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Abstract
We introduce a new operation between nonnegative
integrable functions onℝ𝑛, that we call geometric combi-
nation; it is obtained via amass transportation approach,
playing with inverse distribution functions. The main
feature of this operation is that the Lebesgue inte-
gral of the geometric combination equals the geometric
mean of the two separate integrals; as a natural con-
sequence, we derive a new functional inequality of
Prékopa–Leindler type. When applied to the character-
istic functions of two measurable sets, their geometric
combination provides a set whose volume equals the
geometric mean of the two separate volumes. In the
framework of convex bodies, by comparing the geomet-
ric combination with the 0-sum, we get an alternative
proof of the log-Brunn–Minkowski inequality for uncon-
ditional convex bodies and for convex bodies with
𝑛 symmetries.
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1 INTRODUCTION

The classical Prékopa–Leindler inequality [29, 32–34] states that, given two functions 𝑓, g ∈

𝐿1(ℝ𝑛; ℝ+) and a parameter 𝜆 ∈ [0, 1], for any measurable function ℎ ∶ ℝ𝑛 → ℝ+ which satisfies
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ℎ((1 − 𝜆)𝑥 + 𝜆𝑦) ⩾ 𝑓(𝑥)1−𝜆g(𝑦)𝜆 ∀𝑥, 𝑦 ∈ ℝ𝑛 , (1)

it holds that

∫ℝ𝑛
ℎ ⩾

(
∫ℝ𝑛

𝑓

)1−𝜆(
∫ℝ𝑛

g
)𝜆

(2)

(see also [5, 9, 15, 24, 30, 40] for several extensions and applications). Inequality (2) is commonly
considered as a “functional form” of the Brunn–Minkowski inequality for the 𝑛-dimensional vol-
ume. Indeed, when 𝑓 and g are the characteristic functions of two measurable sets 𝐾 and 𝐿 in
ℝ𝑛, the smallest function ℎ satisfying inequality (1) (named 𝜆-supremal convolution of 𝑓 and g)
agrees with the characteristic function of the set (1 − 𝜆)𝐾 + 𝜆𝐿. Thus, (2) yields themultiplicative
form of Brunn–Minkowski inequality

|(1 − 𝜆)𝐾 + 𝜆𝐿| ⩾ |𝐾|1−𝜆|𝐿|𝜆 , (3)

which is easily seen to be equivalent to the additive form, namely, to the (1∕𝑛)-concavity of volume
under Minkowski addition.
It is well known that equality in (2) occurs if and only if 𝑓(𝑥) = g(𝑥 + 𝑏) for a log-concave

function g and a constant vector 𝑏 (see [21]), and in (3) if and only if 𝐾 and 𝐿 are homothetic
convex bodies [38].
When these conditions are far from being satisfied, estimates (2) and (3) may be very rough.

This is one of the motivations for the investigation on one hand of quantitative versions of the
inequalities [3, 4, 12, 16, 23, 41], and on the other hand of possible different operations between
functions (in the analytic framework) or sets (in the geometric one), still allowing to bound
from below, respectively, the Lebesgue integral or the volume by the geometric mean of the
corresponding quantities.
In the functional setting, a new inequality of Prékopa–Leindler type has been recently obtained

in [1]: it is based on the idea of replacing the usual supremal convolution by a kind of geometric
supremal convolution, and still implies the Brunn–Minkowski inequality.
In the geometric setting, an inequality closely related to the classical Brunn–Minkowski

inequality (3), which is actuallywidely open and is among themost relevant questions under study
in Convex Geometry, is the log-Brunn–Minkowski inequality: stated within the class of centrally
symmetric convex sets, the conjecture reads

|(1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿| ⩾ |𝐾|1−𝜆|𝐿|𝜆 , (4)

where, denoting by ℎ𝐾 and ℎ𝐿 the support functions of 𝐾 and 𝐿,

(1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿 ∶=
{
𝑥 ∈ ℝ𝑛 ∶ 𝑥 ⋅ 𝜉 ⩽ ℎ𝐾(𝜉)

1−𝜆ℎ𝐿(𝜉)
𝜆 ∀𝜉 ∈ 𝑆𝑛−1

}
.

Since the 0-Minkowski combination (1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿 is contained into (1 − 𝜆)𝐾 + 𝜆𝐿, inequal-
ity (4) is clearly a strengthening of (3) (whose relevance is also related to the uniqueness of
the convex body with a prescribed cone volume measure, see [14]). Up to now, the log-Brunn–
Minkowski conjecture has been proved just in some special cases, including: planar bodies [14],
unconditional bodies [10, 19, 37], bodies with symmetries [13], and complex bodies [35]; local
versions have been studied in [17, 18, 27].
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484 CRASTA and FRAGALÀ

To the best of our knowledge, no functional version of (4) has been proposed up to now.
There is just a related functional inequality, namely, the so-calledmultiplicative Prékopa–Leindler
inequality for functions on ℝ𝑛

+ ∶= (ℝ+)
𝑛, which can be easily deduced from the classical one via

an exponential change of variables: given 𝑓, g ∈ 𝐿1(ℝ𝑛
+; ℝ+) and a parameter 𝜆 ∈ (0, 1), for any

measurable function ℎ ∶ ℝ𝑛
+ → ℝ+, which satisfies

ℎ
(
𝑥1−𝜆
1 𝑦𝜆

1 , … , 𝑥1−𝜆
𝑛 𝑦𝜆

𝑛

)
⩾ 𝑓(𝑥)1−𝜆g(𝑦)𝜆 ∀𝑥, 𝑦 ∈ ℝ𝑛

+ , (5)

it holds that

∫ℝ𝑛
+

ℎ ⩾

(
∫ℝ𝑛

+

𝑓

)1−𝜆(
∫ℝ𝑛

+

g

)𝜆

(6)

(see [2, 11, 39]). When 𝑓 and g are the characteristic functions of two unconditional sets 𝐾 and 𝐿,
the smallest function ℎ satisfying (5) is the characteristic function of the product body

𝐾1−𝜆 ⋅ 𝐿𝜆 ∶=
{
𝑧 ∈ ℝ𝑛 ∶ ∀𝑖 = 1,… , 𝑛, |𝑧𝑖| = |𝑥𝑖|1−𝜆|𝑦𝑖|𝜆 for some 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐿

}
.

Hence (6) gives |𝐾1−𝜆 ⋅ 𝐿𝜆| ⩾ |𝐾|1−𝜆|𝐿|𝜆, and the log-Brunn–Minkowski inequality readily
follows since the product body is contained into the 0-sum (see [37, Lemma 4.1]).
In this paper, we present a different construction: it stems in the functional analytic setting,

where it yields a new inequality of Prékopa–Leindler type, and reflects in the geometric one,where
it yields a new concept of geometric mean of sets.
Given two nonnegative integrable functions 𝑓 and g onℝ𝑛 and a parameter 𝜆 ∈ [0, 1], we intro-

duce a new function𝑓 ⋆𝜆 g , thatwe call geometric combination of𝑓 and g (in proportion 𝜆), whose
Lebesgue integral is equal to the geometric mean of the integrals of 𝑓 and g . As a straightforward
natural consequence, in order to have (2), it is sufficient that ℎ is minorated almost everywhere
by 𝑓 ⋆𝜆 g .
The reason why we can handle functions defined on the whole spaceℝ𝑛, and not merely onℝ𝑛

+

as in the multiplicative Prékopa–Leindler inequality, is that the construction of 𝑓 ⋆𝜆 g does not
involve the geometric mean of the variable’s components appearing in (5), but rather the geomet-
ric mean of intrinsically positive quantities associated with 𝑓 and g . In one space dimension, such
positive quantities are precisely the absolutely continuous parts of the derivatives of the inverse
distribution functions of 𝑓 and g ; in higher dimensions, the same procedure can be iterated by
arguing along a prescribed family of linearly independent directions. In fact, the proof strategy
is essentially one-dimensional, and is of mass transportation type: it incorporates the use of dis-
tribution functions originally due to Barthe (see [28, Theorem 2.13]) with the construction of the
Knothe map ([26], see also [38, p. 372]).
Moving attention from functions to sets, when 𝑓 and g are the characteristic functions of two

measurable sets 𝐾 and 𝐿, their geometric combination agrees with the characteristic function of
a measurable set, denoted by 𝐾 ⋆𝜆 𝐿, such that

|𝐾 ⋆𝜆 𝐿| = |𝐾|1−𝜆|𝐿|𝜆 . (7)

To the best of our knowledge, this way of “geometrically combining” two sets so that the
equality (7) holds, is completely new. Actually, several attempts exist in the literature to define
some notion of geometric mean of sets, in particular, of convex bodies. Besides the 0-sum
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 485

mentioned above, let us recall the dual version of the 0-sum considered by Saroglou [36], the
classical notion of complex interpolation studied in Banach geometry [8], the Partial Differential
Equation approach introduced by Cordero-Erausquin and Klartag [20], and the nonstandard con-
struction proposed by V. Milman and Rotem [31]. Amore detailed description about each of these
constructions, along with additional references, can be found in [31].
While in all these cases a major concern is getting a volume estimate for the geometric mean

body, from this point of view, the behavior of our geometric combination is of striking simplicity, as
the equality (7) holds. Thus, it is natural to wonder about possible relationships with the log-sum,
and particularly with the log-Brunn–Minkowski conjecture.
In this direction, we are able to show that when𝐾 and 𝐿 are unconditional convex bodies, their

geometric combination 𝐾 ⋆𝜆 𝐿 with respect to the coordinate axes contains their 0-combination.
The same inclusion occurs for the class of convex bodies with 𝑛 symmetries considered in [6, 7,
13], provided that oneworkswith the natural family of directions suggested by the shapes of𝐾 and
𝐿. Thus, both for unconditional bodies and for bodies with 𝑛 symmetries, we obtain an alternative
proof of the log-Brunn–Minkowski inequality.
Getting farther-reaching implications of our approach in the log-Brunn–Minkowski conjecture

for wider classes of convex bodies remains an intriguing open question: though, in principle, we
are not fatally limited to deal with sets with special symmetries, in order to handle arbitrary sets,
the main difficulty seems to understand how to choose the directions and the primitives involved
in our construction.
The paper is organized as follows. In Section 2, we introduce the geometric combination of

functions and prove its integral property, for the sake of clarity first in one dimension (see Theo-
rem 8) and then in 𝑛-dimensions (see Theorem 18). In Section 3, we turn attention to the geometric
combination of centrally symmetric convex sets, and we show that this new operation seems to
satisfy some good properties: in Section 3.1, we establish the convexity preserving property (in
dimension 𝑛 = 1, 2), and we exhibit some explicit examples of geometric combinations; in Sec-
tions 3.2 and 3.3, we deal, respectively, with unconditional convex bodies and convex bodies with
𝑛 symmetries and we show that, in such classes, the comparison with the 0-sum yields, via Theo-
rem 18, an alternative proof of the log-Brunn–Minkowski inequality. Finally, in Section 4, we give
a short list of related open problems.

2 GEOMETRIC COMBINATION OF FUNCTIONS

2.1 The one-dimensional case

Definition 1. Let 𝑓 be a nonnegative, integrable function of one real variable, with strictly posi-
tive integral. The inverse distribution function (shortly i.d. function) of 𝑓 is the generalized inverse
of the absolutely continuous nondecreasing function

𝐹(𝑥) ∶=
1

∫
ℝ
𝑓 ∫

𝑥

−∞
𝑓(𝑡) 𝑑𝑡 , 𝑥 ∈ ℝ , (8)

namely,

𝑢(𝑡) ∶= inf
{
𝑠 ∈ ℝ ∶ ∫

𝑠

−∞
𝑓(𝑥) 𝑑𝑥 > 𝑡 ∫ℝ

𝑓
}

, 𝑡 ∈ (0, 1) .
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486 CRASTA and FRAGALÀ

Lemma 2. Let 𝑓 and 𝐹 be as in the above definition, and let 𝑢 be the i.d. function of 𝑓. Then:

(i) 𝑢 is finite valued, right continuous, and strictly increasing (possibly unbounded) in (0,1);
(ii) 𝐹(𝑢(𝑡)) = 𝑡 for every 𝑡 ∈ (0, 1);
(iii) for 1-a.e. 𝑡 ∈ (0, 1), 𝑢 is differentiable at 𝑡, 𝐹 is differentiable at 𝑢(𝑡), and it holds that

𝐹′(𝑢(𝑡)) 𝑢′(𝑡) = 1, or equivalently

𝑓(𝑢(𝑡))𝑢′(𝑡) = ∫ℝ

𝑓(𝑥) 𝑑𝑥 for 1-a.e. 𝑡 ∈ (0, 1) . (9)

In particular, we have that 𝑓(𝑢(𝑡)) > 0 and 𝑢′(𝑡) > 0 for 1-a.e. 𝑡 ∈ (0, 1).

