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Modeling Posidonia oceanica shoot 
density and rhizome primary 
production
Elena Catucci1,2* & Michele Scardi1,2

Posidonia oceanica meadows rank among the most important and most productive ecosystems in 
the Mediterranean basin, due to their ecological role and to the goods and services they provide. 
Estimations of crucial ecological process such as meadows productivity could play a major role in an 
environmental management perspective and in the assessment of P. oceanica ecosystem services. 
In this study, a Machine Learning approach, i.e. Random Forest, was aimed at modeling P. oceanica 
shoot density and rhizome primary production using as predictive variables only environmental 
factors retrieved from indirect measurements, such as maps. Our predictive models showed a good 
level of accuracy in modeling both shoot density and rhizome productivity (R2 = 0.761 and R2 = 0.736, 
respectively). Furthermore, as shoot density is an essential parameter in the estimation of P. oceanica 
productivity, we proposed a cascaded approach aimed at estimating the latter using predicted values 
of shoot density rather than observed measurements. In spite of the complexity of the problem, the 
cascaded Random Forest performed quite well (R2 = 0.637). While direct measurements will always 
play a fundamental role, our estimates could support large scale assessment of the expected condition 
of P. oceanica meadows, providing valuable information about the way this crucial ecosystem works.

Posidonia oceanica (L.) Delile, 1813, is the most widespread endemic seagrass of the Mediterranean Sea, in which 
its meadows represent a paramount ecosystem1. P. oceanica meadows are indeed the most valuable ecosystems in 
terms of goods and services they provide, and regarding their ecological role in influencing the marine coastal 
waters over the whole basin2. Besides, the primary production of P. oceanica meadows ranks among the largest 
on Earth in terms of quantity per unit surface area2.

In this context, estimation of P. oceanica productivity could result essential in an environmental management 
perspective and for the assessment of the ecosystem services this species provides. Clearly, direct measurements 
of a complex ecological process such as P. oceanica primary production are not only difficult to carry out, but 
also expensive and time-consuming, underlying the necessity for indirect methods.

In this framework, lepidochronological analysis has proven effective to tackle issues such as estimation of P. 
oceanica primary production3–5. The lepidochronology relies on the study of the cyclic variation of the sheaths 
thickness that may be observed after P. oceanica leaves have fallen6. Practically, when P. oceanica leaves die, the 
blade is lost, while the sheath remains attached to the rhizome showing cyclic variation in its thickness that has 
a period corresponding to a lepidochronological year6. Both rhizome and sheath are preserved in the matte, the 
characteristic structure formed by P. oceanica, with negligible morphological alterations for a very long time, e.g. 
many centuries7. Accordingly, lepidochronology allows studying the most important process driving temporal 
and spatial dynamics of this paramount species.

The lepidochronology gained rapidly popularity as a tool for estimating P. oceanica primary production8,9 due 
to its straightforward applicability, especially if compared to earlier methods, such as leaf-marking and 14C10,11. 
As a matter of fact, in Pergent-Martini et al.12 the authors drew up a standardized procedure for estimating P. oce-
anica rhizome and leaf primary production as a function of two types of data obtained from lepidochronological 
analyses, i.e. number and length of the sheaths, and number and length of the leaves, respectively, in conjunction 
with shoot density. As can be noted, shoot density is a fundamental parameter for the estimation of P. oceanica 
primary production. Furthermore, it is worth noting that the lepidochronological analysis enables estimating 
not only the contribution of the leaves to the overall primary production of P. oceanica, but also the one of the 
rhizomes6,12. Despite the rhizome primary production contributes for approximatively 6–10% of the productivity 

OPEN

1Department of Biology, University of Rome “Tor Vergata”, via della Ricerca Scientifica, 00133  Rome, 
Italy. 2CoNISMa, Piazzale Flaminio, 9, 00196 Rome, Italy. *email: catucci.elena@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73722-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16978  | https://doi.org/10.1038/s41598-020-73722-9

www.nature.com/scientificreports/

of a P. oceanica meadow8,12, the possibility of estimating the former represents a paramount advantage due to the 
stability over time of the rhizomes in comparison to that of the leaves. In fact, while the leaves are exposed to a 
wide range of pressures that can alter both their length and number, the rhizomes remain mostly unaltered due 
to their very slow decay, and by the fact that they shall become integral components of the matte5. The latter, as 
previously discussed, once built can persist with imperceptible alterations in its structure for centuries2,7. Besides, 
as the capability of creating the matte by P. oceanica is unique among the Mediterranean seagrasses, estimation 
of rhizome primary production could result more reliable that the one of the leaves.

