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Abstract
Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in 
combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, 
no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.
Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a 
reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from 
three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated 
radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery 
(SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treat-
ment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, 
given alone or in combination with other focal or systemic therapies, remain a controversial issue.
We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with 
both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain 
metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal 
radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects 
have been critically discussed.
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Introduction

Radiation therapy (RT) remains an integral part of the man-
agement of most tumors of the central nervous system (CNS) 
[1]. Techniques have significantly improved in the last years 
resulting in new approaches to deliver highly conformal RT 
to the tumor while limiting the radiation dose to surrounding 
health brain tissues and organs at risk (OARs) [2]. Stereo-
tactic radiotherapy (SRT), given as single-fraction stereo-
tactic radiosurgery (SRS) or fractionated SRT, is frequently 
used for the treatment of small to medium size lesions due 
to its superiority in terms of dose conformity and rapid dose 
fall off outside the target compared with three-dimensional 
(3-D) conformal RT. Advanced techniques such as intensity-
modulated RT (IMRT) and volumetric modulated arc ther-
apy (VMAT) optimize the delivery of irradiation to large 
and irregularly shaped volumes. Finally, the use of appropri-
ate image guided RT (IGRT) systems, using either orthogo-
nal x-rays or cone beam computed tomography (CBCT), is 
necessary to reduce set-up margins and achieve high-pre-
cise patient positioning during treatment. Currently, there 
is a renewed interest in particle therapy using protons or 
heavier ions, because of their intrinsic physical and biologi-
cal properties that consent to maintain highly conformal tar-
get coverage while sparing normal surrounding tissues and 

reducing the integral dose to the patient compared to most 
modern photon techniques [3].

In case of tumor relapse or progression, treatment options 
include surgery, chemotherapy or reirradiation, alone or in 
combination, as potentially salvage strategies. Due to its 
complexity, all treatment decisions require a multidisci-
plinary approach and should consider patients specific char-
acteristics. Historically, radiation oncologists have been 
cautious regarding a second course of RT for tumors that 
have recurred in or close to the original treatment volume 
because of concerns about the risks of adverse radiation 
effects, such as radiation-induced brain necrosis. However, 
evidence from preclinical animal models and results from 
clinical series shows that brain and spinal cord have marked 
repair potential suggesting that reirradiation may represent 
a feasible option in selected patients [4–8]. When perform-
ing reirradiation, it is essential to keep dose as low as pos-
sible to normal brain tissue surrounding the recurrent tumor 
and sensitive structures such as brain stem, spinal cord, and 
optic apparatus. With this purpose, high-precision stereotac-
tic techniques that allow for highly accurate patient posi-
tioning and dose delivery have replaced conventional RT in 
clinical practice for the treatment of patients with recurrent 
tumors who are deemed to receive reirradiation [2].
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We performed an overview of the available literature on 
reirradiation of different types of primary brain tumors, such 
as gliomas, ependymomas, medulloblastomas and menin-
giomas, and brain metastases. Radiobiological principles 
behind reirradiation and current clinical evidence on the 
efficacy and toxicity of reirradiation have been critically 
discussed.

Methods

We conducted a literature search of the relevant data on reir-
radiation of brain tumors using PubMed and Scopus data-
bases, in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines. The following combination of keywords were 
searched: “reirradiation”, “recurrent brain tumors”, “glio-
blastoma”, “ependymoma”, “medulloblastoma”, “brain 
metastases”, “diffuse intrinsic pontine glioma” and “menin-
gioma”. Search was limited to papers published in English 
language from January 1997 to February 2023. Clinical tri-
als, original research, review articles, case report and case 
series were included, and reference lists were carefully 
explored for relevant papers that would have been missed 
by electronic search. Based on the initial searches, a total 
of 732 articles were identified. After abstract screening, 
593 articles were excluded (duplicates or irrelevant) and 
139 articles were considered for full text review. Studies 
assessing the role of RT in recurrent CNS tumors but with-
out details on clinical outcomes and/or reirradiation were 
excluded (n = 70). A total number of 69 papers were finally 
reviewed based on relevance to the scope of this review. 
Data on overall survival (OS), progression-free survival 
(PFS), and toxicity after photon or particle reirradiation 
were extracted and grouped according to the clinical sce-
nario investigated.

Brain tolerance to reirradiation and dose constraints

Normal brain tissue dose tolerance is the limiting factor 
when giving reirradiation. Data on tolerance and recovery 
of CNS structures come from both preclinical and clinical 
studies [4–8]. Experimental data from studies investigating 
spinal cord tolerance to irradiation indicate that the CNS has 
a capacity to recover from occult radiation injury follow-
ing treatment [4, 5]. In pigs treated with prior RT at a total 
dose of 30 Gy given in 10 fractions of 3 Gy each, Medin et 
al. [5] showed that spinal SRS reirradiation performed after 
one year was not significantly associated with an increased 
risk of motor deficits compared to controls treated by SRS 
only [5]. In another series of 56 rhesus monkeys assigned 
to receive two radiation courses to the cervical and upper 

thoracic spinal cord, 44 Gy during the first course and 
57.2 Gy at the time of reirradiation given in 2.2 Gy per frac-
tion, Ang et al. [4] reported a substantial recovery of occult 
injury within the first year following the initial course of 
RT. An additional recovery up to 100% was seen between 1 
and 3 years, with no evidence of myelopathy for cumulative 
dose less than 110 Gy. Based on these experimental data, 
the authors suggested to use an estimated recovery of occult 
injury after a first course of RT around 50% at 1 year, 60% 
at 2 years, and 65–70% at 3 years or more, for the reirradia-
tion of selected patients. Overall, for reirradiation of the full 
cord cross-section at 2 Gy per day after prior conventionally 
fractionated treatment, cord tolerance appears to increase at 
least 25% six months after the initial course of RT [6–8]. 
Although most data refer to spinal cord tolerance, the patho-
genesis of brain radiation toxicity and its potential recovery 
is assumed to be like the one in spinal cord because of their 
low α/β ratio.