Proof. Statements (i)–(ii) follow from the basic properties of generalized inverse functions, see,
for instance, [22, Proposition 1]. The proof of statement (iii) can be achieved as follows. Since 𝐹

is (absolutely) continuous and nondecreasing, for every 𝑡 ∈ (0, 1), the level set {𝐹 = 𝑡} is a closed
interval, and the family {𝑡𝑗} ⊂ (0, 1) of levels such that 𝐼𝑗 ∶= {𝐹 = 𝑡𝑗} has positive length is at most
countable. We can decompose ℝ as the disjoint union ℝ = (

⋃
𝑗 𝐼𝑗) ∪ 𝐿 ∪ 𝑁, where 𝐿 is the set of

Lebesgue points of 𝑓 inℝ ⧵
⋃

𝑗 𝐼𝑗 . Since |𝐹(𝑁)| = 0 and |𝐹(
⋃

𝑗 𝐼𝑗)| = 0, we have that 𝐹(𝐿) has full
measure in (0, 1); then, letting𝑀 ⊂ 𝐹(𝐿) be the set of points of differentiability of 𝑢 in 𝐹(𝐿), also
𝑀 has full measure in (0,1). If 𝑡 ∈ 𝑀, then 𝑢 is differentiable at 𝑡 and 𝑢(𝑡) is a Lebesgue point of
𝑓, so that 𝐹 is differentiable at 𝑢(𝑡); the relation 𝐹′(𝑢(𝑡)) 𝑢′(𝑡) = 1 is now obtained from (ii), and
(9) follows as a direct consequence of the above analysis. □

Remark 3. We warn that, in general, the distributional derivative of an i.d. function may contain
jump and/or Cantor parts as in the two examples hereafter.

(i) Let

𝑓(𝑥) = (1∕2)𝜒[0,1]∪[2,3](𝑥) , (10)

where 𝜒𝐴 denotes the characteristic function of a set 𝐴. The i.d. function 𝑢(𝑡) equals 2𝑡 for
𝑡 ∈ [0, 1∕2) and 2𝑡 + 1 for 𝑡 ∈ [1∕2, 1].

(ii) Let

𝑓(𝑥) = 𝐹′(𝑥) , with 𝐹(𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑥 ⩽ 0 ,

𝑢−1(𝑥) if 0 < 𝑥 < 2 ,

1 if 𝑥 ⩾ 2 ,

(11)

where 𝑢−1 is the inverse of the function 𝑢 ∶ (0, 1) → (0, 2), 𝑢(𝑡) ∶= 𝑡 + 𝐶(𝑡), 𝐶 being the
Cantor function. By construction, the i.d. function of 𝑓 is precisely the function 𝑢(𝑡).

Definition 4. Let 𝑢 and 𝑣 be the i.d. functions of two nonnegative, integrable functions with
strictly positive integrals onℝ, and let 𝜆 ∈ [0, 1].We call a geometric primitive of (𝑢, 𝑣) in proportion
𝜆 any primitive of (𝑢′)1−𝜆(𝑣′)𝜆, that is, any function of the form

𝑤𝜆(𝑡) = ∫
𝑡

1∕2
𝑢′(𝑠)1−𝜆𝑣′(𝑠)𝜆 𝑑𝑠 + 𝑐 with 𝑐 ∈ ℝ .

In case 𝑐 = 0, we shall refer to the geometric primitive 𝑤𝜆 as the standard one.
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 487

Remark 5. The above definition is well posed and it holds that

(i) 𝑤𝜆 ∈ 𝐴𝐶𝑙𝑜𝑐(0, 1) with 𝑤′
𝜆
(𝑡) > 0 for 1-a.e. 𝑡 ∈ (0, 1);

(ii) 𝑤𝜆 admits a classical inverse, defined on the interval ran𝑤𝜆 ∶= {𝑤𝜆(𝑡)∶ 𝑡 ∈ (0, 1)}.

Indeed, from Lemma 2, we have that 𝑢′, 𝑣′ are strictly positive 1-a.e. and belong to 𝐿1
𝑙𝑜𝑐

(0, 1).
Hence, as a consequence of Hölder’s inequality, also (𝑢′)1−𝜆(𝑣′)𝜆 is in 𝐿1

𝑙𝑜𝑐
(0, 1). This yields claim

(i), which, in turn, implies (ii).

Definition 6. Let 𝑓, g ∶ ℝ → ℝ be nonnegative, integrable functions having strictly positive inte-
grals, with i.d. functions 𝑢, 𝑣, respectively. Let 𝜆 ∈ [0, 1], and let 𝑤𝜆 be a geometric primitive of
(𝑢, 𝑣) in proportion 𝜆. We call the function

𝑓 ⋆𝜆 g(𝑥) ∶=

{
𝑓(𝑢(𝑡))1−𝜆g(𝑣(𝑡))𝜆 if 𝑥 = 𝑤𝜆(𝑡), 𝑡 ∈ (0, 1) ,

0 otherwise ,
(12)

a geometric combination of (𝑓, g) in proportion 𝜆.
In case the geometric primitive 𝑤𝜆 in (12) is chosen as standard one, we shall refer to 𝑓 ⋆𝜆 g as

to the standard geometric combination of (𝑓, g) in proportion 𝜆.

Remark 7. Thanks to Remark 5, the function 𝑓 ⋆𝜆 g is well defined and, denoting by ran𝑤𝜆 the
image of 𝑤𝜆, it can be equivalently written as

𝑓 ⋆𝜆 g(𝑥) =

{
𝑓(𝑢(𝑤−1

𝜆
(𝑥)))1−𝜆g(𝑣(𝑤−1

𝜆
(𝑥)))𝜆 if 𝑥 ∈ ran𝑤𝜆 ,

0 otherwise.
(13)

Clearly, the above expression identifies uniquely 𝑓 ⋆𝜆 g up to a translation in the variable 𝑥,
depending on the choice of the geometric primitive 𝑤𝜆.

Theorem 8. Let 𝑓, g ∶ ℝ → ℝ be nonnegative, integrable functions having strictly positive inte-
grals, let 𝜆 ∈ [0, 1], and let 𝑓 ⋆𝜆 g be a geometric combination of (𝑓, g) in proportion 𝜆 according to
Definition 6. Then 𝑓 ⋆𝜆 g is measurable and satisfies

∫ℝ

𝑓 ⋆𝜆 g(𝑥) 𝑑𝑥 =

(
∫ℝ

𝑓(𝑥) 𝑑𝑥

)1−𝜆(
∫ℝ

g(𝑥) 𝑑𝑥
)𝜆

.

Proof. In view of (13), to show that 𝑓 ⋆𝜆 g is measurable, since both 𝑓 and g are measurable, it is
enough to show the following Lusin property (see, e.g., [25]): if 𝑁 is a set of measure zero, each
of the two sets (𝑢◦𝑤−1

𝜆
)−1(𝑁) and (𝑣◦𝑤−1

𝜆
)−1(𝑁) has measure zero. Focusing for instance on the

first one, we have

(𝑢◦𝑤−1
𝜆

)−1(𝑁) = 𝑤𝜆◦𝑢
−1(𝑁) = 𝑤𝜆◦𝐹(𝑁)

with 𝐹 as in (8). Since 𝑤𝜆 ∈ 𝐴𝐶𝑙𝑜𝑐(0, 1) and 𝐹 ∈ 𝐴𝐶(ℝ), 𝑤𝜆◦𝐹(𝑁) has measure zero.

 20417942, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12192 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



488 CRASTA and FRAGALÀ

We can now use the change of variable 𝑥 = 𝑤𝜆(𝑡) (see [42, Theorem 13.32]) to write

∫ℝ

𝑓 ⋆𝜆 g(𝑥) 𝑑𝑥 = ∫ran𝑤𝜆

𝑓 ⋆𝜆 g(𝑥) 𝑑𝑥 = ∫
1

0
𝑓 ⋆𝜆 g(𝑤𝜆(𝑡))𝑤

′
𝜆
(𝑡) 𝑑𝑡

= ∫
1

0
𝑓(𝑢(𝑡))1−𝜆g(𝑣(𝑡))𝜆𝑢′(𝑡)1−𝜆𝑣′(𝑡)𝜆 𝑑𝑡 .

Finally, using (9), we obtain

∫
1

0
𝑓(𝑢(𝑡))1−𝜆g(𝑣(𝑡))𝜆𝑢′(𝑡)1−𝜆𝑣′(𝑡)𝜆 𝑑𝑡 =

(
∫ℝ

𝑓(𝑥) 𝑑𝑥

)1−𝜆(
∫ℝ

g(𝑥) 𝑑𝑥
)𝜆

. □

Remark 9. An immediate consequence of Theorem 8 is the following Prékopa–Leindler-type
result: under the assumptions of Theorem 8 on 𝑓 and g , if ℎ is any integrable function such that

ℎ(𝑥) ⩾ 𝑓 ⋆𝜆 g(𝑥) for a.e. 𝑥 ∈ ℝ , (14)

we have

∫ℝ

ℎ(𝑥) 𝑑𝑥 ⩾

(
∫ℝ

𝑓(𝑥) 𝑑𝑥

)1−𝜆(
∫ℝ

g(𝑥) 𝑑𝑥
)𝜆

, (15)

and equality holds in (15) if and only if equality holds in (14).

Remark 10. Notice that, in general, 𝑓 ⋆0 g and 𝑓 ⋆1 g do not coincide necessarily with (a trans-
lation of) 𝑓 and g , respectively. Indeed, for 𝜆 = 0 and 𝜆 = 1, a geometric primitive 𝑤𝜆 of their
i.d. functions (𝑢, 𝑣) does not necessarily coincide, up to a translation, with 𝑢 and 𝑣, respectively.
For instance, referring to the examples given in Remark 3: if 𝑓 is given by (10) (and g is arbitrary),
we have𝑤0(𝑡) = 2(𝑡 − 1

2
), and hence, 𝑓 ⋆0 g = (1∕2)𝜒[0,2]; if 𝑓 is given by (11) (and g is arbitrary),

we have 𝑤0(𝑡) = 𝑡 and hence 𝑓 ⋆0 g = (∫
ℝ
𝑓)𝜒[0,1].

When the i.d. functions of 𝑓, g enjoy suitable regularity assumptions (which as we shall
see occurs for the characteristic functions of convex bodies, see Remark 26), the geometric
combination 𝑓 ⋆𝜆 g provides a continuous interpolation between 𝑓 and g .

Proposition 11. Let 𝑓 and g satisfy the same assumptions of Theorem 8. If in addition their
i.d. functions belong to 𝐴𝐶loc(0, 1), we have that:

(i) up to translations, 𝑓 ⋆0 g = 𝑓 and 𝑓 ⋆1 g = g ;
(ii) the map [0, 1] ∋ 𝜆 ↦ 𝑓 ⋆𝜆 g is continuous in 𝐿1(ℝ).