In this context, this study focused on modeling both P. oceanica shoot density and rhizome primary produc-
tion in the Italian Seas using a Machine Learning approach.

It is well known that modelling ecological processes can be an arduous task, as they involve complex interac-
tions among biotic and abiotic factors and obviously modeling P. oceanica is no exception. Machine Learning 
approaches can provide critical advantages in empirical modeling and their potentiality has been largely dem-
onstrated in a wide range of ecological applications13,14.

For instance, Machine Learning methods have been applied in modeling mortality events in the coastal rocky 
benthic communities over large spatial scale15, as well as in predicting the distribution of species of conservation 
interest16.

The crucial advantage in modeling ecological systems using Machine Learning approaches is that these 
methods do not impose improbable assumptions, such as linearity, on the ecological interactions between input, 
i.e. predictive, variables and the response. In other words, Machine Learning approaches are able to handle 
multifaceted and high-order interactions between predictive variables and the target, rather than merely direct 
causality and correlations17,18. Additionally, these methods do not require a set of mathematical formulations 
that may or may not be adequate in modeling ecological processes, rather they learn the underlying ecological 
patterns directly from the data. As Machine Learning approaches do not require any a priori knowledge on the 
nature of the relationships between predictive variables and the modelled ecological process, they further allow 
to exploit the potentiality of a wide range of data sources, including those obtained from maps, and other related 
sources of information.

Accordingly, the aim of this study was twofold. On one side, we aimed at developing Machine learning-based 
models of P. oceanica shoot density and rhizome primary production using as predictive variables only environ-
mental factors that can be retrieved by indirect measurements, such as those based on maps. On the other side, 
as P. oceanica productivity is estimated as a function of data obtained both from lepidochronological and shoot 
density analyses12, we proposed a ‘cascaded’ approach for estimating P. oceanica rhizome primary production 
using modelled, i.e. predicted, shoot density values, rather than observed ones. The purpose of the cascaded 
approach is to increase the applicability of the P. oceanica rhizome primary production model even in cases in 
which data on shoot density, which require laborious field activities, are not available.

Materials and methods
Study area and environmental variables.  The data set used in this study included 192 sites in which 
lepidochronological data and shoot density were acquired between 1994 and 2003. Clearly, the rhizome primary 
production of P. oceanica was estimated as defined by Pergent-Martini et al.12.

The spatial coverage of the data set was not uniform across the Italian Seas. In fact, the sampling sites were 
mainly concentrated in five Italian regions, i.e. Liguria, Tuscany, Lazio, Basilicata and Apulia (Fig. 1).

The environmental variables were all acquired from maps and other related information sources (Table 1), 
according to the main aim of the study. A detailed explanation of these variables and of the methodology for 
their acquisition is given in the supplementary materials.

Since these environmental factors were used as predictive variables in the modeling procedure, their selec-
tion was based on the ecological nature of the modelled processes, taking into account their influence on the 
latter. For instance, it is well known that depth plays a crucial role in determining the properties of P. oceanica 
meadows, such as density and productivity, as it is strictly related to other fundamental environmental factors, 
e.g. light. Therefore, both depth and gradient were considered as predictive variables, as well as the profile of the 
isobaths, described as either linear, convex or concave. The presence of sources of disturbance, such as sewage 
discharge or similar pollution, was also taken into account, as an increase in turbidity following an excessive 
enrichment from nutrient inputs might entail a reduction of water transparency and light penetration, which in 
turn can alter the ecological proprieties of a P. oceanica meadow. As for the sea floor typologies, i.e. sand, rock 
and matte, sources of disturbance have been represented as binary variables because of the intention of using 
only indirect methods for data acquisition, e.g. maps. Clearly, with such types of data source it was possible to 
perform, with good confidence, only a qualitative assessment. A quantitative coding of those predictive variables 
would indeed require expensive and time-consuming efforts for field activities, leading to a major drawback of 
the proposed approach.

