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Abstract. Electroencephalography (EEG) source imaging aims to reconstruct brain

activity maps from the neuroelectric potential difference measured on the skull. To

obtain the brain activity map, we need to solve an ill-posed and ill-conditioned

inverse problem that requires regularization techniques to make the solution viable.

When dealing with real-time applications, dimensionality reduction techniques can be

used to reduce the computational load required to evaluate the numerical solution

of the EEG inverse problem. To this end, in this paper we use the random dipole

sampling method, in which a Monte Carlo technique is used to reduce the number

of neural sources. This is equivalent to reducing the number of the unknowns

in the inverse problem and can be seen as a first regularization step. Then, we

solve the reduced EEG inverse problem with two popular inversion methods, the

weighted Minimum Norm Estimate (wMNE) and the standardized LOw Resolution

brain Electromagnetic TomogrAphy (sLORETA). The main result of this paper is the

error estimates of the reconstructed activity map obtained with the randomized version

of wMNE and sLORETA. Numerical experiments on synthetic EEG data demonstrate

the effectiveness of the random dipole sampling method.

Keywords: EEG imaging, underdetermined inverse problem, random sampling, inversion

method, wMNE, sLORETA
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1. Introduction

The electroencephalography (EEG) inverse problem aims to reconstruct the

neuroelectric activity map from the electric potential differences measured by a set

of electrodes located on the skull. Since EEG is a non-invasive technique and EEG

devices are quite cheap, EEG source imaging is widely used both in clinical applications

and neuroscience studies. Furthermore, EEG measurements come to a high temporal

resolution - on the order of milliseconds - making this brain imaging technique of primary

interest in real-time applications. For details we refer the reader to [1,2] and references

therein.

What makes EEG source imaging tricky is the fact that to obtain the brain activity

map, we have to solve a severely ill-posed inverse problem and regularization techniques

are needed to make the solution viable [1,2]. Unfortunately, the numerical solution of the

EEG inverse problem can be time and memory consuming, which makes it unattractive

in real-time applications, especially when portable devices are employed. To reduce

the computational cost, dimensionality reduction techniques can be used to extract the

most significant features from the data or to select the brain regions of interest before

applying an inversion method [3–5]. In addition, dimensionality reduction can act as a

first regularization step, since it reduces the degrees of freedom of the inverse problem.

In this paper, we consider a slim dimensionality reduction technique - the random

dipole sampling method - where the dimensionality reduction is achieved by using a

Monte Carlo technique to reduce the number of the unknowns - neural sources - without

imposing any a priori information. This method was introduced in [6] to solve the

magnetoencephalography (MEG) inverse problem, in which neuroelectric activity maps

are reconstructed from the neuromagnetic field measured outside the head [1,7]. Tests on

synthetic and real magnetic data have shown that the method has a low computational

load while keeping good accuracy [8,9]. Here, we use the random dipole sampling method

for reducing the dimensionality of the EEG inverse problem and show its effectiveness

when using weighted Minimum Norm Estimate (wMNE) [10] and standardized LOw

Resolution brain Electromagnetic TomogrAphy (sLORETA) [11] to reconstruct the

brain activity map. The wMNE and sLORETA algorithms are two of the most popular

inversion methods for EEG imaging and are also easy to implement. For this reason,

they are particularly suitable for real-time applications. The main result of this paper

is the error estimate for the reconstructed activity map obtained by the randomized

version of wMNE and sLORETA. In the previous papers [6, 8, 9], the effectiveness of

the method was shown through numerical tests but no error estimates were provided.

The estimates we provide give an upper bound for the error and allow us to identify the

optimal number of dipoles that need to be sampled to achieve good accuracy. Numerical

experiments conducted on synthetic EEG data confirm our findings.

In literature, random methods are commonly used for dimensionality reduction of

regression problems (see, for instance, [12–15]) while their use for the solution of

inverse problems is still limited and mainly based on the randomized singular value
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decomposition (randSVD) described in [16]. In [17–21] randSVD was used to solve

inverse problems by classical regularization methods, i.e., Tikhonov regularization and

truncated SVD. A different approach was proposed in [22], where the authors introduced

a sampled iterative method that converges to the Tikhonov solution. A randomized

method for MEG/EEG imaging was introduced in [23] with the aim of simultaneously

detecting cortical and subcortical brain activity [24]. The method decomposes the source

space into multiple randomized multiresolution levels, then solves the MEG/EEG inverse

problem by a hierarchical Bayesian model implying Mimimum Norm Estimate (MNE)

as a particular case.

The random dipole sampling method we consider was introduce in [6] and is related in

some way to the random column sampling method described in [25], but its motivation

stems from the neurophysiological assumption that brain activity is spatially sparse [26]

and therefore only a small number of neural sources are sufficient to represent the

neuroelectric current flowing in the brain. The key ingredient of the method is that

the neural sources are chosen randomly by drawing from the uniform probability

distribution, making the method easy to implement and efficient when dealing with

real-time applications. Here, we use the method along with wMNE and sLORETA to

solve the EEG inverse problem.

The paper is organized as follows. In Sect. 2 some preliminaries on linear algebra

and the EEG inverse problem are given as well as the description of the random dipole

sampling method. The main results of the paper are given in Sect. 3, where the error

estimates are obtained. The results of the numerical experiments we conducted are

displayed in Sect. 4, while a discussion of our findings is given in Sect. 5. Finally, in

Sect. 6 we draw some conclusions and outline future developments.

2. Materials and Methods

In this section, after recalling some basic facts from linear algebra (see Sect. 2.1), we

describe the EEG inverse problem and the inversion methods we are interested in (see

Sect. 2.2). The random dipole sampling method is described in Sect. 2.3.

2.1. Linear algebra preliminaries

In this section we recall same definitions and properties that we will use in the following.

For details, we refer to the classical books on linear algebra [27, 28] and the review

paper [15].

Let v = [v1, . . . , vn] ∈ Rn be a real vector and A = [akj, 1 ≤ k ≤ m, 1 ≤ j ≤ n] ∈
Rm×n be a real matrix. The symbol ∥v∥ denotes the Euclidean norm of vectors while

∥A∥ denotes the usual spectral norm of matrices. We write ∥A∥F for the Frobenius

norm. We recall that

∥A∥ = σ1(A), ∥A∥F =
( r∑

i=1

σi(A)
2
)1/2

, (2.1)
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where σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) are the singular values of A and r = rank(A). It

follows that

∥A∥ ≤ ∥A∥F ≤
√
r ∥A∥. (2.2)

Both norms are unitarily invariant, i.e., for any matrix A ∈ Rm×n

∥UAV ∥ = ∥A∥, ∥UAV ∥F = ∥A∥F , (2.3)

where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices.

