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Abstract: This paper reported a study based on the application of SWIR (shortwave infrared) spec-
troscopy to assess the presence of brominated flame retardants (BFRs) in plastic scraps coming from
an e-waste stream composed by CRT (i.e., cathode-ray tube) monitors and televisions. An X-ray
fluorescence (XRF) analysis was performed on plastic scraps to determine the presence and content of
bromine (Br). The presence in plastic waste-flow streams, fed to or resulting from a recycling process,
of individuals characterized by high concentrations of Br does not allow their use as secondary
raw materials, imposing the need for an ad hoc separation processes. Chemometric methods were
adopted for setting up models able to discriminate Br content. In more detail, principal component
analysis (PCA) was used as an exploratory tool, while partial least squares (PLS) and locally weighted
regression based on PLS regressions (LWRPLS) were used as multivariate regression models to test
the ability of the spectra to predict Br content. The LWRPLS, showing an Rp

2 of about 0.9, demon-
strates the ability of this algorithm to establish a good correlation between the spectral signatures of
plastic scraps and their Br content.

Keywords: bromine; multivariate regression; waste of electrical and electronic equipment (WEEE);
plastics

1. Introduction

Due to its properties, plastic is largely utilized in various end-use markets such as
packaging (39.9%), building and construction (19.8%), automotive (9.9%) and electrical and
electronic equipment (EEE) (6.2%) [1]. With reference to the latter category, the waste of
electrical and electronic equipment (WEEE) has increased three times compared to that of
municipal waste. As a consequence, the best management strategies have to be identified
for this class of products [2] in order to maximize their materials and precious element
recovery [3,4], thus avoiding environmental pollution [5]. With reference to the recovery of
secondary plastics coming from WEEE, one of the main problems to face is the presence
of several hazardous elements such as lead, cadmium, and mercury or additives (e.g., as
phthalate plasticizers or color formulations, including cadmium) [6]. Furthermore, the
identification and separation of plastic scraps containing brominated flame retardants
(BFRs) constitutes one of the main challenges in the recycling of such materials.

BFRs are used for their property of increasing fire resistance and delaying flames [7];
however, bromine (Br) is toxic for the environment and harmful for human/animal health
because it is lipophilic, persistent, and in bio-accumulative compounds [8]. Plastic scraps
containing BFRs are difficult to separate using conventional methods in recycling plants.
For this reason, the need to utilize reliable methods for sorting and/or quality control
applications arises. As a consequence, the systematic identification of brominated plastic
scraps, or the assessment of their Br content, can be considered one of the key issues in
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certifying and classifying secondary plastics coming from WEEE fed to recycling plants
and/or in establishing full control of the resulting processed fractions and by-products,
which have to comply with market demands.

A certain number of studies have been carried out with the aim of identifying the best
recycling strategies both through chemical [9] and mechanical recycling [4,10]. In a sorting
scenario, the Br concentration limit of 2000 mg/kg is commonly utilized, according to the
CENELEC CLC/TS 50625-3-1 technical specification [11]: plastic waste fractions charac-
terized by a Br content below 2000 ppm are thus considered BFR-free. The incineration
process is pursued when Br content exceeds 2000 ppm [12].

Most of the methods used to detect, separate, and recover polymers characterized by
a high Br content are based on density separation [13], or on the utilization of different
spectroscopic techniques such as Raman, mass pyrolysis, X-ray fluorescence (XRF), laser-
induced plasma spectroscopy (LIPS), near infrared (NIR) and mid infrared (MIR) reflection,
and MIR pyrolysis [14]. All these analyses are usually carried out at laboratory scale and on
a limited number of individuals. Among the above-mentioned methods, the proposed NIR
spectroscopy approach, being non-destructive and not requiring any sample preparation,
meets the requirements of being fast, sustainable, and cost-effective. Using this method,
waste materials’ recognition can be obtained through their surface spectral response by
adopting specialized devices able to collect reflectance spectra.

Visible and NIR spectroscopy techniques are actually utilized to perform both qualita-
tive and quantitative analysis in different fields: i.e., in the raw materials sector [15,16], in
cultural heritage [17,18], in the agricultural and food industries [19–22], in the pharmaceu-
tical and chemical industries [23–25], in clinical applications [26,27], and more generally in
analytical science [28]. In recent years, NIR-based applications have rapidly emerged and
grown quickly with reference to solid waste sectors [2,29–32].

