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Abstract 

Generative probabilistic models emerge as a new paradigm in data-driv en, e v olution-inf ormed design of biomolecular sequences. This paper 
introduces a no v el approach, called Edge A ctiv ation Direct Coupling Analy sis (eaDCA), tailored to the characteristics of RNA sequences, with 
a strong emphasis on simplicity , efficiency , and interpretability . eaDCA explicitly constructs sparse coevolutionary models for RNA families, 
achie ving perf ormance le v els comparable to more comple x methods while utilizing a significantly lo w er number of parameters. Our approach 
demonstrates efficiency in generating artificial RNA sequences that closely resemble their natural counterparts in both statistical analyses and 
SHAPE-MaP experiments, and in predicting the effect of mut ations. Not ably, eaDCA provides a unique feature: estimating the number of potential 
functional sequences within a given RNA family. For example, in the case of cyclic di-AMP riboswitches (RF00379), our analysis suggests the 
e xistence of appro ximately 10 39 functional nucleotide sequences. While huge compared to the known < 40 0 0 natural sequences, this number 
represents only a tiny fraction of the vast pool of nearly 10 82 possible nucleotide sequences of the same length (136 nucleotides). These results 
underscore the promise of sparse and interpretable generative models, such as eaDCA, in enhancing our understanding of the e xpansiv e RNA 

sequence space. 
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ntroduction 

NA molecules play a critical role in many biological pro-
esses, including gene expression and regulation. They carry
 multitude of functions, such as encoding and transfer-
ing genetic information, regulating gene expression and cat-
lyzing chemical reactions ( 1–3 ). Functional RNA molecules
re expected to be extremely rare in the exponentially vast
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nucleotide-sequence space, and current databases contain
only a tiny fraction of the overall possible, functionally viable
sequence diversity. However, it is worth noting that almost
identical biological functions can be carried out by different
RNA exhibiting substantial sequence variability. Databases
like Rfam ( 4 ) gather these in diverse yet functionally consistent
families of homologous RNA sequences. In computational se-
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Figure 1. Probabilistic generative models extract a probability distribution 
f or the RNA f amily from natural data, which can then be used to generate 
artificial sequences. The generated sequences are statistically similar to 
the natural ones, yet they differ from any existing variant, thereby 
introducing an element of no v elty. 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae289/7658050 by G

ran Sasso Science Institute user on 31 M
ay 2024
quence biology, a significant challenge lies in harnessing the
relatively limited pool of existing RNA sequences within a
family, often comprising just a few hundred or thousand ex-
amples. The objective is to decipher the sequence patterns that
underpin the three-dimensional structure and biological func-
tions of these RNA families. This endeavor extends beyond the
known sequences, aiming to explore the vast potential space
of sequences capable of adopting similar structures and func-
tions. Such analyses provide valuable insights into the com-
plex organization of sequence space and, ultimately, unravel
the intricate sequence-to-function relationship. This quest has
gained paramount significance, especially in the era of high-
throughput sequencing, solidifying its status as one of biol-
ogy’s central and most challenging questions. 

Generative probabilistic models offer a powerful approach
to tackling these challenges by extrapolating beyond the lim-
ited pool of known RNA molecules and generating previously
unseen functional sequences. When applied to RNA families,
these models build a probability distribution, denoted as P ( a 1 ,
…, a L ) ( 5–11 ). This distribution encapsulates the variability
found in the known sequences within the family while en-
compassing all possible sequences of length L (for a more pre-
cise definition, see Material and Methods ). To provide an in-
tuitive analogy, think of this probability distribution as defin-
ing a ‘landscape’ across sequence space assigning high prob-
abilities to functional sequences, akin to the peaks in this
landscape. Conversely, non-functional sequences receive low
probabilities. 

This probability distribution also enables the prediction
of mutational effects ( 12 ,13 ) since mutations can alter the
sequence probabilities relative to the wildtype. Additionally,
these models allow for generating novel synthetic sequences
( 9 ,14 ) through a sampling process (as illustrated in Figure 1 ).
A well-constructed model P should possess the ability to gen-
erate nucleotide sequences that are diverse but statistically in-
distinguishable from the known sequences in the family. 

An RNA generative model P ( a 1 , ..., a L ) has to assign prob-
abilities to a huge number of potential sequences ( a 1 , ..., a L )
while learning from a relatively small pool of observed se-
quences. As an example, consider an RNA molecule with an
aligned length of L = 150 residues, i.e. the sequence may con-
tain both nucleotides and gaps. The model must provide up
to 5 

L � 10 

105 probabilities, even though typical RNA families
consist of only 10 

2 −10 

4 known sequences, cf. ( 4 ). The lack of
abundant RNA data makes it hard for complex models like
deep-learning architectures to work well, as seen in other tasks
like RNA structure prediction ( 15 ). This suggests that simpler,
less complex models may be better suited to tackle RNA. The
currently most successful class of probabilistic sequence mod-
els are covariance models (CM) ( 10 ,11 ); they model conserva-
tion both in nucleotide sequence and of secondary structure
(resulting in covariation of paired nucleotides) across fami-
lies of homologous RNA. Being sensitive and efficient com-
putational tools for RNA homology search and alignment,
they form the methodological basis for the construction of
the Rfam database ( 4 ). The Boltzmann Machine Direct Cou-
pling Analysis (bmDCA) ( 16 ,17 ) models covariation also for
nucleotides not paired in the secondary structure. 

The core idea behind CM and bmDCA lies in the notion
that RNA residues of significant functional importance ex-
perience evolutionary pressures that deter deleterious muta-
tions. Consequently, these residues tend to remain conserved
across the Multiple Sequence Alignment (MSA) collecting ex-
tant homologous sequences. Conversely, pairs of nucleotides 
that exhibit co-evolutionary patterns over time display corre- 
lated mutations. To capture both types of constraints, CM and 

bmDCA adjust its probability distribution to mirror the one- 
site and two-site frequencies observed in the MSA, which serve 
as proxies for conservation and co-evolution. As distinctive 
features between the two approaches, CM restrict modeled 

coevolution to secondary-structure pairings, but it scores also 

insertions and deletions, making it applicable to unaligned se- 
quences. bmDCA models coevolution between all nucleotide 
pairs, cf. reviews in ( 18 ,19 ), but it requires aligned sequences 
as an input. The resulting RNA generative models were ob- 
served to be accurate ( 8 ), but their fully connected graph- 
ical structure limits computational efficiency and biological 
interpretability. 

In this context, one-site frequencies, denoted as f i ( a ), de- 
scribe how often a nucleotide a ∈ { A , U , C , G , −} (with ’ −’
representing alignment gaps) appears at a specific site i ∈ 1,
…, L within the MSA. Meanwhile, two-site frequencies, de- 
noted as f ij ( a , b ), provide information about the joint occur- 
rence of nucleotide pairs ( a , b ) at positions ( i , j ) within the
same sequence. The probability distribution used in bmDCA 

takes the form of a fully connected Potts model / Markov Ran- 
dom Field, which captures the interplay of these frequencies, 

P( a 1 , . . . , a L ) = 

1 

Z 

exp 

⎧ ⎨ 

⎩ 

L ∑ 

i =1 

h i ( a i ) + 

∑ 

i< j 

J i j (a i , a j ) 

⎫ ⎬ 

⎭ 

, (1) 

with Z being the partition function that guarantees nor- 
malization. The h i ( a ) ( a ∈ { A , U , C , G − }) are the local
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fields’ used to fit the one-site statistics. The J ij ( a , b ) matrices
with ( a , b ) ∈ { A , U , C , G , −} 2 ) are 5 × 5 interaction ‘cou-
lings’ used to fit the two-site statistics. 
Although DCA has proven itself as a valuable instrument

n investigating proteins, exhibiting achievements in tasks like
enerating functional sequences ( 14 ), forecasting the effect of
utations ( 12 ,13 ), deciphering protein evolution ( 20 ,21 ), and

dentifying structural interactions ( 22 ,23 ), its application to
NA remains relatively unexplored ( 5–8 ). Furthermore, the

imited availability of RNA data, compared to the wealth of
ata for proteins, makes the use of intricate models like large
anguage models ( 24 ) impractical. Consequently, employing
impler models for RNA is not only suitable but also presents
he benefits of enhanced interpretability, reduced computa-
ional burden, and local trainability. 

