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Particle systems interacting with a soft repulsion, at thermal equilibrium and under some circumstances, are
known to form cluster crystals, i.e., periodic arrangements of particle aggregates. We study here how these
states are modified by the presence of an additional hard-core repulsion, accounting for particle size. To this
end we consider a two-dimensional system of Brownian particles interacting through a potential which includes
hard-core and soft-core (of the GEM-α type) repulsive terms. The system shows different phases, and we focus
in the regime where cluster crystals form. We consider two situations: the low-temperature one in which particles
inside the clusters also show an ordered structure (crystal cluster-crystal phase), and the one occurring at higher
temperature in which particles within the clusters are spatially disordered (fluid cluster crystal). An explicit
expression for the energy in terms of the typical distance between clusters and the typical distance of the particles
within the clusters is obtained for vanishing temperature, from which mean mean inter- and intracluster distances
are obtained. Finite-temperature corrections are also discussed, considering explicitly the role of entropy.
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I. INTRODUCTION

Particles interacting via soft-core repelling forces may
crystallize in equilibrium into ordered structures, with a unit
cell composed of a closely packed cluster of particles [1–7].
This is a particularly relevant situation for some polymers,
dendrimers, or colloidal solutions, where the effective po-
tentials between their centers of mass are soft and repul-
sive [4,8,9]. This phase, called cluster crystal, occurs for low
temperatures and large enough density and packing fraction.

This type of system has been studied by using a variety of
methods, from Monte Carlo to density functional theory [4,5],
or in the related Dean-Kawasaki equation approach [10]. A
mathematical criterion needed for the formation of cluster
crystals is that the Fourier transform of the interparticle po-
tential Ṽ (k) should take negative values for some values of
k [4,5,10]. For the commonly studied generalized exponen-
tial model (GEM-α), V (r ) = ε exp [−(r/R)α]—which is an
example of soft potential [8]—with ε an energy scale and R

the typical interaction range, this happens when α > 2. The
occurrence of cluster crystals in GEM-α potentials with α > 2
is related to the fact that as α increases the potential becomes
more boxlike shaped. The physical mechanism leading to the
cluster crystals is the balance between the repulsive forces
among particles inside a cluster and the forces from neigh-
boring ones [10].

The natural extension of considering a hard-core contri-
bution into the potential, taking into account the finite size
and impenetrable character of a core part of the interacting
particles, was considered in [11]. A problem to study this type
of system within a continuous-density description is that this
approach leads to the consideration of the Fourier transform
of the potential, which is in general not well defined in the
hard-core case. The authors of [11] use instead a lattice model
where the lattice constant equals the particle size and the hard-

core repulsion is implemented by imposing single occupancy
per site. Thus they generalize the soft-potential criterion for
the appearance of cluster crystals to include terms depending
on the occupied volume fraction. However, this lattice model
cannot distinguish ordered from disordered states within the
clusters. To avoid this the authors of Ref. [11] also introduced
an off-lattice model with a particular type of potential known
as hard-core soft-shoulder potentials. Further studies with the
same potentials are found in [12,13] where, in particular,
finite-temperature corrections and detailed phase diagrams are
presented.

In this work, we focus on the study of two-dimensional
off-lattice systems with repulsive interaction potentials related
to the well-studied hard-core soft-shoulder case but more
general than it. Specifically, we consider a soft repulsion of the
GEM-α type at large distances, complemented by a strongly
repulsive core behaving as r−b at short distances. We keep the
name of “hard core” for this part of the potential, although
it is not strictly impenetrable. Under suitable parameters,
in particular at low temperature, cluster-crystal phases are
found. Our main question is to understand how the hard-core
power-law potential changes the equilibrium configurations
of particles interacting through the GEM-α potential. To
understand the structures found, we compute the energy of the
system by considering both the interactions between clusters
and the interactions among particles within clusters. For this
last contribution, at variance with previous studies [11–13],
we explicitly take into account the intra-aggregate structure,
i.e., whether the particles may order periodically or not inside
every cluster. Mean inter- and intracluster distances are then
obtained from energy minimization. We validate our results
with numerical simulations of an ensemble of interacting
Brownian particles in a thermal bath. Temperature corrections
are also considered to estimate the typical cluster size, which
is different at very low temperature, when the within-cluster
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distribution of the particles shows an ordered structure with
respect to higher temperatures, when the clusters are in a fluid
or gas state.

The paper is organized as follows. In Sec. II we introduce
the model, discuss the role of the spatial scales in the potential,
and present the system’s phases that will be studied. In Sec. III
we derive an analytical expression for the energy of the
system in the crystal crystal-cluster phase in the limit of small
temperatures. In the subsequent Sec. IV we compute some
temperature effects on cluster characteristics. We conclude
with a summary and discussion in Sec. V.

II. MODEL AND CLUSTER-CRYSTAL PHASES

As one of the ways to obtain thermal equilibrium config-
urations under the type of interactions described above, we
consider a d-dimensional system of N interacting Brownian
particles of unit masses in contact with a thermal bath. We
restrict our scope to a regime of very large friction, which
allows us to neglect the inertial terms and to assume directly
an overdamped dynamics:

ẋi = −∇iV (x1, . . . , xN ) +
√

2D ηi , i = 1, . ., N, (1)

where the noise vector η with component ηl verifies 〈ηl〉 = 0
and 〈ηl (t )ηm(t ′)〉 = δ(t − t ′)δl,m, with l, m = 1, . . . , d. The
diffusion coefficient D is proportional to the temperature
through the Einstein relation D = kBT when time is measured
in units of the inverse friction coefficient. The potential V

is pairwise and contains two parts, a hard-core repulsion
referring to the particle size Vh and a soft-core repulsive part
Vs (they act at different scales as detailed later):

V (x1, . . . , xN ) =
∑

1�i<j�N

[Vh(|xi − xj |) + Vs (|xi − xj |)].