The data set was partitioned into two subsets, i.e. training and test sets, for modeling purposes. Data parti-
tioning represents a critical step in modeling, whose aim is obtaining two subsets that are as much as possible 
independent from each other, while simultaneously representative of the modelled problem, in order to avoid 
modeling artifacts and to ensure the applicability of the resulting models18.

Accordingly, the partitioning was not based on random selection of the data, rather the subsets were obtained 
on the basis of the following approach. The data were stratified according to depth, i.e. they were sorted on the 
basis of their depth and assigned to one of the following bathymetric classes, i.e.[0,5] m, (5,10] m, (10,15] m, 
(15,20] m, (20,25] m, (25,35] m. These classes comprised 16.67%, 23.96%, 27.08%, 17.71%, 9.90% and 4.69% of 
the total number of records, respectively. Subsequently, within each bathymetric class, about 70% of the data, i.e. 
n = 136, were assigned to the training set, while the remaining ones, i.e. n = 56, to the test set. While the former 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16978  | https://doi.org/10.1038/s41598-020-73722-9

www.nature.com/scientificreports/

subset comprising the majority of the data was used for the training procedure of the Machine Learning algo-
rithm, i.e. Random Forest19, the test subset was only used a posteriori to evaluate model performance.

The rationale behind the aforementioned approach is that the depth has a paramount ecological role in 
regulating both P. oceanica shoot density and rhizome primary production, as previously noted. In fact, a wide 
range of environmental conditions are related to depth, such as light, water movement and sedimentation flows, 
which in turn strictly affected the structure, the functioning and the ecological condition of P. oceanica meadows. 

Figure 1.   Sampling sites from which field data and indirect measurements have been collected (red circles). 
Data about several sampling stations are available at each site (N = 6 to 15).

Table 1.   Environmental factors used as predictive variables for developing P. oceanica models. According to 
the main aim of the study, these predictive variables were acquired from indirect measurements, e.g. maps.

1 Latitude

2 Longitude

3 Depth

4 Gradient

5 Agreement between gradient and angular range of prevailing winds

6 Agreement between gradient and prevailing winds

7 Profile of the isobaths: linear

8 Profile of the isobaths: convex

9 Profile of the isobaths: concave

10 Sea floor irregularity

11 Coastline openness

12 Exposure to prevailing winds

13 Type of sea floor: sand

14 Type of sea floor: rock

15 Type of sea floor: matte

16 Disturbances: anchoring

17 Disturbances: sewage

18 Disturbances: inorganic pollution
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Therefore, using the abovementioned strategy in the data allocation, the inherent variability of the ecological 
patterns was properly distributed among the subsets, thus ensuring the possibility of obtaining ecologically 
sound models.

Random Forest.  The Random Forest (RF) is a Machine Learning technique which fits an ensemble of Clas-
sification Trees and combines their predictions into a single model19.

RF has proven effective in a wide range of applications as it is able to address, for example, both regression 
and classification problems20, to perform cluster analysis and missing values imputation21,22.

RF has been used for predicting current and potential future spatial distribution of plant species23, as well 
as for estimating the marine biodiversity on the basis of the sea floor hardness24. RF has been also applied in 
ecological applications as a classification tool for the assessment of the vulnerability of P. oceanica meadows over 
a large spatial scale25, and for land cover classification using remote sensing data26,27.

This method relies upon one of the main features of Machine Learning methods, namely that an ensemble 
of ‘weak learners’ usually outperforms a single ‘strong learner’19. As a matter of fact, each Classification Tree 
in the forest represents a weak learner, i.e. a single model, trained on a partly independent data subset, i.e. on 
a bootstrap sample. Each Classification Tree provides predictions based on the data contained in its bootstrap 
sample, and many trees are combined into an ensemble model, i.e. into a ‘forest’. The overall output of a RF is 
obtained by averaging the outcomes of all the trees for regression applications, while it is based on majority 
voting for classification problems.