Proof. Let 𝑢, 𝑣 be the i.d. functions of 𝑓, g , respectively. By assumption 𝑢, 𝑣 ∈ 𝐴𝐶loc(0, 1), and
thus, statement (i) immediately follows from the equalities 𝑤0 = 𝑢 and 𝑤1 = 𝑣.
Let us prove statement (ii). Let (𝜆𝑗) ⊂ [0, 1] be a sequence converging to 𝜆 ∈ [0, 1], and let us

define

𝜓𝑗(𝑡) ∶= 𝑓(𝑢(𝑡))1−𝜆𝑗g(𝑣(𝑡))𝜆𝑗 , 𝜓(𝑡) ∶= 𝑓(𝑢(𝑡))1−𝜆g(𝑣(𝑡))𝜆 , 𝑡 ∈ (0, 1),

𝑓 ⋆𝜆𝑗
g = 𝜓𝑗◦𝑤

−1
𝜆𝑗
on 𝐼𝑗 ∶= ran𝑤𝜆𝑗

, 𝑓 ⋆
𝜆
g = 𝜓◦𝑤−1

𝜆
on 𝐼 ∶= ran𝑤

𝜆
, all functions vanishing oth-

erwise.
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 489

We claim that:

(a) lim𝑗 𝑓 ⋆𝜆𝑗
g(𝑥) = 𝑓 ⋆𝜆 g(𝑥), for a.e. 𝑥 ∈ 𝐼,

(b) lim𝑗→+∞ ∫𝐼 𝑓 ⋆𝜆𝑗
g = ∫𝐼 𝑓 ⋆

𝜆
g , lim𝑗→+∞ ∫

ℝ⧵𝐼 𝑓 ⋆𝜆𝑗
g = 0.

Before proving this claim, let us show how the convergence of 𝑓 ⋆𝜆𝑗
g to 𝑓 ⋆

𝜆
g in 𝐿1(ℝ) follows

from (a) and (b).
Specifically, from (a), the first equality in (b) and [42, Theorem 16.28], it follows that 𝑓 ⋆𝜆𝑗

g
converges to 𝑓 ⋆

𝜆
g in 𝐿1(𝐼). On the other hand, from the second equality in (b), it follows that

𝑓 ⋆𝜆𝑗
g converges to 0 = 𝑓 ⋆

𝜆
g in 𝐿1(ℝ ⧵ 𝐼).

Proof of (a).As a first step, let us show that if 𝑥 ∈ 𝐼, then 𝑥 ∈ 𝐼𝑗 for 𝑗 large enough. Specifically,
it is enough to observe that, for every 𝜆 ∈ [0, 1],

ran𝑤𝜆 = (−𝑎𝜆, 𝑏𝜆), with 𝑎𝜆 ∶= ∫
1∕2

0
(𝑢′)1−𝜆(𝑣′)𝜆, 𝑏𝜆 ∶= ∫

1

1∕2
(𝑢′)1−𝜆(𝑣′)𝜆,

and that, by Fatou’s lemma,

𝑎
𝜆
⩽ lim inf

𝑗→+∞
𝑎𝜆𝑗

, 𝑏
𝜆
⩽ lim inf

𝑗→+∞
𝑏𝜆𝑗

.

Since, for a.e. 𝑡 ∈ (0, 1), we have that lim𝑗 𝜓𝑗(𝑡) = 𝜓(𝑡), (a) will follow if we show that, for
every 𝑥 ∈ 𝐼, lim𝑗 𝑤

−1
𝜆𝑗

(𝑥) = 𝑤−1

𝜆
(𝑥). Given 𝑥 ∈ 𝐼, for 𝑗 large enough let 𝑡𝑗 ∶= 𝑤−1

𝜆𝑗
(𝑥). Let (𝑡𝑗𝑘 )

be a subsequence converging to some 𝜏 ∈ [0, 1].
If 𝜏 ∈ (0, 1), it holds that

𝑥 = 𝑤𝜆𝑗𝑘
(𝑡𝑗𝑘 ) = ∫

𝑡𝑗𝑘

1∕2
(𝑢′)

1−𝜆𝑗𝑘 (𝑣′)
𝜆𝑗𝑘 ⟶ ∫

𝜏

1∕2
(𝑢′)1−�̄�(𝑣′)�̄� = 𝑤�̄�(𝜏),

where the convergence holds since 0 ⩽ (𝑢′)
1−𝜆𝑗𝑘 (𝑣′)

𝜆𝑗𝑘 ⩽ 𝑢′ + 𝑣′ ∈ 𝐿1
loc(0, 1). Hence, 𝑥 = 𝑤

𝜆
(𝜏),

that is, 𝜏 = 𝑤−1

𝜆
(𝑥).

Assume now that 𝜏 = 1. The sequence 𝑞𝑘 ∶= (𝑢′)
1−𝜆𝑗𝑘 (𝑣′)

𝜆𝑗𝑘 𝜒[1∕2,𝑡𝑗𝑘
] converges a.e. in [1∕2, 1]

to 𝑞 ∶= (𝑢′)1−𝜆(𝑣′)𝜆, hence, by Fatou’s Lemma we have that

𝑏
𝜆
= ∫

1

1∕2
𝑞 ⩽ lim inf

𝑘→+∞ ∫
1

1∕2
𝑞𝑘 = 𝑥 ,

in contradiction with the assumption that 𝑥 belongs to the open interval 𝐼 = (−𝑎
𝜆
, 𝑏

𝜆
).

A similar argument shows that 𝜏 ≠ 0.
We have thus shown that every converging subsequence of𝑤−1

𝜆𝑗
(𝑥) converges to𝑤−1

𝜆
(𝑥); hence,

the whole sequence converges to 𝑤−1

𝜆
(𝑥).

Proof of (b). Since ∫
ℝ
𝑓 and ∫

ℝ
g are strictly positive, by Theorem 8, it holds that

∫ℝ

𝑓 ⋆𝜆𝑗
g =

(
∫ℝ

𝑓

)1−𝜆𝑗
(
∫ℝ

g
)𝜆𝑗 𝑗→+∞

⟶

(
∫ℝ

𝑓

)1−𝜆(
∫ℝ

g
)𝜆

= ∫ℝ

𝑓 ⋆
𝜆
g . (16)
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490 CRASTA and FRAGALÀ

Hence, it is enough to prove only the second equality in (b). From (16), (a) and Fatou’s lemma, we
have that

0 ⩽ lim sup
𝑗→+∞ ∫ℝ⧵𝐼

𝑓 ⋆𝜆𝑗
g = lim sup

𝑗→+∞

(
∫ℝ

𝑓 ⋆𝜆𝑗
g − ∫𝐼

𝑓 ⋆𝜆𝑗
g
)

⩽ ∫ℝ

𝑓 ⋆
𝜆
g − ∫𝐼

𝑓 ⋆
𝜆
g = 0,

so that the second equality in (b) follows. □

2.2 The 𝒏-dimensional case

Let (𝑧1, … , 𝑧𝑛) be a family of linearly independent vectors in ℝ𝑛 (a typical choice will be the
canonical basis (𝑒1, … , 𝑒𝑛) of ℝ𝑛, cf. Section 3). For simplicity of notation, we do not indicate the
dependence of our construction on the family (𝑧1, … , 𝑧𝑛), as it will remain fixed throughout this
section.

Definition 12. Given a nonnegative integrable function 𝑓 on ℝ𝑛 with strictly positive integral,
we call (𝑧1, … , 𝑧𝑛)-inverse distribution field (shortly i.d. field) of 𝑓 the vector field

𝑈(𝑡) = 𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 + 𝑢3(𝑡1, 𝑡2, 𝑡3)𝑧3 +⋯ + 𝑢𝑛(𝑡1, 𝑡2, … , 𝑡𝑛)𝑧𝑛 ,

defined for 𝑛-a.e. 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ (0, 1)𝑛 as follows:

∙ 𝑡1 ↦ 𝑢1(𝑡1) is the i.d. function of the map

𝑥1 ↦ ∫ℝ𝑛−1
𝑓(𝑥1𝑧1 + 𝑥2𝑧2 +⋯ + 𝑥𝑛𝑧𝑛) 𝑑𝑥2 …𝑑𝑥𝑛 ;

∙ for 1-a.e. 𝑡1 ∈ (0, 1), 𝑡2 ↦ 𝑢2(𝑡1, 𝑡2) is the i.d. function of the map

𝑥2 ↦ ∫ℝ𝑛−2
𝑓(𝑢1(𝑡1)𝑧1 + 𝑥2𝑧2 +⋯ + 𝑥𝑛𝑧𝑛) 𝑑𝑥3 … 𝑑𝑥𝑛 ;

∙ …
∙ for 𝑛−1-a.e. (𝑡1, … , 𝑡𝑛−1) ∈ (0, 1)𝑛−1, 𝑡𝑛 ↦ 𝑢𝑛(𝑡1, … , 𝑡𝑛) is the i.d. function of the map

𝑥𝑛 ↦ 𝑓(𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑢𝑛−1(𝑡1, 𝑡2, … , 𝑡𝑛−1)𝑧𝑛−1 + 𝑥𝑛𝑧𝑛) .

Remark 13. The above definition is well posed and leads to a 𝑛-dimensional analog of the identity
(9). Indeed:

∙ the i.d. function 𝑡1 ↦ 𝑢1(𝑡1) is well defined (because by assumption 𝑓 has strictly positive
integral), and for 1-a.e. 𝑡1 ∈ (0, 1), it satisfies the equality

𝑢′
1(𝑡1)∫ℝ𝑛−1

𝑓(𝑢1(𝑡1)𝑧1 + 𝑥2𝑧2 +⋯ + 𝑥𝑛𝑧𝑛) 𝑑𝑥2 …𝑑𝑥𝑛

= ∫ℝ𝑛
𝑓(𝑥1𝑧1 +⋯ + 𝑥𝑛𝑧𝑛) 𝑑𝑥1 …𝑑𝑥𝑛

(
=

1|𝑧1 ∧⋯ ∧ 𝑧𝑛| ∫ℝ𝑛
𝑓

)
;
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 491

∙ for 1-a.e. 𝑡1 ∈ (0, 1), the i.d. function 𝑡2 ↦ 𝑢1(𝑡1, 𝑡2) is well defined (because by the previous
item the integral at the r.h.s. of the equality below is strictly positive), and for1-a.e. 𝑡2 ∈ (0, 1),
it satisfies

𝜕𝑢2

𝜕𝑡2
(𝑡1, 𝑡2)∫ℝ𝑛−2

𝑓(𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑥𝑛𝑧𝑛) 𝑑𝑥3 … 𝑑𝑥𝑛

= ∫ℝ𝑛−1
𝑓(𝑢1(𝑡1)𝑧1 + 𝑥2𝑧2 +⋯ + 𝑥𝑛𝑧𝑛) 𝑑𝑥2 …𝑑𝑥𝑛

∙ …
∙ for 𝑛−1-a.e. (𝑡1, … , 𝑡𝑛−1) ∈ (0, 1)𝑛−1, the i.d. function 𝑡𝑛 ↦ 𝑢𝑛(𝑡1, … , 𝑡𝑛−1, 𝑡𝑛) is well defined
(because by the previous items, the integral at the r.h.s. of the equality below is strictly positive),
and for 1-a.e. 𝑡𝑛 ∈ (0, 1), it satisfies:

𝜕𝑢𝑛

𝜕𝑡𝑛
(𝑡1, 𝑡2, … , 𝑡𝑛)𝑓(𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑢𝑛(𝑡1, 𝑡2, … , 𝑡𝑛)𝑧𝑛)

= ∫ℝ

𝑓(𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑥𝑛𝑧𝑛) 𝑑𝑥𝑛 .

Multiplying side by side the above equalities, we get by analogy with (9) the identity

𝑓(𝑈(𝑡))

𝑛∏
𝑖=1

𝜕𝑢𝑖

𝜕𝑡𝑖
=

1|𝑧1 ∧⋯ ∧ 𝑧𝑛| ∫ℝ𝑛
𝑓 for 𝑛-a.e. 𝑡 ∈ (0, 1)𝑛 . (17)

Definition 14. Let 𝑈 and 𝑉 be the (𝑧1, … , 𝑧𝑛)-i.d. fields of two nonnegative integrable function
𝑓 and g with strictly positive integrals on ℝ𝑛. We call (𝑧1, … , 𝑧𝑛)-geometric potential of (𝑈, 𝑉) in
proportion 𝜆 any vector field

𝑊𝜆(𝑡) = 𝑤𝜆,1(𝑡1)𝑧1 + 𝑤𝜆,2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑤𝜆,𝑛(𝑡1, … 𝑡𝑛)𝑧𝑛

such that:

∙ 𝑡1 ↦ 𝑤𝜆,1(𝑡1) is a geometric primitive in proportion 𝜆 of 𝑡1 ↦ 𝑢1(𝑡1), 𝑡1 ↦ 𝑣1(𝑡1);
∙ for1-a.e. 𝑡1 ∈ (0, 1), 𝑡2 ↦ 𝑤𝜆,2(𝑡1, 𝑡2) is a geometric primitive in proportion 𝜆 of 𝑡2 ↦ 𝑢2(𝑡1, 𝑡2),

𝑡2 ↦ 𝑣2(𝑡1, 𝑡2);
∙ …
∙ for𝑛−1-a.e. (𝑡1, … , 𝑡𝑛−1) ∈ (0, 1)𝑛−1, 𝑡𝑛 ↦ 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛) is a geometric primitive in proportion

𝜆 of 𝑡𝑛 ↦ 𝑢𝑛(𝑡1, … , 𝑡𝑛), 𝑡𝑛 ↦ 𝑣𝑛(𝑡1, … , 𝑡𝑛).