The condition number of a matrix A is

κ(A) = σ1(A)/σr(A). (2.4)

We will make use of the following inequalities (see, [27]). For any rectangular

matrices A, δA ∈ Rm×n it holds

σmax(A+ δA) ≤ σmax(A) + ∥δA∥, (2.5)

σmin(A+ δA) ≥ σmin(A)− ∥δA∥. (2.6)

In the following we will also make use of the following property of norms. For any

pair of vectors v and u and matrices A and B it holds∣∣∣∥v∥ − ∥u∥
∣∣∣ ≤ ∥v − u∥,

∣∣∣∥A∥ − ∥B∥
∣∣∣ ≤ ∥A−B∥. (2.7)

2.2. The EEG inverse problem

The EEG inverse problem aims to reconstruct the neuroelectric current flowing inside

the brain once the electric difference potential on the scalp, generated by the activity

of one or more neuroelectric sources, is given. The cortical surfaces are extracted from

MRI images and discretized in a regular triangulation whose nodes form the source

space. A current dipole is located in each point rk = [rkx, r
k
y , r

k
z ], 1 ≤ k ≤ n, of the

source space. The unknown is the current dipole moment vector Q = [q1, . . . ,qn],

where qk = [qkx, q
k
y , q

k
z ] is the dipole moment of the k-th dipole.

We assume that the measurement vector b ∈ Rm and the current dipole moment

vector Q ∈ R3n are linearly related, i.e.,

b = M Q (2.8)

where M = [M(r1), . . . ,M(rn)] ∈ Rm×3n is the lead field matrix. The sub-matrix

M(rk) ∈ Rm×3, 1 ≤ k ≤ n, represents the electric potential produced by a unit current

dipole located in rk. For details see [2, 7].

It is well known that the EEG inverse problem is an underdetermined ill-posed and

ill-conditioned inverse problem [1, 2] for which regularization techniques are needed to

obtain a feasible solution. Two of the most widely used inversion methods for solving

the EEG inverse problem are the weighted Minimum Norm Estimate (wMNE) [29]

and standardized LOw Resolution brain Electromagnetic TomogrAphy (sLORETA) [11]

algorithms.
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The estimated current distribution obtained by wMNE is

QwMNE = (MTΣ−1M +R−1)−1MTΣ−1b, (2.9)

where R ∈ R3n×3n is the source covariance matrix and Σ ∈ Rm×m is the noise covariance

matrix. R is a diagonal matrix whose diagonal entries are

Rjj = ∥M(rk)∥−ρ, 1 + 3(k − 1) ≤ j ≤ 3k, 1 ≤ k ≤ n, (2.10)

where ρ is the depth weighting parameter. For the EEG inverse problem suitable values

of ρ are in the interval (0, 5], depending on the source density, the dipole orientation

and the SNR [29].

Without loss of generality, we can assume the data has been whitened so that Σ = I.

Thus, defining the inversion matrix

GwMNE = MTM +R−1, (2.11)

the wMNE solution can be written as

QwMNE = G−1
wMNEM

T b. (2.12)

Starting from the estimate QwMNE, sLORETA produces a statistical measure of

the brain activity normalizing the wMNE estimate w.r.t. the variance of the estimated

sources. For any dipole, sLORETA produces a neural activity index zk as follows,

zk = (qk
wMNE)

T (Σk
QwMNE

)−1qk
wMNE, (2.13)

where qk
wMNE is the estimated activity of the dipole located in rk and Σk

QwMNE
∈ R3×3

is the k-th diagonal block of the variance of the estimated sources ΣQwMNE
∈ R3n×3n. It

can be shown that

ΣQwMNE
= (MTM +R−1)−1MTM = G−1

wMNEM
TM, (2.14)

usually known as the wMNE resolution matrix.

When the cortical surface is known, the dipoles have fixed orientations since they

are perpendicular to the cortical surface. In this case, the unknowns are the intensity of

the n sources, i.e., Q = [∥q1∥, . . . , ∥qn∥], and the orientations can be plugged into the

lead field M , which now is an m × n matrix. Similarly to (2.12), the wMNE solution

QwMNE = [∥q1
wMNE∥, . . . , ∥qn

wMNE∥] is given by [30]

QwMNE = G−1
wMNEM

T b, (2.15)

where

GwMNE = MTM +R−1 ∈ Rn×n, (2.16)

and R ∈ Rn×n has diagonal entries

Rkk = ∥M(rk)∥−ρ, 1 ≤ k ≤ n, (2.17)

being M(rk) a vector.

In case of fixed orientation, the sLORETA index simplifies as

zk =
∥qk

wMNE∥2

Σk
QwMNE

, 1 ≤ k ≤ n, (2.18)
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where Σk
QwMNE

is the k-th entry of the n× n source covariance matrix ΣQwMNE
. It can

be shown [31] that (2.18) is equivalent to

zk =
∥qk

wMNE∥2

∥(R(rk))T (M(rk))T (MRMT + I)−1M(rk)R(rk)∥2F
, 1 ≤ k ≤ n.(2.19)

2.3. Random dipole sampling method

We can use the random sampling to select a small subset of source points so reducing

the number of columns of the lead field matrix. Let Ic = (k1, . . . , kc) denote a subset of c

indices of the dipoles drawn from the uniform probability distribution with replacement.

We will denote by νk, k ∈ Ic, with c ≥ νk ≥ 1, the number of times the k-th dipole was

drawn. The sampled lead field matrix is

MS =

√
n

c
MS ∈ Rm×3c, (2.20)

where the entries of the sampling matrix S ∈ R3n×3c are all zeros except for the 3 × 3

blocks

Skj = (Ss,t, 1 + 3(k − 1) ≤ s ≤ 3k, 1 + 3(j − 1) ≤ t ≤ 3j) = I3, k ∈ Ic, 1 ≤ j ≤ c,

indicating that the k-th source point was drawn at the j-th drawing. Assuming c ≪ n,

the sampled lead field matrix MS has far fewer columns than the full matrix M . The

factor
√

n
c
ensures that the singular values ofMS are an unbiased estimate of the singular

values of M [15].