(2)
We restrict to d = 2 and study all along this paper the partic-
ular cases of Vh(r ) = εh( r0

r
)b and Vs (r ) = εs exp [−(r/R)α],

with r = |x|. Vs is the GEM-α potential, which accounts for
an effective soft repulsive interaction with a typical length
scale R and energy scale εs . Vh, modeling a hard core, is a
standard power-law repulsion where r0 stands for the typical
length scale for the size of the particles. εh is an energy
scale which can be absorbed in the definition of r0, since
it always appears in the combination εhr

b
0 . However, we

keep this parameter explicit through the paper, as it helps to
identify the terms in our expressions coming form the hard
core. In the numerics it will be fixed as εh = εs . Despite the
particular choice of potentials, we point out the generality of
the arguments presented below.

In the absence of the hard-core potential the behavior of
the system is well understood: for α > 2, a small enough
temperature, large enough numerical density, ρ0 = N/Ld , and
large packing fraction, φ = ρ0R

d , cluster crystals are formed
in which (point) particles aggregate in clusters separated by a
distance proportional to R, with particles randomly moving
inside each cluster [10]. Unveiling the effects of the hard-
core potential on this phase is the main purpose in what
follows. Note the difference with other studies considering
cluster phases with short-range attraction and long-range re-

FIG. 1. Potential given by Vs (r ) + Vh(x ) with Vs (r ) =
εs exp [−(r/R)3] and Vh(r ) = εh(r0/r )6. Fixing R = 0.1 and
εh = εs = 1, the different lines correspond to r0 = 0.001 (red solid
line), 0.04 (green dashed line), and 0.1 (blue dotted line). In the
inset, a zoom of the potential in the first case.

pulsion [14–16]. In our setting, there is no attraction at any
scale.

The shape of the total potential V = Vh + Vs is shown in
Fig. 1 for the special case α = 3 and b = 6. If there is no
scale separation, r0 � R (green-dashed and blue-dotted lines
in Fig. 1), the potential behaves effectively as just a hard-core
repulsive one, since all of the features of the soft-core part
are masked. This is qualitatively similar to setting Vs = 0.
In this case, particles freeze at low temperatures, forming
a hexagonal lattice. We will not discuss here the subtleties
associated with the nature of this type of two-dimensional
crystallization (see, for example, Ref. [17]). The interesting
regime, assumed in the rest of the paper, occurs when r0 � R

(red solid line in Fig. 1): the potential has an abrupt decrease
up to the scale r0, followed by a smoother one, as shown in
the figure inset.

A. Cluster-crystal phases

As shown in Fig. 2, numerical simulations in a two-
dimensional square box of size L with periodic boundary con-
ditions show a phenomenology consistent with [11]. In partic-
ular, for α = 3, b = 6 and restricting to densities and packing
fractions large enough, cluster-crystal phases are found: at
low enough temperature, particles aggregate in clusters which
arrange hexagonally. Moreover, the average population of
each cluster Nc increases with φ. The intercluster distance x̄

is relatively insensitive to φ, increasing with just R. These are
the usual properties of cluster crystals [4,5,10].

We discuss the effect of the temperature T , or equivalently,
of the diffusion coefficient D = kBT , by evaluating the mi-
croscopic structure of the system via the radial distribution
function g(r ) = ρ−1

0 〈∑i �=0 δ(x − xi )〉, where a target particle
is at the origin, the sum is over the other particles, and
the brackets indicate an equilibrium temporal (long-time) or
thermal average, and also a circular average over positions x
with the same modulus |x| = r .
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FIG. 2. Crystal cluster-crystal phase. Top panels: A snapshot of the system configuration in the x-y plane [panel (a)] and zoom into a
single cluster [panel (b)]. Bottom panels: Radial correlation function g(r ) as a function of r/R [panel (c)]. This representation highlights the
presence of a peak at r ≈ 1.4R, indicating periodic ordering with this periodicity. Also visible is a huge peak at r ≈ 0, indicative of particle
clustering at small distances. A zoom of g(r ) on this peak is plotted in panel (d) as a function of r/r0. This part of g(r ) characterizes the type
of particle ordering inside the clusters. For presentation purposes, g is normalized by the height of the main peak in each graph. Parameters:
α = 3, b = 6, L = 1, N = 1000, r0 = 10−3, R = 10−1, εs = εh = 1, D = 10−6.

The comparison of g(r ) at small distances with typical
radial distribution functions of a simple solid, liquid, or gas
allows us to identify solid-, liquid-, and gaslike aggregation
phases inside the clusters, which coexist with the cluster-
crystal structure at much larger distances. Since the number of
particles in the clusters is small, these states cannot be inter-
preted as real distinct macroscopic phases. For this reason, a
rigorous discussion about phase transitions is meaningless and
we restrict our considerations to the qualitative configuration
of the system, for which the following observations are made:

(1) For small temperatures, particles inside each cluster
are almost frozen, showing a hexagonal arrangement. This is
the ordered crystal phase identified in [11], which is shown
in the top row of Fig. 2. The left panel shows the crystal of
clusters and the right one a zoom of one cluster, with the
particles perfectly ordered. The lower row shows g(r ) at the
scale of the clusters (left panel) and a zoom into the peak in
the region r ≈ r0, displaying the crystalline ordering of the
particles within clusters (right panel). From the position of the
peaks in both figures, we can obtain the equilibrium distance
among clusters x̄e ≈ 1.4R (left panel) or among particles
x̂e ≈ 4.05r0 (right). As in a solid, particles fluctuate around
their equilibrium positions, but these fluctuations are very

small compared to x̂e. We observe that in the steady state,
after a long time transient, the hexagonal clusters become
aligned so that the lines joining their centers coincide with
their apothems: the crystal is completely ordered.

