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Abstract: Physical unclonable functions (PUFs) are com-
plex physical objects that aim at overcoming the vulnera-
bilities of traditional cryptographic keys, promising a
robust class of security primitives for different applica-
tions. Optical PUFs present advantages over traditional
electronic realizations, namely, a stronger unclonability,
but suffer from problems of reliability and weak unpre-
dictability of the key. We here develop a two-step PUF
generation strategy based on deep learning, which asso-
ciates reliable keys verified against the National Institute of
Standards and Technology (NIST) certification standards
of true random generators for cryptography. The idea
explored in this work is to decouple the design of the PUFs
from the key generation and train a neural architecture to
learn themapping algorithm between the key and the PUF.
We report experimental results with all-optical PUFs real-
ized in silica aerogels and analyzed a population of 100
generated keys, each of 10,000 bit length. The key gener-
ated passed all tests required by the NIST standard, with
proportion outcomes well beyond the NIST’s recom-
mended threshold. The two-step key generation strategy
studied in this work can be generalized to any PUF based
on either optical or electronic implementations. It can help
the design of robust PUFs for both secure authentications
and encrypted communications.

Keywords: artificial intelligence; complex light scattering;
physical unclonable functions; random optical nano-
materials; security.

1 Introduction

Themodern digital society relies onmobile and ubiquitous
optoelectronic devices whose software and hardware se-
curity is becoming a global concern owing to the increasing
number of disclosed attacks every day [1–4]. The emer-
gence of smart cities, the Internet of things, cloud
computing, and big data will generate more challenges in
this field [5–8], calling for new opportunities in research.
Current cryptography methods for addressing security is-
sues center on the idea of having a digital key, which is
safely stored and whose information remains unknown to
an adversary. However, implementing this simple concept
turns out to be a difficult task: software such as Trojan
horses and malware, and side-channel attacks carried out
by enemies with single access to the device, can expose the
key and lead to security breaches [4, 9–12]. As Tim Cook
(Apple CEO) emphasized in a recent interview [13]:

“If you put a key under the mat for the cops, a burglar can find it,
too. Criminals are using every technology tool at their disposal to
hack into people’s accounts. If they know there’s a key hidden
somewhere, they will not stop until they find it.”

These considerations fueled the development of physical
unclonable functions (PUFs) [14–16]. A PUF is an object
composed of a disordered structure, such as, e.g., a light
scatterer, which stores a physical key inside a material
layerwith nomathematical description. In these systems, a
digital key is typically generated by first challenging the
PUF with an input signal and then converting into a binary
sequence the analog response measured in either time,
space, or frequency. The main assumption is that the
physical disorder of the PUF cannot be reverse engineered,
not even by the original manufacturer. If the PUF is safely
stored, an adversary who wants to recreate the key has the
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only possibility of performing a brute force attack, which is
practically unfeasible owing to the exponentially large
complexity of a PUF [14].

In this field of research, photonics is pioneering tech-
nologies for different lines of applications, including
authentication [17, 18], secure communications [19–21],
and classical equivalent schemes to quantum key distri-
bution with perfect secrecy [22]. The main advantage of
photonics PUFs is strong device unclonability: while
cloning electronic PUF implementations has been reported
[23], no one was ever able to replicate an optical PUF. The
main challenge in photonics is the development of general
algorithms that transform the response of PUFs into digital
keys that appear as unpredictable random sequences. The
issue is the local correlations that are present in the PUF
response: when transformed into a binary string with
conventional techniques, a certain degree of correlation
remains in the key and between different keys [24]. To the
best of the authors’ knowledge, with the exception of the
study by Di Falco et al. [22], no optical PUFs has been
verified against certification standards that guarantee the
genuine unpredictability and uncorrelation of the keys,
and no technique has been devised to address this problem
controllably for optical PUFs.