An estimated risk of symptomatic brain necrosis has 
been determined in patients with brain tumors follow-
ing both SRS and SRT [6, 9–11]. A risk around 5% can be 
predicted following biologically equivalent dose (BED) of 
72 Gy (range, 60–84 Gy) and 90 Gy (range, 84–102 Gy) 
with standard fractionation (1.8 to 2.0 Gy per fraction). For 
single-fraction SRS, volumes of normal brain receiving 
12 Gy (V12Gy) of 5 cc, 10 cc, or > 15 cc have been associ-
ated with a risk of symptomatic radionecrosis around 10%, 
15%, and 20%, respectively [10, 11]. Thus, the quantitative 
analysis of normal tissue effects in the clinic (QUANTEC) 
recommends limiting single-fraction V12Gy to ≤ 5–10 cc 
(7). Based on dose/volume data and clinical risk estimates, 
maximum doses exceeding 55 Gy and 54 Gy in 1.8-2 Gy 
fractions for optic apparatus and brainstem, respectively, 
should be avoided in current clinical practice [12–14]. Fol-
lowing SRS, a maximum dose of 12 Gy to brainstem and 
8 Gy to the optic apparatus is recommended [12, 14, 15]; of 
note, the risk of optic neuropathy remains low for maximum 
point doses of 10 to 12 Gy to small portions of the optic 
apparatus [16–19]. Data on tolerance doses of CNS organs 
at risk (OARs) to fractionated RT (3 to 5 fractions) are rela-
tively limited and dose constraints remain not validated [20, 
21]. Current clinical recommendations indicate that doses 
to brainstem, optic apparatus, and spine should not exceed a 
maximum point dose of 23 Gy, 19.5 Gy, and 22.5 Gy when 
using 3 fractions, and 31 Gy, 25 Gy, and 30 Gy when using 
5 fractions, respectively.

Different factors may alter the risk of radionecrosis fol-
lowing reirradiation for brain tumors, including dose and 
fractionation, target volumes, combined systemic treat-
ments, and interval between the RT treatment courses [22, 
23]. In their meta-analysis of 30 studies published from 
1996 to 2011, Sminia and Mayer [22] found no cases of 
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stereotactic frame with a submillimetric target accuracy, 
while those treated with LINAC-based frameless SRS sys-
tems are usually immobilized using a thermoplastic mask. 
A submillimeter accuracy of patient positioning is achieved 
using modern image guided radiation therapy (IGRT) tech-
nologies, such as orthogonal x-rays (ExacTrac®Xray 6D 
system) or cone beam CT (CBCT) [2]. Radiation dose is 
usually delivered in a single fraction to targets smaller 
than 3 cm in size, while hypofractionated and convention-
ally fractionated schedules are frequently used for treating 
larger recurrent tumors. Highly conformal dose distribution 
can be achieved with IMRT and VMAT techniques. Cur-
rently, no comparative studies have demonstrated the clini-
cal superiority of a technique over another in patients with 
brain tumors in terms of local control and treatment-related 
toxicity. In proton therapy, there are two main techniques of 
irradiation, namely active scanning or pencil beam scanning 
and passive scattering proton therapy. Limited data suggest 
that proton therapy is an effective treatment for recurrent 
brain tumors [26, 27], although there are no controlled stud-
ies demonstrating its superiority in comparison to photon 
RT in terms of local control and decreased toxicity.

An accurate delineation of tumor volumes and OARs is 
essential for a precise calculation of the spatial dose dis-
tribution and for the optimal radiation schedule. For brain 
tumors, the gross tumor volume (GTV) is generally defined 
as the visible lesion on MRI contrast-enhanced T1-weighted 
sequences. The clinical target volume (CTV), which 
includes areas of potential suspected microscopic tumor 
infiltration and potential paths of microscopic spread, can 
be generated by adding a variable margin of up to 5 mm 
to the GTV constrained at anatomical borders, e.g. tento-
rium, falx cerebri, and bone. In general, little (1–2 mm) 
or no GTV-to-CTV margins are used during SRS with the 
aim to limit the risk of toxicity, where larger margins up to 
5 mm are commonly applied during hypofractionated and 
conventionally fractionated SRT [23]. Advanced MRI tech-
niques, e.g. diffusion MRI and perfusion MRI, and positron 
emission tomotherapy (PET)/CT imaging with radiolabeled 
amino acids may help to improve target volume delineation 
accuracy by revealing tumor infiltration, although their use 
in clinical practice are limited and more evidence need to 
confirm their usefulness [28]. Finally, depending on radia-
tion technique and available technology, an expansion of 0 
to 3 mm is applied to generate the planning target volume 
(PTV) which accounts for uncertainties in treatment plan-
ning and patient positioning. Whole brain radiation therapy 
(WBRT) and craniospinal irradiation (CSI) can be used for 
selected patients with recurrent tumors that have spread into 
the brain and spinal cord through the cerebrospinal fluid, 
e.g. ependymoma and medulloblastoma.

radionecrosis for a cumulative biologically effective dose 
normalized to 2 Gy/fraction (EQD2) of < 96 Gy using the 
linear quadratic model and assuming an α/β ratio of 2 Gy 
for normal health brain. The median cumulative EQD2 was 
generally higher in SRS series (111.6 to 137.2 Gy) than in 
hypofractionated (90 to 133.9 Gy) and conventionally frac-
tionated reirradiation (81.6 to 101.9 Gy) series. For patients 
with recurrent glioblastoma receiving hypofractionated SRT 
or SRS, brain necrosis was reported in 2–12% for a cumu-
lative EQD2 > 96.2 Gy and up to 17% of for a cumulative 
EQD2 > 137 Gy. In recent update of the literature on reirra-
diation of glioblastoma, a similar risk of radionecrosis of 0 
to 3% has been shown after conventional fractionation with 
cumulative EQD2 doses < 101 Gy, of 7 to 13% after hypo-
fractionated SRT with cumulative EQD2 doses of 102 to 
130 Gy, and up to 24.4% after SRS with cumulative EQD2 
doses of 120 to 150 Gy [23].