(2) Upon increasing the temperature, particle positions
disorganize and a liquidlike phase appears inside each cluster.
As in a simple liquid, particles move around the whole cluster
volume. In Fig. 3, g(r ) at the small scales is shown (green
D = 10−4 and yellow D = 10−3 lines), revealing a crossover
from solid to fluid characteristics.

(3) A further increase of T produces the growth of the
cluster volume. Particles within each cluster form a gaslike
phase, as revealed by the absence of well-defined secondary
peaks in Fig. 3 (red D = 10−2 line).

(4) Further increase of the diffusion coefficient or tem-
perature makes the clusters disappear, leaving a global fluid
phase. On the other hand, by increasing φ, we observe the
lamellar and micelle phases described in [11]. However, as
mentioned in the Introduction, we restrict our study to the
range of temperatures or volume fractions where only the
different types of cluster crystals appear.
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FIG. 3. g(r )/gm (gm is the maximum value of g) at small
scales r ≈ r0 � R for different diffusion coefficients D = kBT =
10−6, 104, 10−3, 10−2, respectively corresponding to blue diamonds,
green upper triangles, orange lower triangles, and red pentagons. On
the right we show a snapshot of within-cluster particle distributions
corresponding to each of the three lower temperatures. Remain-
ing parameters: α = 3, b = 6, L = 1, N = 103, r0 = 10−3, R =
10−1, εs = εh = 1.

III. CLUSTER ENERGY

We now set up an energy calculation which is useful
to understand the observed structures and phenomenology,
in particular, the steady-state properties of the system: the
distance between clusters, the lattice type, and the average
size of the clusters. In this section we are restricted to very
small T , i.e., to the crystal cluster-crystal phase, numerically
discussed in the previous section. In this regime any entropic
contribution does not significatively affect the free energy,
as is expected in the solid state. In the next section we will
consider finite-temperature corrections, and the role of the
entropy will be explicitly taken into account. Note that, as
mentioned in the Introduction, we avoid any description based
on the coarse-grained density of particles. This is similar to
the off-lattice approach followed by [11] for the hard-core
soft-shoulder cases, but extended here to our more general
class of potentials.

We rewrite the total energy into two contributions: a self-
energy of the clusters themselves, EC , and an interaction en-
ergy among them, EI . Two main quantities are fundamental:
the mean intercluster distance x̄ and the mean interparticle
distance inside a cluster x̂. Indeed, the number of clusters
in the system, nc, can be estimated as nc = χLd/x̄d (for
arbitrary dimension d), where χ is a parameter which depends
on the lattice, for instance, χ = 1 for a square lattice and
χ = 2/

√
3 for a triangular one. If we denote as Nc the average

number of particles of each cluster, then N = ncNc, so that
we can write Nc = x̄dρ0/χ . The average size of the cluster σc

can be estimated from x̂ and Nc, considering the hexagonal
arrangement of the intracluster particles.

In the following we work in two dimensions, but our
approach can be extended to three-dimensional systems. As
mentioned, for small enough temperature we can neglect
entropic contributions and the equilibrium properties are all
determined by the total energy E = EC + EI , where

EC = nc

Nc∑
1�i<k

[Vh(|xi − xk|) + Vs (|xi − xk|)]. (3)

Since r0 is very small and Vs decays fast with distance, it
is a reasonable approximation for the intercluster energy to
consider only interactions of particles in neighboring clusters,
so that

EI ≈ nc

γI

2
E

a,b
I

= nc

γI

2

Nc∑
kb,ia=1

[
Vs

(∣∣xia − xkb

∣∣) + Vh

(∣∣xia − xkb

∣∣)], (4)

where E
a,b
I is the interaction energy between two neighboring

clusters, which we denote by a and b, and xia (ia = 1, . . . , Nc)
is the position of the ith particle in the cluster a. The constant
γI is the number of first neighbors in the lattice in which the
clusters arrange (in two dimensions γI = 6 for a hexagonal
lattice, or γI = 4 for a square lattice). Since we assume a
separation of scales of both potential terms, we consider
x̄ and x̂ independent variables and look for an expression
for the energy such that E = E(x̄, x̂ ) = EI (x̄, x̂) + EC (x̄, x̂).
As already mentioned, for T small enough, the equilibrium
configuration is the one that minimizes the total energy with
respect to x̄ and x̂. Let us point out that because of the relation
between x̄ and Nc, at constant density the minimization with
respect to x̄ is formally equivalent to that with respect to Nc,
exploited within the density functional approach in previous
works [18,19] for purely soft-core potentials.