Another difficulty originates from the fact that the
complex PUFs are strongly sensitive to input conditions.
When traditional analog-digital conversion methods are
applied to generate the key, such sensibility can generate
different keys for apparently identical input conditions
[25]. The issue lies in the impossibility of reproducing the
same input conditions in different experiments. In a
strongly chaotic system such as a PUF, even a small vari-
ation in the input parameters can strongly affect the se-
curity primitive’s reliability. If this problem is addressed, it
could also open to new PUFs generated via, e.g., soft-like
materials, including gels (e.g., hydrogel, aerogels) and
foams. Thesematerials are more input sensitive than solid-
state counterparts and are currently not employed as se-
curity tokens. However, soft-like structures offer security
advantages because their nanoscale disorder can reach a
higher entropy than artificial human-made PUFs, which
are intrinsically limited by the cost, resolution, and scal-
ability of the present nanofabrication technology [26]. In
this article, we propose to address the issues mentioned
above by combining PUF with deep learning [27, 28]. We
develop a general and versatile two-step key generation
strategy, which guarantees the generation of truly random
keys verified against the National Institute of Standards
and Technology (NIST) standards for cryptographic appli-
cations [29], with each key entirely uncorrelated with the
others and reliable. We experimentally demonstrate these

results with a new class of nonlinear PUFs implemented
with silica aerogels (SAs).

2 Results

2.1 All-optical PUFs with aerogels

SA is a material composed of an ultraporous network of
sparse silica aggregates. The SA optical response can be
adjusted from complete transparency to strongly chaotic
scattering by controlling the silica inclusions’ size and
distribution by either mechanical or optical effects [30].
Owing to a low thermal conductivity, SA exhibits a very
strong optothermal nonlinearity [31, 32], which is associ-
ated with large and reversible structural deformations,
making SA a nonlinear controllable random material that
can be employed in different lines of applications [33, 34].

The SA produced in this work is manufactured by a
base-catalyzed polymerization process [35, 36], which
starts by mixing tetramethyl orthosilicate, methanol, and
ammonium hydroxide in a 2:4:1 ratio, producing a gel of
good clarity and with minimal defects [37]. The mixture is
then poured into a Teflon mold, producing a cuboid-
shaped gel of 1 cm side. The gel is subsequently removed
from the mold and then washed in a series of acetone
baths, each lasting 24 h. The transition from wet gel to
aerogel happens by using a low-temperature supercritical
CO2 drying process [38], with a custom setup assembled in
our lab. Figure 1a illustrates the setup used to generate all-
optical PUFs, acquired as speckle patterns obtained by
illuminating the SA sample with a pump-probe configu-
ration. The setup comprises an expanded monochromatic
laser probe (wavelength, λ = 632 nm) and a collimated
beam with λ = 488 nm waist of approximately 200 μm. The
speckle patterns are converted into digital PUFs using a
CCD camera placed after the sample (Figure 1a).

In themapping procedure introduced in this work, it is
possible to associate different keys with any class of PUFs
that differ in at least a characteristic feature (e.g., distri-
bution or shape of a speckle pattern) that we train the
network to resolve. The universal approximation theorem
of neural networks [39] guarantees, at least theoretically,
that a single neural network that could address this prob-
lem exists. In the PUF image acquisition setup illustrated in
Figure 1a, it is possible to create PUF images with different
speckle features by changing either the laser pump power
or the acquisition time. While different pump powers
generate diverse characteristic speckles, each pump power
triggers a slow dynamical evolution of the speckles over
characteristic times of the order of seconds, generating
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different PUFs in the CCD. Figure 1b shows a typical class of
different PUFs that can be acquired at constant pump po-
wer (P = 200 mW) and at different times within 1 min of
laser illumination. The speckles are observed to be
repeatable owing to the good stability properties of SAs
[40]. The primary source of entropy that triggers the gen-
eration of different speckle patterns in Figure 1b is the
spatial fluctuation of the scattering centers of nano-
particles composing the aerogels. These depend on the
thermodynamic condition (e.g., temperature, pressure,
volume) of the aerogel.

While cloning the soft porous network of SA is hardly
imaginable to be feasible now and in the long run owing to
the ultradense packing of nanostructured silica compo-
nents, employing this medium as a PUF generator is also
challenging owing to the noticeable spatial fluctuations of
the silica nanoparticles, which are visible in the PUF im-
ages collected by the CCD (Figure 1b). In the next section,
we illustrate a general strategy to address this problem
controllably.