The relationship between cumulative EQD2 values 
and risk of toxicity for sensitive brain structures has been 
evaluated in few retrospective studies [24, 25]. Niyazi et al. 
[24] found no relevant long-term toxicity in a series of 58 
patients who received reirradiation for a malignant glioma 
using maximum EQD2 values of 80.3 Gy, 79.4 and 95.2 Gy 
to the optic chiasm, optic nerves and brainstem, respec-
tively, considering an α/β ratio of 2 Gy for these structures. 
In a systematic review on reirradiation of diffuse brainstem 
gliomas including seven studies with a total of 90 patients, 
Lu et al. [25] showed that a second course of radiation 
was associated with clinical improvement and radiological 
response without significant toxicity employing doses of 
20–24 Gy given in 2 Gy fractions. Overall, these data indi-
cate relatively high and fast recovery capacity of the normal 
human brain after RT like those seen for spine [4, 5], and 
support the relative safety of reirradiation using cumulative 
EQD2 doses around 100 Gy, or even higher (up to 120 Gy) 
for small and well-defined recurrent tumors away from elo-
quent areas.

Radiotherapy techniques and target delineation

High accuracy in tumor localization, target dose coverage 
and dose delivery are crucial when performing a second 
course of focal RT. In this setting, stereotactic techniques 
are frequently employed for their ability to achieve a steep 
dose fall-off at the edge of the target volume lowering the 
radiation dose to surrounding sensitive brain structures. 
Current stereotactic techniques include Gamma Knife (Ele-
kta Instruments AB, Stockholm, Sweden) and linear accel-
erator (LINAC)-based SRS systems, such as CyberKnife 
(Accuray, Sunnyvale, CA, USA) or Novalis (NTx) 
(BrainLAB AG, Feldkirchen, Germany). Patients receiv-
ing Gamma Knife SRS are traditionally placed in a rigid 
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included in 16 studies published between 2005 and 2020. 
Using a median dose of 15–18 Gy, median OS ranged from 
7.5 to 13 months and median PFS from 4.4 to 6 months. 
Even though Gamma Knife was the most used SRS tech-
nique, clinical results were no different for patients treated 
with Cyberknife or LINAC-based SRS. In a recent system-
atic review of reirradiation with different SRS modalities for 
recurrent glioblastoma including 50 studies (2096 patients), 
Kazmi et al. [60] observed similar 12-month OS and PFS 
rates of 34% and 16%, respectively.

Hypofractionated SRT, given as moderate hypofraction-
ation (35-37.5 Gy in 10–15 fractions of 2.5–3.5 Gy each) or 
as high-dose hypofractionation (27–35 Gy in 3–5 fractions 

Glioblastoma

Reirradiation is increasingly used as treatment option in 
patients with recurrent glioblastoma after standard chemora-
diation [29–59]. A summary of selected reirradiation studies 
reporting survival and toxicity rates after different radiation 
schedules with or without systemic therapies is shown in 
Table 1. Median survival times from 7 to 13 months and 
1-year OS rates of 30–55% have been observed follow-
ing either SRS or fractionated SRT, with 1-year incidence 
of neurological toxicities ranging from 5 to 20%. Minniti 
et al. [23] reported the clinical outcomes of 901 patients 
treated with single-fraction SRS for recurrent glioblastoma 

Table 1 Selected studies of reirradiation for recurrent glioblastoma
Author No 

pts
RT
Type

Median 
Dose
(Gy/fr)

Concurrent Systemic 
Therapy (N)

Interval 
between 
RT courses 
(months)

Median PFS 
(months)

Median OS
(months)

RN 
(%)

Combs et al., 2005 59 FSRT 36/18 TMZ or PVC, (36) 10 5 8, 23% at 12 months 0
Grosu et al., 2005 34 HSRT 30/6 TMZ (29) 16 NR 8 (both), 11 (RT + TMZ), 

6 (RT alone)
20.5

Kong et al., 2008 65 SRS 16/1 None 4.3 4.6 23 37.5
Cuneo et al., 2009 49 SRS 15/1 BEV 20 5.2 (+ BEV),

2.1 (-BEV)
11.9 (+ BEV),
3(-BEV)

10

Gutin et al., 2009 20 HSRT 30/5 BEV 15 7.3 (4.4–8.9) 12.5; 54% at 12 months 0
Fogh et al., 2010 105 HSRT 35/10 TMZ (26), other (22) 8 NR 11 0.7
Minniti et al., 2011 36 HSRT 37.5/15 TMZ 14 5; 42% at 6 months 9.7; 33% at 12 months 22.2
Minniti et al., 2013 38 HSRT 30/5 TMZ 15.5 6 24% at 12 months 12.4; 53% at 12 months
Martinez-Carrillo et al., 
2014

46 SRS 18/1 NR 10 NR 7.5 10

Wick et al., 2014 91 FSRT 36/18 APG101 (58) 21 2.5 (RT), 4.5 
(RT + APG101)

11.5 (both groups) 1.3

Kim H.R. et al., 2015 57 SRS 15/1 TMZ 8.8 3.6 (2.3 + TMZ) 9.2 (15.5 + TMZ) NR
Minniti et al., 2015 42 HSRT 25/5 FTM (23) BEV (19) 14 50% (BEV), 18% 