To proceed we introduce the particular forms of Vh and
Vs and make use of their properties. In the following we are
labeling different clusters with letters a, b, . . . = 1, 2, . . . , nc

and the particles with indices i, j, . . . = 1, . . . , N , or if we
want to specify the ith particle of cluster a we use ia =
1, . . . , Nc. Let us first work out the self-interaction cluster
energy:

EC = nc

Nc∑
i<k

[
εse

−(|xi−xk |/R)α + εh

(
r0

|xi − xk|
)b

]

= ncεs

(
Nc

2
(Nc − 1) +

Nc∑
i<k

O(xik/R)

)

+ ncεh

Nc∑
i<k

(
r0

xik

)b

≈ ncεs

Nc

2
(Nc − 1) + ncεhNcγC

(
r0

x̂

)b

, (5)

where xik is the distance between the ith and kth particle
in one cluster, so that |xik| < dc, where dc is the diameter
of the cluster, which is also smaller than the intercluster
distance, dc < x̄. The last approximation in Eq. (5) is obtained
by considering |xik|/R � 1, and also restricting interactions
with the hard-core potential to the first neighbors. Now, the
constant γC is the number of first neighbors in the intracluster
lattice (γC = 6 in the hexagonal case). EC in Eq. (5) contains
a term coming from the soft-core part of the potential and
another involving the hard-core one, which takes into account
the internal structure of the clusters. Using N = ncNc and
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Nc = x̄2ρ0/χ , we find (neglecting a constant term)

EC = N

[
εs

ρ0

χ

x̄2

2
+ εhγC

(
r0

x̂

)b
]
. (6)

We can see from this expression that the cluster self-energy
favors the equilibrium configuration, where clusters are near
(because of the term ∝ x̄2) but with particles inside them far
from each other (because of the term proportional to 1/x̂b).

Let us next obtain an expression for the interaction en-
ergy among first-neighbors clusters EI , starting from Eq. (4).
The distance between two particles in different clusters can
be written as |xia − xkb

| = |(x̄ + ziakb
)ẑ + yiakb

ŷ|, where x̄ +
ziakb

is the distance between the particles of two different
clusters projected onto the direction of the unit vector ẑ
parallel to the line connecting cluster centers; yiakb

is the
projection of the same distance on the orthogonal axis of unit
vector ŷ. In this way we have separated the distance between
two particles in different clusters as a sum of the distance
between the centers of the two clusters x̄ and the remaining
part ziakb

, which is smaller than the diameter of cluster dc.
Taking into account the specific shape of the potentials,

EI = nc

γI

2

Nc∑
kb,ia=1

[
εse

−(|(x̄+zia kb
)ẑ+yia kb

ŷ|/R)α

+ εh

(
r0∣∣(x̄ + ziakb

)
ẑ + yiakb

ŷ
∣∣
)b

⎤
⎦

≈ nc

γI

2

Nc∑
kb,ia=1

εse
−(|(x̄+zia kb

)ẑ+yia kb
ŷ|/R)α , (7)

where we have neglected the term O[r0/|(x̄ + ziakb
)ẑ +

yiakb
ŷ|] � 1, since x̄ 
 r0. The role of the hard core is present

in this expression through ziakb
and yiakb

in the exponential,
which is not negligible and gives a nontrivial contribution.
Note that taking into account the microscopic structure inside
a cluster is crucial for the microscale: the appearance of ziakb

and yiakb
in Eq. (7) gives the only dependence on x̂ that can

balance the 1/x̂b term appearing in the cluster self-energy
Eq. (6). If this dependence on x̂ is neglected, it would be
impossible to find any equilibrium value x̂e.

To close our problem we need to write the distance |(x̄ +
ziakb

)ẑ + yiakb
ŷ| in terms of x̂ and x̄ in order to express EI

in terms of these two distances. One of the possible approx-
imations, which we call a line approximation (LA), consists
in neglecting the y coordinate of the particles so that each
hexagonal cluster becomes compressed onto a line. Since, as
noted above, the direction z joining cluster centers coincides
with the hexagonal cluster apothems, the LA considers all
particles concentrated on these apothems. See Fig. 4, panel
(d), for a drawing of this procedure. By calling n the number
of particles located on one external side of a hexagonal cluster,
the approximation projects particle positions into one of the
2n − 1 sites, separated by a distance x̂

√
3/2, located in a line

along the z direction [see Fig. 4(d)]. Each site now contains
more than one particle, with a degeneracy which is maximum
in the middle of the cluster and minimum at its extremal
points.

n is related to Nc by Nc = 3n(n − 1) + 1. Since Nc =
x̄2ρ0/χ , we can express n as a function of x̄. For large
hexagons n 
 1, we have n ≈ x̄(ρ0/3χ )1/2. Using that nc =
N/Nc = N/χρ0x̄

2, we can easily find an approximation
for EI :

EI ≈ εsN
χ

ρ0

1

x̄2
γI

2n−1∑
μa,μb=1

gμagμbe−(|x̄+(μa+μb−2n)
√

3
2 x̂|/R)α ,

(8)

where the sum is over all sites, μa and μb, in the lines that
approximate the particle positions in two contiguous clusters.
The product gμagμb gives the degeneracy arising from the
number of particles associated to each site in each of the two
lines: gν = n − 1 + ν for ν ∈ [1, n] and gν = 3n − 1 − ν for
ν ∈ [n + 1, 2n − 1] [Fig. 4(d)].

Unlike the expression for the cluster self-energy, Eq. (6),
EI favors the configurations for which the mean cluster
distance x̄ is large but x̂ (the intracluster particle distance) is
small, as will be seen later.