Nonetheless, conventional bmDCA generates a fully con-
ected coupling network (as seen in Eq. ( 1 )): it models coevo-
ution between all conceivable pairs of residues, even when
here is no actual coevolution occurring. As a consequence,
his approach can yield a substantial number of noisy cou-
lings J ij ( a , b ) in the network that lack any statistical support.
o mitigate this issue, network sparsification can be applied
o trim down the network by eliminating numerous spurious
ouplings. This process aids in identifying the most informa-
ive and functionally significant couplings, rendering the net-
ork more accessible for interpretation and analysis. Previ-
us endeavors in this direction have primarily concentrated
n sparsifying coupling networks within proteins ( 25 ). 
In our work, we introduce a novel approach called Edge Ac-

ivation Direct Coupling Analysis (eaDCA). Unlike previous
lgorithms, eaDCA takes a unique starting point: an empty
oupling network. It then systematically constructs a non-
rivial network from scratch, rather than starting with a fully
onnected network like bmDCA and subsequently simplify-
ng it, or using external information like secondary structure
n CM. Our step-by-step process generates a series of models,
radually increasing in complexity until they achieve a statis-
ical performance comparable to that of bmDCA. 

Our method offers some notable advantages: first, it results
n generative Potts models with considerably less parameters
ompared to the standard bmDCA, activating couplings only
etween nucleotide pairs showing direct coevolution. Second,
he algorithm is substantially more efficient than bmDCA,
reatly reducing the time required for model learning. Third,
t each stage of our approach, we employ analytical likeli-
ood maximization. This allows us to easily track normal-
zed sequence probabilities and estimate entropies throughout
he network-building process. This valuable information en-
ances our ability to interpret and analyze the vast space of
NA sequences. 
The organization of the manuscript is as follows. In ‘Ma-

erials and Methods’, we present the foundational principles
nd functionality of the model, describe the data used in the
odel training and analysis, and provide specific information

bout the SHAPE-MaP experiments conducted to examine ar-
ificial molecules. In ‘Results and Discussion’, we evaluate the
tatistical properties of the artificial sequences generated by
aDCA, interpret the parameters of the sparse architectures,
nd examine the model’s predictions regarding mutational ef-
ects on tRNA. Additionally, using eaDCA to access normal-
zed sequence probabilities and model entropies, we conduct
n analysis on how different constraints, such as compati-
ility with secondary structures or family conservation and
coevolution statistics, affect the size of the viable RNA se-
quence space. Lastly, we assess the SHAPE-MaP experimen-
tal results, characterizing the structure of artificially generated
tRNA molecules. 

Materials and methods 

In this section, we discuss the data and the methodological
basis of our work: all data used for training and evaluating
our models, the new algorithm proposed here, and the exper-
imental protocol to test artificial sequences generated by our
approach. 

Data 

RNA families 
All generative models discussed here are trained for individ-
ual RNA families, i.e. homologous but diverged sequences of
largely conserved structure and function ( 4 ). Each family is
represented by a Multiple Sequence Alignment (MSA) D =
(a r i | i = 1 , . . . , L ; r = 1 , . . . , M ) , with L indicating the aligned
sequence length, and M the number of distinct sequences. The
entries a r i are either one of the four nucleotides { A , U , C , G },
or the alignment gap ‘–’ reflecting insertions and deletions in
the original unaligned sequences. 

Following standards in the literature, phylogenetic effects
are partially compensated by reweighting each sequence by
a factor ω r ( 19 ), which equals the inverse number of all se-
quences having more than 80% sequence identity to sequence
r , and which is used when estimating the empirical single-site
nucleotide frequencies f i ( a ) and pair frequencies f ij ( a , b ) from
the data D, cf. the supplementary information (SI) for details.
The sum of weights M eff = 

∑ 

r ω r defines the effective sequence
number as a more accurate reflection of the diversity of the
dataset. 

eaDCA is tested on 25 RNA families of known tertiary
structure with L ranging from 50 to 350 and M from 30
to 50000. These families are extracted from the CoCoNet
benchmark dataset ( 26 ) by limiting ourselves to datasets with
high M eff and sequence length L < 350. The MSA were up-
dated using a more recent Rfam release (May 2022), and
matched to exemplary PDB structures. A comprehensive list
of family names, characteristics, and used PDBs is given in
Supplementary Section S1 , Supplementary Table S1 . 

The main text concentrates on two families: the tRNA fam-
ily (RF00005) was selected due to the existence of mutational
datasets, and our own experiments were performed on this
family. Due to its unusually large size, the MSA was randomly
downsampled to M = 30 000 sequences. The cyclic di-AMP
riboswitches (RF00379) were chosen due to their interesting
and non-trivial statistical properties. The robustness of all re-
sults is illustrated in the SI, where the other 23 families are
exhaustively analyzed. 

Mutational fitness dataset 
To evaluate our ability to predict mutational effects in RNA
molecules, we utilized the data published in ( 27 ). This dataset
provides in vivo fitness measurements for 23,283 variants of
the yeast tRNA 

CCU 

Arg at temperatures of 23, 30 and 37 

◦C, with
up to 10 mutations compared to wildtype. These mutations
may result in non-functional sequence variants, in difference
to the natural sequences in the RNA families. We focus on the
results at 37 

◦C because, at higher temperature, the tRNA 

CCU
Arg 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
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Figure 2. Schematic representation of the recursive eaDCA algorithm. 
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becomes increasingly important for the survival of the
organism. Fitness values in ( 27 ) are organized such that 0.5
represents a mutant yeast strain incapable of reproduction,
while 1.0 is the wildtype fitness. The details of the datasets,
the fitness definition of ( 27 ), and our results for 23 and 30 

◦C
are provided in the SI 

SHAPE reference dataset 
In order to empirically validate our generative models, we con-
ducted Selective 2’-Hydroxyl Acylation analyzed by Primer
Extension with Mutational Profiling (SHAPE-MaP) experi-
ments on artificially generated tRNA molecules, cf. below. To
ensure the robustness of our analysis and to facilitate a mean-
ingful comparison, we utilized an external published dataset
comprising SHAPE reactivity profiles for 20 RNA sequences
with known secondary structure. This dataset, which we will
refer to as the ‘SHAPE Reference Dataset’, was obtained from
( 28 ) . 

Edge activation direct coupling analysis (eaDCA) 

Algorithm principle 
The proposed algorithm belongs to the family of DCA algo-
rithms, i.e. it learns a Potts model in the form of Eq. ( 1 ) from
an MSA D. However, instead of introducing couplings J ij ( a ,
b ) for all pairs of nucleotide positions 0 ≤ i < j ≤ L , we aim
at a parsimonious model and activate couplings only between
those pairs, which are really coevolving and thus essential for
the accurate statistical description of the sequence family. All
other pairs, which do not have clear signatures of direct co-
evolution, shall not be included into the set of coevolutionary
couplings, to avoid noise overfitting ( 25 ) . 

Since the empirical pair frequencies f ij ( a , b ) are shaped both
by direct coupling and indirect correlation, the set of cou-
pled pairs, E = { (i j) | J i j is non-zero } , cannot be fixed in a sin-
gle step, but has to be constructed recursively, as is shown
schematically in Figure 2 and detailed below: starting from
a profile model of independent nucleotides, E 0 = ∅ , we con-
struct a series of edge sets E t , by activating or updating edges
one by one. In this setting, ‘activating’ an edge signifies to in-
troduce a non-zero coupling for a previously uncoupled pair
( ij ), while ‘updating’ indicates a change of the coupling value
on an already activated edge. As a consequence, at any algo-
rithmic step t , the model can be written as 

P t (a 1 , . . . , a L ) = 

1 

Z t 
exp 

{ −E t (a 1 , . . . , a L ) } 

E t (a 1 , . . . , a L ) = −
L ∑ 

i =1 

h i (a i ) −
∑ 

(i j) ∈E t 
J i j (a i , a j ) , (2) 

with E t being called ‘statistical energy’. The log-likelihood of 
the model given the reweighted data D reads 

L t = 

M ∑ 

r =1 

ω r log P t (a r 1 , . . . , a 
r 
L ) . (3) 

Initialization 

As already mentioned, the model is initialized without cou- 
plings, E 0 = ∅ , and reads 

P 0 (a 1 , . . . , a L ) = 

1 

Z 0 
exp 

{ 

L ∑ 

i =1 

h i (a i ) 

} 

. (4) 

The log-likelihood L 0 is easily maximized by setting 

h i (a ) = log f i (a ) (5) 

for all i = 1, ..., L and a ∈ { A , U , C , G , −}, i.e. the model re-
produces the empirical single-residue statistics. The resulting 
partition function is Z 0 = 1. This simple model is known un- 
der the name of profile model (or independent-site model) and 

widely used in bioinformatic sequence analysis. 