From a circular economy perspective, this study proposes a new “friendly and green”
solution specifically addressed to preventing pollution by properly managing WEEE plas-
tics containing BFRs.

Previous studies have been successfully carried out to explore the possibility of identi-
fying BFR from BFR-free plastics by HyperSpectral Imaging (HSI) techniques [30,31,33].
In this paper, the possibilities and limits of predicting Br content in e-waste plastic scraps
following a shortwave infrared (SWIR)-spectroscopy-based approach are presented and
discussed. A portable spectrophotoradiometer was used to collect SWIR reflectance spec-
tra. Different chemometric approaches were explored in order to test the ability of this
technique to predict Br content in plastic scraps. In more detail, principal component
analysis (PCA) was used as an exploratory tool. Partial least squares (PLS) and locally
weighted regression (LWR), based on PLS regressions, were used as multivariate regression
models to determine Br content, starting from the information contained in the collected
reflectance spectra.

2. Materials and Methods
2.1. Materials

The analyzed samples consist of shredded plastic scraps from cathode-ray tubes (CRT)
to be incinerated. Samples were provided by a company of the Galloo group (Galloo
Plastics, Halluin, France). Forty-two individual scraps were chosen from the pool. Samples
were selected according to different characteristics, such as color, size, thickness, and weight
(Figure 1). The total content of Br for each individual was evaluated by XRF spectrometry.
A handheld portable XRF was used for this purpose.
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Figure 1. Analyzed e-waste plastic scraps. Labelling was assigned to identify each scrap 
preliminary characterized by XRF and then tested by SWIR spectroscopy.  

2.2. X-ray Fluorescence 
The analysis was carried out using a hand-held XRF NitonTM XL2, mounted on a 

benchtop stand, with an Ag-anode X-ray tube as the X-ray source and a silicon drift 
detector (SDD) as the detector. Br measurements were performed using specialized 
software designed specifically for plastics, with automatic thickness correction. Each 
sample was measured for about one minute. Br determinations were calibrated in 
different environmental conditions using certified reference material at a concentration of 
about 1000 mg/kg. The coefficient of variation (CV), which is the ratio of standard 
deviation (SD) to the collected data mean (M), was thus calculated to be 0.03. 

  

Figure 1. Analyzed e-waste plastic scraps. Labelling was assigned to identify each scrap preliminary
characterized by XRF and then tested by SWIR spectroscopy.

2.2. X-Ray Fluorescence

The analysis was carried out using a hand-held XRF NitonTM XL2, mounted on a
benchtop stand, with an Ag-anode X-ray tube as the X-ray source and a silicon drift detec-
tor (SDD) as the detector. Br measurements were performed using specialized software
designed specifically for plastics, with automatic thickness correction. Each sample was
measured for about one minute. Br determinations were calibrated in different environmen-
tal conditions using certified reference material at a concentration of about 1000 mg/kg. The
coefficient of variation (CV), which is the ratio of standard deviation (SD) to the collected
data mean (M), was thus calculated to be 0.03.
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2.3. Vis-SWIR Spectrophotometry

A portable spectroradiometer, the ASD FieldSpec 4® Standard-Res, equipped with
a contact probe, was used to acquire randomly five spectra in reflectance mode for each
individual scrap. The acquisition of single spectra took about 2 s. The spectroradiometer
operates in the Vis-SWIR (350–2500 nm) wavelength range, with a spectral resolution of
3 nm at 700 nm and 10 nm at 1400/2100 nm [34]. A personal computer controls the spectra-
acquisition process. Three distinct detectors are housed within the detector case together
with three different holographic diffraction gratings. Each detector is covered by an order
separation filter to suppress second and higher order light. A VNIR detector (512 element
silicon array; 350–1000 nm), a SWIR 1 detector (Graded Index InGaAs. Photodiode, two-
stage TE cooled; 1001–1800 nm), and a SWIR 2 detector (Graded Index InGaAs. Photodiode,
two-stage TE cooled; 1801–2500 nm) comprise the detector system. The ASD Contact Probe
is powered by a halogen bulb with a color temperature of 2901 +/− 10% K. The contact
probe has a spot size of 10 mm. The ASD RS3 software was used for data acquisition and
calibration [35]. The calibration of the ASD FieldSpec 4® Standard-Res spectroradiometer
was carried out by acquiring the black and white reference standards, that is: performing a
“dark acquisition” based on the dark current calibration file and acquiring a certified white
Spectralon™ ceramic material, respectively.