The diversity of the trees in the forest is ensured by the use of random subsets of data for the tree-building 
process, i.e. bootstrap samples, as well as by making a random subset of predictive variables available for the tree 
splitting procedure. These features allow the RF to reduce the correlation among its Classification Trees, while 
keeping the variance relatively small, thus leading to a more robust model19.

The selection of a random subset of predictive variables at each split ensures maintaining a certain level of 
randomness during the tree construction process28, and is necessary for the proper functioning of RF. As a matter 
of fact, the size of the random subset of predictive variables available for the tree splitting procedure represents 
a tuning parameter, defined as mtry. The latter together with the minimum number of records to be contained 
in each leaf, called nodesize, are the main tuning parameters that deeply affect RF performance21,29.

In its original work, Breiman19 suggested to set the mtry value equal to p/3 for regression applications, being 
p is the total number of predictors, and tuning it from half to twice its original value. On the other hand, node-
size and ntree (the latter parameter is the total number of Classification Trees in the forest) are more related to 
the generalization ability of the RF, and to the overall complexity of the model. Growing a very large forest, e.g. 
ntree > 500, or growing the trees to achieve a high degree of purity at their leaves, e.g. nodesize < 5, could sub-
stantially increase the computational costs, leading to an extremely complex model21. It has been largely dem-
onstrated that these parameters have to be tuned considering the available data, as large data set might require 
larger nodesize and smaller ntree values25,28,30–32.

As the goal in modelling is to obtain a model showing a high level of accuracy while presenting an appropriate 
level of complexity, which might vary according to the nature of the modelled process without exceeding18, in 
this study the RF training, involving the calibration of the tuning parameters, was performed as follows.

The mtry parameter was tested in the [3, 12] range as the data set included 18 predictive variables, while the 
nodesize was tested in the [1, 10] interval of values, setting ntree to 1000. The moderate size of the available data 
set (N = 192) allowed to grow quite large forests representing trees almost grown to their maximum depth. The 
resulting 100 RF configurations (i.e. 10 mtry values, times 10 nodesize values, times 1 ntree value) were trained 
using only the data contained in the training set, while their performances were assessed on the basis of the 
withheld data, i.e. of the test set.

The abovementioned RF training was performed for developing all the predictive models, i.e. (1) the shoot 
density (as shoots m−2) model, (2) the rhizome primary production (as g DW m-2 y−1) model based on known 
shoot density, (3) and the cascaded rhizome primary production (as g DW m-2 y−1) model based on predicted 
shoot density (see “Cascaded approach for modeling P. oceanica rhizome primary production” section).

Both model training and evaluation (see “Model evaluation” section) were performed in R33 environment 
using the package randomForest20 which implements the original RF algorithm developed by Breiman19.

Cascaded approach for modeling P. oceanica rhizome primary production.  As previously noted, 
shoot density is one of the fundamental parameters in the estimation of rhizome primary production, basing on 
the standardized approach proposed by Pergent-Martin et al.12.

Due to the fact that data on shoot density are obtained from laborious field activities, usually expensive and 
time-consuming, we proposed a cascaded approach aimed at modeling the rhizome primary production of P. 
oceanica using predicted density values, rather than observed ones. In a general perspective, the use of predicted 
values of shoot density could zero out survey costs.

In a methodological perspective, predicted shoot density values are meant to be used at run time, thus they 
were used when assessing the RF performance, while observed data were only used during the training proce-
dure. In other words, predicted values of shoot density, provided by our predictive model, were included in test 
set for evaluating the performance of the cascaded model of rhizome primary production, while the training 
procedure of the latter was instead carried out using data obtained from direct measurements, i.e. observed data 
on shoot density.

The rationale behind that solution is based on practical as well as methodological reasons. In fact, it has to 
be considered that during the training phase the RF is aimed at detecting patterns in the data, learning how 
the predictive variables are related to the target. On the other side, when the model is applied to the test set, its 
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‘learning ability’ is assessed and the way the model is meant to be applied, i.e. with no field measurements, must 
be taken into account.