Recursion 

The algorithmic step from t to t + 1 is characterized by a mod- 
ification of a single 5 × 5 coupling matrix J kl on a single po- 
sition pair ( kl ), 

E t+1 (a 1 , ..., a L ) = E t (a 1 , ..., a L ) − �J ∗kl (a k , a l ) , 

E t+1 = E t ∪ { (kl ) } . (6) 

If ( kl ) was not yet active in E t , this corresponds to an edge 
activation, otherwise to an edge update. 

The edge ( kl ) and the coupling change �J ∗kl (a k , a l ) are cho- 
sen to maximize the log-likelihood L t+1 . As is proven in 

Supplementary Section S2.1 , this is realized by (1) choosing 
the ‘least accurate’ position pair 

(kl ) = argmax 

1 ≤m<n ≤L 
D KL ( f mn ‖ P t mn ) , (7) 

which maximizes, over all possible position pairs ( mn ), the 
Kullback–Leibler divergence, 

D KL 
(

f mn || P t mn 

) = 

∑ 

a,b 

f mn (a, b) log 
f mn (a, b) 
P t mn (a, b) 

, (8) 

between the empirical target distribution f mn and the current 
model’s marginal two-site distribution P t mn defined as 

P t mn (a, b) = 

∑ 

a 1 ,...,a L 

P t (a 1 , ..., a L ) δa,a m δb,a n , (9) 

and by (2) activating / updating the coupling on the chosen po- 
sition pair via 

�J ∗kl (a, b) = log 
f kl (a, b) 
P t kl (a, b) 

. (10) 

To avoid excessively high values for rare nucleotide combi- 
nations, this coupling term is regularized using pseudocounts 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
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or both the empirical frequencies and the model probabilities,
f. Supplementary Section S2.2 for details. 

Note that the selection goes over all position pairs ( mn ),
ndependently on their activation status in E t . Note also that
he exact determination of the marginal distributions P t mn (a, b)
n Eq. ( 9 ) is infeasible since it would require to sum over all
 

L possible sequences of aligned length L . We therefore use
arkov chain Monte Carlo (MCMC) sampling; the exact

rocedure based on persistent contrastive divergence is de-
ailed in Supplementary Section S2.3 . 

ermination 

s the process continues, the resulting models become increas-
ngly accurate and complex. It can be observed from Eq. ( 10 )
hat a fixed point is attained when all the two-point probabil-
ties are equal to their respective empirical frequencies (and in
onsequence also all single-site frequencies). This corresponds
xactly to the fixed-point condition imposed in bmDCA. Be-
ause this condition is impossible to achieve in practice due to

CMC sampling noise, we set an ad hoc stopping criterion
y looking at how well the empirical two-site covariances 

c i j (a, b) = f i j (a, b) − f i (a ) f j (b) (11)

re reproduced by the connected correlations in the model, 

c t i j (a, b) = P t i j (a, b) − P t i (a ) P 
t 
j (b) . (12)

he algorithm terminates at step t f when the Pearson correla-
ion ρ between these two quantities, evaluated over all posi-
ions ( ij ) (including those not in E t f ) and all nucleotides a , b (in-
luding gaps), reaches 0.95. This value is commonly reached
n bmDCA as well. The reason for computing the score based
n the c ij ( a , b ) instead of the f ij ( a , b ) is that the former isolates
oevolution statistics from the conservation ones. 

The entire procedure is summarized as a pseudocode in Al-
orithm 1, and represented graphically in Figure 2 . 

A typical run of the training process is described in
upplementary Section S2.4 and Supplementary Figure S1 .
he reduction of the running time over bmDCA is exempli-
ed in Section S2.5, Table S2. 
Note that the eaDCA algorithm has similar objectives as

he adaptive cluster expansion (ACE) proposed before to learn
parse Potts models from data ( 29 , 30 ). However, A CE requires
an exact calculation of cluster partition functions, which lim-
its practical applicability to relatively small clusters of se-
quence positions. On the contrary, eaDCA is based on sam-
pling which, even if introducing some level of stochasticity,
allows for treating arbitrary interaction graphs ranging from
very sparse to fully connected ones, in function of what is
needed to capture the data statistics. 

Normalized sequence probabilities and model entropy 
Probabilistic generative models, including bmDCA, typically
do not provide normalized sequence probabilities but only rel-
ative sequence weights. This limitation arises because obtain-
ing normalized probabilities would necessitate summing over
the entire 5 

L sequence space to get the partition function Z
given by Eq. ( 1 ), 

Z = 

∑ 

a 1 , ... ,a L 

exp 

⎧ ⎨ 

⎩ 

L ∑ 

i =1 

h i (a i ) + 

∑ 

(i j) ∈E 
J i j (a i , a j ) 

⎫ ⎬ 

⎭ 

, (13)

which is infeasible for any biologically relevant value of L .
Relative weights are sufficient for MCMC sampling of artifi-
cial sequences, but they are meaningful just within the context
of a specific model, and cannot be compared across distinct
models. 

The advantage of eaDCA is that the recursion preserves
model’s partition function Z , as is shown in Supplementary 
Section S2.6 . Since P 0 is trivially normalized, we have 

Z 0 = 1 and Z t+1 = Z t , (14)

i.e. the models remain trivially normalized under recursion: 

P t (a 1 , . . . , a L ) = exp 

{ −E t (a 1 , . . . , a L ) } . (15)

A nice consequence of this property is that we have easy access
to the model’s entropy S t 

S t = −〈 log P t (a 1 , . . . , a L ) 〉 P t 
= 〈 E t (a 1 , . . . , a L ) 〉 P t (16)

via the average statistical energy, which can be accurately es-
timated from an MCMC sample. From the entropy S t we can
deduce the size of the viable sequence space, 

�t = exp 

{
S t 

}
, (17)

which can be thought of as the effective number of different
sequences that we can sample from P t ( a 1 , …, a L ). 

In practice, because we depend on stochastic MCMC tech-
niques for estimating the two-site probabilities P ij ( a , b ) in
eaDCA iterations, the Z is only approximately conserved.
However, it is straightforward to accurately monitor and ac-
count for these errors, see the Supplementary Section S2.6 and
Supplementary Table S3 for details. 

SHAPE-MaP probing of artificial tRNA molecules 

To conduct an empirical evaluation of our eaDCA-derived
model, we performed a SHAPE-MaP analysis on a set of 76
artificially generated tRNA molecules (RF00005 family). Here
we summarize the experimental protocols, full details are pro-
vided in the SI. 

RNA production 

We designed a total of 76 tRNAs. Each RNA was synthesized
with the T7 promoter positioned at its 5’ end and the last

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
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16 nucleotides were kept constant for all constructs matching
those of the yeast tRNA(asp). The DNA templates (gBlock
or oligoPools from Integrated DNA Technologies) were am-
plified by PCR using the Phusion Hot Start Flex polymerase
(New England Biolab). After purification, the DNAs were
transcribed via in vitro transcription using the HiScribe T7
High Yield RNA Synthesis Kit (NEB). The resulting RNAs
were purified by denaturing gel electrophoresis. 