To better display the dependencies, we normalize both the
sum in Eq. (8) (which scales as ∼n2) and the degeneracy gμa ,
introducing g̃μa = gμa/n. Considering the previous relation
between n and x̄, and combining Eqs. (6) and (8),

E(x̄, x̂ )

N
= εs

ρ0

χ

x̄2

2
+ εhγC

(
r0

x̂

)b

+ εs

ρ0 x̄2

9

γI

χ

1

n2

×
2n−1∑

μa,μb=1

g̃μa g̃μbe−(|x̄+(μa+μb−2n)
√

3
2 x̂|/R)α . (9)

Equation (9) is our main analytical result. It contains three
terms which help us to understand the different effects giving
rise to the crystal cluster-crystal phase arising at very low
temperatures. The first term describes the tendency of the
soft potential to favor clusters as close as possible (small x̄),
simply since in this way, at constant mean density ρ0, each
cluster would be less populated and the internal repulsion
will be smaller. This tendency is opposed by the third term,
which comes also from the soft potential and contains coupled
geometric contributions from both x̄ and x̂. With respect to
the x̄ dependence, the third term in Eq. (9) is approximatively
∝ x̄2 exp [−(x̄/R)α] if we neglect the weak influence of x̂.
The interplay between this dependence of the third term and
the x̄2 dependence of the first one singles out two values
of x̄ by energy minimization: x̄m = 0 and x̄e > R. The first
one, and in general the values coming from Eq. (9) for x̄ <

R, are not reliable within the approximations used: when
x̄ < R interactions with clusters beyond nearest neighbors
would need to be taken into account, which would raise the
energy. Also, the condition of having a cluster lattice without
empty clusters implies x̄ � l ≈ L/

√
N . Indeed, if x̄ = l the

clusters have population equal to 1 (Nc = 1) and the cluster
self-energy is equal to zero; thus exploring x̄ below this limit
is meaningless. Then, neglecting the behavior for x̄ < R, the
interplay between the first and third terms selects at zero
temperature an equilibrium value x̄ > R which we call x̄e [see
Figs. 4(a) and 4(c)]. x̄e is nearly insensitive to the value of x̂.

The second term in Eq. (9) arises from the hard-core
potential and simply expresses that this short-range repulsion
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FIG. 4. Left panels: x̂e and x̄e vs R [panel (a)] and r0 [panel (b)], obtained from the simulation of the particle dynamics (symbols) and
from minimization of expression (9) for E(x̄, x̂ ) (lines), assuming hexagonal intracluster and intercluster lattices. The theoretical line in panel
(a) is indistinguishable from the line x̄e ≈ 1.45R resulting from minimizing Eq. (9) neglecting the hard core. Panel (c): E(x̄, x̂e ) vs x̄ at the
minimum of the intracluster particle distance x̂e (with γC = 6) for a square intercluster lattice (red dashed line) and a hexagonal one (blue solid
line). The black point stems from x̄e from the Brownian simulations, which coincides with the lowest energy minimum, which occurs for the
hexagonal configuration. As discussed in the text, the dashed region x̄ < R and then the additional minimum occurring at x̄ = 0 should be
disregarded since our expressions are not valid there. Panel (d): Graphical illustration of the line approximation (LA), discussed in the text,
for a pair of contiguous clusters with n = 4. Numbers in the right give the values of the degeneracy factors gμa and gμb , counting the number
of particles projected by the LA onto the same site in the vertical line. Parameters: D = 10−6, r0/R = 10−2, εs = εh = 1, L = 1, N = 103,

α = 3, b = 6.

favors large x̂. Again, the third term balances this tendency,
since larger x̂ imply that some particles of different clus-
ters come closer (the particles such that μa + μb − 2n < 0),
which is unfavorable for the soft-core intercluster repulsion.
The balance between the two tendencies determines the zero-
temperature equilibrium value of x̂, which we call x̂e. Taking
into account the x̂ dependence in Eq. (8) is crucial to predict
a finite x̂e. Indeed, this is the only dependence which can
balance the repulsive 1/x̂b term appearing in the cluster self-
energy. We also note that if εh = 0 all particles in a cluster
would collapse to its center (x̂ = 0), which is indeed what
happens at zero temperature in the absence of the hard-core
potential.

In order to check our approximate expression, in Fig. 4
we plot as functions of R and r0 the equilibrium intercluster
distance x̄e and the equilibrium interparticle distance inside
a cluster x̂e as obtained from numerical simulations of the
Brownian set of particles, showing a good agreement with
the theoretical prediction from the minimization of our energy
expression. In particular, in the case of the intercluster dis-
tance [Fig. 4(a)] we compare the prediction with two different
simulation settings, with and without the hard-core potential
(purely soft-core potential). As expected, the smaller scale

does not influence much the intercluster distance x̄e, which is
quite constant with respect to r0, for r0 � R. This confirms,
in agreement with [11], that the microscopic details of the
clusters are macroscopically less relevant. The relevance of
the small scale appears in determining the intracluster distance
x̂e [Fig. 4(b)], which depends strongly on r0, and so on the
average size of the clusters (which is roughly x̂e

√
Nc).

Figure 4(c) plots E(x̄, x̂ = x̂e ) as a function of the in-
tercluster distance x̄ for parameters χ and γI corresponding
to two different cluster lattices (hexagonal and square). It is
seen that the hexagonal minimum is lower [remember than
the minimum at x̄ = 0 and the whole region x̄ < R should be
disregarded as Eq. (9) is not valid there], implying that the
hexagonal cluster crystal is the most stable. Similar results
appear in [12] for the hard-core solft-shoulder potentials in
the context of the lattice description.