We can obtain an approximate solution of the EEG inverse problem by using MS in

either wMNE or sLORETA. Thus, the estimated randomized neuroelectric current

Q̃wMNE = [q̃k1
wMNE, . . . , q̃

kc
wMNE],

obtained using wMNE as inverse solver, is given by

Q̃wMNE = G̃−1
wMNEM

T
S b, G̃wMNE = MT

S MS +R−1
S ∈ R3c×3c, (2.21)

where RS ∈ R3c×3c can be obtained from R retaining just the entries corresponding to

the drawn dipoles. Since R is a diagonal matrix, it follows that

R−1
S =

n

c
STR−1S. (2.22)

Similarly, the randomized sLORETA statistical measure is

z̃k = (q̃k
wMNE)

T (Σ̃k
Q̃wMNE

)−1q̃k
wMNE, k ∈ Ic, (2.23)

where Σ̃k
Q̃wMNE

is the variance of the estimated sources Q̃wMNE.

In case of fixed orientation, the randomized wMNE method estimates the intensity

vector Q̃wMNE = [∥q̃k1
wMNE∥, . . . , ∥q̃

kc
wMNE∥] so that the sampled lead field matrix is

MS =

√
n

c
MS ∈ Rm×c, (2.24)
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where the only entries of the sampling matrix S ∈ Rn×c different from zeros are the

entries (k, j), k ∈ Ic, 1 ≤ j ≤ c, which are equal to 1.

In this case, the randomized wMNE solution is given by

Q̃wMNE = G̃−1
wMNEM

T
S b, (2.25)

with

G̃wMNE = MT
S MS +R−1

S ∈ Rc×c, RS ∈ Rc×c, (2.26)

while the randomized sLORETA index becomes

z̃k =
∥q̃k

wMNE∥2

∥(R(rk))T (M(rk))T (MSRSMT
S + I)−1M(rk)R(rk)∥2F

, k ∈ Ic.(2.27)

3. Error estimates

In this section we define the local reconstruction error for the randomized version of both

wMNE and sLORETA and obtain deterministic estimates for these errors. We note that

in order for the estimates of Theorems 3.3 and 3.6 to hold with high probability, we can

repeat the random dipole sampling algorithm a suitable number of times [16].

For the sake of simplicity, in the following we consider the case of fixed orientation. The

results can be easily extended to the general case (see Section 4.2).

3.1. Randomized wMNE

For the randomized wMNE method we define the local reconstruction error as

Ek
wMNE =

{ ∣∣∥qk
wMNE∥ − ∥q̃k

wMNE∥
∣∣ , if k ∈ Ic,

∥qk
wMNE, ∥ if k /∈ Ic.

(3.1)

We note that

STQwMNE = [∥qk1
wMNE∥, . . . , ∥q

kc
wMNE∥].

In the following we will denote by S̄ the matrix that selects the dipoles that have not been

drawn, i.e., S̄TQwMNE = [∥qk
wMNE∥, k /∈ Ic]. It is easy to show that ∥ST∥ = (max

k∈Ic
νk)

1/2

while ∥S̄T∥ = 1. Moreover, we define the sampling identity matrix IS = SST ∈ Rn×n.

IS is a diagonal matrix whose only entries different from zero are the diagonal entries

having indices k ∈ Ic. These entries are equal to νk.

Proposition 3.1. Let GwMNE and G̃wMNE be the full and the sampled inversion

matrices, respectively. For the minimum singular value of GwMNE and G̃wMNE the

following bounds hold

σmin(GwMNE) ≥ µ, σmin(G̃wMNE) ≥ µ, (3.2)

where µ = max1≤k≤n ∥M(rk)∥ρ/2.

The proof is in the appendix.
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Proposition 3.2. Let QwMNE and Q̃wMNE be the neuroelectric current estimates

obtained with the exact wMNE and the randomized wMNE, respectively. The following

estimates hold

∥STQwMNE − Q̃wMNE∥ ≤ max(
n

c
ν − 1, 1)

√
ν

κ(GwMNE)

σmin(G̃wMNE)
∥MT b∥, (3.3)

where ν = max
1≤k≤c

νk ≥ 1, and

∥S̄TQwMNE∥ ≤ 1

σmin(GwMNE)
∥MT b∥. (3.4)

The proof is in the appendix.

Theorem 3.3. For the reconstruction error EwMNE the following estimate holds

Ek
wMNE ≤


max(

n

c
ν − 1, 1)

√
ν
κ(GwMNE)

µ
∥MT b∥, if k ∈ Ic,

1

µ
∥MT b∥, if k /∈ Ic,

(3.5)

where µ = max1≤k≤n ∥M(rk)∥ρ/2.

Proof. Since
∣∣∥qk

wMNE∥ − ∥q̃k
wMNE∥

∣∣ ≤ ∥STQwMNE−Q̃wMNE∥, k ∈ Ic, and ∥qk
wMNE∥ ≤

∥ST
NQwMNE∥ the claim follows combining Propositions 3.1-3.2.

Since
√
ν(

n

c
ν − 1)

κ(GwMNE)

µ
∥MT b∥ ≥ 1

µ
∥MT b∥, we can obtain a bound for the

error vector EwMNE = [E1
wMNE, . . . , En

wMNE], i.e.,

∥EwMNE∥ ≤ max(
n

c
ν − 1, 1)

√
ν
κ(GwMNE)

µ
∥MT b∥.

From (2.15) it follows MT b = GwMNEQwMNE. Thus, we obtain the following bound for

the relative error,

∥EwMNE∥
∥QwMNE∥

≤ max(
n

c
ν − 1, 1)

√
ν
κ(GwMNE)σmax(GwMNE)

µ
. (3.6)

Remark 1. In case of uniform sampling without replacement we have ∥ST∥ = 1 and

∥I − n
c
IS∥ ≤ ∥I − n

c
IS∥F =

√
2(n− c) so that the estimate in (3.3) becomes

∥STQwMNE − Q̃wMNE∥ ≤
√

2(n− c)
κ(GwMNE)

σmin(G̃wMNE)
∥MT b∥.

Moreover, ∥S̄TQwMNE∥ → 0 when c → n. Thus, as expected, in this case the

reconstruction error EwMNE goes to 0 when c → n.

Remark 2. In case of Tikhonov regularization the solution can be written as

QT ik = (MTM + αI)−1MT b, (3.7)
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where α > 0 is the regularization parameter. QT ik is also known as minimum norm

estimate. Its random version is

Q̃T ik = (MT
S MS + αI)−1MT

S b. (3.8)

Thus, the error estimate in Theorem 3.3 can be easily adapted to the randomized

Tikhonov method by substituting in (3.5) µ with α and κ(GwMNE) with κ(MTM+αI).