RNA modification 

The SHAPE reactivity is not only a reflection of RNA struc-
ture but also depends on experimental conditions, necessitat-
ing careful consideration in comparative analysis of SHAPE-
MaP reactivity profiles ( 31 ) . Consequently, we chose to probe
our artificial tRNA with the same folding buffer (50 mM
HEPES pH 8.0, 200 mM potassium acetate pH 8.0, and
3 mM MgCl 2 ) than the yeast tRNA(asp) Reference SHAPE
Dataset ( 28 ) . For RNA modification, three conditions were
performed: positive (with the probe), negative (only the probe
solvent) and denaturing (denatured RNA with the probe). For
the positive and negative conditions, the RNAs were allowed
to refold and the modifying agent (1M7 in DMSO for pos-
itive) or the solvent (neat DMSO for negative) were quickly
mixed to the RNAs and incubated 5 min at 37 

◦C. For the
denaturing condition, the RNAs were first denatured by ad-
dition of formamide followed by a heat treatment and the
RNAs were modified similarly (1M7 probe). After incubation,
all modified RNAs were purified via ethanol precipitation
and quantified by the Qubit RNA High Sensitivity assay kit
(ThermoFisher). 

Libr ary prepar ation 

The modified RNAs were pooled in equimolar proportion
based on their conditions (positive, negative, denaturing) and
reverse-transcribed using the SuperScript II reverse transcrip-
tase (ThermoFisher) with a buffer allowing the misincorpo-
ration of nucleotides at the chemically modified positions.
We also used a Template Switching Oligo (TSO) in order
to incorporate the Rd1 Illumina adapter during the reverse-
transcription, and brought the Rd2 Illumina adapter by the
reverse-transcription primer. After cDNA purification, PCR
enrichment was conducted to amplify the DNA libraries and
incorporate the P5 / P7 Illumina adaptors. The samples were
purified by AMPure XP beads (Beckman Coulter), quanti-
fied by quantitative PCR (KAPA Library Quantification Kit,
Roche), and sequenced on a MiSeq-V3 flow cell (Illumina)
at the NGS platform of Institut Curie (Paris, France). For in
depth details about the procedure and the primers used refer
to SI. 

SHAPE reactivity mapping 
We employed the ShapeMapper2 ( 32 ) software to process the
sequencing data, obtaining SHAPE reactivity values for each
artificial tRNA molecule, which partition sites into the reac-
tivity classes ‘low’, ‘medium’ and ‘high’ ( 31 ,33 ). ShapeMap-
per2 was run with default settings, except for the depth-per-
site quality threshold that was lowered from 5000 to 3000.
This allowed us to gather reactivity data covering more than
50% or the residues for at least 30 of the molecules under
investigation. 
Results and discussion 

eaDCA models reproduce the natural sequence 

statistics 

The initial evaluation of the performance of any generative 
model involves assessing its ability to accurately replicate the 
statistical properties of natural data. To this aim, we conduct 
an analysis across 25 RNA families, and compare the statisti- 
cal properties of the natural sequences from the family’s MSA 

with those of a large number of artificial sequences, which are 
independently sampled from the eaDCA model P ( a 1 , ..., a L ).
For comparison, we also sample from a simpler, secondary- 
structure based model (SSBM), where only nucleotide pairs 
involved in the secondary structure (S2D) are connected by 
couplings. The SSBM is also a Potts model, with all maximum- 
likelihood parameters derived exactly from the empirical one- 
and two-nucleotide statistics, 

P SSBM 

(a 1 , . . . , a L ) = exp 

⎧ ⎨ 

⎩ 

L ∑ 

i =1 

h i (a i ) + 

∑ 

(i j) ∈ S 2 D 

K i j (a i , a j ) 

⎫ ⎬ 

⎭ 

K i j (a i , a j ) = log 
f i j (a i , a j ) 

f i (a i ) f j (a j ) 
, h i (a i ) = log f i (a i ) . 

(18) 

We use SSBM as a performance benchmark because the infor- 
mation about RNA secondary structure is readily available 
for all Rfam families, and because base-pair complementar- 
ity in RNA secondary structure causes a strong pairwise co- 
evolution. Note that these models bare similarities to, but are 
different from the CM used in Infernal ( 10 ,11 ), since they do 

not model insertions and deletions, and thus require already 
aligned input sequences. 

Figure 3 displays statistical analyses for the RF00005 and 

RF00379 families. Additional results for 23 other RNA fam- 
ilies can be found Supplementary Figure S2 . Figures 3 D and 

3 H display the comparison between the connected two-point 
correlations of the natural data with estimates from a sample 
of an eaDCA obtained model and the SSBM. The results indi- 
cate a strong correlation of eaDCA with the natural data for 
all residue pairs, including those not connected by activated 

edges, while the SSBM reproduces the pair correlations only 
on the secondary structure, and totally fails on all other pairs 
of positions. 

A second test of the eaDCA model’s generative properties 
is demonstrated in Figures 3 A–C, and E–G, which present 
the natural, eaDCA, and SSBM generated sequences projected 

onto the first two principal components (PCs) of the natural 
MSA ( 14 ,34 ). The sequences sampled from the eaDCA model 
effectively reproduce the visible clustered structure of the nat- 
ural sequences, while SSBM are unable to do so, with projec- 
tions on the PCs being concentrated around the origin. 

The observations in Figure 3 indicate the inability of SSBM 

to serve as accurate generative models, while sequences sam- 
pled from eaDCA are coherent with the natural data on the 
tested observables. This suggests that the Potts model re- 
quires more than just the secondary-structure based interac- 
tion couplings to function properly and that an overly aggres- 
sive reduction in parameters compromises the model’s perfor- 
mance. Sequences directly emitted from CM ( cmemit com- 
mand of Infernal) are analyzed in Supplementary Figure S3 : 
CM slightly outperform the simpler SSBM, but remain less 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
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Figure 3. ( A ) RF0 0 05: principal component analysis of natural sequences 
( M = 28770). ( B ) RF005: eaDCA generated sequences mapped to the 
first two principal components of the natural sequences ( M = 12000). ( C ) 
RF005: SSBM generated sequences mapped to the first two principal 
components of the natural sequences ( N = 12 0 0 0). ( D ) RF0 0 0 05: scatter 
plot of the connected two-site correlations of the natural sequences vs. 
eaDCA generated sequences (blue) or SSBM generated sequences (red - 
insert) ( N = 12 0 0 0). ( E ) RF0 0379: Principal component analysis of natural 
sequences ( N = 3808). ( F ) RF00379: eaDCA generated sequences 
mapped to the first two principal components of the natural sequences 
( N = 120 0 0). ( G ) RF00379: SSBM generated sequences mapped to the 
first two principal components of the natural sequences ( N = 12 000). ( H ) 
RF00379: scatter plot of the connected two-site correlations of the 
natural sequences vs. eaDCA generated sequences (blue) or SSBM 

generated sequences (red: insert) ( N = 12 0 0 0). 
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From Table 1 , we conclude that eaDCA delivers gen-
rative models able to reproduce the natural RNA statis-
ics with only a fraction of the number of parameters
f a standard bmDCA implementation (parameter reduc-
ion of 84.85% for RF00005 and 87.83% for RF00379).
 complete table for all the 25 families is included in
upplementary Table S1 and confirms this observation across

amilies.  
Parameter interpretation 

A key benefit of employing a parsimonious generative model
is the potential for obtaining a more insightful interpretation
of its parameters. In the context of RNA, the eaDCA method
is producing good generative models with a small percent-
age of the parameters of fully connected models (bmDCA),
which in turn enables easier biological interpretation. Since
the edge activation procedure starts from the profile model,
all single-site frequencies f i ( a ) are accurately reproduced from
the beginning. Due to its iterative nature, eaDCA produces ad-
ditionally an ordered list of edges carrying non-zero couplings.
These added edges can be used to explain the connected two-
point statistics to high accuracy, and they are thus carrying the
full information about residue coevolution in the MSA of the
RNA family under consideration. 

For this study, we classified the first L added edges into four
categories: ‘secondary structure base pairs’ ( S 2 D ), ‘neighbors’
(if the pair is less than four positions apart along the primary
sequence), ‘tertiary structure contacts’ (if the distance between
the involved residues is less than 8Å, but the pair is neither
S2D nor neighboring), and ‘other’ (not fitting into any of the
prior categories). We present here the analyses for two RNA
families (RF0005 and RF00379) but the results of all 25 fam-
ilies can be found in Supplementary Figure S4 . 