In case all the geometric primitives 𝑤𝜆,𝑖 are the standard ones, namely, when

𝑤1(1∕2) = 0 , 𝑤2(𝑡1, 1∕2) = 0 , … , 𝑤𝑛(𝑡1, … , 𝑡𝑛−1, 1∕2) = 0 ,

we shall refer to the geometric potential𝑊𝜆 as to the standard one.

Remark 15. By analogy with one-dimensional case, we have that
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492 CRASTA and FRAGALÀ

(i) for 𝑖−1-a.e. (𝑡1, … , 𝑡𝑖−1) ∈ (0, 1)𝑖−1, the maps 𝑡𝑖 ↦ 𝑤𝜆,𝑖(𝑡1, … , 𝑡𝑖−1, 𝑡𝑖) are in 𝐴𝐶𝑙𝑜𝑐(0, 1), with

𝜕𝑤𝜆,𝑖

𝜕𝑡𝑖
=

(
𝜕𝑢𝑖

𝜕𝑡𝑖

)1−𝜆(𝜕𝑣𝑖
𝜕𝑡𝑖

)𝜆

> 0 for 1-a.e. 𝑡𝑖 ∈ (0, 1) ; (18)

(ii) 𝑊𝜆 admits a classical inverse defined on ran𝑊𝜆 ∶= {𝑊𝜆(𝑡) ∶ 𝑡 ∈ (0, 1)𝑛}.

Definition 16. Let 𝑓, g ∶ ℝ𝑛 → ℝ be nonnegative, integrable functions having strictly positive
integrals, with (𝑧1, … , 𝑧𝑛)-i.d. fields 𝑈,𝑉, respectively. If 𝑊𝜆 is a (𝑧1, … , 𝑧𝑛)-geometric potential
of (𝑈, 𝑉) in proportion 𝜆, we call the function

𝑓 ⋆𝜆 g(𝑥) ∶=

{
𝑓(𝑈(𝑡))1−𝜆g(𝑉(𝑡))𝜆 if 𝑥 = 𝑊𝜆(𝑡) , 𝑡 ∈ (0, 1)𝑛 ,

0 otherwise,
(19)

a (𝑧1, … , 𝑧𝑛)-geometric combination of (𝑓, g) in proportion 𝜆.
In case the geometric potential𝑊𝜆 in (19) is chosen as the standard one, we shall refer to 𝑓 ⋆𝜆 g

as to the standard geometric combination of (𝑓, g) in proportion 𝜆.

Remark 17. Again, by analogy with the one-dimensional case, denoting by ran𝑊𝜆 the image of
𝑊𝜆, we have

𝑓 ⋆𝜆 g(𝑥) =

{
𝑓(𝑈(𝑊−1

𝜆
(𝑥)))1−𝜆g(𝑉(𝑊−1

𝜆
(𝑥)))𝜆 if 𝑥 ∈ ran𝑊𝜆,

0 otherwise.
(20)

Notice that, in the present 𝑛-dimensional setting, the function𝑊𝜆 is identified up to an additive
constant in the first component, up to a function of 𝑥1 in the second component, up to a function
of 𝑥2 in the third one, and so on, up to a function of (𝑥1, … , 𝑥𝑛−1) in the last component.

Theorem 18. Let 𝑓, g ∶ ℝ𝑛 → ℝ be nonnegative, integrable functions having strictly positive inte-
grals. Let 𝜆 ∈ [0, 1], and let 𝑓 ⋆𝜆 g be a (𝑧1, … , 𝑧𝑛)-geometric combination of (𝑓, g) in proportion 𝜆

according to Definition 16. Then 𝑓 ⋆𝜆 g is measurable and satisfies

∫ℝ𝑛
𝑓 ⋆𝜆 g(𝑥) 𝑑𝑥 =

(
∫ℝ𝑛

𝑓(𝑥) 𝑑𝑥

)1−𝜆(
∫ℝ𝑛

g(𝑥) 𝑑𝑥
)𝜆

.

Proof. To show that 𝑓 ⋆𝜆 g is measurable, thanks to (20) it is enough to show that if𝑁 is Lebesgue
negligible, each of the two sets (𝑈◦𝑊−1

𝜆
)−1(𝑁) and (𝑉◦𝑊−1

𝜆
)−1(𝑁) has measure zero. Consider-

ing, for instance, the set (𝑈◦𝑊−1
𝜆

)−1(𝑁), we can write it as 𝑊𝜆◦𝑈
−1(𝑁). Thus, we see that it is

Lebesgue negligible because 𝑈 is the inverse distribution field of the integrable function 𝑓, and
the components of𝑊𝜆 have the property that themaps 𝑡𝑖 ↦ 𝑤𝜆,𝑖 are locally absolutely continuous
(see Remark 15).
Let us compute the integral of 𝑓 ⋆𝜆 g . Let us define the function ℎ(𝑥) ∶= 𝑓 ⋆𝜆 g(𝑥1𝑧1 +⋯ +

𝑥𝑛𝑧𝑛), 𝑥 ∈ ℝ𝑛, so that

∫ℝ𝑛
𝑓 ⋆𝜆 g(𝑥) 𝑑𝑥 = |𝑧1 ∧⋯ ∧ 𝑧𝑛|∫ℝ𝑛

ℎ(𝑥) 𝑑𝑥 . (21)
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 493

In order to compute the integral of ℎ, we perform 𝑛 one-dimensional changes of variable. Pro-
ceeding as in the proof of Theorem 8, and recalling that, by Definition 16, ℎ vanishes outside the
set {(𝑤𝜆,1(𝑡1), … ,𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛))∶ 𝑡𝑖 ∈ (0, 1)}, we first use the change of variable 𝑥1 = 𝑤𝜆,1(𝑡1) (see
[42, Theorem 13.32]), obtaining

∫ℝ𝑛
ℎ(𝑥) 𝑑𝑥 = ∫(0,1)

(
∫ℝ𝑛−1

ℎ(𝑤𝜆,1(𝑡1), 𝑥2, … , 𝑥𝑛) 𝑑𝑥2 …𝑑𝑥𝑛)𝑤
′
𝜆,1

(𝑡1)

)
𝑑𝑡1 .

Next, in the inner integral, we proceed with the change of variable 𝑥2 = 𝑤𝜆,2(𝑡1, 𝑡2), 𝑡2 ∈ (0, 1).
Finally, after the last change of variable 𝑥𝑛 = 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛), 𝑡𝑛 ∈ (0, 1), using the family of
equalities (18), and recalling the Definition 16 of 𝑓 ⋆𝜆 g , we end up with

∫ℝ𝑛
ℎ(𝑥) 𝑑𝑥 = ∫(0,1)𝑛

ℎ(𝑤𝜆,1(𝑡1), … ,𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛))

𝑛∏
𝑖=1

𝜕𝑤𝜆,𝑖

𝜕𝑡𝑖
𝑑𝑡

= ∫(0,1)𝑛
ℎ(𝑤𝜆,1(𝑡1), … ,𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛))

𝑛∏
𝑖=1

(
𝜕𝑢𝑖

𝜕𝑡𝑖

)1−𝜆 𝑛∏
𝑖=1

(
𝜕𝑣𝑖
𝜕𝑡𝑖

)𝜆

𝑑𝑡

= ∫(0,1)𝑛
𝑓(𝑈(𝑡))1−𝜆g(𝑉(𝑡))𝜆

𝑛∏
𝑖=1

(
𝜕𝑢𝑖

𝜕𝑡𝑖

)1−𝜆 𝑛∏
𝑖=1

(
𝜕𝑣𝑖
𝜕𝑡𝑖

)𝜆

𝑑𝑡 .

Finally, from (21) and in view of (17), we conclude that

∫ℝ𝑛
𝑓 ⋆𝜆 g(𝑥) 𝑑𝑥 =

(
∫ℝ𝑛

𝑓(𝑥) 𝑑𝑥

)1−𝜆(
∫ℝ𝑛

g(𝑥) 𝑑𝑥
)𝜆

. □

3 GEOMETRIC COMBINATION OF CONVEX BODIES

In this section, we focus attention on the geometric combination between the characteristic
functions of two nondegenerate, centrally symmetric, convex bodies 𝐾 and 𝐿 in ℝ𝑛.
Below, we write for simplicity 𝐾 ⋆𝜆 𝐿 in place of 𝜒𝐾 ⋆𝜆 𝜒𝐿; moreover, we refer to the i.d. func-

tion (or field) of the characteristic function 𝜒𝐾 as the i.d. function (or field) of 𝐾. Since we are
dealing with nondegenerate convex bodies, for simplicity of notation in the proofs, sometimes we
identify a convex body with its interior.

3.1 Convexity preserving for 𝒏 = 𝟏, 𝟐

When 𝐾 is a symmetric interval, 𝐾 = [−𝑎, 𝑎], its i.d. function is given by

𝑢(𝑡) = 𝑎(2𝑡 − 1) ∀𝑡 ∈ (0, 1) . (22)

It is elementary to deduce the behavior of the geometric combination for intervals.
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494 CRASTA and FRAGALÀ

Proposition 19. Let 𝐾 and 𝐿 be symmetric intervals, and 𝜆 ∈ [0, 1]. Then the standard geometric
combination 𝐾 ⋆𝜆 𝐿 is itself a symmetric interval, precisely

𝐾 ⋆𝜆 𝐿 = (1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿 .

In particular, the equality |𝐾 ⋆𝜆 𝐿| = |𝐾|1−𝜆|𝐿|𝜆 given by Theorem 8 is equivalent to the one-
dimensional log-Brunn–Minkowski equality.

Proof. If 𝑢 and 𝑣 are the i.d. functions of 𝐾 = [−𝑎, 𝑎] and 𝐿 = [−𝑏, 𝑏], by (22) the standard
geometric primitive of (𝑢, 𝑣) in proportion 𝜆 is given by

𝑤𝜆(𝑡) = 𝑎1−𝜆𝑏𝜆(2𝑡 − 1) .

Hence, the body 𝐾 ⋆𝜆 𝐿, which is the image of 𝑤𝜆, is given by

𝐾 ⋆𝜆 𝐿 = {𝑤𝜆(𝑡) ∶ 𝑡 ∈ (0, 1)} =
(
−𝑎1−𝜆𝑏𝜆, 𝑎1−𝜆𝑏𝜆

)
.

On the other hand, since the support functions of 𝐾 and 𝐿 are given, respectively, by ℎ𝐾(𝜉) =

𝑎|𝜉| and ℎ𝐿(𝜉) = 𝑏|𝜉|, the log-Brunn–Minkowski sum (1 − 𝜆)𝐾 +0 𝜆𝐿 is the interval with support
function ℎ𝐾(𝜉)

1−𝜆ℎ𝐿(𝜉) = 𝑎1−𝜆𝑏𝜆|𝜉|, namely, we have as well
(1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿 =

(
−𝑎1−𝜆𝑏𝜆, 𝑎1−𝜆𝑏𝜆

)
. □

When 𝐾 is a centrally symmetric convex body in ℝ2, setting

𝐾𝑥1
∶=

{
𝑥2𝑒2 ∶ 𝑥1𝑒1 + 𝑥2𝑒2 ∈ 𝐾

}
,

the components (𝑢1, 𝑢2) of the (𝑒1, 𝑒2)-i.d. field of 𝐾 satisfy

∙ 𝑡1 ↦ 𝑢1(𝑡1) is the i.d. function of the map 𝑥1 ↦ 1(𝐾𝑥1
), hence

𝑢′
1(𝑡1) =

|𝐾|
1(𝐾𝑢1(𝑡1)

)
for 1-a.e. 𝑡1 ∈ (0, 1) ;

∙ for 1-a.e. 𝑡1 ∈ (0, 1), 𝑡2 ↦ 𝑢2(𝑡1, 𝑡2) is the i.d. function of the map 𝑥2 ↦ 𝜒𝐾𝑢1(𝑡1)
(𝑥2); hence,

𝜕𝑢2

𝜕𝑡2
(𝑡1, 𝑡2) = 1(𝐾𝑢1(𝑡1)

) for 1-a.e. 𝑡2 ∈ (0, 1) .