IV. FINITE-TEMPERATURE CORRECTIONS

The theoretical results of the previous section are approx-
imately valid only in the limit of vanishing temperature. At
finite temperature, energy minimization should be replaced
by free-energy minimization, which requires one to take into
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account the role of entropy S. Approaches in this line for
the lattice shoulder potential can be found in [11,12]. In this
section, we estimate the free energy and use it to characterize
temperature effects on the cluster structure.

In principle, we can distinguish between different entropic
sources: the intercluster entropy SI , which takes into account
the defects of the cluster-crystal lattice, and the internal
entropy of the clusters SC . In general, SI � SC , if NC 
 1
since, roughly, SI ∝ nc = N/Nc and SC ∝ N . For this rea-
son, we focus on the calculation of SC ≈ S, which strongly
depends on the intracluster regime we are considering. Be-
low, we compute it in the crystal cluster-crystal and in the
fluid (gaslike) cluster-crystal phases, where we developed
reasonable approximations for the probability distribution of
the particle positions. In an intermediate liquid cluster-crystal
regime, the situation is different, since all the intracluster
particles have positions correlated in a nontrivial way, as usual
in the framework of liquid theory. We point out that in the
fluid cluster-crystal regime, SC plays a fundamental role in
determining the average size of the cluster, in agreement with
[10] for purely soft-core potentials.

A. Very low temperature: Crystal cluster-crystal phase

We consider first the situation of very low temperature
in which the cluster crystal with crystalline interior remains
and neglect any temperature influence in the positions of the
cluster centers (which then remain in a hexagonal lattice of
intercluster distance x̄e). In the same way, we assume that
particles inside each cluster remain close to the positions in
the hexagonal lattice of distance x̂e, which characterizes the
zero-temperature equilibrium state. This implies neglecting
any thermal dilation effect which could affect x̄e or x̂e. The
only temperature effect we estimate now is the possible vibra-
tion of each particle around its equilibrium position, charac-
terized by a vibration width σh. To this end, we concentrate
on the vibrational entropy Sv , neglecting any translational
entropy associated with the displacement of the equilibrium
particle positions, which will eventually favor the formation
of defects.

We make a further mean-field-like approximation in
order to evaluate Sv: interactions among particles are al-
ready taken into account in determining the lattice con-
stants x̄e and x̂e, and we neglect any further effect in pro-
ducing particle-position correlations. More specifically, we
assume the N -particle probability of positions to factorize:
PN (x1, . . . , xN ) = ∏nc

a=1

∏Nc

ia=1 p(xia − uia ), where the first
product runs over the nc clusters and the second over {uia }, the
(zero-temperature) equilibrium positions of the particles. p(x)
gives the probability distribution of the position fluctuations
of each particle around its equilibrium. We consider the same
p(x) for each particle, independently of its position in the
cluster. Then, the entropy associated to PN becomes a sum
of terms, one for each particle:

Sv = ncNcS1, S1 = −kB

∫
dxp(x) log(p(x)/ρ0). (10)

Our strong-localization assumption implies that no combi-
natorial factor coming from indistinguishability needs to be
used. Our final assumption is that at very low temperatures

p(x) is a narrow two-dimensional Gaussian of width σh [20],
so that

Sv = −kBncNc

∫
dx

e−x2/2σ 2
h

2πσ 2
h

log

(
e−x2/2σ 2

h

2πσ 2
h ρ0

)

= kBncNc

[
1 + log(2π ) + log

(
σ 2

h ρ0
)]

. (11)

We have used that for a two-dimensional isotropic Gaus-
sian variable, 〈x2〉 = 〈x2〉 + 〈y2〉 = 2σ 2

h . The width σh is
the only remaining parameter and will be determined from
the minimization of the free energy. To be consistent
with the approximations used, the resulting width should
satisfy σh � x̂.

Next, we evaluate the average energy of the system, sepa-
rated in intracluster and intercluster interactions:

〈E〉 = 〈EC〉 + 〈EI 〉

=
nc∑

a=1

Nc∑
ia<ja

∫
d{x}NPN (x1, . . . , xN )V

(
xia − xja

)

+
nc∑

a=1

nc∑
a<b

Nc∑
ia ,jb

∫
d{x}NPN (x1, . . . , xN )V

(
xia − xjb

)
.

(12)

Under the same approximate mean-field framework as for
the entropy, we split PN into a product of single-particle
(Gaussian) probabilities. For the intracluster part we arrive to

〈EC〉 ≈ nc

Nc

2

∫
dx1dx2

e−x2
1/2σ 2

h

2πσ 2
h

e−x2
2/2σ 2

h

2πσ 2
h

×
∑
j �=0

V (x1 − aj − x2)

= nc

Nc

2

∫
dz

e−z2/4σ 2
h

4πσ 2
h

∑
j �=0

V (z − aj ) . (13)

The sum is over all position vectors {aj } of the equilibrium
positions of the particles inside a cluster (except the one at
a0 = 0, where we have arbitrarily located the equilibrium
position of the first particle), which form a hexagonal lattice.
The last equality is obtained after changing variables to the
average, u = (x1 + x2)/2, and relative, z = x1 − x2, coordi-
nates and integrating over u.