Furthermore, we can obtain the error estimate for the randomized least squares solution

Q̃LSQ = (MT
S MS)

−1MT
S b, (3.9)

by substituting µ with σmin(M
TM) and κ(GwMNE) with κ(MTM).

3.2. Randomized sLORETA

In this section we give an upper bound for the reconstruction error when using

randomized sLORETA to solve the EEG inverse problem. Recalling (2.19) and (2.27),

we define the local error as

Ek
sL =

∣∣∣√zk −
√
z̃k
∣∣∣ =



∣∣∣∣∥qk
wMNE∥

∥L(rk)∥F
− ∥q̃k

wMNE∥
∥LS(rk)∥F

∣∣∣∣ , if k ∈ Ic,

∥qk
wMNE∥

∥L(rk)∥F
, if k /∈ Ic,

(3.10)

where

L(rk) = (R(rk))T (M(rk))T (MRMT + I)−1M(rk)R(rk), 1 ≤ k ≤ n,(3.11)

and

LS(r
k) = (R(rk))T (M(rk))T (MSRSM

T
S + I)−1M(rk)R(rk), k ∈ Ic. (3.12)

We note that L(rk), LS(r
k) ∈ R3×3.

Lemma 3.4. For the difference of the reciprocals of ∥L(rk)∥F and ∥LS(r
k)∥F the

following bound holds∣∣∣∣ 1

∥L(rk)∥F
− 1

∥LS(rk)∥F

∣∣∣∣ ≤ 2

ξ
, (3.13)

where ξ = min1≤k≤n σmin(L(r
k)).

The proof is in the appendix.

Proposition 3.5. Let Q̃wMNE be the neuroelectric current estimate obtained with the

randomized wMNE. It holds

∥Q̃wMNE∥ ≤ 1

µ
∥MT b∥, ∥QwMNE∥ ≤ 1

µ
∥MT b∥, (3.14)

where µ = max1≤k≤n ∥M(rk)∥ρ/2.

The proof is in the appendix.
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Theorem 3.6. For the local reconstruction error EsL the following estimate holds

Ek
sL ≤


1

µξ

(
max(

n

c
ν − 1, 1)

√
ν κ(GwMNE) + 2

)
∥MT b∥, if k ∈ Ic,

1

µξ
∥MT b∥, if k /∈ Ic,

(3.15)

where µ = max1≤k≤n ∥M(rk)∥ρ/2 and ξ = min1≤k≤n σmin(L(r
k)).

Proof. When k ∈ Ic we have∣∣∣∥qk
wMNE∥

∥L(rk)∥F
− ∥q̃k

wMNE∥
∥LS(rk)∥F

∣∣∣ ≤
∣∣∥qk

wMNE∥ − ∥q̃k
wMNE∥

∣∣ 1
∥L(rk)∥F

+
∣∣∣ 1
∥L(rk)∥F

− 1
∥LS(rk)∥F

∣∣∣ ∥q̃k
wMNE∥.

The first term in the r.h.s. is related to the wMNE reconstruction error while the second

term is related to the error produced by the sampling procedure applied to the lead field

matrix.

From (2.7) it follows
∣∣∥qk

wMNE∥ − ∥q̃k
wMNE∥

∣∣ ≤ ∥qk
wMNE − q̃k

wMNE∥. Thus, we can use

the results in Theorem 3.3 to bound the first term.

As for the second term, since ∥q̃k
wMNE∥ ≤ ∥Q̃wMNE∥, combining Lemma 3.4 and

Proposition 3.5 we get∣∣∣∣ 1

∥L(rk)∥F
− 1

∥LS(rk)∥F

∣∣∣∣ ∥q̃k
wMNE∥ ≤ 2

ξ

1

µ
∥MT b∥.

When k /∈ Ic, the bound easily follows recalling that ∥qk
wMNE∥ ≤ ∥QwMNE∥, and

combining Lemma 3.4 and Proposition 3.2.

4. Results

To show the effectiveness of randomized wMNE and randomized sLORETA methods

we conducted some numerical experiments on synthetic EEG data. The latter have

been generated by solving the forward EEG problem in OpenMEEG software [32] using

a source space obtained by an average subject [33] containing 25000 points and an

EEG helmet with 65 sensors at an average distance of 10 cm from the origin of the

head coordinate system. One single dipole was randomly selected from the source

space and activated by a unitary current dipole moment with fixed orientation. The

measurement vector b was then obtained by applying (2.8) and by adding Gaussian

noise with SNR = 10dB and SNR = 20dB. A coarser source space containing 15000

points was used to solve the inverse problem, that is the lead field matrix is M ∈ Rm×n,

with n = 15000 and m = 65. The inverse problem was solved by wMNE and sLORETA

methods implemented in Brainstorm software [34]. To improve the accuracy, the inverse

problem was solved N = 10 times, each time using a different sampling matrix. In our



Solution of the EEG inverse problem by random dipole sampling 11

α κ(GwMNE) ξ

1/10 1662.02 4.46

1/9 1346.43 4.56

1/8 1064.05 4.69

1/7 814.90 4.86

1/6 598.97 5.10

1/5 416.25 5.44

1/4 266.76 5.97

1/3 150.49 6.55

1/2 67.44 7.761

1 17.61 11.63

2 5.15 19.62

3 2.85 27.71

4 2.04 35.84

5 1.66 44.01

Table 1. Condition number κ(GwMNE) and the quantity ξ (see Lemma 3.4) for

different values of the regularization parameter α.

experiments, no significant improvement has been observed by increasing N .

In Section 4.1, we present a comprehensive set of numerical tests in the case of fixed

orientation. In Section 4.2, we present some numerical tests for the free orientation

case.

4.1. Fixed orientation

Since the error estimates EwMNE and EsL depend on the condition number κ(GwMNE)

and on the quantities ξ and µ (see Theorems 3.3 and 3.6), first of all we computed

their values for different values of the regularization parameter α. We note that in

Brainstorm the regularization parameter is included in the matrix R; the default value

is α = 3. The computed values of κ(GwMNE) and ξ are listed in Table 1. As expected, the

condition number κ(GwMNE) approaches 1 while the regularization parameter increases.

Conversely, ξ decreases. Thus, the error estimates EwMNE and EsL decrease for increasing

α. Table 2 shows how µ (see Proposition 3.1) changes with respect to the depth weighting

parameter ρ. We note that the default in Brainstorm is ρ between 0 and 1. As expected,

the values follow an exponential growth.