As a consequence, we prove below that the standard geometric combination of centrally
symmetric planar convex bodies preserves convexity (and always produces an unconditional set).

Proposition 20. Let 𝐾 and 𝐿 be centrally symmetric convex bodies in ℝ2, and let 𝜆 ∈ (0, 1). Then
the standard (𝑒1, 𝑒2)-geometric combination 𝐾 ⋆𝜆 𝐿 is an unconditional convex body.

Proof. For brevity, we are going to denote by𝑀 the standard (𝑒1, 𝑒2)-geometric combination𝐾 ⋆𝜆

𝐿 (where 𝜆 is fixed in [0, 1]).

 20417942, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12192 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 495

To see that 𝑀 is unconditional, recall that 𝑀 is the image of the standard geometric potential
𝑊𝜆 of the i.d. fields (𝑈, 𝑉) of 𝐾 and 𝐿. In view of the above expressions of 𝑢′

1
(𝑡1) and

𝜕𝑢2

𝜕𝑡2
(and of

their analog for the derivatives of the components of 𝑉), we have

𝑊𝜆(𝑡1, 𝑡2) =

(
∫

𝑡1

1
2

( |𝐾|
𝛾𝐾(𝑠)

)1−𝜆( |𝐿|
𝛾𝐿(𝑠)

)𝜆

𝑑𝑠 , 𝛾𝐾(𝑡1)
1−𝜆𝛾𝐿(𝑡1)

𝜆
(
𝑡2 −

1

2

))
∀(𝑡1, 𝑡2) ∈ (0, 1)2 ,

where we have set for brevity

𝛾𝐾(𝑡1) ∶= 1(𝐾𝑢1(𝑡1)
) , 𝛾𝐿(𝑡1) ∶= 1(𝐿𝑣1(𝑡1)

) ∀𝑡1 ∈ (0, 1) .

It readily follows that the components of𝑊𝜆 satisfy, for every 𝛿 ∈ (0, 1∕2),

𝑤𝜆,1(
1

2
+ 𝛿) = −𝑤𝜆,1(

1

2
− 𝛿) ,

𝑤𝜆,2(𝑡1,
1

2
+ 𝛿) = −𝑤𝜆,1(𝑡1,

1

2
− 𝛿) ∀𝑡1 ∈ (0, 1) ,

which shows that𝑀 is unconditional.
We now turn attention to convexity. We claim that the convexity of a generic centrally

symmetric set 𝐾 is related to the concavity of the corresponding function 𝛾2
𝐾
as follows:

𝐾 convex ⇒ 𝛾2
𝐾
concave, (23)

𝐾 unconditional and 𝛾2
𝐾
concave ⇒ 𝐾 convex. (24)

Specifically, setting 𝜓𝐾(𝑥1) ∶= 1(𝐾𝑥1
), we have that: if 𝐾 is convex, the map 𝜓𝐾 is concave;

vice versa, if 𝜓𝐾 is concave and 𝐾 is symmetric about the 𝑥1-axis (and hence unconditional since
it is assumed to be centrally symmetric), then 𝐾 is convex.
In view of this observation, to obtain (23)–(24), it is enough to show that the concavity of 𝜓𝐾

is equivalent to the concavity of 𝛾2
𝐾
. From the definition of the distribution function 𝑢1, we have

that

𝜓𝐾(𝑢1(𝑠))𝑢
′
1(𝑠) = |𝐾| , for a.e. 𝑠 ∈ (0, 1) .

Since 𝛾𝐾(𝑠) = 𝜓𝐾(𝑢1(𝑠)), squaring both sides and differentiating with respect to 𝑠 gives

(𝛾2
𝐾)

′(𝑠) = 2𝜓𝐾(𝑢1)𝜓
′
𝐾(𝑢1)𝑢

′
1 = 2|𝐾|𝜓′

𝐾(𝑢1),

which shows that (𝛾2
𝐾
)′ is nondecreasing if and only if 𝜓′

𝐾
is (recall indeed that 𝑢1 is increasing).

Now, thanks to (23)–(24), and since we have already proved that 𝑀 is unconditional, in order
to prove that𝑀 is convex, we are reduced to show that

𝛾2
𝐾 and 𝛾2

𝐿 concave ⟹ 𝛾2
𝑀 concave . (25)

We observe that, by the definition of𝑀, it holds that 𝛾𝑀 = 𝛾1−𝜆
𝐾

𝛾𝜆
𝐿
. Then the validity of the impli-

cation (25) follows from the fact that the geometric mean of two nonnegative concave function is
still concave. For the sake of completeness, we enclose the elementary proof. Denoting by 𝜑 and
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496 CRASTA and FRAGALÀ

𝜓 the two functions, we have

𝜑1−𝜆((1 − 𝜃)𝑠 + 𝜃𝑡)𝜓𝜆((1 − 𝜃)𝑠 + 𝜃𝑡)

⩾ ((1 − 𝜃)𝜑(𝑠) + 𝜃𝜑(𝑡))1−𝜆((1 − 𝜃)𝜓(𝑠) + 𝜃𝜓(𝑡))𝜆

⩾ (1 − 𝜃)𝜑(𝑠)1−𝜆𝜓(𝑠)𝜆 + 𝜃𝜑(𝑡)1−𝜆𝜓(𝑡)𝜆 ,

where in the last line, we have exploited the inequality (𝑥1 + 𝑦1)
1−𝜆(𝑥2 + 𝑦2)

𝜆 ⩾ 𝑥1−𝜆
1

𝑥𝜆
2
+ 𝑦1−𝜆

1
𝑦𝜆
2
,

holding for nonnegative numbers 𝑥1, 𝑥2, 𝑦1, 𝑦2 (as it follows by adding the a.m.–g.m. inequality
applied separately to the pair ( 𝑥1

𝑥1+𝑦1
,

𝑥2

𝑥2+𝑦2
) and to the pair ( 𝑦1

𝑥1+𝑦1
,

𝑦2
𝑥2+𝑦2

)). □

Below we give some explicit examples of geometric combinations in dimension 2.

Example 21 (Geometric combination of two rectangles). If 𝐾 = 𝑄(𝑎1, 𝑎2) is the centrally sym-
metric rectangle with vertices at (±𝑎1, ±𝑎2), with 𝑎𝑖 > 0, we have 1(𝐾𝑢1(𝑠)

) = 2𝑎2, so that the
i.d. field of 𝐾 is given by

𝑈(𝑡1, 𝑡2) = (𝑎1(2𝑡1 − 1) , 𝑎2(2𝑡2 − 1)) ∀(𝑡1, 𝑡2) ∈ (0, 1)2 .

If we take another rectangle 𝐿 = 𝑄(𝑏1, 𝑏2) with i.d. field 𝑉, the standard (𝑒1, 𝑒2)-geometric
potential of (𝑈, 𝑉) in proportion 𝜆 has components

𝑊𝜆(𝑡1, 𝑡2) =
(
𝑎1−𝜆
1 𝑏𝜆

1(2𝑡1 − 1) , 𝑎1−𝜆
2 𝑏𝜆

2(2𝑡2 − 1)
)
, ∀(𝑡1, 𝑡2) ∈ (0, 1)2 .

Hence,

𝑄(𝑎1, 𝑎2) ⋆𝜆 𝑄(𝑏1, 𝑏2) = 𝑄(𝑎1−𝜆
1 𝑏𝜆

1 , 𝑎
1−𝜆
2 𝑏𝜆

2) .

Example 22 (Geometric combination of two parallelograms with parallel sides). By arguing as in
the previous example, it is immediate to obtain that the (𝑧1, 𝑧2)-geometric combination in pro-
portion 𝜆 of two parallelograms with sides parallel to the vectors (𝑧1, 𝑧2), of lengths (2𝛼1, 2𝛼2)

and (2𝛽1, 𝛽2), respectively, is still a parallelograms with sides parallel to (𝑧1, 𝑧2), of lengths
(2𝛼1−𝜆

1
𝛽𝜆
1
, 2𝛼1−𝜆

2
𝛽𝜆
2
).

Example 23. Let us consider again two parallelograms with parallel sides, and let us determine
their (𝑒1, 𝑒2)-geometric combination, for example, in proportion

1

2
. Let us denote by 𝑃(𝑎1, 𝑎2, 𝑏1)

the centrally symmetric parallelogram with two vertices at the points (𝑎1, 𝑎2) and (𝑏1, −𝑎2),
with 𝑎1 > 𝑏1 > 0, 𝑎2 > 0. Let us determine the standard (𝑒1, 𝑒2)-geometric combination of 𝐾 ∶=

𝑃(3, 2, 1) and𝐿 ∶= 𝑃(4, 1, 3). Setting for brevity𝑃 ∶= 𝑃(𝑎1, 𝑎2, 𝑏1), some elementary computations
give

1(𝑃𝑢1(𝑠)
) =

⎧⎪⎨⎪⎩
2𝑎2 if 1

2
⩽ 𝑠 ⩽

1

2
+

𝑏1
𝑎1+𝑏1

2𝑎2

𝑎1−𝑏1

(
(𝑎1 − 𝑏1)

2 + 2(𝑏2
1
− 𝑎2

1
)(𝑠 − 1

2
−

𝑏1
𝑎1+𝑏1

)
) 1

2 if 1

2
+

𝑏1
𝑎1+𝑏1

⩽ 𝑠 ⩽ 1 .
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 497

F IGURE 1 The geometric combination of the two parallelograms in Example 23.

Thus, denoting by 𝑈 = (𝑢1, 𝑢2), 𝑉 = (𝑣1, 𝑣2) the i.d. fields of 𝐾 and 𝐿, we have

𝛾𝐾(𝑠) ∶= 1(𝐾𝑢1(𝑠)
) =

{
4 if 1

2
⩽ 𝑠 ⩽

3

4

8
√

1 − 𝑠 if 3

4
⩽ 𝑠 ⩽ 1 ,

𝛾𝐿(𝑠) ∶= 1(𝐿𝑣1(𝑠)
) =

{
2 if 1

2
⩽ 𝑠 ⩽

13

14

2
√

14
√

1 − 𝑠 if 13

14
⩽ 𝑠 ⩽ 1 .

Let us then compute the (𝑒1, 𝑒2)-geometric potential of (𝑈, 𝑉) in proportion 1

2
, denoted as usual

by 𝑊1
2

(𝑡1, 𝑡2). By Proposition 20, we already know that 𝑀 is unconditional, so we can restrict
ourselves to determine one quarter of the boundary, which is found by computing𝑊1

2

(𝑡1, 1), for

𝑡1 ∈ [1
2
, 1]. From the above expressions of 𝛾𝐾 and 𝛾𝐿, we find that it is given, for any 𝑡1 ∈ [1

2
, 1],

by

𝑊1
2

(𝑡1, 1) =

(
∫

𝑡1

1
2

( |𝐾||𝐿|
𝛾𝐿(𝑠)𝛾𝐾(𝑠)

) 1
2

𝑑𝑠 ,
1

2
(𝛾𝐾(𝑡1)𝛾𝐿(𝑡1))

1
2

)

=

(
4
√

14∫
𝑡1

1
2

1

𝜓(𝑠)
𝑑𝑠 ,

1

2
𝜓(𝑡1)

)
,

where

𝜓(𝑠) ∶= (𝛾𝐾(𝑠)𝛾𝐿(𝑠))
1
2 =

⎧⎪⎨⎪⎩
2
√

2 if 1

2
⩽ 𝑠 ⩽

3

4

4(1 − 𝑠)
1
4 if 3

4
⩽ 𝑠 ⩽

13

14

4(14)
1
4 (1 − 𝑠)

1
2 if 13

14
⩽ 𝑠 ⩽ 1 .