The interaction potential is made of the hard-core and the
soft-core parts, V (x) = Vh(|x|) + Vs (|x|). Since the Gaussian
restricts the integration to a region of size σh around the origin
and we are assuming R 
 x̂e 
 σh, the soft-core potential
is effectively constant inside the integral, Vs (|x|) = εs[1 +
O(σh/R)2] and then

∑
j �=0 Vs (|v − aj |) ≈ (Nc − 1)εs . For

the hard-core potential we approximate the interaction sum by
the contribution from the nearest neighbors of the particle at
the origin, which are at the corners of a hexagon (a1, . . . , a6,
with |ai | = x̂e) (see upper-right panel of Fig. 2). Expanding
the interaction sum in the vicinity of z = 0,

6∑
i=1

Vh(|z − ai |)

≈ 6Vh(x̂e ) + 3

2

(
Vh(x̂e )′′ + Vh(x̂e )′

x̂e

)
z2 + · · · . (14)
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The terms neglected are of order z4
x, z4

y , and z2
xz

2
y , and thus

will give corrections smaller than (σh/x̂e )4. By introducing
Eq. (13) and performing the integration,

〈EC〉 ≈ nc

Nc

2

[
(Nc − 1)εs + 6Vh(x̂e )

+ 6

(
Vh(x̂e )′′ + Vh(x̂e )′

x̂e

)
σ 2

h

]
. (15)

Considering now the intracluster part of the mean energy,
we again factorize the N -particle probability. In the previous
section, the contribution of the particle positions inside the
cluster to EI was needed to properly determine the inter-
particle distance x̂. But here, once we take this as fixed, we
estimate the temperature corrections to 〈EI 〉 by assuming that
all particle equilibrium positions are at the center of the cluster
they belong. Under this approximation,

〈EI 〉 ≈ nc

N2
c

2

∫
dx1dx2

e−x2
1/2σ 2

h

2πσ 2
h

e−x2
2/2σ 2

h

2πσ 2
h

×
∑
b �=0

V (x1 − bb − x2). (16)

The sum is now over all position vectors {bb} of the cluster
centers (except the one we arbitrarily locate at b0 = 0), which
forms again a hexagonal lattice.

Since r0 � x̄e = minb �=0{|bb|}, the contribution of the
hard-core potential to 〈EI 〉 is negligible. As before, except
for corrections which are O(σh/R)2, the soft-core potential
in each term of the sum can be considered constant inside the
integral. Restricting the sum to the six clusters surrounding (at
distance x̂e) the one at the origin, we find

〈EI 〉 ≈ nc

N2
c

2
6Vs (x̄e ). (17)

We can now write the full expression for the free energy:

F

ncNc

= 〈E〉 − T S

ncNc

≈ E0

ncNc

− D[1 + log(2π )]

+ 3

(
Vh(x̂e )′′ + Vh(x̂e )′

x̂e

)
σ 2

h − D log(σ 2
h ρ0), (18)

where we have used D = kBT , and we have collected all
terms of the mean energy which are independent of σh into
the constant E0. By minimizing with respect to σh and taking
the explicit forms for Vs and Vh we find

σ 2
h = D

3(Vh(x̂e )′′ + Vh(x̂e )′/x̂e )
= Dx̂2

e (x̂e/r0)b

3b2εh

, (19)

which is the expression characterizing the influence of tem-
perature on the fluctuations of each particle position around its
equilibrium location. Note that this is precisely the expression
for the standard deviation of the Gaussian probability which
describes the motion of a Brownian particle in the harmonic
approximation, close to the origin, due to the combined
potential of six particles at hexagonal positions surrounding
the origin at distance x̂e. The consistency condition σh � x̂e

implies that Eq. (19) is only valid at small temperatures such
that D � Dh = 3b2εh(r0/x̂e )b. One may think that Dh gives
a rough estimation of the transition temperature above which
the crystalline structure inside the clusters is lost (probably
into a liquidlike phase), but we think it is at best a rough
upper bound because of the many approximations involved. In
a liquidlike phase particles do not fluctuate around any equi-
librium points. Moreover, the dynamics is correlated, meaning
that the main hypothesis of our calculation is not satisfied.
By minimizing Eq. (18) also with respect to the intra- and
intercluster distances, we can obtain entropic corrections to
them. These corrections are O(D) and therefore very small in
this phase.

B. Fluid cluster-crystal phase

Numerical simulations indicate that there is a range of tem-
peratures in which clusters remain but particles inside them
do not display a crystal structure but a fluidlike behavior. This
implies that thermal motion inside the cluster has exceeded
the capacity of the hard-core potential to keep the particles
in place, as it would occur if D � Dh. Because of this, and
since we know that clusters appear because of the nature
of the soft-core repulsion (forming a large hexagonal lattice
with lattice vectors {bb}), we describe this fluid cluster-crystal
state by completely neglecting the hard-core potential, i.e.,
V (x) ≈ Vs (|x|). In this gaslike situation, we now estimate
how the cluster width σs depends on temperature.

In the same mean-field approach as before, we consider
that the many-body probability PN factorizes into single-
particle Gaussians—but this time of width σs—characterizing
cluster size, since each particle can explore the whole cluster
in the fluid state. A consistency condition is that σs � x̄e

for the crystal-cluster structure to remain, despite the finite
size of the clusters. In fact, we should also have x̂e

√
Nc �

σs , since the first term is an estimation of the size of a
cluster of Nc particles in the low-temperature regime, within
which it retains a crystal structure. Similarly to the previous
low-temperature case [see Eq. (11)], the vibrational entropy
will be

Sv = kBncNc

[
1 + log(2π ) + log

(
σ 2

s ρ0
)]

. (20)

For the mean energy, we distinguish again the cluster self-
energy 〈EC〉 and the intercluster contribution 〈EI 〉. For this
last quantity, we introduce the probability factorization into
Eq. (12) to obtain [cf. Eq. (16)]