Accordingly, the use of the observed data on P. oceanica shoot density in the training procedure allowed 
the RF to learn the underlying interactions between the predictive variables, including shoot density, and the 
target, i.e. rhizome primary production. On the contrary, the use of predicted data during the model evaluation 
allowed testing the capability of the RF in modeling the multifaceted relationships between predictive variables 
and target, including density-productivity ones.

Model evaluation.  As previously noted, the models’ performance was evaluated using the data included 
in the test set, which are those never seen by the RF during its training. The performance of each model was 
evaluated by computing the determination coefficient (R2), which measures the proportion of target variance 
explained by the model, and the Mean Squared Error (MSE). The final models regarding P. oceanica shoot den-
sity and rhizome primary production were selected on the basis of the R2 value, i.e. the models showing the best 
predictive ability (maximum R2 value) were selected as the final ones.

Afterwards, for developing the cascaded model of P. oceanica rhizome primary production, the predicted 
values provided by the shoot density model showing the best performance, i.e. the most accurate model, were 
included among the test set data of the former. The final cascaded primary production model of P. oceanica 
rhizomes was also chosen on the basis of the R2 value, thus selecting the RF showing the best performance.

Relative importance of predictive variables.  The assessment of the relative importance of the predic-
tive variables is performed during the RF training on the basis of a permutation procedure. The importance 
of any given predictive variable is estimated on the basis of the increase in the error rate when that predictive 
variable is randomly permuted19,21. Estimation of relative importance of predictive variables is computed using 
the Out-Of-Bag (OOB) data, which are the records not included in the bootstrap sample for the tree-building 
process. These OOB data are passed down to the tree previously grown using the bootstrap sample, obtain-
ing predictions for these OOB data. The OOB records are then passed down to the same tree once more and 
the values of each predictive variable, one at a time, are randomly permuted, while those of the others are left 
unchanged. During this second step, new predictions for the modified OOB records are obtained, which are 
aggregated tree by tree as the forest is constructed. Finally, the overall deviation between the estimates provided 
by the original and the modified OOB records is computed and regarded as a measure of the relative importance 
of each predictive variable25,32.

Results
Modeling P. oceanica shoot density and rhizome primary production.  The RF proved effective in 
modeling shoot density of P. oceanica using environmental factors acquired only from maps as predictive vari-
ables. Indeed, the final predictive model achieved a high level of accuracy (R2 = 0.761), while the overall MSE 
was quite small, i.e. MSE = 5228.42 (Fig. 2). The square root of the latter indicated that the average error of the 
predictions of the test set was about 70 shoots m−2. The determination coefficient underlined a good agreement 
between predicted and observed values. In fact, as shown in Fig. 2, data were almost symmetrically distributed 
around the unit slope line, further pointing out that the RF output, i.e. predicted values of shoot density, was 
largely unbiased.

The final RF configuration of the predictive shoot density model was based on 1000 trees, almost grown 
to their maximum depth, i.e. nodesize = 2, presenting 9 randomly selected predictive variables for the splitting 
procedure.

The overall performance of RF in modeling P. oceanica rhizome primary production was as well satisfactory 
(Fig. 3). In fact, its accuracy (R2 = 0.736) was almost as good as the one of the shoot density predictive model, 
showing a rather small error, i.e. MSE = 47.55 (which corresponds to an average error of the test set data around 
7 g DW m−2 y−1). As can be seen in Fig. 3, the majority of the data closely matched the unit slope line, underling 
the good ability of the RF in modeling P. oceanica rhizome primary production, as expressed by the determina-
tion coefficient. These results are referred to the RF trained setting the mtry parameter to 7, presenting 3 cases 
in each leaf to stop the splitting procedure, i.e. nodesize = 3, and 1000 trees.

Although it might sound redundant, it worth stressing that this predictive model of P. oceanica rhizome pri-
mary production (Fig. 3) was built using both the 18 predictive variables together with the data on shoot density 
obtained from direct measurements, i.e. observed values, since it is an essential parameter in the computation 
of P. oceanica productivity12, as extensively discussed.