Figure 1 represents the boundary of the geometric combination 𝐾 ⋆1
2

𝐿, which is obtained in the

first quadrant by plotting the curve 𝑡1 ↦ 𝑊1
2

(𝑡1, 1) over [
1

2
, 1] (composed by two line segments

and a positively curved arc), and in the other quadrants by reflection.

Example 24 (Geometric combination of two rhombi). If 𝐾 = 𝑅(𝑎1, 𝑎2) is the centrally symmetric
rhombus with one vertex at (𝑎1, 0) and another one at (0, 𝑎2), with 𝑎𝑖 > 0, we have 1(𝐾𝑢1(𝑠)

) =
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498 CRASTA and FRAGALÀ

F IGURE 2 The geometric combination of the square and the rhombus in Example 25.

2𝑎2

√
2𝑠, so that the i.d. field of 𝐾 is given by

𝑈(𝑡1, 𝑡2) =
(
𝑎1

(√
2𝑡1 − 1

)
, 𝑎2

√
2𝑡1(2𝑡2 − 1)

)
∀(𝑡1, 𝑡2) ∈ (0, 1)2 .

If we take another rhombus 𝐿 = 𝑅(𝑏1, 𝑏2)with i.d. field𝑉, and we choose, for instance, 𝜆 = 1

2
, the

standard (𝑒1, 𝑒2)-geometric potential of (𝑈, 𝑉) in proportion 1

2
has components

𝑊1∕2(𝑡1, 𝑡2) =
(√

𝑎1𝑏1(
√

2𝑡1 − 1) ,
√

𝑏1𝑏2

√
2𝑡1(2𝑡2 − 1)

)
, ∀(𝑡1, 𝑡2) ∈ (0, 1)2 .

Hence,

𝑅(𝑎1, 𝑎2) ⋆1
2

𝑅(𝑏1, 𝑏2) = 𝑅(
√

𝑎1𝑎2,
√

𝑏1𝑏2) .

Example 25 (Geometric combination of a rectangle and a rhombus). Using the same notation as
in Examples 21 and 24, if𝐾 = 𝑄(𝑎1, 𝑎2) and𝐿 = 𝑅(𝑏1, 𝑏2), the standard (𝑒1, 𝑒2)-geometric potential
in proportion 1∕2 has components

𝑊1∕2(𝑡1, 𝑡2) =

(
4

3
2

1
4

√
𝑎1𝑏1

(
𝑡
3
4

1
−
(
1

2

) 3
4

)
, 2

1
4

√
𝑎2𝑏2𝑡

1
4

1 (2𝑡2 − 1)

)
∀(𝑡1, 𝑡2) ∈ (0, 1)2 .

Taking, for example, 𝑎1 = 𝑎2 = 𝑏1 = 𝑏2 = 1, one quarter of the boundary of 𝑄(1, 1) ⋆1
2

𝑅(1, 1)

is the curve

2
1
4

(
4

3

(
𝑡
3
4

1
−
(
1

2

) 3
4

)
, −𝑡

1
4

1

)
, 𝑡1 ∈

[
0,

1

2

]
,

namely, the graph of the function

𝑥(𝑦) = −
2
√

2

3
(𝑦3 + 1) , 𝑦 ∈ [−1, 0] ,

see Figure 2.
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 499

3.2 Unconditional convex bodies

When 𝐾 is an unconditional convex body in ℝ𝑛, setting

𝐾𝑥1,…,𝑥𝑖
∶=

{
(𝑥𝑖+1𝑒𝑖+1 +⋯ + 𝑥𝑛𝑒𝑛) ∶ (𝑥1𝑒1 +⋯ + 𝑥𝑖𝑒𝑖 + 𝑥𝑖+1𝑒𝑖+1 +⋯ + 𝑥𝑛𝑒𝑛) ∈ 𝐾

}
,

the components (𝑢1, … , 𝑢𝑛) of the (𝑒1, … , 𝑒𝑛)-i.d. field of 𝐾 satisfy

∙ 𝑡1 ↦ 𝑢1(𝑡1) is the i.d. function of the map 𝑥1 ↦ 𝑛−1(𝐾𝑥1
), hence

𝑢′
1(𝑡1) =

|𝐾|
𝑛−1(𝐾𝑢1(𝑡1)

)
for 1-a.e. 𝑡1 ∈ (0, 1) ;

∙ for 1-a.e. 𝑡1 ∈ (0, 1), 𝑡2 ↦ 𝑢2(𝑡1, 𝑡2) is the i.d. function of the map 𝑥2 ↦ 𝑛−2(𝐾(𝑢1(𝑡1),𝑥2)
);

hence,

𝜕𝑢2

𝜕𝑡2
(𝑡1, 𝑡2) =

𝑛−1(𝐾𝑢1(𝑡1)
)

𝑛−2(𝐾𝑢1(𝑡1),𝑢2(𝑡1,𝑡2)
)

for 1-a.e. 𝑡2 ∈ (0, 1) ;

∙ …
∙ for 𝑛−1-a.e. (𝑡1, … , 𝑡𝑛−1) ∈ (0, 1)𝑛−1, 𝑡𝑛 ↦ 𝑢𝑛(𝑡1, … , 𝑡𝑛−1, 𝑡𝑛) is the i.d. function of the map

𝑥𝑛 ↦ 𝜒𝐾(𝑢1(𝑡1)𝑒1 +⋯ + 𝑢𝑛−1(𝑡𝑛−1)𝑒𝑛−1 + 𝑥𝑛𝑒𝑛); hence,

𝜕𝑢𝑛

𝜕𝑡𝑛
(𝑡1, … , 𝑡𝑛−1, 𝑡𝑛) = 1(𝐾𝑢1(𝑡1),…,𝑢𝑛−1(𝑡1,…,𝑡𝑛−1)

) for 1-a.e. 𝑡𝑛 ∈ (0, 1) .

Remark 26. Given an unconditional convex body 𝐾, the maps

𝑠 ↦ 𝑛−𝑖
(
𝐾𝑢1(𝑡1),…,𝑢𝑖−1(𝑡1,…,𝑡𝑖−1,𝑠)

)
𝑖 = 1, … , 𝑛 ,

are continuous and strictly positive on the interior of their support (which is an interval). Hence,
from their definition above, the components (𝑢1, … , 𝑢𝑛) of the (𝑒1, … , 𝑒𝑛)-i.d. field of 𝐾 satisfy

𝑡𝑖 ↦ 𝑢𝑖(𝑡1, … , 𝑡𝑖) ∈ Liploc(0, 1) 𝑖 = 1, … , 𝑛 .

In view of Proposition 11, we infer that, given two unconditional convex body 𝐾 and 𝐿, the map
𝜆 ↦ 𝐾 ⋆𝜆 𝐿 is a continuous interpolation in 𝐿1 from 𝐾 ⋆0 𝐿 = 𝐾 to 𝐾 ⋆1 𝐿 = 𝐿. In addition, for
𝑛 = 2, by Proposition 20, this interpolation is made up of convex bodies.

Proposition 27. Let 𝐾 and 𝐿 be unconditional convex bodies in ℝ𝑛, and let 𝜆 ∈ [0, 1]. Then the
standard (𝑒1, … , 𝑒𝑛)-geometric combination 𝐾 ⋆𝜆 𝐿 enjoys the following properties:

(i) it is an unconditional set;
(ii) it satisfies the inclusion

𝐾 ⋆𝜆 𝐿 ⊆ (1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿 . (26)

In particular, the equality |𝐾 ⋆𝜆 𝐿| = |𝐾|1−𝜆|𝐿|𝜆 given by Theorem 18 implies the log-Brunn–
Minkowski inequality for unconditional convex bodies.
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500 CRASTA and FRAGALÀ

Proof.

(i) Let us check, for every fixed 𝑖 ∈ {1, … , 𝑛}, the implication

(𝑥1, … , 𝑥𝑖, … , 𝑥𝑛) ∈ 𝐾 ⋆𝜆 𝐿 ⟹ (𝑥1, … ,−𝑥𝑖, … , 𝑥𝑛) ∈ 𝐾 ⋆𝜆 𝐿 . (27)

By construction, 𝐾 ⋆𝜆 𝐿 agrees with the image of the standard geometric potential 𝑊𝜆, that
is,

𝐾 ⋆𝜆 𝐿 =
{(

𝑤𝜆,1(𝑡1), 𝑤𝜆,2(𝑡1, 𝑡2), … , 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛)
)

∶ 𝑡𝑖 ∈ (0, 1)
}

.

From the expressions of 𝜕𝑢𝑖

𝜕𝑡𝑖
recalled at the beginning of Section 3.2, we see that, since 𝐾 is

unconditional, the components 𝑢𝑖 of its i.d. field satisfy

𝜕𝑢𝑖

𝜕𝑡𝑖
(𝑡1, … , 𝑡𝑖−1, 𝑠) =

𝜕𝑢𝑖

𝜕𝑡𝑖
(𝑡1, … , 𝑡𝑖−1, 1 − 𝑠) for 1-a.e. 𝑠 ∈ (0, 1) , (28)

and similarly for the components 𝑣𝑖 of the i.d. field of 𝐿.
Then, for every 𝑖 = 1, … , 𝑛, 𝛿 ∈ (0, 1

2
) and 𝑡1, … , 𝑡𝑖−1 ∈ (0, 1), it holds that

𝑤𝜆,𝑖(𝑡1, … , 𝑡𝑖−1,
1

2
+ 𝛿) = ∫

1
2
+𝛿

1∕2

𝜕𝑢𝑖

𝜕𝑡𝑖
(𝑡1, … , 𝑡𝑖−1, 𝑠)

1−𝜆 𝜕𝑣𝑖
𝜕𝑡𝑖

(𝑡1, … , 𝑡𝑖−1, 𝑠)
𝜆 𝑑𝑠

= ∫
1
2
+𝛿

1
2

𝜕𝑢𝑖

𝜕𝑡𝑖
(𝑡1, … , 𝑡𝑖−1, 1 − 𝑠)1−𝜆 𝜕𝑣𝑖

𝜕𝑡𝑖
(𝑡1, … , 𝑡𝑖−1, 1 − 𝑠)𝜆 𝑑𝑠

= −∫
1
2

1
2
−𝛿

𝜕𝑢𝑖

𝜕𝑡𝑖
(𝑡1, … , 𝑡𝑖−1, 𝑠

′)1−𝜆 𝜕𝑣𝑖
𝜕𝑡𝑖

(𝑡1, … , 𝑡𝑖−1, 𝑠
′)𝜆 𝑑𝑠′

= −𝑤𝜆,𝑖(𝑡1, … , 𝑡𝑖−1,
1

2
− 𝛿) ,

where the first and fourth equalities hold by definition of 𝑤𝜆,𝑖 , the third one by the change of
variable 𝑠′ = 1 − 𝑠, and the second one is due to the fact that the functions 𝑢𝑖 (and 𝑣𝑖) satisfy
(28). This shows the implication (27).

(ii) In order to show the inclusion (26), it is enough to prove that

𝐾 ⋆𝜆 𝐿 ⊆ 𝐾1−𝜆 ⋅ 𝐿𝜆 , (29)

where

𝐾1−𝜆 ⋅ 𝐿𝜆 ∶=
{(

±|𝑥1|1−𝜆|𝑦1|𝜆, … , ±|𝑥𝑛|1−𝜆|𝑦𝑛|𝜆) ∶ (𝑥1, … , 𝑥𝑛) ∈ 𝐾 , (𝑦1, … , 𝑦𝑛) ∈ 𝐿
}

.