In Figure 4 , the analysis revealed a relationship between
contacts and added edges, with almost all S 2 D pairs being sys-
tematically taken in the early iterations. This trend is consis-
tent with their strong coevolutionary relationship, and shows
that SSBM and CM models capture many of the strongest, but
by far not all such relationships. Tertiary contacts are included
later (and many never activated even at termination of the al-
gorithm); we therefore conclude that they typically induce a
much lower coevolutionary signal than secondary-structure
contacts. The presence of activated edges between neighbor-
ing residues may in part be attributable to phylogenetic re-
lationships, but also to the insertion or deletion of multiple
nucleotides, i.e. to the presence of gap stretches in the MSA. 

A relatively small fraction of activated edges do not offer an
interpretation (class ‘other’), it remains unclear if these edges
reflect the limited statistics in the natural MSAs, or coevolu-
tion beyond structural contacts. eaDCA considers them im-
portant for reproducing the natural sequence statistics. In this
context, it is important to note that the complete list of edges
generated by eaDCA before meeting the termination condi-
tion significantly exceeds the sequence length L , consequently
leading to a large quantity of ‘other’ entries. 

These observations may suggest to use eaDCA for RNA
structure prediction. Since, however, the focus of our work
are generative probabilistic models rather than structure pre-
diction, our restrict this Section to interpretative analysis.
Actually, the natural MSA are constructed using the cm-
build and cmalign commands from Infernal ( 11 ), which
actively incorporate a given secondary structure, and there-
fore may bias applications to structure prediction. However,
to achieve a more comprehensive picture, we have included in
Supplementary Figure S5 and Supplementary Table S4 a com-
parison of the contact retrieval capability of eaDCA against
Evolutionary Couplings ( 5 ,6 ) and R-scape ( 35 ) (trained on the
same alignments). 

Prediction of mutational effects 

Potts models (including profile, SSBM and DCA models) are
energy-based statistical model, cf. Eq. ( 1 ). The maximum-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
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Table 1. eaDCA and SSBM results for RF0 0 0 05 (tRNA) and RF00379 (cyclic di-AMP riboswitch) at termination t = t f . PR % indicates the percentage of 
parameter reduction, S the eaDCA model entropy, and � the corresponding effectoive size of viable sequence space 

Rfam Id L M M eff SSBM c ij corr eaDCA c ij corr PR % 

∗ S �

RF00005 71 28770 2267 0.66 0.95 84 . 85% 51.34 1.98 × 10 22 

RF00379 136 3808 1428 0.25 0.95 87 . 83% 89.56 1.05 × 10 39 

Figure 4. ( A ) RF0 0 05: first L activated edges colored according to their 
classification. ( B ) RF0 0 05: cont act map (upper-left) and activated edges 
(lo w er-right). Secondary -str uct ure contacts are evidenced in green, 
non-contacting activated edges in black. ( C ) RF00379: first L activated 
edges colored according to their classification. ( D ) RF0 0379: cont act map 
(upper-left) and activated edges (lower-right). Secondary-str uct ure 
contacts are evidenced in green, non-contacting activated edges in black. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. ( A ) Correlation of Hamming distance, eaDCA model energy and 
CM energy with tRNA fitness (37 ◦C) at different values of minimum 

fitness threshold f θ. ( B ) Relation between eaDCA model energy and 
tRNA fitness for the 81 0 1 double mutants. For results at 23 ◦C, 30 ◦C cf. 
Supplementary Figure S7 . 
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likelihood strategy used in their training assumes that
nicely functional sequences have high probability, or equiv-
alently low energy . Conversely , low-probability / high-energy
sequences do not obey the evolutionary constraints learned
by the model, and are expected to be non-functional. 

This property can be used to predict mutational effects
( 12 ,13 ) by comparing the energies of the mutated and the
wildtype sequences. In this way, a mutant sequence can be
characterized by the energy difference 

�E = E( mutant ) − E( wildtype ) . 

A positive �E implies a reduction in the model probability for
the mutant, suggesting that the mutation is likely to be dele-
terious. On the contrary, a negative �E signals a potentially
beneficial mutation. 

To test the quality of these predictions, we use the tRNA
fitness dataset ( 27 ) (for details cf. Materials and Meth-
ods,Supplementary Section S5 and Supplementary Figure S6 ).
We perform the following steps: 

• For all mutant sequences in this dataset, we determine
the energy differences to wildtype using both the eaDCA
model, �E eaDCA 

, and the SSBM model, �E SSBM 

, as well
as the Hamming distances (i.e. the number of mutations 
from wildtype). 

• We select all mutant sequences having experimental fit- 
ness values f ≥ f θ above an arbitrary fitness threshold 

f θ . This threshold is varied in our analyses to focus on 

diverse strengths of mutational effects. 
• We calculate the Spearman rank correlation between the 

three predictors (eaDCA, SSBM, Hamming) and the fit- 
ness values f over the selected mutants, as functions of 
the fitness threshold f θ . 

As is shown in Figure 5 A, when all mutants are included 

( f θ = 0.5), all three predictors show similarly good correla- 
tion values between 0.6 and 0.7. This results from the fact 
that most higher-order mutants, i.e. those of higher Hamming 
distance, have very low fitness, while mutants with one or 
two mutations frequently show more moderate fitness values.
However, when increasing the fitness threshold f θ , i.e. when 

including only mutations of more moderate fitness effects,
�E eaDCA 

correlations remain much more robust while the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
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Figure 6. ( A ) Relations between RNA family length and the size of the 
sequence space under coe v olution, conserv ation and secondary 
str uct ure constraints. Dots are results for the different RNA families 
studied in this work, and lines are exponential fits. ( B ) Effective number x 
of nucleotides per site for each constraint. The size of the compatible 
sequence space is � = x L . 
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ther two rapidly decay with f θ . This shows that the eaDCA
nergies are informative over variable ranges of fitness effects.

To corroborate this finding, Figure 5 B shows a heatmap of
he 8101 two-point mutant sequences (at fixed Hamming dis-
ance of 2), comparing �E eaDCA 

predictions and fitness values
 . We observe a robust correlation even in this case, where the
amming distance is constant and thus does not provide any

nformation about the fitness measures. 

ize estimation and constraint analysis of RNA 

equence space 

he entire space of sequences of given length is enormous. To
llustrate this, the number of all ungapped sequences of length
 = 150 is 4 

150 � 2 × 10 

90 , if we include gaps like in our MSA,
he number even rises to 5 

150 � 7 × 10 

104 , and this exceeds
y 10-24 orders of magnitude the estimated number ∼10 

80 

f atoms in the universe. However, the viable sequence space
elated to a specific RNA family, i.e. to all sequences taking
imilar structure and performing similar function, is expected
o be much smaller: sequences have to meet constraints im-
osed by residue conservation and coevolution, and possibly
y other evolutionary constraints. 
Our models allow for analyzing the impact of the different

onstraints on the entropy S and the size � = e S of the se-
uence space, using the approach discussed in Materials and
ethods . More specifically, the influence of conservation is
easured via the entropy S 0 of the initial profile model, while

he combined influence of conservation and coevolution is
easured via the entropy S t f of the final model at termina-

ion ( 36 ). These results are corroborated by an independent
stimation using a code published in ( 37 ), which estimates the
ize of the sequences space compatible with a given secondary
tructure, by efficiently sampling the neutral network related
o a given RNA secondary structure. 

The results are shown in Figure 6 A for our selected RNA
amilies. All three constraints enforce an exponential relation-
hip between the size of the sequence space � and the sequence
ength L , i.e. the per-site reduction of the sequence space due
o any individual type of constraint is roughly constant across
he tested RNA families. Interestingly, conservation and sec-
ndary structure constrain the sequence space similarly, while
he constraints imposed by both conservation and coevolu-
ion are, in line with expectations, the most stringent ones.
s is illustrated in Figure 6 B, out of the initially 5 

L possibly
apped sequences of aligned length L about (2.98 ± 0.10) L are
ompatible with the empirical conservation statistics, (2.66 ±
.09) L with the consensus secondary structure of the RNA
amilies, and finally (1.74 ± 0.09) L with both conservation
nd coevolution. To go back to our initial example L = 150,
he final eaDCA sequence space would contain about 10 

36 

istinct sequences: this number, while remaining enormous as
ompared to the observed extant sequences found in sequence
atabases like Rfam, comprises only a tiny fraction of 10 

−68 

f the entire sequence space of this length, illustrating the fun-
amental importance of such constraints in the natural evolu-
ion of RNA families. 

