could confirm the emerging evidence and further investigate the 
relationships between auditory, social-cognitive, and neurophysiolog-
ical variables. 

Finally, the next steps in approaching the investigated neurophysi-
ological data could be to apply, in addition to power spectral density 
analysis a cross-frequency coupling analysis, (for a review Canolty and 
Knight, 2010; Kronenberger et al., 2018) to evaluate the interaction 
between brain oscillations on different frequency bands during working 
memory processing (Abubaker et al., 2021). 
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