2.2 Two-step key generation via deep
learning

Figure 2a, b illustrates a high-level schematic of the pro-
posed concept. Ideally, we would like to have at disposal a

mapping function M that, given at the input one experi-
mental PUF generated from the setup of Figure 1a, asso-
ciates a key knwith the following properties: i) each key kn
is uncorrelated to the others, ii) each key satisfies the NIST
standard to be considered as a real random sequence, and
iii) the same key associates with all PUFs experimentally
obtained under the same input conditions, controlled with
the reproducible accuracy experimentally available.

To address this problem on a general ground, we use a
deep neural network (DNN) architecture (Figure 2a, b),
which we train to learn themapping functionM satisfying
constraints i)–iii). The DNN used in this work is a 2-layer
feedforward neural architecture with a rectified linear unit
neural activation function [41]. The network provides a
classification of various PUFs into different digital keys kn,
with each key associating a class c1, c2, … , cN of PUF
images (Figure 2c, red, green, and blue colors). Each class
cn comprises a series Inm of PUFs (m = 1, 2, …) that are
experimentally obtained under the same input conditions
but differ by statistical fluctuations arising in the experi-
mental measurements. The number of PUFs included in
each class is not necessarily the same. It can differ ac-
cording to the fluctuations present for each input challenge
considered in the interrogation process of the PUF. The
union of all classes C ∈ (c1,…, cN) constitutes the learning
data set, which is fed to the DNN to learn the mapping
function M and predict future keys when we interrogate

Figure 1: Experimental PUF setup.
(a) All-optical PUF aerogel setup and
configuration. (b) PUFs collected by the CCD
as speckle patterns for t=0 s (i), t= 20 s (ii),
t = 40 s (iii), and t = 60 s (iv). (c) Picture of a
real aerogel sample with (d) the
corresponding scanning electron
microscope (SEM) image. PUF, physical
unclonable function.
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the PUF object again. To map PUFs Inm to cryptographic
keys kn, we use a single DNN output channel y (Figure 2c),
the latter identifying the output signal from the DNN,
and train the network to associate each class cn with a
different integer n= 1,… ,N at the output, with each integer
n identifying a binary key kn. Figure 2c illustrates this
process visually with different colors, with each color
showing the input-output association between a PUF class
cn and a key kn.

Once we set the DNNweights, the network predicts the
key association in future experiments with different classes
of PUFs of Jnm (Figure 2b), measured under the same input
conditions of Imn but acquired in different experiments that
differ by uncontrollable fluctuations of the input parame-
ters. The main idea is to include a representative data set
comprising a sufficiently large number of PUFs. The DNN
learns the features of the experimental fluctuations asso-
ciated with the different input conditions arising in each
class cn, becoming able to predict the future trends Jmn

correctly. We increase the data set size until the DNN

predicts correctly the key associated with a representative
set of PUFs Jmn that does not exist in the training data set.
When this occurs, the prediction (b) cross-validates the
training (a), and it implies that the DNN has learned the
required mapping function M with reasonable accuracy.

In this classification system, the error is the norm be-
tween the integer n identifying the key kn and the output y
corresponding to the PUF Inm belonging to the class cn.
While more complex classification strategies are possible,
we chose this method for its implementation simplicity.

We generate keys satisfying conditions i) and ii) by
using binarized physical white noise. The latter is noise
obtained by transforming in binary sequence a stream of
white noise generated from a physical object and then split
the binary stream into diverse keys k1, k2, … , kn of pre-
defined equal length (Figure 2b, orange binary signal).
With the method proposed in this work, the generation of
PUFs and cryptographic keys are two different problems
that we address independently, overcoming the traditional
issues that arise whenmapping a complex PUF directly to a

Figure 2: Two-step random key generation via deep learning.
(a–b) Overall process for the training (a) and prediction (b) of key classification and association with PUFs. (c) Detailed schematic workflow of
the training procedure: a switch S selects a PUF Inm at the input belonging to single classes cn (red, green, and blue colors). Each class is
mappedby a deepneural network to a different integer numbern=1,…,N at the output y, with eachnumber identifying a binary noise (BN) key
kn. The space of different keys is generated independently by first sampling binary noise (orange solid line) and then splitting the random
sequence into consecutive keys k1, k2,…, kN of equal length. The prediction stage (b) employs the trained neural network of (a) in real-time to
associate the keyswith PUF images Jmn acquired in different experiments under the same input conditions of Imn and subjected to experimental
fluctuations of input parameters. PUF, physical unclonable function.
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binary sequence. The two problems are then combined via
machine learning, using a DNN that finds the desired
mapping that associates each PUF with a cryptography
key.