The cascaded P. oceanica rhizome primary production model we proposed, also showed a good level of 
accuracy (R2 = 0.637). As can be seen in Fig. 4, data were once more scattered almost symmetrically around the 
unit slope line, indicating a good and evident agreement between predicted and observed values. The overall 
RF performance was quite good, with R2 and MSE values that were more than satisfactory, i.e. R2 = 0.637 and 
MSE = 65.41 (i.e. average error of the test set predictions around 8 g DW m−2 y−1). Despite the use of predicted 
shoot density data in the test set, the RF was able to explain more than 63% of the P. oceanica rhizome primary 
production variance.

The final RF configuration of the cascaded rhizome primary production model was based on 1000 trees, 
grown to their maximum depth, i.e. nodesize = 1, whose were constructed using 6 random predictive variables 
at each split, i.e. mtry = 6.

Relative importance of predictive variables.  In a RF, the relative importance of a predictive variable 
is quantified by the permutation measure on the basis of the error between the predictions of the original and 
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of the modified OOB records. The estimates of the relative importance of predictive variables referring to all the 
three predictive models of P. oceanica are provided in Fig. 5.

In our results, we observed that longitude was the predictive variable showing the largest relative importance 
in estimating P. oceanica shoot density, followed by depth. The contribution of the latter was indeed as large as 
96% of that provided by the former (Fig. 5a).

In a general perspective, it is worth considering that in the Italian seas while depth was certainly a more gen-
eral predictive variable, in agreement with its influence on environmental factors, such as downwelling irradiance, 
water movement and sedimentation rates, longitude played a role in driving different predictions for meadows 
located in different basins. In other words, the longitude provides crucial information on the geographical loca-
tion of P. oceanica meadows that justified its relative importance.

As a matter of fact, longitude was also the second most important predictive variable in modeling the primary 
production of P. oceanica rhizomes (Fig. 5b), and using the cascaded approach (Fig. 5c), with a contribution about 

Figure 3.   Predicted vs. observed values of P. oceanica rhizome primary production (g DW m−2 y−1). The solid 
blue squares showed the test set data. They are symmetrically distributed around the unit slope line and showed 
a good agreement between predicted and observed values. Empty squares refer to the training set data. The RF 
performance relative to the test set was very good, i.e. R2 = 0.736 and MSE = 47.55.

Figure 2.   Predicted vs. observed values of P. oceanica shoot density (shoots m−2). The solid green circles showed 
the test set data. They are symmetrically distributed around the unit slope line and showed a good agreement 
between predicted and observed values. Empty circles refer to the training set data. The RF performance relative 
to the test set was very good i.e. R2 = 0.761 and MSE = 5228.42.
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as 66% and 73%, respectively, of that provided by shoot density. As expected because of its direct multiplicative 
role, the latter resulted the predictive variable showing the largest relative importance in both the predictive 
models of P. oceanica rhizome primary production (Fig. 5b,c).

From an ecological perspective, as well as from a purely computational viewpoint, it is obvious that P. oce-
anica productivity and shoot density have substantial dependence5, thus it was hardly surprising that the latter 
showed the largest relative importance in modeling the rhizome primary production, regardless of the followed 
approach (Fig. 5b,c).

Nevertheless, it is crucial to stress that estimates of relative importance of predictive variables provided by 
RFs did not necessarily reflect the role that these factors actually played in the underlying ecological processes. 
In other words, these results did not merely reflect simple cause-effect relationships between the predictive 
variables and the targets due to the ability of RF, such all the other Machine Learning approaches, in handling 
interactions that go beyond linear relations. This ability in handling non-linear relationships is expressed in the 
estimates of relative importance of the predictive variables which mostly reflect their role in guiding the tree-
building process34,35, expressing their empirical nature.

Discussion
The demand for reliable predictions is rapidly rising as environmental issues become a prominent concern of 
society36. As modeling approaches are effective tools for summarizing and synthetizing knowledge in forms 
allowing the formulation of quantitative, probabilistic or future states of the modelled entity36,37, they have gained 
a great interest in the modern ecosystem-based management context, which requires detailed information at all 
important ecological levels37.