(BEV + FTM) at 6 
months

30% (BEV), 8.3% 
(BEV + FTM) at 12 
months

16.6

Pinzi et al., 2015 88 SRS 16–22/1 NR (22) 15 NR 11.5 48% at 12 months 6
Imber et al., 2017 174 SRS 16/1 TMZ (20), CCNU 

(13), BCNU (11)
8.7 NR 10.6 13

Kim et al., 2017 57 SRS 15/1 TMZ (28) NR 3.6, 6 (+ TMZ) 9.2, 15.5 (+ TMZ) 24.4
Sharma et al., 2017 53 SRS 18/1 None 16 4.4 11 4
Palmer et al., 2018 87 SRT 35/10 none 10.8 NR 13.9 NR
Fleischmann et al., 2019 124 FSRT 36/18 BEV (95) 18 5 9 6.9
Scartoni et al., 2020 33 PBRT 36/18 TMZ (7) 21.3 5.9 8.7 9.09
Kaul et al., 2020 133 HSRT 41.8–

49.4/12–
15

TMZ (58) 14 NR 6 5.6

Saeed et al., 2020 45 PBRT 42.6/20 TMZ (16), BEV (4), 
TMZ + BEV (10)

20.2 13.9 14.2 8.8

Attia et al., 2022 57 FSRT 36/18 none 16 8 11 3.5
Tsien et al., 2023 170 HSRT 35/10 BEV + RT,

BEV alone
NR 54% vs. 29% at 6 

months
10.1 BEV + RT,
9.7 BEV alone

0

Legend: BEV, bevacizumab; BCNU, Carmustina; CCNU, Lomustine; FSRT, fractionated stereotactic radiotherapy; FTM, fotemustine; HSRT, 
hypofractionated stereotactic radiotherapy; NR, not reported; OS, overall survival; PBRT, proton beam radiotherapy; PFS, progression-free 
survival; PVC, Procarbazine, lomustine, vincristine; RN, radionecrosis; SRS, stereotactic radiosurgery; SRT, stereotactic radiotherapy; TMZ 
temozolomide
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analysis of NRG Oncology/RTOG trial 0525 evaluating 
dose-dense versus standard dose temozolomide in newly 
diagnosed glioblastoma, Shi et al. [63] investigated the 
impact of different salvage treatments in 637 patients with 
recurrent or progressive GBM. Median survival times were 
12.2, 8.2, 10.6, 4.8 months, respectively, in patients receiv-
ing bevacizumab (44%), reirradiation alone (4%), com-
bined radiation and systemic therapy (10%), or no treatment 
(42%). Although patients receiving no salvage treatment 
had significantly lower survival than the others, survival 
analysis failed to show significant differences among patient 
groups who received bevacizumab with or without reirra-
diation. In the NRG Oncology/RTOG 1205 phase II ran-
domized trial of 182 patients with recurrent glioblastoma 
who received hypofractionated SRT (35 Gy in 3.5 Gy frac-
tions) and concurrent bevacizumab or bevacizumab alone, 
Tsien et al. [59] observed similar median survival times of 
10.1 and 9.7 between groups; however, the combined treat-
ment was associated with better 6-month PFS (54% versus 
29%, p < 0.001). The treatment was well tolerated with few 
(5%) acute and no delayed grade ≥ 3 toxicity, confirming the 
safety of reirradiation with modern RT techniques.

In summary, reirradiation is a feasible treatment option 
in selected patients with recurrent diffuse gliomas. An 
appropriate patient selection is essential to achieve survival 
benefit. According to international recommendations and 
prognostic score indexes, reirradiation should be considered 
in young patients with good performance status, and at least 
6 months interval from the first course of RT [61, 64–68]. 
Survival benefit is longer in patients with lower grade glio-
mas compared with glioblastoma. Choosing the appropriate 
radiation technique according to tumor size and location is 
a key factor in the management of these patients to achieve 
better clinical outcomes while limiting the potential toxic-
ity. SRS given in one or few fractions can be recommended 
for small to moderate targets up to 3-3.5 cm in size, while 
fractionated SRT using doses of 1.8 to 3.5 Gy per fraction 
should be preferred for larger tumors, especially those close 
to eloquent structures. Although the combination of reirra-
diation and bevacizumab did not significantly improve OS 
for patients with recurrent glioblastoma in NRG Oncology/
RTOG1205, the meaningful improvement in the 6-month 
PFS rate with combined treatment remains an important 
goal which is clinically beneficial in this disease with lim-
ited treatment options. The potential superiority of combin-
ing a second course of RT with alkylating agent lomustine 
(the standard systemic treatment for recurrent glioblastoma 
in Europe) over lomustine alone will be evaluated in a pro-
spective randomized EORTC phase III trial (LEGATO trial) 
which will start enrolling patients in Q1 2024 in Europe.

of 5–9 Gy each) is increasingly used in the setting of reir-
radiation as an alternative to single-fraction SRS (Table 1) 
[31, 34–39, 43, 50, 53–55, 59]. Fogh et al. [36] observed a 
median OS of 11 months in 105 patients with relapsed glio-
blastoma who received a total dose of 35 Gy in 10 fractions. 
In a recent review reporting the outcome of hypofractionated 
SRT for 995 patients with recurrent glioblastoma included 
in 17 studies, a similar median OS time of 9.2 months (rang-
ing from 7.5 to 12.5 months) has been observed in patients 
treated with SRT using doses of 30–45 Gy in 2.5-4.0 Gy 
fractions and those receiving 25–35 Gy in 5–7 Gy fractions 
[23].