Then, we studied how the reconstruction errors EwMNE and EsL, as defined in (3.6)

and (3.10), depend on the number of sampled columns c. The numerical experiments

have been carried out for different values of c, ranging from a minimum of c = 500

columns to a maximum of c = 15000 columns. In this test we used the default values

for α and ρ. The averaged absolute errors ∥EwMNE∥ and ∥EsL∥ are shown in Figure 1

while the relative error ∥EwMNE∥
∥QwMNE∥ is shown in Figure 2. To reduce the computational

cost of the dipole sampling method, we sampled the columns with replacement. For
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ρ µ

0.10 1.41

0.25 2.38

0.50 5.68

0.75 13.54

1 32.28

Table 2. The quantity µ (see Proposition 3.1) for different values of the depth

weighting parameter ρ.

(a) (b)

Figure 1. (a) The absolute error ∥EwMNE∥ versus the number of sampled columns c,

in the case of sampling with replacement and sampling without replacement. (b) The

absolute error ∥EsL∥ versus the number of sampled columns c, in the case of sampling

with replacement and sampling without replacement.

Figure 2. The relative error ∥EwMNE∥
∥QwMNE∥ versus the number of sampled columns c, in

the case of sampling with replacement and sampling without replacement.



Solution of the EEG inverse problem by random dipole sampling 13

Table 3. The average DLE and the standard deviation σ (mm) for n = 15000 and

different source depth (LOC = S (superficial sources at least 50 mm from the origin

of the head coordinate system), M (middle sources between 30 and 50 mm from the

origin of the head coordinate system), D (deep sources at less then 30 mm from the

origin of the head coordinate system))

SNR LOC inversion c = 100 c = 500 c = 1000 c = 2000 full

method DLE (σ) DLE (σ) DLE (σ) DLE (σ) DLE (σ)

10 S sLORETA 16.6 (7.2) 13.3 (6.8) 12.5 (5.4) 10.9 (5.2) 13.9 (5.3)

10 S wMNE 14.5 (5.6) 17.2 (8.6) 17.7 (8.8) 18.8 (9.6) 16.6 (7.6)

10 M sLORETA 15.8 (7.5) 11.7 (4.7) 11.5 (5.8) 10.2 (5.5) 12.6 (5.9)

10 M wMNE 21.9 (7.5) 27.6 (9.0) 28.4 (9.3) 28.0 (9.5) 25.5 (8.2)

10 D sLORETA 18.2 (5.5) 11.6 (4.6) 9.5 (4.3) 9.0 (4.3) 15.2 (4.4)

10 D wMNE 23.7 (8.3) 28.8 (8.1) 31.3 (9.1) 32.4 (9.4) 29.0 (8.9)

20 S sLORETA 16.4 (6.6) 12.0 (5.3) 11.1 (5.0) 10.4 (4.9) 12.9 (4.8)

20 S wMNE 14.6 (5.8) 17.1 (7.9) 17.9 (8.2) 18.1 (8.0) 16.2 (6.9)

20 M sLORETA 15.5 (7.3) 10.6 (5.2) 9.6 (5.2) 8.8 (4.4) 11.7 (5.9)

20 M wMNE 21.0 (7.2) 25.4 (6.9) 26.6 (7.7) 26.2 (7.9) 22.7 (5.8)

20 D sLORETA 17.6 (5.4) 11.2 (3.9) 8.8 (3.3) 8.0 (3.6) 15.0 (3.6)

20 D wMNE 22.8 (7.3) 26.0 (6.1) 27.5 (7.4) 29.2 (7.6) 26.0 (6.1)

comparison, we evaluated the errors also in case of sampling without replacement.

Finally, since our aim is to show that the random sampling method is efficient in

localizing neural sources, we evaluated the distance localization error (DLE), i.e., the

distance between the real source and the center of mass of the reconstructed current

distribution. The DLE is a common metric used in the MEG/EEG community to test

the accuracy of the reconstructed neural current [35]. For the random dipole sampling

method, we compute the center of mass of the source localizations obtained in 10

different runs of the method. The number of sampled columns c ranges from 100 to

2000 and the results are averaged over 1000 simulations. Figure 3 shows the boxplots

for superficial, middle and deep sources when SNR=10dB and SNR=20dB while the

average DLE and the standard deviation are listed in Table 3. For comparison, the

results obtained using the full source space are also shown.

To analyze the effect of the source space size, we performed numerical tests for

n = 2000, 4000, 8000. Figures 4–5 show the boxplots of DLE across 100 simulations for

superficial, middle and deep sources when SNR=10dB and SNR=20dB. The average

DLE and the standard deviation are listed in Tables 4–6.

In Figure 6 the median of the condition number κ(GwMNE) across 100 simulations for

different values of the number of sampled columns c is plotted.
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Table 4. The average DLE and the standard deviation σ (mm) for n = 2000 and

different source depth (LOC = S (superficial sources at least 50 mm from the origin

of the head coordinate system), M (middle sources between 30 and 50 mm from the

origin of the head coordinate system), D (deep sources at less then 30 mm from the

origin of the head coordinate system))

SNR LOC inversion c = 100 c = 500 c = 1000 full

method DLE (σ) DLE (σ) DLE (σ) DLE (σ)

10 S sLORETA 17.3 (6.2) 13.5 (5.5) 13.1 (5.5) 14.4 (4.3)

10 S wMNE 17.0 (7.8) 18.3 (8.8) 19.1 (9.5) 19.1 (10.0)

10 M sLORETA 16.3 (6.4) 12.9 (6.2) 12.7 (7.3) 13.7 (6.3)

10 M wMNE 22.0 (9.7) 25.4 (9.6) 25.8 (11.1) 24.1 (11.4)

10 D sLORETA 16.5 (6.9) 11.9 (5.0) 12.1 (6.2) 14.0 (5.5)

10 D wMNE 23.7 (9.8) 26.6 (10.6) 27.1 (9.5) 28.1 (11.4)

20 S sLORETA 16.4 (6.0) 12.5 (4.8) 12.2 (4.6) 13.7 (4.3)

20 S wMNE 16.0 (6.6) 17.0 (7.3) 16.4 (7.6) 16.7 (7.2)

20 M sLORETA 15.2 (6.5) 11.1 (5.3) 10.8 (5.5) 12.6 (5.9)

20 M wMNE 19.2 (7.0) 21.8 (7.4) 22.8 (7.8) 19.4 (7.8)

20 D sLORETA 15.1 (6.3) 10.7 (4.3) 9.9 (4.8) 13.1 (5.1)

20 D wMNE 21.2 (9.6) 24.3 (8.8) 24.1 (7.5) 25.6 (11.0)

Table 5. The average DLE and the standard deviation σ (mm) for n = 4000 and

different source depth (LOC = S (superficial sources at least 50 mm from the origin

of the head coordinate system), M (middle sources between 30 and 50 mm from the

origin of the head coordinate system), D (deep sources at less then 30 mm from the

origin of the head coordinate system))