Indeed, (26) will follow from (29) because 𝐾1−𝜆 ⋅ 𝐿𝜆 ⊆ (1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿 (see [37,
Lemma 4.1]).
Since we now know that both sets 𝐾 ⋆𝜆 𝐿 and𝐾1−𝜆 ⋅ 𝐿𝜆 are unconditional, we are reduced

to show that

(𝐾 ⋆𝜆 𝐿) ∩ ℝ𝑛
+ ⊆

(
𝐾1−𝜆 ⋅ 𝐿𝜆

)
∩ ℝ𝑛

+ .
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 501

Let us consider a generic element of (𝐾 ⋆𝜆 𝐿) ∩ ℝ𝑛
+, which will be of the form

𝑊𝜆(𝑡) ∶=
(
𝑤𝜆,1(𝑡1), 𝑤𝜆,2(𝑡1, 𝑡2), … , 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛)

)
(30)

for some 𝑡 = (𝑡1, … , 𝑡𝑛) with 𝑡𝑖 ∈ (1∕2, 1) for every 𝑖 = 1, … , 𝑛.
By applying Hölder’s inequality with conjugate exponents 1

1−𝜆
and 1

𝜆
, we see that

0 ⩽ 𝑤𝜆,𝑖(𝑡1, … , 𝑡𝑖) ⩽ 𝑢𝑖(𝑡1, … , 𝑡𝑖)
1−𝜆𝑣𝑖(𝑡1, … , 𝑡𝑖)

𝜆 ∀𝑖 = 1,… , 𝑛 . (31)

Since the vector(
𝑢1(𝑡1)

1−𝜆𝑣1(𝑡1)
𝜆, 𝑢2(𝑡1, 𝑡2)

1−𝜆𝑣2(𝑡1, 𝑡2)
𝜆, … , 𝑢𝑛(𝑡1, … , 𝑡𝑛)

1−𝜆𝑣𝑛(𝑡1, … , 𝑡𝑛)
𝜆
)

belongs to (𝐾1−𝜆 ⋅ 𝐿𝜆) ∩ ℝ𝑛
+ and, since the sets 𝐾 and 𝐿 are convex (which implies 𝐾1−𝜆 ⋅ 𝐿𝜆

convex as well), for every 𝑠 = (𝑠1, … , 𝑠𝑛) ∈ (0, 1)𝑛 the vector(
𝑠1𝑢1(𝑡1)

1−𝜆𝑣1(𝑡1)
𝜆, 𝑠2𝑢2(𝑡1, 𝑡2)

1−𝜆𝑣2(𝑡1, 𝑡2)
𝜆, … , 𝑠𝑛𝑢𝑛(𝑡1, … , 𝑡𝑛)

1−𝜆𝑣𝑛(𝑡1, … , 𝑡𝑛)
𝜆
)

belongs to (𝐾1−𝜆 ⋅ 𝐿𝜆) ∩ ℝ𝑛
+. Therefore, the inequalities (31) imply that the vector 𝑊𝜆(𝑡) in

(30) belongs to (𝐾1−𝜆 ⋅ 𝐿𝜆) ∩ ℝ𝑛
+. □

3.3 Convex bodies with 𝒏 symmetries

The class of convex bodies with 𝑛 symmetries has been considered in the literature on Convex
Geometry, in particular, to give a partial answer to some long-standing open questions such as
the Mahler conjecture [6, 7] and the log-Brunn–Minkowski conjecture [13].
Before giving the definition, let us recall first that a linear reflection is a map 𝐴 ∈ 𝐺𝐿(𝑛)

which acts identically into some (𝑛 − 1)-dimensional linear subspace 𝐻 of ℝ𝑛, and there exists
𝑢 ∈ 𝑆𝑛−1 ⧵ 𝐻 such that 𝐴(𝑢) = −𝑢. In particular, an orthogonal reflection is a linear reflection 𝐴

which belongs to 𝑂(𝑛).
Now, given a family 𝐴1,… ,𝐴𝑛 of linear reflections in ℝ𝑛, such that the corresponding

hyperplanes𝐻1,… ,𝐻𝑛 satisfy 𝐻1 ∩⋯ ∩ 𝐻𝑛 = {0}, we set

𝑦𝑚(𝐴1, … ,𝐴𝑛) ∶=
{
𝐾 ⊆ ℝ𝑛 ∶ 𝐴𝑖𝐾 = 𝐾 ∀𝑖 = 1,… , 𝑛

}
.

To deal with the operation of geometric combination in the class 𝑦𝑚(𝐴1, … ,𝐴𝑛), it is crucial
to choose an appropriate family of directions. This requires to fix some background from [13].

∙ If (𝐴1, … ,𝐴𝑛) are orthogonal reflections in ℝ𝑛, such that the corresponding hyperplanes
𝐻1,… ,𝐻𝑛 satisfy 𝐻1 ∩⋯ ∩ 𝐻𝑛 = {0}, we denote by 𝐶(𝐴1, … ,𝐴𝑛) an 𝑛-dimensional simplicial
convex cone (namely, the positive hull of 𝑛 linearly independent vectors) that is associated with
the closure of the group generated by (𝐴, … ,𝐴𝑛) as in [13, Proposition 1]. If 𝐶 is the positive hull
of 𝑤1,… ,𝑤𝑛, the linear subspaces generated by {𝑤1, … ,𝑤𝑛} ⧵ 𝑤𝑖 , for 𝑖 = 1, … , 𝑛, are called the
walls of 𝐶.

∙ If (𝐴1, … ,𝐴𝑛) are merely linear reflections in ℝ𝑛, such that the corresponding hyperplanes
𝐻1,… ,𝐻𝑛 satisfy 𝐻1 ∩⋯ ∩ 𝐻𝑛 = {0}, there exists a map Ψ ∈ 𝐺𝐿(𝑛) such that 𝐴′

𝑖
∶= Ψ𝐴𝑖Ψ

−1

are orthogonal reflections through hyperplanes𝐻′
1
, … ,𝐻′

𝑛 satisfying𝐻
′
1
∩⋯ ∩ 𝐻′

𝑛 = {0} (Ψ can
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502 CRASTA and FRAGALÀ

be found as a map which sends the Löwner ellipsoid of 𝐾 into the unit ball, see the proof of [13,
Theorem 2]).

We refer to [13] for more details, and we proceed to state the following.

Proposition 28. Let 𝐾 and 𝐿 be convex bodies in the class 𝑦𝑚(𝐴1, … ,𝐴𝑛), and let 𝜆 ∈ [0, 1]. Let
𝐾 ⋆𝜆 𝐿 be their (𝑧1, … , 𝑧𝑛)-geometric combination in proportion 𝜆, where the family (𝑧1, … , 𝑧𝑛) is
chosen as follows:

(a) if 𝐴𝑖 are orthogonal reflections, (𝑧1, … , 𝑧𝑛) are the normals to the walls of the simplicial convex
cone 𝐶(𝐴1, … ,𝐴𝑛);

(b) if 𝐴𝑖 are merely linear reflections, denoting by Ψ a map in 𝐺𝐿(𝑛) such that 𝐴′
𝑖
∶= Ψ𝐴𝑖Ψ

−1 are
orthogonal reflections, (𝑧1, … , 𝑧𝑛) are the image through Ψ−1 of the normals to the walls of the
simplicial convex cone 𝐶(𝐴′

1
, … ,𝐴′

𝑛).

Then 𝐾 ⋆𝜆 𝐿 enjoys the following properties:

(i) it belongs to the class 𝑦𝑚(𝐴1, … ,𝐴𝑛);
(ii) it satisfies the inclusion

𝐾 ⋆𝜆 𝐿 ⊆ (1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿 . (32)

In particular, the equality |𝐾 ⋆𝜆 𝐿| = |𝐾|1−𝜆|𝐿|𝜆 given by Theorem 18 implies the log-Brunn–
Minkowski inequality in the class 𝑦𝑚(𝐴1, … ,𝐴𝑛).

Proof. Let us prove the statement first in case 𝐴𝑖 are orthogonal reflections and then in case they
are merely linear reflections.
– Case (a). (𝐴𝑖 orthogonal reflections).

(i) In order to check that 𝐾 ⋆𝜆 𝐿 belongs to the class 𝑦𝑚(𝐴1, … ,𝐴𝑛), let us write the sets 𝐾, 𝐿
and 𝐾 ⋆𝜆 𝐿 as

𝐾 =
{
𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑢𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 ∶ 𝑡𝑖 ∈ (0, 1)

}
,

𝐿 =
{
𝑣1(𝑡1)𝑧1 + 𝑣2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑣𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 ∶ 𝑡𝑖 ∈ (0, 1)

}
,

𝐾 ⋆𝜆 𝐿 =
{
𝑤𝜆,1(𝑡1)𝑧1 + 𝑤𝜆,2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 ∶ 𝑡𝑖 ∈ (0, 1)

}
,

where 𝑈 = 𝑢1𝑧1 +⋯ + 𝑢𝑛𝑧𝑛, 𝑉 = 𝑣1𝑧1 +⋯ + 𝑣𝑛𝑧𝑛 are the (𝑧1, … , 𝑧𝑛)-inverse distribution
fields of𝐾 and 𝐿, and𝑊𝜆 = 𝑤𝜆,1𝑧1 +⋯ + 𝑤𝜆,𝑛𝑧𝑛 is the standard geometric potential of (𝑈, 𝑉)

in proportion 𝜆.
The fact that𝐾 and 𝐿 belong to𝑦𝑚(𝐴1, … ,𝐴𝑛) can be expressed as the systemof equalities

𝑢𝑖(𝑡1, … , 𝑡𝑖−1, 𝑠) = −𝑢𝑖(𝑡1, … , 𝑡𝑖−1, 1 − 𝑠) ∀𝑠 ∈ (0, 1) ,

𝑣𝑖(𝑡1, … , 𝑡𝑖−1, 𝑠) = −𝑣𝑖(𝑡1, … , 𝑡𝑖−1, 1 − 𝑠) ∀𝑠 ∈ (0, 1) .
(33)

Then, proceeding in the same way as in the first part of the proof of Proposition 27, we see
that the functions 𝑤𝜆,𝑖 continue to satisfy the analogous equalities:

𝑤𝜆,𝑖(𝑡1, … , 𝑡𝑖−1, 𝑠) = −𝑤𝜆,𝑖(𝑡1, … , 𝑡𝑖−1, 1 − 𝑠) ∀𝑠 ∈ (0, 1) , (34)

which implies that also 𝐾 ⋆𝜆 𝐿 belongs to 𝑦𝑚(𝐴1, … ,𝐴𝑛).
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 503

(ii) By statement (i) already proved, we know that𝐾 ⋆𝜆 𝐿 belongs to 𝑦𝑚(𝐴1, … ,𝐴𝑛). Also, since
the 0-sum is linear covariant (i.e., 𝐴𝑖((1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿)) = (1 − 𝜆) ⋅ 𝐴𝑖(𝐾) +0 𝜆 ⋅ 𝐴𝑖(𝐿)), we
have that (1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿 belongs to 𝑦𝑚(𝐴1, … ,𝐴𝑛). Therefore, in order to prove the
inclusion (32), we are reduced to show that, denoting for brevity by 𝐶 the simplicial convex
cone 𝐶(𝐴1, … ,𝐴𝑛), it holds that

𝐶 ∩ (𝐾 ⋆𝜆 𝐿) ⊆ 𝐶 ∩ ((1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿) . (35)

In turn, to have (35) it is enough to show that

Φ(𝐶 ∩ (𝐾 ⋆𝜆 𝐿)) ⊆ Φ(𝐶 ∩ ((1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿)) ,

where Φ is a map in 𝐺𝐿(𝑛) with Φ(𝑧𝑖) = 𝑒𝑖 , so that Φmaps 𝐶 into ℝ𝑛
+ (recall that (𝑧1, … , 𝑧𝑛)

denote the normals to the walls of 𝐶).
Since𝐾 and 𝐿 are invariant under the closure of the group generated by (𝐴1, … ,𝐴𝑛), by [13,

Proposition 1 (v)], we know that the unconditional sets 𝐾 and 𝐿 defined by

ℝ𝑛
+ ∩ 𝐾 ∶= Φ(𝐶 ∩ 𝐾) and ℝ𝑛

+ ∩ 𝐿 ∶= Φ(𝐶 ∩ 𝐿)

are unconditional convex bodies.
Moreover, from the proof of Theorem 8 and [13, Lemma 6 (ii)], we know that

ℝ𝑛
+ ∩

(
(1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿

)
⊆ Φ

({
𝑥 ∈ 𝐶 ∶ ⟨𝑥, 𝑢⟩ ⩽ ℎ𝐾(𝑢)

1−𝜆ℎ𝐿(𝑢)
𝜆 ∀𝑢 ∈ 𝐶

})
= Φ(𝐶 ∩ ((1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿)) .