〈EI 〉 ≈ ncN
2
c

2

∫
dx1dx2

e−x2
1/2σ 2

s

2πσ 2
s

e−x2
2/2σ 2

s

2πσ 2
s

×
6∑

b=1

Vs (|x1 − bb − x2|)

= ncN
2
c

2

∫
dz

e−z2/4σ 2
s

4πσ 2
s

6∑
b=1

Vs (|z − bb|). (21)

We have approximated all equilibrium particle positions as
located at the center of the cluster they belong, and interac-
tions have been restricted to the six clusters (with |bb| = x̄e)
neighboring the first one, which we have arbitrarily located at
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the origin. The last equality is obtained after transforming to
relative and center-of-mass coordinates and integrating over
the last one. Using the expansion [cf. Eq. (14)]

6∑
b=1

Vs (|z − bb|)

≈ 6Vs (x̄e ) + 3

2

(
Vs (x̄e )′′ + Vs (x̄e )′

x̄e

)
z2 + · · · , (22)

we obtain

〈EI 〉 ≈ 3ncN
2
c

[
Vs (x̄e ) +

(
Vs (x̄e )′′ + Vs (x̄e )′

x̄e

)
σ 2

s

]
. (23)

The intracluster self-energy reads

〈EC〉 ≈ nc

Nc

2

∫
dx1dxj

e−x2
1/2σ 2

s

2πσ 2
s

e−x2
2/2σ 2

s

2πσ 2
s

Nc∑
j �=1

Vs (|x1 − xj |)

= nc

Nc(Nc − 1)

2

∫
dz

e−z2/4σ 2
s

4πσ 2
s

Vs (|z|). (24)

For the GEM-α potential, Vs (|z|) = εs[1 + O(|z/R|α )], being
the last term negligible if α > 2, compared to the terms
already considered in Eq. (22). This is precisely the reason
why cluster crystals form in a GEM-α potential with α > 2:
the particle repulsion inside the cluster is negligible compared
with the repulsion from the neighboring clusters [10]. Thus,
neglecting terms smaller than O(|σs/R|2),

〈EC〉 ≈ nc

Nc(Nc − 1)

2
εs. (25)

The complete expression for the free energy in this fluid or
gas cluster regime is

F

ncNc

= 〈E〉 − T S

ncNc

≈ Ẽ0

ncNc

− D[1 + log(2π )]

+ 3Nc

(
Vs (x̄e )′′ + Vs (x̄e )′

x̄e

)
σ 2

s − D log
(
σ 2

s ρ0
)
.

(26)

All terms of the mean energy which are independent of σs

have been included in Ẽ0. Minimizing with respect to σs and
taking our explicit expression for Vs gives

σ 2
s = D

3Nc[Vs (x̄e )′′ + Vs (x̄e )′/x̄e]

= Dx̄2
e e

(x̄e/R)α (R/x̄e )α

3α2εsNc[(x̄e/R)α − 1]
. (27)

As in Eq. (19), this is the width of the Gaussian probability
distribution for a Brownian particle moving in the combined
potential of six clusters located on the corners of a hexagon at

distance x̄e from the origin, each providing a repulsion given
by the potential NcVs , and under the harmonic approximation
close to the origin. It also coincides, after noting that the
number of particles in each cluster of a hexagonal cluster crys-
tal is Nc = ρ0

√
3x̄2

e /2, with the cluster width derived from
approximations to the Dean-Kawasaki equation in a GEM-α
potential [10]. We recall that expression (27) is expected
to be valid only in the intermediate-temperature range such
that x̂e

√
Nc � σs � x̄e. Violation of the last inequality, i.e.,

σs ≈ x̄e, gives a rough upper limit to the melting temperature
of the cluster crystal. The results in [10] indicate that in-
deed this estimation overestimates the cluster-crystal melting
temperature (for the system in which only the interaction Vs

is present), although the qualitative parameter dependence is
correct. As a final remark, minimizing Eq. (26) with respect
to the intercluster distance would allow us to estimate the
temperature corrections in determining x̄e. These corrections
are all O(D).

V. SUMMARY AND DISCUSSION

We have studied the influence of a hard-core potential on
the cluster-crystal phase of a system of particles interacting
through a GEM-α repulsive potential. Performing off-lattice
numerical simulations of the interacting Brownian particles,
we have identified the different ordering types that particles
inside the clusters exhibit. Temperature drives a transition
from a crystal cluster-crystal scenario (where particles within
clusters are periodically ordered) to a fluid or gas cluster-
crystal form. In the small temperature limit, an energy ex-
pression has been obtained which helps to understand the
balances between the different forces leading to the existence
of the cluster-crystal phase. In addition, the finite-temperature
value of the cluster width has been obtained for the fluid
cluster-crystal state, and also for the fluctuation amplitude of
the particles around their equilibrium positions in the crystal
cluster-crystal state. They provide rough upper limits to the
temperatures at which transitions would take place.

The methodology employed is rather general, and other
types of potentials leading to cluster crystals could be con-
sidered. See, for instance, the soft potential in [21,22] in the
context of bosonic interactions. Furthermore, we expect our
approach to be of use to describe biological aggregations in
which the individuals have a finite size and interact through
forces acting attractively or repulsively at different scales or
through competing or mutualistic dynamics [23]. The gener-
alization of our study to nonequilibrium systems of particles
with finite size and interacting through repulsive forces is
of much interest in the context of active matter and will be
considered in the future, extending approaches such as those
in Ref. [24].
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