SNR LOC inversion c = 100 c = 500 c = 1000 c = 2000 full

method DLE (σ) DLE (σ) DLE (σ) DLE (σ) DLE (σ)

10 S sLORETA 17.2 (6.2) 12.8 (5.9) 11.9 (5.9) 10.7 (5.6) 18.8 (7.1)

10 S wMNE 16.3 (6.8) 20.2 (10.6) 21.9 (13.3) 29.8 (23.6) 98.1 (26.9)

10 M sLORETA 15.2 (6.6) 12.1 (5.4) 11.2 (5.4) 11.2 (5.6) 24.8 (9.2)

10 M wMNE 21.1 (7.2) 27.0 (10.8) 35.6 (14.3) 49.4 (21.9) 57.5 (23.6)

10 D sLORETA 15.0 (6.3) 12.8 (6.3) 11.8 (5.6) 12.4 (5.4) 30.5 (7.5)

10 D wMNE 24.7 (9.7) 31.7 (12.7) 41.3 (14.8) 54.6 (18.8) 52.4 (19.0)

20 S sLORETA 15.4 (6.5) 11.4 (5.2) 10.2 (4.5) 9.5 (4.6) 18.3 (6.5)

20 S wMNE 14.9 (6.0) 18.3 (9.0) 19.7 (11.7) 29.2 (23.6) 97.5 (26.9)

20 M sLORETA 14.3 (6.7) 10.7 (4.2) 10.0 (4.6) 9.7 (5.0) 23.0 (8.0)

20 M wMNE 19.3 (7.1) 24.3 (9.3) 33.8 (12.2) 49.4 (22.6) 58.2 (23.8)

20 D sLORETA 14.4 (6.4) 11.3 (5.1) 10.3 (4.4) 10.9 (5.0) 29.1 (7.0)

20 D wMNE 22.9 (7.9) 28.9 (10.0) 38.4 (15.8) 54.4 (20.3) 52.1 (18.6)
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Superficial sources Middle Sources Deep Sources

SNR=10dB SNR=10dB SNR=10dB

SNR=20dB SNR=20dB SNR=20dB

Figure 3. Boxplots of DLE across 100 simulations for n = 15000 when SNR=10dB

(first row) and SNR = 20dB (second row). First column refers to superficial sources (at

least 50 mm from the origin of the head coordinate system), second column refers to

middle sources (between 30 and 50 mm from the origin of the head coordinate system),

third column refers to deep sources (at less then 30 mm from the origin of the head

coordinate system).

4.2. Free orientation

In case of free orientation we define the local reconstruction error for wMNE as

Ek
wMNE =

{
∥qk

wMNE − q̃k
wMNE∥, if k ∈ Ic,

∥qk
wMNE∥, if k /∈ Ic.

(4.1)

Since ∥qk
wMNE − q̃k

wMNE∥ ≤ ∥STQwMNE − Q̃wMNE∥, k ∈ Ic, and ∥qk
wMNE∥ ≤

∥ST
NQwMNE∥, the estimate in Theorem 3.3 holds also in this case.

For sLORETA the local reconstruction error is defined as

Ek
sL =

{ ∣∣zk − z̃k
∣∣ , if k ∈ Ic,∣∣zk∣∣ , if k /∈ Ic,

(4.2)

where zk and z̃k are given in (2.13) and (2.23), respectively. It can be shown that

|zk − z̃k| ≤ (∥qk
wMNE∥ ∥(Σk

QwMNE
)−1∥+ ∥q̃k

wMNE∥ ∥(Σ̃k
QwMNE

)−1∥)Ek
wMNE

+ ∥qk
wMNE∥ · ∥q̃k

wMNE∥ · ∥(Σk
QwMNE

)−1 − (Σ̃k
QwMNE

)−1∥
(4.3)

The first term depends on the wMNE local reconstruction error while the second term

is related to the error of the covariance matrix. Since ∥qk
wMNE∥ ≤ ∥QwMNE∥ and
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Table 6. The average DLE and the standard deviation σ (mm) for n = 8000 and

different source depth (LOC = S (superficial sources at least 50 mm from the origin

of the head coordinate system), M (middle sources between 30 and 50 mm from the

origin of the head coordinate system), D (deep sources at less then 30 mm from the

origin of the head coordinate system))

SNR LOC inversion c = 100 c = 500 c = 1000 c = 2000 full

method DLE (σ) DLE (σ) DLE (σ) DLE (σ) DLE (σ)

10 S sLORETA 16.1 (5.9) 11.9 (5.2) 10.6 (5.1) 9.8 (4.4) 19.4 (8.4)

10 S wMNE 15.9 (6.4) 19.5 (9.3) 21.3 (9.5) 22.5 (12.6) 96.2 (33.2)

10 M sLORETA 14.9 (7.1) 11.5 (5.5) 11.3 (5.0) 9.5 (4.8) 27.3 (8.7)

10 M wMNE 20.2 (7.8) 28.4 (9.6) 30.1 (11.9) 36.7 (14.4) 68.8 (26.9)

10 D sLORETA 14.0 (6.0) 11.2 (4.6) 10.6 (4.5) 10.5 (4.5) 32.1 (6.6)

10 D wMNE 23.4 (8.6) 30.7 (12.6) 36.5 (11.9) 42.9 (16.9) 69.3 (27.3)

20 S sLORETA 15.0 (5.9) 10.7 (4.4) 9.2 (4.2) 8.6 (4.0) 18.8 (8.2)

20 S wMNE 14.6 (5.6) 18.4 (9.0) 19.5 (8.0) 21.2 (13.0) 96.5 (32.2)

20 M sLORETA 13.4 (6.6) 10.2 (4.7) 8.9 (4.0) 7.2 (3.3) 26.2 (8.3)

20 M wMNE 19.3 (6.5) 24.0 (8.0) 26.6 (10.7) 36.0 (15.6) 67.9 (25.2)

20 D sLORETA 13.8 (5.3) 10.0 (4.4) 9.6 (4.1) 8.3 (3.6) 31.1 (5.8)

20 D wMNE 20.8 (8.0) 27.9 (9.3) 33.1 (10.5) 41.4 (17.0) 69.1 (27.0)

∥q̃k
wMNE∥ ≤ ∥Q̃wMNE∥, estimates in Proposition 3.5 holds. Moreover,

∥(Σk
QwMNE

)−1 − (Σ̃k
QwMNE

)−1∥ ≤ 1

σmin(Σk
QwMNE

)
+

1

σmin(Σ̃k
QwMNE

)
. (4.4)

Using estimates (3.14) and (4.4) in (4.3), we obtain the upper bound for the local

sLORETA error

|zk − z̃k| ≤ 2

µ ξ
∥MT b∥

(
Ek
wMNE +

1

µ
∥MT b∥

)
, (4.5)

where ξ = min(σmin(Σ
k
QwMNE

), σmin(Σ̃
k
QwMNE

)). Thus, the sLORETA local error behaves

as the wMNE local error.