The potentiality of ecological models is usually hindered by the limited availability of data, e.g. Scardi38. This 
is especially true when Machine Learning approaches are involved, as the modeling procedure is entirely driven 
by the data. In fact, the performance of any Machine learning-based model is strictly dependent on both the 
quality and the amount of available data, and P. oceanica modeling is not an exception to this rule.

Despite the limited amount of available data, in this study we developed predictive models showing a high 
level of accuracy, providing valuable information on the condition of P. oceanica meadows.

The model estimating P. oceanica shoot density exhibited a very good predictive ability (R2 = 0.761) showing 
a relatively narrow margin of error relative to the test set data (MSE = 5228.42, i.e. 70 shoots m−2) (Fig. 2). The 
conventional rhizome primary production model as well as the cascaded one, aimed at using predicted shoot 
density as one of the predictive variables, proved to be successful (Figs. 3, 4). Both models showed indeed good 
performances, i.e. R2 = 0.736 and R2 = 0.637, and quite small MSE values, i.e. 47.55 and 65.41, respectively. The 
latter indicated that the average error of the predictions regarding the test set was about 7 g DW m−2 y−1 in 
absolute value for the rhizome primary production model, and only slightly higher, i.e. 8 g DW m−2 y−1, for the 
model based on the cascaded approach.

In order to fully evaluate the response of the predictive models, we analyzed the distribution of the errors 
of the RF outputs, regarding only the test set data, with respect to depth since the latter played a crucial role in 
the modeling procedure (Fig. 6). The main aim of the latter analysis was to detect whether the models showed 
biased results in relation to the bathymetric classes we defined.

Figure 4.   Predicted versus observed values of P. oceanica rhizome primary production (g DW m−2 y−1). The 
solid blue triangles showed the test set data. They are symmetrically distributed around the unit slope line and 
showed a good agreement between predicted and observed values. Empty triangles refer to the training set data. 
The RF performance relative to the test set was very good, i.e. R2 = 0.637 and MSE = 65.41.
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Figure 5.   Estimates of relative importance of predictive variables assessed using the permutation measure. 
For each model, the results are normalized on the basis of the predictive variable showing the largest relative 
importance. The subplots showed: (a) shoot density model; (b) rhizome primary production model; (c) 
cascaded model of rhizome primary production.
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As shown in Fig. 6a, the dispersion of the error of the RF output of the shoot density model showed a wider 
range for shallow waters, depth ≤ 20 m, if compared to that at deeper stands. However, regardless of the depth, 
the average error of the predictions of the test set data was around 70 shoots m−2, therefore its magnitude was 
still negligible if compared to density variability within P. oceanica meadows and to the uncertainties in the shoot 
counts. Accordingly, the predictive model of P. oceanica shoot density we developed represents a remarkable 
achievement, especially when considering that the latter was built on predictive variables that are not obtained 
from direct field activities, substantially improving its applicability.

The test set errors of both models predicting the rhizome primary production also showed a wider dispersion 
at depths ranging from shallow to intermediate, down to 20 m (Fig. 6b). Since in our data set the observations in 
that depth range, i.e.[0,20] m, represented more than 80%, these models’ behavior is possibly due to the inherent 
variability of P. oceanica meadows in that depth range. Indeed, in an ecological perspective the meadows located 
at shallow depth, i.e. above 20 m, are subjected to a wide range of environmental conditions, which can affect 
P. oceanica productivity and density in various manners. For instance, shallow meadows are more exposed to 
wave action and the resulting effects might involve substantial alterations of water turbidity and sedimentation 
rate, which are known to have an effect on P. oceanica condition.

Although water column properties play an important role, they were not taken into account for the modeling 
procedure because their acquisition would require direct measurements. While the latter might provide useful 
information, they are expensive, time-consuming and usually difficult to carry out. A critical drawback of models 
requiring information from field data would be that they could only be used when such data are available, thus 
substantially reducing their applicability. For the aforementioned reasons, we aimed at using only predictive 
variables that can be retrieved or inferred from maps, and possibly, in some cases, by prospecting the sampling 
sites when variables that are easier and inexpensive to obtain are involved.