Note that these numbers also have an interesting interpre-
ation in terms of the effective number of nucleotides, which
re, on average, acceptable in a typical position of a functional
NA molecule. Out of the 5 theoretical possibilities (4 nu-

leotides or a gap), close to three are compatible with fam-
lywide conservation, or 2.66 with the consensus secondary
structure. However, both constraints are insufficient for gen-
erative modeling as shown before. Our generative modeling
indicates a much stronger reduction of the effective number
of acceptable nucleotides per site to only 1.74 on average. 

Structural characterization of artificial tRNA 

molecules by SHAPE-MaP probing 

The definite test for the generative capacity of a statistical
model of biomolecular sequences would involve expensive
functional probing experiments on artificially sampled se-
quences. While this goes far beyond the scopes of our pre-
dominantly algorithmic paper, we have performed simpler and
more cost efficient SHAPE-MaP experiments. SHAPE-MaP
does not asses the functionality of the sequences, but pro-
vides non-trivial structural information: chemical probing re-
veals different reactivities for nucleotide positions, which are
paired vs. unpaired in the secondary structure of the tested
RNA molecule ( 31 ). SHAPE-MaP therefore allows us to check
if our artificially generated sequences are compatible with the
consensus secondary structure of the modeled RNA family,
thereby corroborating the statistical tests described above. 

The structural information obtained by such experi-
ments is statistical: in the Reference dataset of published
SHAPE experiments (cf. Materials and Methods ), out of the
paired sites typically > 80% have low, less than 10% high
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Figure 7. ( A ) Reactivity distribution for non paired residues, the bars 
refers to the indicated set a v erage (’R eference SHAPE Dataset’ N = 21, 
’Generated tRNA’ N = 34, ’Generated tRNA Criteria Me)’ N = 14 ).( B ) 
Reactivity distribution for paired residues. ( C ) Example of 
reactivity-str uct ure projection for the 1A molecule of the 14 ’Generated 
tRNA (Criteria Met)’. ( D ) Example of reactivity-str uct ure projection for 
’Reference SHAPE Data’ tRNA(asp) Yeast 
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reactivity, while in the unpaired sites < 50% have low and
around 40% have high reactivity, cf. Figure 7 . Determining
the specific pairing status of individual pairs is non-trivial due
to a number of confounding factors: first, the correlation be-
tween SHAPE reactivity and base pairing is nonlinear. Second,
SHAPE data may not mirror a single structure, but an aver-
age reactivity across a structural ensemble. Third, SHAPE re-
activity can also be influenced by factors beyond secondary
structure, such as base stacking and tertiary contacts ( 31 ).
Nevertheless, SHAPE-MaP experiments are a valuable instru-
ment for assessing whether the SHAPE profile of a tested RNA 

molecule—natural or artificial—is statistically coherent with 

its expected secondary structures. 
We used the tRNA family (RF0005) discussed above for 

generating 76 artificial tRNA sequences. We probed the 
SHAPE reactivities at each site of these sequences (for in 

depth details about the experiment refer to Supplementary 
Section S6 and Supplementary Table S5 ). We categorized the 
reactivities into three classes: low, medium, and high (as is 
common practice ( 31 ,33 )) and we assessed the distribution of 
these classes among paired and unpaired residues for each se- 
quence. Due to experimental reasons we did not sample the 
76 sequences freely from P ( a 1 , ..., a L ), but we introduced two 

types of constraints: 

• Due to experimental constraints, the last 16 nucleotides 
were kept constant, cf. Materials and Methods and 

Supplementary Section S6 . Only the first 55 positions 
were generated by the model conditioned to the last 
16, i.e. they were sampled from P ( a 1 , ..., a 55 | a 56 , ...,
a 71 ). This reduces the effective sequence space � = e S 

from ∼10 

22 sequences (cf. Table 1 ) to ∼10 

14 , which is 
still a huge number beyond the possibility of exhaustive 
testing. 

• Inspired by works about proteins ( 14 ,38 ) and aiming 
at increasing the success rate in a limited number of 
experiments, only sequences of low energy ( E < 44) 
and good secondary-structure score ( F > 0.53, mea- 
sured as the F -score between the RNAfold (October 
2022) ( 39 ) predicted structure and the tRNA consen- 
sus one) were included in the test, cf. the details given 

in the Supplementary Section 6.1 . These filters come 
at relatively low cost: while the energy-based filter is 
met by about 50% of all sampled sequences, the dou- 
ble filter still preserves about 20% of the sequences 
( Supplementary Figure S8 ), inducing thus a very mod- 
erate decrease of the size of the sequence space. 

For a more detailed overview of the dataset used in the 
test, please refer to the Supplementary Section S6.2 and 

Supplementary Figures S8 , S9 , S10 . Finally after probing, 34 

of the 76 tRNAs satisfied the experimental standard of pos- 
sessing reactivity data for more than 50% of the sequence po- 
sitions and were included in our further analyses. 

In Figure 7 , we observe that the reference dataset and the 
generated tRNA behave similarly, with clearly visible differ- 
ences between paired and unpaired sites. We employed Permu- 
tational Multivariate Analysis of Variance (PERMANOVA) to 

test for statistical differences between the reactivity distribu- 
tions of the reference dataset and of the generated tRNA, and 

between paired and unpaired sites. While we do not see indi- 
cations for statistically significant differences between the ref- 
erence dataset and the generated sequences ( P -values of 0.993 

for paired sites, 0.420 for unpaired sites), the paired and un- 
paired sites in the generated sequences are significantly distinct 
( P -value 1.9 × 10 

−7 ). 
Moreover, observing that the statistics for paired residues 

are more rigorous, especially on the two ‘Reference SHAPE 

dataset’ tRNA, we decided to implement an additional filter- 
ing criterion. We deem artificial molecules as ‘Criteria Met’ if 
over 85% of their paired residues fell into the low reactivity 
class. 14 out of 34 generated tRNA are classified as ‘Criteria 
Met’. Those are also the sequences that better pass the qualita- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
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ive visual criterion (Figure 7 C, Supplementary Section S6.3.4
nd Supplementary Figure S11 ). 

These results, albeit rather qualitative, indicate that the
HAPE reactivities of our artificially generated tRNAs are as
onsistent with the desired tRNA secondary structure, as the
equences in the reference dataset are with their published sec-
ndary structures. While these results generally support the
aDCA model as a valid generative model, a more comprehen-
ive experimental evaluation might include (i) control groups
enerated by simpler models (e.g. profile, SSBM, CM) to as-
ess if eaDCA is necessary to generate structurally coherent se-
uences, (ii) a filter-free generation directly using the statistical
odels, to test the model in an unbiased way and (iii) func-

ional rather than structural tests to fully assess the model’s
enerative capacities. 

onclusion and outlook 

s in many disciplines and thanks to the strong increase in
ata availability, generative models gain growing importance
lso in the modeling of biomolecular sequences. A first prac-
ical reason is quite obvious: generative models are of high
iotechnological interest in biomolecular optimization and de
ovo design, directly or in combination with screening or se-
ection assays when suggesting functionally enriched sequence
ibraries. 