To show the effectiveness of the random dipole sampling method even in the free

orientation case, we performed numerical tests with n = 15000 and SNR = 20dB.

The boxplots of the DLE in Figure 7 show that the DLE is comparable to that obtained

in the fixed orientation case.

5. Discussion

5.1. Related methods

Monte Carlo methods have a long history dating back to the middle of the twentieth

century [36]. Since then, these methods have been widely used in scientific computing,

for instance for integrating differential equations or probability distributions. In

numerical linear algebra randomness is commonly used to initialize iterative methods
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Superficial sources Middle sources Deep sources

n = 2000

n = 4000

n = 8000

Figure 4. Boxplots of DLE across 1000 simulations when SNR=10dB for n = 2000

(first row), n = 4000 (second row), n = 8000 (third row). First column refers to

superficial sources (at least 50 mm from the origin of the head coordinate system),

second column refers to middle sources (between 30 and 50 mm from the origin of the

head coordinate system), third column refers to deep sources (at less then 30 mm from

the origin of the head coordinate system).

[28]. The first papers in which randomized methods were used to construct low-rank

approximations of matrices are from the late 1990s [37, 38]. Nowadays, these methods

are successfully used in several fields, such as computer science, numerical linear algebra,

regression problems. For a comprehensive review on randomized methods we refer the

reader to [15,16].

There are many ways randomness comes into play in the solution of the MEG/EEG

inverse problem. In the Bayesian framework Markov Chain Monte Carlo methods

are usually used to sample posterior densities (see [3, 39] and references therein). In

parametric methods the number of sources is modeled as a random variable while
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Superficial sources Middle sources Deep sources

n = 2000

n = 4000

n = 8000

Figure 5. Boxplots of DLE across 100 simulations when SNR=20dB for n = 2000

(first row), n = 4000 (second row), n = 8000 (third row). First column refers to

superficial sources (at least 50 mm from the origin of the head coordinate system),

second column refers to middle sources (between 30 and 50 mm from the origin of the

head coordinate system), third column refers to deep sources (at less then 30 mm from

the origin of the head coordinate system).

their locations and orientations are modeled as random vectors (see [31] and references

therein). In the randomized multiresolution scanning method [23, 24] randomness is

used to generate multiple randomized decompositions of the source space at different

resolution levels.

The random dipole sampling method described in Section 2.3 uses a different

strategy. It samples a small set of dipoles in the source space using the uniform

probability distribution. Then, it solves an inverse problem where the unknowns are

the dipole moments on the drawn (fixed) locations. The rationale behind the method is

that we can assume the neuroelectric current J(r) to be spatially sparse so that it can
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Figure 6. The median of the condition number κ(GwMNE) across 100 simulations

versus the number of sampled columns c for different values of n.

Superficial sources Middle sources Deep sources

(a) (b) (c)

Figure 7. Boxplots of DLE across 100 simulations with n = 15000 and SNR=20dB

in the free orientation case for superficial (a), middle (b), and deep (c) sources.

be represented using just few sources [40,41], i.e.,

J(r) ≈
∑
k∈Ic

qk δ(r− rk).

The uniform distribution is a good choice when no prior information on the spatial

distribution of the neuroelectric current is available. On the other hand, using different

probability distributions would increase the computational cost.

Now, sampling c dipoles means to sample 3c columns in the lead field matrix since

we select only the c sub-matrices M(rk) corresponding to the dipoles with indices

k ∈ Ic. Thus, the random dipole sampling can be seen as a randomized column sampling

procedure and it reduces to the column sampling introduced in [25, 42] in case of fixed

orientation. For a given matrix A ∈ Rm×n the column sampling is optimal when the

columns are sampled using the probability distribution

pk =
∥A(k)∥2∑n
k=1 ∥A(k)∥2

, 1 ≤ k ≤ n,
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where A(k) denotes the k-th column of A [15]. This is the same as dividing each column

of the matrix A by pk and then sampling the columns using the uniform distribution.

We note that usually in wMNE the columns of the lead field matrix are normalized by

a depth weighting that is related to the norm of the columns. This is evident when

writing the wMNE solution (2.12) in the equivalent form [2]

QwMNE = RMT (MRMT + I)−1b,

and justifies the use of the uniform distribution in the random dipole sampling method

described in Section 2.3.

5.2. Our findings

As shown in Figures 1-2, the error with replacement and without replacement are

comparable for lower values of c and the difference only gets relevant if c > 5000.

In fact, in case of sampling without replacement the error goes to zero as the number

of sampled columns approaches the maximum number of columns n, while in case of

sampling with replacement the error decreases to a minimum located around c = 6000

for wMNE and c = 9000 for sLORETA. For higher values of c it grows slightly. This

does not pose a strict restriction on the use of the random dipole sampling method,

especially in real-time applications, as this method is aimed to significantly reduce the

dimensionality of the EEG inverse problem, thus the goal is to use it for c ≤ 2000.

The behavior of the error (see Figures 1–2) is in agreement with the estimates given in

Section 3. In fact, when the number of sampled columns c is much smaller than n, due

to factor max(n
c
ν − 1, 1) the error decreases rapidly as c increases reaching a minimum

approximately for n
c
ν = 2. Then, the error increases slowly, roughly as ν. Instead, in

case of sampling without replacement the error decreases monotonically as c increases

and is equal to zero for c = n.

The numerical tests show that the choice 500 ≤ c ≤ 2000 is a good compromise between

accuracy and computational cost. This is more evident looking at the results shown in

Figures 3–5 and Tables 3–6. When n = 15000 the DLE obtained by the random dipole

sampling method with c = 500, 1000, 2000 is comparable to the error obtained using the

full source space and is quite often even lower (see Figure 3 and Table 3). In general,

sLORETA performs better than wMNE, regardless of source depth, in agreement with

known results in the literature [43]. This is true for both SNR=10dB and SNR=20dB,

causing the higher noise a slightly larger error, but still comparable with that of the full

source space case. We note that even in the case of a smaller source space, the DLE

values for the two noise levels are comparable.