The mapping function learned by the DNN conserves
the security advantages of PUFs: it relies on a PUF object
that has no mathematical representation, and it ensures a
mapping between an input condition and a random key
that cannot be guessed or recreatedwithout the PUFobject.
From a security perspective, the DNN of Figure 2 acts as an
additional, two-step protective layer to the PUF. If the PUF
falls in the adversary’s hand, the attacker cannot recreate
the key without brute forcing all the DNN architecture
weights. In a typical integrated electronic system, the
space of the combination Sc that the enemy has to explore

is Sc � 264⋅Nw possibilities, with 264 the combination
required to assess the value of a 64-bit floating point
number representing a single weight and Nw the num-
ber of network weights. In a DNN with Nw ≥ 4, the space

Sc � 264.Nw≥256 is larger than the space of 2256 combinations
required to break the 256-bit advanced encryption stan-
dard, a NIST-certified cryptography in use by the US gov-
ernment to classify top secret information and presently
considered unbreakable by brute force [42].

In the scheme of Figure 2, the DNN operation is typi-
cally evaluated by electronic CPU at gigahertz speed. It
does not add overhead to the PUF key generation process,
which is mainly limited by the camera’s acquisition time of
the optical PUFs.

2.3 Experimental results on PUF key
generation and NIST validation

Figure 3 shows the typical results of cross-validation for
two representative classes c1 and c2 of PUFs. Experimen-
tally, we observe that classes cn composed approximately
of ≤10 PUFs are sufficient to train the DNN to perform ac-
curate predictions. Figure 3a reports the learning rate ob-
tained by the DNN when training on the learning data set
composed of seven PUFs, with I11−I13 belonging to c1 and
I21−I24 belonging to c2. These PUFs are acquired in themost
fluctuating scenario in the setup of Figure 1a, in which we
fix the input power (P = 200 mW) and acquire images at
different times. Representative 100 × 100 pixel images of
the PUF belonging to each class are shown in Figure 3b.

The results for Figure 3a illustrate that the DNN learns
with great accuracy (learning errors below machine pre-
cision 10−15) to associate the correct key number nwith each
PUF in the data set. Figure 3c and d report the resulting

performances of the DNN when predicting the key number
associated with the prediction data set, composed of six
PUFs J11−J13 of c1 and J21−J23 of class c2. Images Imn and Jmn

are obtained in different experiments and have the same
input conditions, i.e., pumppower atP= 200mWand same
acquisition time. Although none of the Jmn PUFs exist in the
learning data set used to train the DNN, the network
correctly predicts the right index to each image, with pre-
diction errors below 0.3. These results allow using a simple
threshold filter n± 0.5 to assess correctly the key associated
with each PUF, with no error arising from the natural
fluctuations present in the experimental measures. The
ability of the DNN to learn the feature of each PUF and the
required mapping function M from few images is quite
remarkable, especially considering the soft-like nature of
the aerogel, whose scattering centers oscillate in time with
large spatial fluctuations.

The error, or overfitting, between the DNN prediction
and the correct key number in Figure 3c can be reduced by
either increasing the length of the training data set and the
associatedDNN size or by adding a larger number of output
channels, with each channel associating the correspond-
ing key with a particular class of PUFs. To create random
keys, we sample in time with an analog microphone, the
sound arising from the electric engine of a desktop fan
(Figure 4a). The sample rate of the microphone is much
lower than the fan speed, allowing us to collect a time-
varying random stream (Figure 4a, solid blue line). The
sequence is then converted to a binary signal (Figure 4a,
solid orange line) by using a Gabor transform [14], which
associates 1 to all inputs above a threshold value, here
chosen as the analog noisemean value. The randombinary
sequence generated is then partitioned into N different
keys k1,… , kN. We generate a set of N = 100 digital keys in
our experiments, each of 10,000 bits.