Using ViewSpec Pro (Ver. 6.2.0), the gathered spectra (“.asd” data files) were combined
into an ASCII text file. MATLAB® (MATLAB R2019a; ver. 9.6.0) was used to import
the ASCII text file adopting “fieldspec_import2.m,” a script accessible on GitHub (https:
//doi.org/10.5281/zenodo.3776139, accessed on 1 December 2022. After that, imported
data files were examined in the MATLAB® environment using PLS_toolbox (Eigenvector
Research, Inc., Wenatchee, WA, USA; ver. 8.2.1). Dataset objects (DSOs) were used to store
the data, and classes were defined.

2.4. Reflectance Spectra Analysis
2.4.1. Spectra Preprocessing

Collected reflectance spectra were preliminarily pre-treated by applying Splice Correction
(SC), in order to eliminate the signal gaps between the detector domains. As previously
outlined, the instrument’s collected signal contains critical transitions at λ = 1000 nm and
λ = 1800 nm. SC’s objective is to correct the discrepancy between the values of reflectance
R1000nm/R1001nm and the reflectance values R1800nm/R1801 nm [36]. The SC corrects steps in an
input spectral matrix using linear interpolation of the values of the middle sensor’s edges.

Spectra collection and analyses were carried out with reference to the spectral range
900–2500 nm. This choice was made to avoid the influence of the colors of the plastic
scraps in the further processing. In order to perform the regressions with Br content, the
variance in data matrix X, which is orthogonal to the response matrix Y, was removed using
orthogonal signal correction (OSC) [37]. Data were then pre-processed by a mean center
(MC) algorithm centering columns in order to have a zero mean [38].

2.4.2. Exploratory Analysis

According to the Br content determined by XRF analysis, principal component analysis
(PCA) was used to carry out the exploratory analysis of decomposed spectral data. The PCA
is a powerful exploratory tool, allowing the extraction of reflectance data from dominant
patterns of the matrix X in terms of two smaller matrices of scores (T) and loadings (PT)
products [39].

In more detail, two classes of data were explored according to the recommended
concentration limits [11]: “High Br content” (i.e., Br content > 2000 mg/kg) and “Low Br
content” (i.e., Br content < 2000 mg/kg). PCA was applied to corrected and mean-centered
SWIR Spice data. Principal components (PCs) were chosen by exploring the eigenvalue
plot. Outliers and non-informative data were identified and excluded.

https://doi.org/10.5281/zenodo.3776139
https://doi.org/10.5281/zenodo.3776139
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2.4.3. Regression Models

The spectral dataset (X) and the reference measurements (Y) were randomly divided
into two sections using the Kennard-Stone (K-S) algorithm in order to set up the regression
models. The first 70% of the data were utilized as a calibration set, while the latter 30% were
used as a test set. To determine the ideal model complexity and select the number of latent
variables (LVs), Venetian blinds (VBs) were employed as a cross-validation approach, while
to evaluate the quality of the set-up regression models, three parameters were considered:
root mean square error (RMSE), the bias, and the coefficient of determination R2, thus
allowing one to evaluate the difference between the estimated response and the observed
response and the goodness of the fit. These parameters were evaluated for the calibration
(C), cross-validation (CV), and prediction (P) phases of the modelling.

The partial least squares regression (PLSR) and the locally weighted partial least
squared regression (LWPLSR) were chosen to predict the Br content from reflectance spec-
tra. The PLSR is a chemometric technique combining features of both multiple regression
and PCA. The main objective of PLSR is to predict the matrix Y that stores the dependent
variables from X, the matrix containing the predictors, and to describe the underlying com-
mon structure of the data [40,41]. It is often applied when a high number of independent
variables have to be employed to predict a small number of dependent variables. On the
other hand, LWPLSR is a particular case of weighted PLSR that constructs a local regression
model according to the similarity between a target sample and the dataset samples [42].
It is an efficient prediction method when data heterogeneity creates nonlinear relations
(curvatures and clustering) between the response and the explicative variables [43].