A second reason is less obvious, but has the potential to be
t the basis of a paradigmatic shift in computational molecu-
ar biology . Traditionally , sequence bioinformatics was dom-
nated by simpler statistical models, like the profile or co-
ariance models discussed also in this paper, and which are
f great success in analyzing extant biomolecular sequences,
etecting homology, annotating sequences functionally, estab-
ishing RNA or protein families, reconstructing their phyloge-
ies or aligning sequences. Generative models have the poten-
ial to go substantially beyond this, and to directly contribute
o our future understanding of biological molecules in their
ull complexity as high-dimensional, disordered and interact-
ng systems. When a model is capable to generate diversified
ut viable artificial sequences, it necessarily incorporates es-
ential constraints, which are functionally or structurally im-
osed on the sequences in the course of evolution. Even in
his case, there is no guarantee that only such essential con-
traints are present in the model, and that these are encoded in
 biologically interpretable way. In our work, we are therefore
earching for parsimonious models, which contain as few as
ossible useless constraints (by using an information-theoretic
riterion for including constraints, or the corresponding pa-
ameters, into the modeling), and which in turn should be
aximally interpretable. 
However, generative modeling is not trivial. The total se-

uence space is enormous, while the example sequences in
NA or protein family databases are quite limited. Very differ-

nt models may be generative. In a parallel effort, ( 9 ) proposed
nd experimentally validated restricted Boltzmann machines
RBM) as generative models. In the case of protein families, it
as shown before that RBM, which are shallow latent-space
odels, are able to detect extended functional sequence mo-

ifs ( 40 ,41 ), but at the same time they have difficulties in rep-
esenting pairwise structural constraints like residue contacts.
n the contrary, eaDCA was found to easily detect contacts,
ut the patterns responsible for the clustered structure of fam-
lies into subfamilies, easily visible by dimensional-reduction
techniques like principal component analysis, remain hidden
in the coupling network. It remains a challenge for the future
to combine such different approaches to further improve in-
terpretability of generative models. 

Another problem is that, by definition, generative models
reproduce statistical features of the training data, but there is
no guarantee that statistical similarity implies biological func-
tionality - this dilemma is well known from text or image gen-
eration with generative models, which do not always produce
correct text contents or possible images, and extensive experi-
mental testing is needed to fully prove the validity of the mod-
els. 

Finally, an intrinsic limitation of data-driven sequence mod-
els is that, even if introducing substantial novelty into gener-
ated data when compared to training data, they are unable to
extrapolate to regions of sequence space that are are a priori
viable, but not reached by natural evolution, or not present in
sequence databases. To explore such regions, it may be neces-
sary to go beyond single Rfam families to unveil generic evo-
lutionary constraints acting across families, or to include non-
data-driven constraints (e.g. biophysical folding models) into
the generative models. 

Despite such limitations, generative modeling will naturally
benefit from the current evolution of more and more quantita-
tive high-throughput experimental approaches in biology. On
one hand, these can be used naturally to test model predic-
tions (e.g. mutational effects) and sequences generated by the
models, going far beyond the low-throughput experiments we
presented in this predominantly computational work. On the
other hand, these techniques substantially change the data sit-
uation in biology in several aspects (cf. e.g. ( 14 ,27 )): while cur-
rent dataset, i.e. MSA of homologous RNA or protein families,
consist of positive but experimentally non annotated data, ex-
periments provide (i) quantitative functional annotations for
thousands of sequences and (ii) negative examples for artifi-
cial non-functional sequences generated by imperfect methods
like random mutagenesis or sampling from imperfect models
learned from finite data. This change in data will trigger future
methodological work to develop integrative methods using all
biologically relevant available information within the model-
ing process. 

Data availability 

The data and the version of the code used at the time of this
study are available at DOI: 10.5281 / zenodo.10688226. 

For any subsequent updates refer to this Github repository:
https:// github.com/ FrancescoCalvanese/ FCSeqTools.jl . 

Supplementary data 

Supplementary Data are available at NAR Online. 

A c kno wledg ements 

We are grateful to Sabrina Cotogno, Matteo Bisardi, Roberto
Netti and Vaitea Opuu for helpful discussions during the
project and the writing of the paper. We acknowledge
also funding by the Institut Pierre-Gilles de Gennes (ANR-
10-EQPX-34, to P.N.), EU H2020 Grant ERC AbioEvo
(101002075, to P.N.), Human Frontier Science Program
(RGY0077 / 2019, to P.N.), EU H2020 grant MSCA-RISE In-
ferNet (734439, to M.W.). This project has received funding

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data
https://github.com/FrancescoCalvanese/FCSeqTools.jl
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae289#supplementary-data


12 Nucleic Acids Research , 2024 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae289/7658050 by G

ran Sasso Science Institute user on 31 M
ay 2024
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No 945304 – Cofund AI4theSciences hosted by
PSL University. 

High-throughput sequencing was performed by the ICGex
NGS platform of the Institut Curie supported by the
grants ANR-10-EQPX-03 (Equipex) and ANR-10-INBS-09-
08 (France Génomique Consortium) from the Agence Na-
tionale de la Recherche (‘Investissements d’Avenir’ program),
by the ITMO-Cancer Aviesan (Plan Cancer III) and by the
SiRIC-Curie program (SiRIC Grant INCa-DGOS-465 and
INCa-DGOS-Inserm-12554). Data management, quality con-
trol and primary analysis were performed by the Bioinformat-
ics platform of the Institut Curie. 

Funding 

H2020 European Research Council [AbioEvo / 101002075];
H2020 Marie Sklodowska-Curie Actions [InferNet / 734439];
Agence Nationale de la Recherche [ANR-10-
EQPX-34]; Human Frontier Science Program
[RGY0077 / 2019]; H2020 Marie Sklodowska-Curie Ac-
tions [AI4theSciences / 945304]. 

Conflict of interest statement 

None declared. 

References 

1. Holoch, D. and Moazed, D. (2015) RNA-mediated epigenetic 
regulation of gene expression. Nat. Rev. Genet., 16 , 71–84.

2. Castel, S.E. and Martienssen, R.A. (2013) RNA interference in the 
nucleus: roles for small RNAs in transcription, epigenetics and 
beyond. Nat. Rev. Genet., 14 , 100–112.

3. Walter, N. and Engelke, D. (2002) Ribozymes: Catalytic RNAs that 
cut things, make things, and do odd and useful jobs. Biologist , 49 , 
199–203.

4. Kalvari, I. , Nawrocki, E.P. , Ontiveros-Palacios, N. , Argasinska, J. , 
Lamkiewicz, K. , Marz, M. , Griffiths-Jones, S. , Toffano-Nioche, C. , 
Gautheret, D. , Weinberg, Z. , et al. (2020) Rfam 14: expanded 
coverage of metagenomic, viral and microRNA families. Nucleic 
Acids Res., 49 , D192–D200.

5. Leonardis, E. , Lutz, B. , Ratz, S. , Cocco, S. , Monasson, R. , Schug, A. 
and Weigt,M. (2015) Direct-coupling analysis of nucleotide 
coevolution facilitates RNA secondary and tertiary structure 
prediction. Nucleic Acids Res. , 43 , 10444–10455. 

6. Weinreb, C. , Riesselman, A.J. , Ingraham, J.B. , Gross, T. , Sander, C. 
and Marks,D.S. (2016) 3D RNA and functional interactions from 

evolutionary couplings. Cell , 165 , 963–975.
7. Pucci, F. , Zerihun, M.B. , Peter, E.K. and Schug, A. (2020) Evaluating 

DCA-based method performances for RNA contact prediction by 
a well-curated data set. RNA , 26 , 794–802.

8. Cuturello, F. , T iana, G. and Bussi, G. (2020) Assessing the accuracy 
of direct-coupling analysis for RNA contact prediction. RNA , 26 , 
637–647.

9. Fernandez-de-Cossio-Diaz, J. , Hardouin, P. , du Moutier, F.-X.L. , 
Gioacchino, A.D. , Marchand, B. , Ponty, Y. , Sargueil, B. , Monasson, R.
and Cocco,S. (2023) Designing molecular RNA switches with 
restricted Boltzmann machines. bioRxiv doi: 
https:// doi.org/ 10.1101/ 2023.05.10.540155 , 12 May 2023, 
preprint: not peer reviewed.

10. Eddy, S.R. and Durbin, R. (1994) RNA sequence analysis using 
covariance models. Nucleic Acids Res. , 22 , 2079–2088. 