We are thus reduced to prove that

Φ(𝐶 ∩ (𝐾 ⋆𝜆 𝐿)) ⊆ ℝ𝑛
+ ∩

(
(1 − 𝜆) ⋅ 𝐾 +0 𝜆 ⋅ 𝐿

)
. (36)

The inclusion (36) will follow from Proposition 27 applied to the unconditional convex bodies
𝐾 and 𝐿, provided that we are able to show that

Φ(𝐶 ∩ (𝐾 ⋆𝜆 𝐿)) = ℝ𝑛
+ ∩ (𝐾 ⋆𝜆 𝐿) , (37)

where 𝐾 ⋆𝜆 𝐿 is the (𝑒1, … , 𝑒𝑛)-geometric combination of 𝐾 and 𝐿.
We emphasize that the families of vectors with respect to which the two geometric com-

binations appearing in (37) are constructed are distinguished, and their indication is omitted
just for notational simplicity. For the sake of clearness, let us repeat that 𝐾 ⋆𝜆 𝐿 is the
(𝑧1, … , 𝑧𝑛)-geometric combination of 𝐾 and 𝐿, with (𝑧1, … , 𝑧𝑛) chosen as specified in the
statement of Proposition 28, while 𝐾 ⋆𝜆 𝐿 is the (𝑒1, … , 𝑒𝑛)-geometric combination of the
unconditional bodies 𝐾 and 𝐿.
Let us check the equality (37). By the system of equations (33)–(34), we see that

𝑢𝑖(𝑡1, … , 𝑡𝑖−1, 1∕2) = 𝑣𝑖(𝑡1, … , 𝑡𝑖−1, 1∕2) = 𝑤𝜆,𝑖(𝑡1, … , 𝑡𝑖−1, 1∕2) = 0 ∀𝑖 = 1,…𝑛 .

Hence, the intersections of the walls of 𝐶 with 𝐾, 𝐿, and 𝐾 ⋆𝜆 𝐿 are given, respectively, by

𝐾 ∩
{
𝑡𝑖 =

1

2

}
, 𝐿 ∩

{
𝑡𝑖 =

1

2

}
, (𝐾 ⋆𝜆 𝐿) ∩

{
𝑡𝑖 =

1

2

}
.
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504 CRASTA and FRAGALÀ

Thus,

𝐶 ∩ 𝐾 =
{
𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑢𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 ∶ 𝑡𝑖 ∈ (1∕2, 1)

}
,

𝐶 ∩ 𝐿 =
{
𝑣1(𝑡1)𝑧1 + 𝑣2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑣𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 ∶ 𝑡𝑖 ∈ (1∕2, 1)

}
,

𝐶 ∩ (𝐾 ⋆𝜆 𝐿) =
{
𝑤𝜆,1(𝑡1)𝑧1 + 𝑤𝜆,2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑤𝑙,𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 ∶ 𝑡𝑖 ∈ (1∕2, 1)

}
.

By applying the map Φ to the last equality above, we see that the set at the left-hand side of
(37) satisfies

Φ(𝐶 ∩ (𝐾 ⋆𝜆 𝐿))=
{
𝑤𝜆,1(𝑡1)𝑒1 + 𝑤𝜆,2(𝑡1, 𝑡2)𝑒2 +⋯ + 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛)𝑒𝑛 ∶ 𝑡𝑖 ∈ (1∕2, 1)

}
.

(38)
On the other hand, we have

ℝ𝑛
+ ∩ 𝐾 = Φ(𝐶 ∩ 𝐾) = Φ

({
𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑢𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 ∶ 𝑡𝑖 ∈ (1∕2, 1)

})
=
{
𝑢1(𝑡1)𝑒1 + 𝑢2(𝑡1, 𝑡2)𝑒2 +⋯ + 𝑢𝑛(𝑡1, … , 𝑡𝑛)𝑒𝑛 ∶ 𝑡𝑖 ∈ (1∕2, 1)

}
and similarly for 𝐿. In view of the equalities (33), we infer that

𝐾 =
{
𝑢1(𝑡1)𝑒1 + 𝑢2(𝑡1, 𝑡2)𝑒2 +⋯ + 𝑢𝑛(𝑡1, … , 𝑡𝑛)𝑒𝑛 ∶ 𝑡𝑖 ∈ (0, 1)

}
,

𝐿 =
{
𝑣1(𝑡1)𝑒1 + 𝑣2(𝑡1, 𝑡2)𝑒2 +⋯ + 𝑣𝑛(𝑡1, … , 𝑡𝑛)𝑒𝑛 ∶ 𝑡𝑖 ∈ (0, 1)

}
.

It follows straightforwardly that𝑈 ∶= 𝑢1(𝑡1)𝑒1 + 𝑢2(𝑡1, 𝑡2)𝑒2 +⋯ + 𝑢𝑛(𝑡1, … , 𝑡𝑛)𝑒𝑛 and 𝑉 ∶=

𝑣1(𝑡1)𝑒1 + 𝑣2(𝑡1, 𝑡2)𝑒2 +⋯ + 𝑣𝑛(𝑡1, … , 𝑡𝑛)𝑒𝑛 are, respectively, the (𝑒1, … , 𝑒𝑛)-i.d. fields of the
unconditional bodies 𝐾 and 𝐿. Therefore,

𝐾 ⋆𝜆 𝐿 =
{
𝑤𝜆,1(𝑡1)𝑒1 + 𝑤𝜆,2(𝑡1, 𝑡2)𝑒2 +⋯ + 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛)𝑒𝑛 ∶ 𝑡𝑖 ∈ (0, 1)

}
.

Hence, the set at the right-hand side of (37) satisfies

ℝ𝑛
+ ∩ (𝐾 ⋆𝜆 𝐿) =

{
𝑤𝜆,1(𝑡1)𝑒1 + 𝑤𝜆,2(𝑡1, 𝑡2)𝑒2 +⋯ + 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛)𝑒𝑛 ∶ 𝑡𝑖 ∈ (1∕2, 1)

}
. (39)

By combining (38) and (39), equality (37) follows.
– Case (b) (𝐴𝑖 linear reflections). Let Ψ be a map in 𝐺𝐿(𝑛) such that 𝐴′

𝑖
∶= Ψ𝐴𝑖Ψ

−1 are
orthogonal reflections. Let 𝜂𝑖 be the normals to the walls of the simplicial convex cone
𝐶(𝐴′

1
, … ,𝐴′

𝑛), so that (𝑧1, … , 𝑧𝑛) ∶= Ψ−1(𝜂1, … , 𝜂𝑛). Statements (i)–(ii) readily follow from the
corresponding items already proved in Case (a), provided we show that

Ψ(𝐾 ⋆𝜆 𝐿) = Ψ(𝐾) ⋆𝜆 Ψ(𝐿) , (40)

where the geometric combination 𝐾 ⋆𝜆 𝐿 is made with respect to (𝑧1, … , 𝑧𝑛), and the
geometric combination Ψ(𝐾) ⋆𝜆 Ψ(𝐿) is made with respect to (𝜂1, … , 𝜂𝑛).
To prove (40), we start by writing 𝐾 ⋆𝜆 𝐿 as

𝐾 ⋆𝜆 𝐿 =
{
𝑤𝜆,1(𝑡1)𝑧1 + 𝑤𝜆,2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 ∶ 𝑡𝑖 ∈ (0, 1)

}
,
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ON A GEOMETRIC COMBINATION OF FUNCTIONS RELATED TO PRÉKOPA–LEINDLER INEQUALITY 505

where 𝑤𝜆,𝑖 are the components of the standard (𝑧1, … , 𝑧𝑛)-geometric potential of the
(𝑧1, … , 𝑧𝑛)-i.d. fields of 𝐾 and 𝐿.
Then

Ψ(𝐾 ⋆𝜆 𝐿) =
{
𝑤𝜆,1(𝑡1)𝜂1 + 𝑤𝜆,2(𝑡1, 𝑡2)𝜂2 +⋯ + 𝑤𝜆,𝑛(𝑡1, … , 𝑡𝑛)𝜂𝑛 ∶ 𝑡𝑖 ∈ (0, 1)

}
,

so that (40) holds true, provided that𝑤𝜆,𝑖 are also the components of the standard (𝜂1, … , 𝜂𝑛)-
geometric potential of the (𝜂1, … , 𝜂𝑛)-i.d. fields ofΨ(𝐾) andΨ(𝐿). In turn, this is true, provided
that the following implication holds: if𝑈(𝑡) = 𝑢1(𝑡1)𝑧1 + 𝑢2(𝑡1, 𝑡2)𝑧2 +⋯ + 𝑢𝑛(𝑡1, … , 𝑡𝑛)𝑧𝑛 is
the (𝑧1, … , 𝑧𝑛)-i.d. field of 𝐾, then 𝑈(𝑡) = 𝑢1(𝑡1)𝜂1 + 𝑢2(𝑡1, 𝑡2)𝜂2 +⋯ + 𝑢𝑛(𝑡1, … , 𝑡𝑛)𝜂𝑛 is the
(𝜂1, … , 𝜂𝑛)-i.d. field ofΨ(𝐾) (and similarly for 𝐿). Such implication follows immediately from
Definition 12. □

4 OPEN PROBLEMS

∙ Problem 4.1: Continuous interpolations. Given two functions 𝑓, g ∶ ℝ𝑛 → ℝ+, with strictly posi-
tive integrals and i.d. fields𝑈,𝑉, respectively, construct a family of fields {𝑊𝜆}𝜆∈[0,1] such that,
if 𝑓 ⋆𝜆 g is defined according to (19), there holds as follows.
(i) For 𝜆 = 0 and 𝜆 = 1, we have 𝑓 ⋆0 g = 𝑓 and 𝑓 ⋆1 g = g .
(ii) The map [0, 1] ∋ 𝜆 ↦ 𝑓 ⋆𝜆 g is continuous in 𝐿1(ℝ𝑛).
(iii) For every 𝜆 ∈ [0, 1], ∫

ℝ𝑛 𝑓 ⋆𝜆 g(𝑥) 𝑑𝑥 = (∫
ℝ𝑛 𝑓(𝑥) 𝑑𝑥)1−𝜆(∫

ℝ𝑛 g(𝑥) 𝑑𝑥)𝜆.
In this respect, we have seen that, in dimension 𝑛 = 1, taking𝑤𝜆 equal to a geometric primi-

tive of (𝑢, 𝑣) in proportion 𝜆, property (iii) is always satisfied by Theorem 8, whereas properties
(i)–(ii) are satisfied in case 𝑢, 𝑣 belong to 𝐴𝐶loc(0, 1), but they are not in case the distributional
derivatives of 𝑢 or 𝑣 contain jumps or Cantor parts (cf. Remark 10 and Proposition 11). More-
over, we recall that (i)–(iii) hold in any space dimension when 𝑓 and g are the characteristic
functions of two unconditional convex bodies, see Remark 26.

∙ Problem 4.2: Convexity preserving of geometric combination in dimension 𝑛 > 2. Establish
whether (at least under the additional assumption that 𝐾 and 𝐿 are unconditional), Proposi-
tion 20 continues to hold in dimension 𝑛 > 2.

∙ Problem 4.3: Comparison between geometric combination and 0-sum. Establish whether (at least
in dimension 𝑛 = 2) the inclusion (26) in Proposition 27 continues to hold for arbitrary con-
vex bodies (not necessarily unconditional), provided that the family of directions (𝑧1, … , 𝑧𝑛)

needed to construct 𝐾 ⋆𝜆 𝐿 is suitably chosen. An affirmative answer would imply the log-
Brunn–Minkowski inequality (establishing the result if 𝑛 > 2, and giving a new proof of it if
𝑛 = 2).

∙ Problem 4.4: Comparison between geometric combination and Minkowski-sum. Establish
whether the inclusion 𝐾 ⋆𝜆 𝐿 ⊆ (1 − 𝜆)𝐾 + 𝐿 holds for arbitrary convex bodies, provided that
the family of directions (𝑧1, … , 𝑧𝑛)needed to construct𝐾 ⋆𝜆 𝐿 is suitably chosen. An affirmative
answer would give another proof of the classical Brunn–Minkowski inequality.
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