3. Results and Discussion
3.1. Exploratory Analysis
3.1.1. XRF Bromine Measurements

The XRF analysis of the 42 plastic scraps (Br content = 49,492 ± 38,780 mg/kg) high-
lighted that about 66% of the analyzed samples are characterized by a high Br content,
while the remaining 34% present a low Br content according to the Br concentration limit
of 2000 mg/kg suggested by the technical specification CENELEC CLC/TS 50625-3-1 [11]
(Figure 2). The Br content, measured by the XRF spectrometry of the analyzed plastic
scraps, ranges from 3 to 123,100 ± 30 mg/kg.
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3.1.2. Reflectance Spectra Analysis

Figure 3 shows raw and pre-processed reflectance spectra averaged by Br content
classes. Greater spectral differences can be seen around 1600–1700 nm and 2100–2200 nm.
These differences are most likely due to the CH 1st overtone region and NH/OH in the
combination-band region. In more detail, these differences may arise from the differ-
ent composition of the analyzed plastic scraps included in the two bromine classes (i.e.,
presence/absence of acrylonitrile butadiene styrene and polystyrene). Furthermore, the re-
flectance spectra of “High Br content” samples show an additional absorption peak around
1400–1500 nm, which is most likely caused by the CH 1st overtone combination region [44].
According to previous investigations, this peak can be attributed to the presence of TBBPA
(tetrabromobisphenol A) [32].
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The score plot of the performed PCAs, as reported in Figure 4a, shows that the classes
of Br content are clustered according to the first PC. The first PC explains a variance equal
to 96.19%. High content class scores are mainly clustered in the positive space of PC 1,
while most of the Br low content class scores can be found in the negative space of scores
on PC 1. As shown in the loading plot in Figure 4b, high content class scores are more
influenced by the spectral range spanning from 900–1600 nm, corresponding to the range
of the loadings that have higher values.
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3.1.3. Regression Analysis

The PLSR method reached a coefficient of determination (Rp
2) of about 0.5 and a

RMSEP equal to 27,025 ppm of Br, while a better Rp
2 of about 0.9 is achieved using the

LWPLSR, with a smaller root mean square error of prediction (RMSEP) of about 13,399 ppm
of Br. The regression plots referred to Br content from SWIR reflectance spectra are shown
in Figure 5, while the regression results are reported in Table 1.

Table 1. The partial least squares regression (PLSR) and the locally weighted partial least squared
regression (LWPLSR) results for bromine content from SWIR reflectance spectra.

Statistical Parameters
Regression

PLSR LWPLSR

RMSEC
Root Mean Square Error of Calibration 19,653 16,239

RMSECV
Root Mean Square Error of Cross-Validation 22,642 46,337

RMSEP
Root Mean Square Error of Prediction 27,025 13,399

Calibration Bias 1.455 × 10−11 213

Cross-validation Bias 219 −2492

Prediction Bias −953 −3302

R2
C 0.736 0.828

R2
CV 0.650 0.343

R2
P 0.484 0.877
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14 × 104 mg/kg. Plots on the right are a graphical representation of the calibrated regression scores
in the range of Br content from 0 to 2000 mg/kg, the latter value corresponds to the Br concentration
limit defined in the technical specification CENELEC CLC/TS 50625-3-1 [11].

4. Conclusions

A new sustainable approach based on SWIR spectroscopy coupled with chemometric
methods was investigated in order to detect Br content inside plastic scraps. SWIR spec-
troscopy is a non-destructive, non-invasive, and sustainable technology, which allows a fast
and accurate analysis of the spectral characteristics of the analyzed samples. This technique
is sustainable as it does not emit radiation dangerous to humans and does not require a
preparation phase of the samples. In addition, SWIR devices are much less expensive than
portable XRF spectrometers. This portable instrumentation, if properly calibrated for the
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quantification of bromine in plastics, can be adopted directly in treatment plants. This
methodology can be seen as a tool to maximize the polymer recyclable fractions, removing
those containing toxic substances (i.e., Br), thus reducing pollution, toxic emissions, landfill,
and contributing to the mitigation of climate change effects, specifically addressing such
Sustainable Development Goals (SDGs) as SDG 9 (Industry, Innovation and Infrastructure),
SDG 12 (Responsible Consumption and Production, SDG 13 (Climate Action), SDG 14 (Life
Below Water), and SDG 15 (Life on Land). The application of SWIR (shortwave infrared)
spectroscopy on brominated plastic scraps, if systematically and fully implemented, could
provide interesting scenarios to develop detection architectures, working both off- and on-
line, finalized to recognize plastic waste elements, fed and/or resulting from the recycling
process, according to their Br content. Such architectures could represent the analytical
core to perform quality control on products and byproducts, thus allowing the robust and
reliable production of quality secondary raw materials.
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