Regarding the rhizome primary production model obtained using the cascaded approach, it can be noted that 
it showed a very similar distribution in relation to depth, although slightly wider, if compared to the rhizome 
primary production model built using direct measurement of shoot density (Fig. 6b). Obviously, the wider 
error distribution of the cascaded model is consistent with the slight decrease in the overall model performance.

In order to compare the two P. oceanica rhizome primary production models, the overall errors distributions 
of the RF outputs of the test set were compared (Fig. 7).

As can be seen in Fig. 7, these models exhibited a very similar distribution of the RF output errors, indicating 
that they provided very closely matching predictions. The latter tendency was analyzed using the Kolmogo-
rov–Smirnov (KS) test based on the null hypothesis of equal distributions of the errors of the test set data between 
the two rhizome primary production models. The KS test provided a value of maximum distance between the 
two distributions equal to 0.08, while the related p value was 0.97. Hence, no difference in the error distributions 
of the RF outputs from the two rhizome primary production models was detected. The latter underlined that the 
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Figure 5.   (continued)
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model for P. oceanica rhizome primary production developed using the cascaded approach provided estimates 
that are consistent with the ones provided by the model based on observed shoot density data.

These results pointed out the possibility of using our cascaded approach as an effective alternate solution for 
estimating P. oceanica rhizome primary production. The average values of the errors regarding the test set data 
of the rhizome primary production model and the one obtained using the cascaded approach, i.e. − 0.33 and 
− 0.37 (g DW m−2 y−1), respectively, were negligible relative to the inherent variability in our data set [4.37,87.63].

Therefore, in a general perspective, the estimates provided by our models regarding both shoot density and 
rhizome primary production, and similarly the ones provided by the cascaded approach which can be obtained 
independently of field data collection, substantially reducing the survey costs, could be considered as baselines 
in defining the condition of P. oceanica meadows. These baselines could be a valuable source of information in 
an environmental management perspective and for the assessment of the ecosystem services that P. oceanica 
provides.

In conclusion, we would like to stress that our predictive models on P. oceanica are available in the supple-
mentary materials, together with all the information needed to reproduce our Machine Learning approaches. 
We believed that ecological applications of Machine Learning have not to comply with the need for the most 
extremely accurate predictions, rather they have to provide ecologically sound results38. In this context, our 
predictive models, which to our knowledge represent the first efforts in modeling P. oceanica shoot density and 
rhizome primary production using a Machine Learning approach, will help enhancing our understanding, with 
a clear ecological basis, on how P. oceanica ecosystems work.

Figure 6.   Test set error ranges with respect to six bathymetric classes: (a) shoot density model (green bars); (b) 
rhizome primary production model (blue bars) and cascaded approach (hatched blue bars). The bathymetric 
class (25,35] m included only 3 cases.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16978  | https://doi.org/10.1038/s41598-020-73722-9

www.nature.com/scientificreports/

Conclusions
P. oceanica meadows are one of the most productive ecosystems on Earth, and they play a crucial role in con-
trolling the sedimentation flows, in mitigating the hydrodynamic stress and in protecting the shoreline from 
erosion2. Basically, P. oceanica plays crucial role in the ecological balance of marine coastal waters over the whole 
Mediterranean basin.

In this study, we developed Machine learning-based models aimed at estimating the shoot density and the 
rhizome primary production using as predictive variables only the environmental factors that can be retrieved 
from maps in order to enhance the applicability of the resulting models, independently of field data collection.

We further proposed a cascaded approach aimed at estimating the rhizome primary production using pre-
dicted data on shoot density, rather than requiring observed measurement of the latter property, which require 
expensive and time-consuming field activities. The RFs showed high level of performance in modeling P. oceanica, 
allowing to obtain estimates that could prove effective in the definition of the ecological condition of meadows. 
Indeed, our predictive models, which to our knowledge represent the first Machine learning efforts to these 
purposee, provided valuable information on P. oceanica, enhancing our understanding on how this ecological 
system works.
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