A similar OS of 7 to10 months has been observed using 
conventionally fractionated SRT in 2 Gy fractions [30, 
41, 51, 58]. In 172 patients with recurrent low- and high-
grade gliomas who were treated with 36 Gy delivered in 
2-Gy fractions, Combs et al. [30] observed median OS and 
PFS times of 8 and 5 months, respectively. Histology sig-
nificantly influenced outcomes. Median OS was 8 months 
for patients with GBM, 16 months for patients with grade 3 
tumors, and 22 months for patients with low-grade gliomas; 
respective median PFS times were 5, 8, and 12 months.

Symptomatic brain necrosis is a serious late consequence 
of reirradiation, with an incidence ranging from 0 to 24.4% 
at 1 year (Table 1). The reported risk of radionecrosis is 
< 10% for cumulative EQD2 < 100–110 Gy and rises to 25% 
for cumulative EQD2 > 130 Gy using an α/β ratio of 2 Gy 
for normal health brain. Considering an EQD2 of 60 Gy for 
the initial standard chemoradiation, this means in clinical 
practice that reirradiation doses of 15–16 Gy given as single 
fraction (EQD2 = 63.7–72 Gy) or 25 to 30 Gy delivered in 
5 fractions (EQD2 = 43.7–60 Gy) carry an acceptable risk 
of radionecrosis around 10%, at least for patients with rela-
tively small tumor volumes. A low risk ranging from 0.8 to 
6.8% has been observed following reirradiation using con-
ventionally fractionated SRT with a median total dose of 
36 Gy in 2-Gy fractions (EQD2 = 36 Gy), even in patients 
with large target volume around 100 ml or higher, or when 
using large safety GTV-to-CTV margins up to 10 mm.

Superior survival benefit of reirradiation in combination 
with systemic therapy remains matter of debate. In a few 
retrospective studies, the combination of RT with alkylat-
ing agents offered longer OS and PFS times compared with 
RT alone, but this benefit seems to be limited to MGMT 
methylated tumors [31, 37–39]. In contrast, other few series 
failed to show significant survival benefit with the addition 
of chemotherapy to RT [36, 53, 61]. Retrospective studies 
observed significantly longer OS with the addition of beva-
cizumab to SRS and SRT compared to reirradiation alone 
[33, 48, 51, 62]. Another controversial issue is the potential 
superiority of combining systemic therapy with reirradiation 
versus systemic treatment alone [59, 63]. In the secondary 
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worse outcome. Grade 1–3 radiation necrosis occurred in 
25 patients, with a 10-year cumulative incidence of 26.9%, 
being of grade ≥ 3 in seven patients (7.9% at 10 years). A 
similar local control was reported in other retrospective 
series using both single-fraction SRS (15–24 Gy) or three-
fractions SRS (7–8 Gy per fraction), although with an 
increased risk of radionecrosis up to 50% compared with 
conventionally fractionated schedules [72, 79, 80].

The question whether CSI as part of reirradiation could 
improve the clinical outcome compared with focal reirradia-
tion has been addressed in a retrospective study conducted 
at the Hospital for Sick Children and Princess Margaret 
Cancer Center in Toronto between 1999 and 2018 [79]. 
Patients with locally recurrent ependymoma treated before 
2012 received focal reirradiation whereas those treated from 
2012 received CSI, 23.4–36 Gy in 1.8 Gy daily fractions, 
followed by boost to the site of resected/macroscopic dis-
ease. Among 22 patients with local failure after the first 
course of RT, the use of CSI as reirradiation was associated 
with significant improvement in time to recurrence; median 
time and 5-year rate of time to recurrence were 26.7 months 
and 15.2% in those who did not receive CSI, respectively, 
versus not reached and 83.3% for those who received CSI 
(p = 0.03). However, this difference did not translate into a 
statistically significant OS difference maybe because of the 
small number of patients. The treatment was safe, with only 
one patient who developed grade 3 radionecrosis.

Ependymoma

Ependymomas are rare CNS tumors of neuroectodermal 
origin that can affect both the pediatric and adult popula-
tions, with about 15% of all patients being children of less 
than 5 years of age [69]. Maximal safe resection followed 
by adjuvant RT to the tumor bed represents the standard 
of care [70]. Recurrent disease may occur in 30–50% of 
patients and it is treated by local excision plus reirradiation 
as systemic therapies have proven to be of a little benefit. 
Reirradiation given as focal treatment or CSI RT has been 
associated with survival benefit [71–79] (Table 2).

Tsang et al. (2018) [75] evaluated 101 patients with 
recurrent ependymoma treated with a second course of frac-
tionated RT after prior focal RT given to a dose of 54 Gy in 
1.8 Gy daily fractions. Recurrent tumors received a median 
dose of 39.6 Gy delivered in 1.8 Gy daily fractions to sites 
of gross or resected recurrent tumor using either photons 
(n = 88) or protons (n = 13); 55 patients with recurrent epen-
dymoma were treated with CSI. With a median interval of 
26.8 months between the two courses of RT, median dura-
tions of OS and freedom from progression were 75.1 and 
27.3 months, respectively; and 2-year OS and freedom from 
progression rates were 74.9% and 53.3%, respectively. CSI 
was associated with improved outcome, whereas male sex, 
anaplastic histology at recurrence, treatment group, and a 
short interval between RT courses were associated with a 

Table 2 Selected studies on reirradiation for recurrent ependymomas
Author No 

pts
RT modality Median RT 

dose at recur-
rence (Gy/fr)

Median upfront 
RT dose (Gy/fr)

interval 
between 
RT courses 
(months)

Median OS 
(months)

Median PFS (months) RN
(No patients) (%)

Hoffman et al., 
2014

12 HSRT 24/3 55.8–59.4/30 25 71% at 2years 32 s, 89% control at 
3 years

50 (25 
symptomatic)

Lobón et al., 
2016

32 FSRT (24) 
HSRT (8)

54/30 54/30 14 42 14 (0.7 years after 
FSRT; 6.8 years after 
CSI)