Figure 4b reports the results of the NIST SP 800–22 test
suite on the generated keys. The test comprises a suite of
different statistical tests to assess if the key at the output
looks like an unpredictable binary sequence in the input’s
absence of knowledge. The tests analyze the proportion of
zeros and ones in the sequence and the existence of har-
monic peaks (frequency, block frequency, and FFT), the
presence of sequences with identical bits (run, longest
run), the occurrence of prespecified target strings
(nonoverlapping templates), the rank of disjoint sub-
matrices in the stream (rank), and the sufficient complexity
of the sequence to be considered random (serial and linear
complexity). Detailed information on each test is available
in the NIST reference [43]. Each test results in a proportion,
which measures each key’s probability to pass the statis-
tical test (Figure 4b, dashed red line). The analysis is
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Figure 3: Deep neural network training and key association.
(a) Learning error in the training data set composed of seven PUFs belonging to classes c1 and c2, which are obtained with the same pumping
power P = 200mW and at different acquisition times. The PUFs I11−I13 are associated with the output integer y = 1, while I21−I24 are associated
with y= 2. (b) CCD images of the PUFs. Panel (c–d) report the same analysis of (a–b) for the prediction data set, composed of six PUFs J11−J13 of
class c1 and J21−J23 of c2. The PUFs in the prediction data set are generated in a different experiment and are not included in the training data
set. PUF, physical unclonable function; DNN, deep neural network.

Figure 4: Key generation and NIST certification results.
(a) Generation steps of the binary noise sequence, starting from sampling in time, with a sufficiently low acquisition time, the noise emitted
from the electric engine of a desktop fan, and then converting it into a binary sequence with a Gabor transform. The binary stream is then
partitioned into N = 100 k1, …, kN consecutive keys each of 10,000 bits. (b) NIST proportion results on the SP 800-22 statistical test suite
applied to the keys generated in (a), with a minimum threshold (dashed red line) recommended by the NIST. (c) Cross-correlation matrix
between the keys kn. NIST, National Institute of Standards and Technology.
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performed using the software STS distributed by the NIST
[43]. The results of Figure 4b demonstrate that the binary
keys pass all the NIST tests well above the minimum
threshold, showing that the procedure used to acquire the
noise and transform it into a binary sequence generates a
truly unpredictable stream of data (Figure 4a). Figure 4c
reports the cross-correlation between the keys kn. The keys
generated are completely uncorrelated with each other,
with average cross-correlation coefficients between the key

ki and kj of the order of 〈Cij〉 � 10−2.
Figures 2–4 demonstrate that the technique proposed

in this works satisfies requirements i)–iii), with the reliable
associations of the same key with experimental PUFs
measured after the same challenge with no errors and with
each key representing an unpredictable random sequence
that is completely uncorrelated to the other.

3 Discussion

We discussed a two-step key generation strategy for PUFs
based on deep learning, which can address the shortcom-
ings of unreliability and weak unpredictability of crypto-
graphic keys. The idea explored is to design the PUF
independently from the problem of key generation and then
use machine learning to train a neural network to find the
complex mapping function that can reliably associate the
features of PUFs with identical input conditions to a single
key. Different binary keyswere generatedby samplingwhite
noise, representing a physically unpredictable random
sequence that passed all validation tests against NIST
standards for cryptographic applications. We report exper-
imental results in SAs, exploiting a classification strategy
based on integer numbers n, with each number directly
identifyinga binary key kn. Despite thehigh sensitivity of the
aerogel to different input conditions, our experiments
report that a trained neural network predicts the correct key
with no errors. The results of this work can be of help in
the development of stronger PUFs for different applications,
including authentication and secure communications.
The research data supporting this publication can be
accessed at https://doi.org/10.17630/50b2f96f-ab3a-4b6e-
abcd-c5d14c784de9.
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