When the size of the source space is reduced (see Figures 4–5 and Tables 4–6 where

n = 2000, 4000, 8000) the DLE for sLORETA is lower when the number of sampled

columns is c = 2000, i.e., c is in the order of n. The DLE for wMNE is lower both when

n = 2000, for all values of c and even in case of full source space, and when c = 100, for

all values of n. This means that wMNE is able to localize sources well not only when
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(a) (b)

Figure 8. The averaged absolute error ∥EwMNE∥ for wMNE (a) and sLORETA (b)

versus the number of sampled columns c, in the case of sampling with replacement for

superficial sources, middle sources and deep sources.

the source space has a low dimension, but also when few sources of a large source space

are sampled by the random dipole sampling method. It is known that a low-dimensional

source space can improve the localization of sparse neural sources [44] but this comes

at the expense of low resolution. The random dipole sampling method has the same

effect, with the advantage that the resolution can be easily improved by averaging the

results obtained using different sampled source spaces. Interestingly, the reconstruction

error is lower especially for deep and middle sources, as shown in Figure 8, where the

norm of the local reconstruction error, averaged for different source depths, is displayed

for both wMNE and sLORETA. This suggests that the sparsity induced by the random

dipole sampling method is more effective for deep sources, according to the results in

the literature (see, [24,44]).

Finally, we note that the behavior of the localization error can be related to the

conditioning of the matrix GwMNE. In fact, the values of κ(GwMNE) displayed in

Figure 6 show that the condition number increases when c increases, being smaller

when n = 2000 or when c ≤ 2000.

6. Conclusion

In this paper, we analyzed in detail how to apply the random dipole sampling method

for solving the inverse EEG problem. To the best of our knowledge, this is the first

time that the random dipole sampling method has been used along with wMNE and

sLORETA, two inversion methods well-known in the literature. The numerical tests

have shown that the localization of neural sources produced by randomized wMNE and

randomized sLORETA is comparable to that obtained when using the full source space.

This suggests that the randomized version of wMNE and sLORETA can be successfully

used in real-time applications, possibly with wearable systems, for which it is important
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to reduce the computational cost of the inversion step.

To this end, it is important to analyze the performance of the random dipole sampling

method in solving the inverse EEG problem in case of real data. In addition, the

reconstruction error estimates we provided are deterministic. It would be interesting to

obtain probabilistic error estimates. These topics will be the subject of future work.
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Appendix

Proof of Proposition 3.1

Using (2.16)-(2.17) and recalling that GwMNE is the sum of two definite positive matrices

we get

σmin(GwMNE) = σmin(M
TM +R−1) ≥ σmin(R

−1) = max
1≤k≤n

∥M(rk)∥ρ/2.

The bound for σmin(G̃wMNE) can be proved in a similar way.

Proof of Proposition 3.2

From (2.22),(2.26) and (2.24) it follows

G̃wMNE = MT
S MS +R−1

S =
n

c
ST (MTM +R−1)S =

n

c
STGwMNES.

Hence, we get

STQwMNE − Q̃wMNE = (STG−1
wMNE − G̃−1

wMNES
T )MT b

= G̃−1
wMNE(G̃wMNES

T − STGwMNE)G
−1
wMNEM

T b

= G̃−1
wMNES

TGwMNE(
n
c
IS − I)G−1

wMNEM
T b.

Taking the norm of both the l.h.s. and the last equality we obtain

∥STQwMNE − Q̃wMNE∥ = ∥̃G−1
wMNES

TGwMNE(
n
c
IS − I)G−1

wMNEM
T b∥

≤ ∥G̃−1
wMNE∥∥ST∥∥GwMNE∥∥I − n

c
IS∥∥G−1

wMNE∥∥MT b∥

≤ κ(GwMNE)

σmin(G̃wMNE)
∥ST∥∥I − n

c
IS∥∥MT b∥.
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Since I − n
c
IS is a diagonal matrix whose entries corresponding to the indices k ∈ Ic

are 1 − n
c
νk, while the entries corresponding to the indices k /∈ Ic are equal to 1,

∥I − n
c
IS∥ = max(n

c
(max
k∈Ic

νk)− 1, 1) and the first estimate follows.

As for the second estimate, we have

∥S̄TQwMNE∥ = ∥S̄TG−1
wMNEM

T b∥ ≤

≤ ∥G−1
wMNE∥∥MT b∥ =

1

σmin(GwMNE)
∥MT b∥.

Proof of Lemma 3.4

Using (2.2) and (2.6) we get∣∣∣∣ 1

∥L(rk)∥F
− 1

∥LS(rk)∥F

∣∣∣∣ ≤ 1

∥L(rk)∥F
+

1

∥LS(rk)∥F

≤ 1

σmin(L(rk))
+

1

σmin(LS(rk))
≤ 2

σmin(L(rk))

≤ 2

min1≤k≤n σmin(L(rk))

and the claim follows.

Proof of Proposition 3.5

From (2.21) and Proposition 3.1 we get

∥Q̃wMNE∥ = ∥G̃−1
wMNEM

T
S b∥ ≤ ∥G̃−1

wMNE∥∥MT
S b∥

≤ 1

µ
∥MT

S b∥ ≤ 1

µ
∥MT b∥.

The last inequality is a consequence of the fact that MT
S b ∈ Rc while MT b ∈ Rn.

The inequality for ∥QwMNE∥ can be proved in a similar way.

Bibliography

[1] Sylvain Baillet, John C Mosher, and Richard M Leahy. Electromagnetic brain mapping. IEEE

Signal Processing Magazine, 18(6):14–30, 2001.

[2] Roberta Grech, Tracey Cassar, Joseph Muscat, Kenneth P Camilleri, Simon G Fabri, Michalis

Zervakis, Petros Xanthopoulos, Vangelis Sakkalis, and Bart Vanrumste. Review on solving

the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation,

5(1):1–33, 2008.

[3] Daniela Calvetti, Harri Hakula, Sampsa Pursiainen, and Erkki Somersalo. Conditionally Gaussian

hypermodels for cerebral source localization. SIAM Journal on Imaging Sciences, 2(3):879–909,

2009.



Solution of the EEG inverse problem by random dipole sampling 24

[4] Stefan Haufe, Sven Dähne, and Vadim V Nikulin. Dimensionality reduction for the analysis of

brain oscillations. Neuroimage, 101:583–597, 2014.
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