15.6
35/10

Tsang et al., 
2018

101 FSRT (46) 
FSRT + CSI 
(55)

54/30;  
39.6/22 (CSI)

59.4 26.8 75.1: 57.3% 
at 5 years

26.7: 37.3% at 5 years 7 (7.9 at 10 
years)

Tsang et al., 
2019

31 FSRT (15) 
FSRT + CSI 
(16)

54/30;  
39.6/22 (CSI)

54-59.4 23 53.1; 3 and 
5-year 62.8% 
and 39.9%

23.3; 3 and 5-year OS 
38.6% and 24.1%

9

Régnier et al. 
2019

31 SRS (4) 
HSRT (18) 
FSRT (11)

18/1; 44/10; 
54/30

57.6 37 34 31 (median local 
recurrence-free 
survival)

3

Gupta et al., 
2020

55 FSRT 54/30 55.8 37 40% at 3 
years 

51% at 3 years 12.5 (5.5 
symptomatic)

Mak et al., 2021 35 FSRT (26) 
CSI + FSRT 
(7) SRS (2)

54/30;  44/10   
15–24/1

55.8 67 65; 56.9 after 
FSRT and not 
reached after 
FSRT + CSI

33; 23.1 after FSRT 
and not reached after 
FSRT + CSI

3

Legend: CSI, Craniospinal irradiation; FSRT, fractionated stereotactic radiotherapy; HSRT, Hypofractionated stereotactic
radiotherapy; OS, overall survival; PFS, progression-free survival; Pts, patients; RN, radionecrosis; RT2, second course of
radiation therapy; SRS, stereotactic radiosurgery
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OS reported in six published studies ranges from 4 to 8.3 
months and median PFS from 3 to 4.5 months from the 
time of reirradiation (Table 3). A retrospective European 
study has evaluated benefit and toxicity of reirradiation in 
31 patients with diffuse midline glioma at first progression 
[89]. Most patients were treated with a conventionally frac-
tionated regimen up to a total dose of 20 Gy in 1.8-2.0 Gy 
daily fractions, given alone or in combination with systemic 
therapy. Following reirradiation, the reported median sur-
vival time was 6.4 months compared to 3 months in a his-
torical cohort of 39 patients receiving no treatment at time 
of progression (median survival of 13.7 versus 10.3 months 
after upfront RT). In addition, a clinical improvement was 
noted in nearly 80% of the patients with no life-threatening 
or fatal toxicities observed during the follow-up. Longer 
interval between RT courses was an independent factor for 
longer survival; in contrast, the addition of systemic therapy 
and age did not influence survival. In another Canadian ret-
rospective study including 14 patients with diffuse midline 
glioma who received focal reirradiation using doses of 21.6 
to 36 Gy given in 1.8 Gy daily fractions, median OS from 
reirradiation was 6.5 months compared to 3 months in his-
torical cohorts of 46 patients not treated with reirradiation 
[91]. Similar OS benefit of a second course of fractionated 
RT have been confirmed in other few small retrospective 
series [92, 93].

No severe neurotoxicity related to reirradiation has been 
observed using total doses < 24 Gy (1.8-2.0 Gy per fraction) 
[90–92]. Amsbaugh et al. [92] evaluated imaging changes, 
clinical symptoms, and patient- or family-reported quality 
of life in a prospective phase I/II trial of diffuse midline 
glioma receiving reirradiation at the time of tumor progres-
sion. From the start of reirradiation, median PFS and OS 
time were 4.5 and 5.8 months, respectively. Six patients who 
received 24 Gy in 12 fractions and 2 out of 4 patients who 
received 26.4 Gy in 12 fractions demonstrated improvement 

In summary, reirradiation of ependymoma represents 
an effective treatment approach in patients with locally 
recurrent lesions after failure of previous adjuvant focal 
irradiation. The use of single-fraction SRS has been asso-
ciated with an increased risk of adverse effects compared 
with conventionally fractionated schedules, especially for 
larger intact or resected tumors. Preliminary data suggest 
that CSI as a component of reirradiation offers a statistically 
significant PFS benefit compared with focal reirradiation, 
although large series with long-term follow-up are needed 
to confirm its survival benefit. There is published evidence 
supporting the use of proton beam therapy for its potential 
ability of reducing late toxicity in patients receiving CSI 
[81–84]. In this regard, results of a prospective study of sur-
gery and fractionated re-irradiation with photon or proton 
RT in patients for recurrent ependymoma are expected in 
2028 (ClinicalTrials.gov, number NCT02125786).

Diffuse midline gliomas

Diffuse midline gliomas H3 K27 altered (previously called 
diffuse intrinsic pontine gliomas - DIPGs) are extremely 
aggressive WHO grade IV tumors and represents a leading 
cause of brain tumor deaths in children, with 90% of chil-
dren dying within 2 years from the initial diagnosis. Accord-
ing to the Fifth WHO Classification published in 2021 [85], 
diffuse midline gliomas are characterized by diffuse infil-
trative growth in the brain tissue, involvement of midline 
structures (thalamus, brain stem and spinal cord) and harbor 
H3 K27M-mutation. RT, using 54–60 Gy in 1.8-2.0 Gy frac-
tions remains the standard of care, but its role is mainly pal-
liative and provides only temporary relief [86, 87].