11. Nawrocki, E.P. and Eddy, S.R. (2013) Infernal 1.1: 100-fold faster 
RNA homology searches. Bioinformatics , 29 , 2933–2935.
12. Figliuzzi, M. , Jacquier, H. , Schug, A. , Tenaillon, O. and Weigt, M. 
(2015) Coevolutionary landscape inference and the 
context-dependence of mutations in beta-lactamase TEM-1. Mol. 
Biol. Evol., 33 , 268–280.

13. Levy, R.M. , Haldane, A. and Flynn, W .F . (2017) Potts Hamiltonian 
models of protein co-variation, free energy landscapes, and 
evolutionary fitness. Curr. Opin. Struct. Biol., 43 , 55–62.

14. Russ,W .P ., Figliuzzi,M., Stocker,C., Barrat-Charlaix,P., Socolich,M.,
Kast, P. , Hilvert, D. , Monasson, R. , Cocco, S. , Weigt, M. , et al. (2020) 
An evolution-based model for designing chorismate mutase 
enzymes. Science , 369 , 440–445.

15. Schneider, B. , Sweeney, B.A. , Bateman, A. , Cerny, J. , Zok, T. and 
Szachniuk,M. (2023) When will RNA get its AlphaFold moment?. 
Nucleic Acids Res., 51 , 9522–9532.

16. Figliuzzi, M. , Barrat-Charlaix, P. and Weigt, M. (2018) How 

pairwise coevolutionary models capture the collective residue 
variability in proteins?. Mol. Biol. Evol., 35 , 1018–1027.

17. Muntoni, A.P. , Pagnani, A. , Weigt, M. and Zamponi, F. (2021) 
adabmDCA: adaptive Boltzmann machine learning for biological 
sequences. BMC Bioinformatics , 22 , 528.

18. De Juan, D. , Pazos, F. and Valencia, A. (2013) Emerging methods in 
protein co-evolution. Nat. Rev. Genet., 14 , 249–261.

19. Cocco, S. , Feinauer, C. , Figliuzzi, M. , Monasson, R. and Weigt, M. 
(2018) Inverse statistical physics of protein sequences: a key issues 
review. Rep. Prog. Phys., 81 , 032601.

20. de la Paz, J.A. , Nartey, C.M. , Yuvaraj, M. and Morcos, F. (2020) 
Epistatic contributions promote the unification of incompatible 
models of neutral molecular evolution. Proc. Natl. Acad. Sci. 
U.S.A., 117 , 5873–5882.

21. Bisardi, M. , Rodriguez-Rivas, J. , Zamponi, F. and Weigt, M. (2021) 
Modeling sequence-space exploration and emergence of epistatic 
signals in protein evolution. Mol. Biol. Evol., 39 , msab321.

22. Morcos, F. , Pagnani, A. , Lunt, B. , Bertolino, A. , Marks, D.S. , 
Sander, C. , Zecchina, R. , Onuchic, J.N. , Hwa, T. and Weigt, M. 
(2011) Direct-coupling analysis of residue coevolution captures 
native contacts across many protein families. Proc. Natl. Acad. Sci.
U.S.A., 108 , E1293–E1301.

23. Marks, D.S. , Colwell, L.J. , Sheridan, R. , Hopf, T.A. , Pagnani, A. , 
Zecchina, R. and Sander, C. (2011) Protein 3D structure computed 
from evolutionary sequence variation. PLoS One , 6 , e28766.

24. Madani, A. , Krause, B. , Greene, E.R. , Subramanian, S. , Mohr, B.P. , 
Holton, J.M. , Olmos, J.L. , Xiong, C. , Sun, Z.Z. , Socher, R. , et al. 
(2023) Large language models generate functional protein 
sequences across diverse families. Nat. Biotechnol., 41 , 
1099–1106.

25. Barrat-Charlaix, P. , Muntoni, A.P. , Shimagaki, K. , Weigt, M. and 
Zamponi,F. (2021) Sparse generative modeling via parameter 
reduction of Boltzmann machines: application to protein-sequence 
families. Phys. Rev. E , 104 , 024407.

26. Zerihun, M.B. , Pucci, F. and Schug, A. (2021) CoCoNet—boosting 
RNA contact prediction by convolutional neural networks. 
Nucleic Acids Res., 49 , 12661–12672.

27. Li, C. and Zhang, J. (2018) Multi-environment fitness landscapes of 
a tRNA gene. Nat. Ecol. Evol., 2 , 1025–1032.

28. Hajdin, C. , Bellaousov, S. , Huggins, W. , Leonard, C. , Mathews, D. and 
Weeks,K. (2013) Accurate SHAPE-directed RNA secondary 
structure modeling, including pseudoknots. Proc. Natl. Acad. Sci. 
U.S.A., 110 , 5498–5503.

29. Cocco, S. and Monasson, R. (2011) Adaptive cluster expansion for 
inferring Boltzmann machines with noisy data. Phys. Rev. lett., 
106 , 090601.

30. Barton, J.P. , De Leonardis, E. , Coucke, A. and Cocco, S. (2016) A CE: 
adaptive cluster expansion for maximum entropy graphical model 
inference. Bioinformatics , 32 , 3089–3097.

31. Kutchko, K.M. and Laederach, A. (2016) Transcending the 
prediction paradigm: novel applications of SHAPE to RNA 

function and evolution. WIREs RNA , 8 , e1374.
32. Busan, S. and Weeks, K. (2017) Accurate detection of chemical 

modifications in RNA by mutational profiling (MaP) with 
ShapeMapper 2. RNA , 24 , 143–148.

https://doi.org/10.1101/2023.05.10.540155


Nucleic Acids Research , 2024 13 

3

3

3

3

3

R
©
T
(
c

D
ow

nloaded from
 http
3. Bellaousov, S. , Reuter, J.S. , Seetin, M.G. and Mathews, D.H. (2013) 
RNAstructure: web servers for RNA secondary structure 
prediction and analysis. Nucleic Acids Res. , 41 , W471–W474. 

4. Trinquier, J. , Uguzzoni, G. , Pagnani, A. , Zamponi, F. and Weigt, M. 
(2021) Efficient generative modeling of protein sequences using 
simple autoregressive models. Nat. Commun., 12 , 5800.

5. Rivas, E. , Clements, J. and Eddy, S.R. (2017) A statistical test for 
conserved RNA structure shows lack of evidence for structure in 
lncRNAs. Nat. Methods , 14 , 45–48.

6. Barton, J.P. , Chakraborty, A.K. , Cocco, S. , Jacquin, H. and 
Monasson,R. (2016) On the entropy of protein families. J. Stat. 
Phys., 162 , 1267–1293.

7. Jörg, T. , Martin, O. and Wagner, A. (2008) Neutral network sizes of 
biological RNA molecules can be computed and are atypically 
large. BMC Bioinformatics , 9 , 464.
eceived: October 14, 2023. Revised: March 5, 2024. Editorial Decision: March 31, 2024. Accepted:
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 

his is an Open Access article distributed under the terms of the Creative Commons Attribution-Non
https: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re-use, distributio
ommercial re-use, please contact journals.permissions@oup.com 
38. Malbranke, C. , Bikard, D. , Cocco, S. and Monasson, R. (2021) 
Improving sequence-based modeling of protein families using 
secondary-structure quality assessment. Bioinformatics , 37 , 
4083–4090.

39. Lorenz, R. , Bernhart, S.H. , zu Siederdissen, C.H. , Tafer, H. , 
Flamm, C. , Stadler, P .F . and Hofacker,I.L. (2011) ViennaRNA 

Package 2.0. Algorithm. Mol. Biol., 6 , 26.
40. Tubiana, J. , Cocco, S. and Monasson, R. (2019) Learning protein 

constitutive motifs from sequence data. eLife , 8 , e39397.
41. Shimagaki, K. and Weigt, M. (2019) Selection of sequence motifs 

and generative Hopfield-Potts models for protein families. Phys. 
Rev. E , 100 , 032128.
 April 5, 2024 

Commercial License 
n, and reproduction in any medium, provided the original work is properly cited. For 

s://academ
ic.oup.com

/nar/advance-article/doi/10.1093/nar/gkae289/7658050 by G
ran Sasso Science Institute user on 31 M

ay 2024


	Graphical abstract
	Introduction
	Materials and methods
	Results and discussion
	Conclusion and outlook
	Data availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest statement
	References