Few studies investigated clinical outcomes of patients 
with recurrent/progressive diffuse midline glioma treated 
with reirradiation [88–93]. Using median doses for reirra-
diation of 18–24 Gy in 1.8-2.0 Gy daily fractions, median 

Table 3 Selected studies on reirradiation for recurrent Diffuse Midline Gliomas
Author No 

pts
RT modal-
ity (No)

Median Dose
(Gy/fr)

Concurrent systemic 
therapy (No)

Median interval 
between RT courses 
(months)

Median 
PFS 
(months)

Median OS 
(months)

Grade 
3 RN
(%)

Massimino et al., 2014 11 cFRT 19.8/11 none NR 8.3 6 0
Janssens et al., 2017 31 cFRT 20/10 yes (e.g. TMZ; Nito-

zumab + vinorelbine) 
(15)

Minimum 3 months 8.2 6.1 
(RT + CHT)
5.4 (RT)

0

Kline et al., 2018 12 cFRT
HFRT

24/12;
24/10

Nivolumab (8) 11.6 (RT + N)
12.1 (RT alone)

4.2 
(RT + N)
4.1 (RT)

6.8 (RT + N)
6 (RT)

0

Lassaletta et al., 2018 16 cFRT 30.6/17 BEV (1) 13 (from diagnosis) 4.5 6.5 6.2
Amsbaugh et al., 2019 12 cFRT

HFRT
24/12 (6 pts);
26.4/12 (4 pts);
30.8/14 (2 pts)

none 12.8 4.5 5.8 0

Krishnatry et al., 2021 20 cFRT 39.6–45/22–25 none 8.9 NR 5.5 0
Legend: BEV, bevacizumab; cFRT, conventionally fractionated radiotherapy; CHT, chemotherapy; HFRT, hypofractionated radiotherapy; 
N, nivolumab; NR, not reported; OS, overall survival; PFS, progression-free survival; Pts,patients. RN, radionecrosis
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recent ESMO-EANO and ASTRO guidelines on treatment 
of brain metastases [96, 97], SRS has been also recom-
mended for patients with 5–10 lesions. The reported local 
control following SRS is around 75 to 90% at one year, with 
late local recurrences that are increasingly observed. For 
patients with locally recurrent brain metastases, repeat SRS 
is a challenging treatment because of the difficulty of dis-
cerning progression from treatment effect and the increased 
risk of radionecrosis. A summary of selected reirradiation 
studies for brain metastases is shown in Table 4 [98–105]. 
With a variable median follow-up of 7–19 months, local 
control ranges between 70% and 95% at 1 year and the 
risk of symptomatic radionecrosis is around 7–16% for 546 
patients included in eight selected studies (Table 4).

Sneed et al. [105] evaluated the efficacy and safety of 
repeat single-fraction SRS in terms of treatment failure and 
risk of adverse radiation effects for 124 patients with 229 
recurrent brain metastases from various cancer types, the 
most common from breast cancer, lung cancer, and mela-
noma. With a median SRS prescription dose of 18 Gy and 
median follow-up of 14.5 months, the 1-year freedom from 
progression was 82% and risk of symptomatic adverse radi-
ation effects 11% for lesions with a quadratic mean diameter 
of 0.75-2.0 cm. For lesions with a quadratic mean diameter 

in clinical symptoms and quality of life without grade 3 tox-
icity. In 2 patients who received 30.4 Gy in 14 fractions, 
grade 3 toxicity occurred in one patient.

In summary, a second course of RT can be considered in 
children with DPG H3 K27 altered. A few studies demon-
strated a median survival of 5 to 7 months following reir-
radiation, although all data come from retrospective series. 
Clinical benefit can be observed in up to 80% of patients and 
this has been associated with an improvement in quality of 
life. Severe toxicities from reirradiation appear to be limited 
using conventionally fractionated RT schedules with doses 
of 20 to 24 Gy. Regarding the timing of reirradiation, inter-
val of at least 6 months between the two radiation treatments 
is associated with better outcome. Future clinical trials need 
to assess optimal dose, fractionation, interval between treat-
ments, and the concurrent use of systemic agents in such 
patients.

Brain metastases

SRS is the recommended treatment for patients with a lim-
ited number of brain metastases (1–4 lesions), resulting in 
a significant decrease of neurocognitive decline compared 
to WBRT without detrimental effects on OS [94, 95]. In the 

Table 4 Selected studies on reirradiation for recurrent Brain Metastasis
Author No 

Pts
Most common tumor histol-
ogy (No)

SRS 
dose 
Gy/fr

Concur-
rent 
Systemic 
Therapy

Interval 
between 
SRS courses 
(months)

Median 
follow-
up 
(months)

Median
OS
(months)

Median LC 
rate

Symptom-
atic RN 
(%)

Terakedis et al., 
2014

37 Melanoma (20), Lung (9), 
Breast (8)

18/1 NR 9 7 8.3 80.6% at 1 
year

16; 16.5 at 
12 months

Minniti et al., 
2015

43 NSCLC, Breast, Melanoma, 
Others

21–24/3 none 17 19 10 70% 1 year 14 grade 2 
or more); 
34 at 12 
months

Shultz et al., 2015 95 Melanoma (16), Lung (38), 
Breast (14),
GI (11)

22/1 
(91%) 
24/3 
(8%)

NR 4 15 11 95% at 1 year 7.6

Balermpas et al., 
2018

31 Breast (10), NSCLC (10), 
Melanoma (5), Other (6)

1 fr 
(24)
3–5 fr 
(7)

Concur-
rent 
targeted 
therapy 
(14)

12.4 11.9 61.7% 
and, 
46.3% at 
1 and 2 
years

79.5% and 
71.5% at 1 
and 2 years

12.9, 
grade 3 or 
more

Jiang et al., 2019 63 Lung (45), Breast (8), 
Colorectal (3), Renal (2),
Other (5)

20/1
30/2

none 10 12 18 94.4% at 1 
year

14.2

Kowalchuk et al., 
2021

102 NSCLC 18/1 none 12 14 NR 79% and 72% 
at 1 and 2 
years

7

Bhatia et al., 2022 51 NSCLC (19), Breast (12), 
Other (20)

24/3 none NR 32 14.1 79.5% at 
1 year

10.9

Sneed et al., 2022 124 Breast, Lung, Melanoma 18/1 TKI, ICI 15.4 13.4 18.6 80% at 1 year 10
Legend: GI, Gastrointestinal; ICI, immune checkpoint inhibitors; LC, local control; NSCLC, non-small-cell lung cancer
NR, not reported; OS, overall survival; PFS, progression-free survival; Pts, patients; RN, radionecrosis;
SRS, radiosurgery; TKI, tyrosine kinase inhibitors
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studies observed survival rates of 50–75% at 1 year follow-
ing a second course of RT, with higher rates for those pre-
senting with focal recurrences versus diffuse leptomeningeal 
disease [107–111]. Hypofractionated schedules (25–30 Gy 
in 3 to 10 fractions) are typically used for focal radiation 
while a dose of 20–24 Gy in 1.8 Gy daily fractions is used to 
the entire spine. Single site of recurrence, minimal residual 
disease, time from the first course of RT, and molecular sub-
types are known to affect survival [112]. The risk of toxicity 
is low when cumulative EQD2 for brain and spine does not 
exceed 150 Gy and 120 Gy [7, 8]. Few published series sug-
gest that a second course of RT, both SRS and SRT using 
either photons or protons, may be a feasible salvage treat-
ment option for selected patients with skull base recurrent 
tumors, including recurrent aggressive pituitary adenomas 
[113, 114] and meningiomas [115–117], which is associated 
with a risk of symptomatic radionecrosis, cranial deficits, 
and radiation-induced optic neuropathy < 15%.

Conclusions

This review represents a synthesis of the available litera-
ture data and a basis for further consideration. An increasing 
number of studies indicates that reirradiation is a feasible 
treatment option among patients with recurrent brain 
tumors. Although caution is required when performing 
a second course or RT for the increased risk of radiation-
induced toxicity, most studies using modern radiation tech-
niques indicate that retreatment is associated with a risk of 
adverse radiation effects < 10% for cumulative EQD2 doses 
of 100 to 110 Gy in patients with recurrent brain lesion and 
for cumulative EQD2 doses of 70 to 75 Gy in those with 
recurrent spine lesions assuming an α/β ratio of 2 Gy for 
normal tissue. While available data support the use of reir-
radiation as salvage therapy in selected patients with brain 
tumors, a definitive judgment on the efficacy and safety of 
a second course of RT and its superiority over other treat-
ment options (systemic treatment or repeat surgery) cannot 
be made because of the small number of patients and the ret-
rospective nature of most studies. Only prospective studies 
with appropriate follow-up can confirm OS benefit of reirra-
diation for different tumors, as well to address unanswered 
questions such as optimal radiation dose and fractionation, 
target volumes delineation, combination of reirradiation 
with new systemic agents and immunotherapy, and which 
patients will benefit most from treatment. Until these data 
become available, the decision to offer reirradiation in clini-
cal practice to patients with recurrent tumors to improve dis-
ease control and OS should be always weighed against the 
potential toxicity of treatment.

of 2.01-3.0 cm, SRS was associated with 1-year control rates 
of 65% and a higher risk of symptomatic adverse radiation 
effects of 24%. In another multi-institutional retrospective 
series of 102 patients with 123 brain metastases treated with 
repeat SRS after local or marginal recurrence after prior 
SRS, Kowalchuk et al. [103] reported 1-year local control 
rates of 79% and 1-year incidence rates of symptomatic 
adverse radiation effects of 7%. Tumor control was signifi-
cantly better for lesion ≤1 cm (p < 0.005). The risk of symp-
tomatic radionecrosis was higher for cumulative maximum 
doses ≥ 40 Gy or for a volume of normal brain receiving 
12 Gy > 9 cm3 at the time of repeat SRS (p < 0.025). Simi-
lar 1-year local control rates of 70–80% and symptomatic 
radionecrosis rates around 7–16% have been shown in other 
published series of repeat SRS after either prior SRS or 
WBRT [98, 101].

Fractionated SRS (2–5 fractions) has been suggested as 
an alternative treatment option to single-fraction SRS for 
locally recurrent brain metastases [99, 100, 104, 106]. In a 
systematic review and meta-analysis of stereotactic reirra-
diation for local failure of brain metastases following previ-
ous SRS, Loi et al. [106] reported clinical outcomes for 335 
patients with 389 brain metastases treated with either sin-
gle-fraction (n = 282) or fractionated (n = 107) SRS. With 
a median follow-up of 12 months from the time of repeat 
SRS, median OS time was 14 months, 1-year local fail-
ure was 24%, and crude cumulative incidence of radiation 
necrosis was 13%. There were no differences in local con-
trol and risk of symptomatic adverse radiation effects with 
single-fraction SRS using doses of 16–19 Gy or fractionated 
SRS using a total dose of 21–24 Gy given in 3 fractions, 
although the median volume of lesions receiving 3-fractions 
SRS was generally larger. No factors were associated with 
an increased risk of radionecrosis, including tumor volume, 
histology, higher biological effective dose, and longer time 
interval from first SRS.

Overall, repeat SRS has emerged as an effective strat-
egy for patients with recurrent brain metastases. In the 
respect of the relatively small number of patients reported 
and retrospective nature of studies, either single-fraction or 
fractionated SRS are associated with high local control and 
acceptable risk of symptomatic radionecrosis < 15%. Opti-
mal radiation dose and fractionation for different target vol-
umes, as well safe combination with systemic agents need 
to be defined.

Other brain tumors

Reirradiation has been used as possible salvage treatment 
option for several other recurrent brain tumors. In patients 
with recurrent medulloblastoma after standard CSI and a 
boost to the posterior fossa/tumor bed, small retrospective 
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